1
|
Wang B, Hasturk O, Kumarasinghe U, Rudolph S, Staii C, Chen Y, Kaplan DL. Temporary Nanoencapsulation of Human Intestinal Organoids Using Silk Ionomers. Adv Healthc Mater 2024:e2403176. [PMID: 39648539 DOI: 10.1002/adhm.202403176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/03/2024] [Indexed: 12/10/2024]
Abstract
Human intestinal organoids (HIOs) are vital for modeling intestinal development, disease, and therapeutic tissue regeneration. However, their susceptibility to stress, immunological attack, and environmental fluctuations limits their utility in research and therapeutic applications. This study evaluated the effectiveness of temporary silk protein-based layer-by-layer (LbL) nanoencapsulation technique to enhance the viability and functions of HIOs against common biomedical stressors, without compromising their native functions. Cell viability and differentiation capacity are assessed, finding that nanoencapsulation significantly improved HIO survival under the various environmental perturbations studied without compromising cellular functionality. Post-stress exposures, the encapsulated HIOs still successfully differentiated into essential intestinal cell types such as enterocytes, goblet cells, enteroendocrine cells, and Paneth cells. Moreover, the silk nanocoatings effectively protected against environmental stressors such as ultraviolet (UV) light exposure, protease degradation, antibody binding, and cytokine-induced inflammation. This nanoencapsulation technique shows promise for advancing HIO applications in disease modeling, drug testing, and potential transplantation therapies.
Collapse
Affiliation(s)
- Brooke Wang
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Onur Hasturk
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | | | - Sara Rudolph
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Cristian Staii
- Department of Physics and Astronomy, Tufts University, Medford, MA, USA
| | - Ying Chen
- Department of Physics and Astronomy, Tufts University, Medford, MA, USA
| | - David L Kaplan
- Department of Physics and Astronomy, Tufts University, Medford, MA, USA
| |
Collapse
|
2
|
Yitayew MY, Gasparrini M, Li L, Paraskevas S, Tabrizian M. An investigation of functionalized chitosan and alginate multilayer conformal nanocoating on mouse beta cell spheroids as a model for pancreatic islet transplantation. Int J Biol Macromol 2024; 278:134960. [PMID: 39179080 DOI: 10.1016/j.ijbiomac.2024.134960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Multilayer conformal coatings have been shown to provide a nanoscale barrier between cells and their environment with adequate stability, while regulating the diffusion of nutrition and waste across the cell membrane. The coating method aims to minimize capsule thickness and implant volume while reducing the need for immunosuppressive drugs, making it a promising approach for islet cell encapsulation in clinical islet transplantation for the treatment of Type 1 diabetes. This study introduces an immunoprotective nanocoating obtained through electrostatic interaction between quaternized phosphocholine-chitosan (PC-QCH) and tetrahydropyran triazole phenyl-alginate (TZ-AL) onto mouse β-cell spheroids. First, successful synthesis of the proposed polyelectrolytes was confirmed with physico-chemical characterization. A coating with an average thickness of 540 nm was obtained with self-assembly of 4-bilayers of PC-QCH/TZ-AL onto MIN6 β-cell spheroids. Surface coating of spheroids did not affect cell viability, metabolic activity, or insulin secretion, when compared to non-coated spheroids. The exposure of the polyelectrolytes to THP-1 monocyte-derived macrophages lead to a reduced level of TNF-α secretion and exposure of coated spheroids to RAW264.7 macrophages showed a decreasing trend in the secretion of TNF-α and IL-6. In addition, coated spheroids were able to establish normoglycemia when implanted into diabetic NOD-SCID mice, demonstrating in vivo biocompatibility and cellular function. These results demonstrate the ability of the PC-QCH/TZ-AL conformal coating to mitigate pro-inflammatory responses from macrophages, and thus can be a promising candidate towards nanoencapsulation for cell-based therapy, particularly in type 1 diabetes, where the insulin secreting β-cells are subjected to inflammation and immune cell attack.
Collapse
Affiliation(s)
| | - Marco Gasparrini
- Metabolic Disorders and Complications (MeDiC) Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada; Human Islet Transplantation Laboratory, McGill University Health Centre, Montréal, QC, Canada
| | - Ling Li
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Steven Paraskevas
- Metabolic Disorders and Complications (MeDiC) Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada; Human Islet Transplantation Laboratory, McGill University Health Centre, Montréal, QC, Canada; Department of Surgery, McGill University, Montréal, QC, Canada; Division of General Surgery and Multi-Organ Transplant Program, Department of Surgery, McGill University Health Centre, Montréal, QC, Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, McGill University, Montréal, QC, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC, Canada.
| |
Collapse
|
3
|
Adebowale K, Liao R, Suja VC, Kapate N, Lu A, Gao Y, Mitragotri S. Materials for Cell Surface Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210059. [PMID: 36809574 DOI: 10.1002/adma.202210059] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Cell therapies are emerging as a promising new therapeutic modality in medicine, generating effective treatments for previously incurable diseases. Clinical success of cell therapies has energized the field of cellular engineering, spurring further exploration of novel approaches to improve their therapeutic performance. Engineering of cell surfaces using natural and synthetic materials has emerged as a valuable tool in this endeavor. This review summarizes recent advances in the development of technologies for decorating cell surfaces with various materials including nanoparticles, microparticles, and polymeric coatings, focusing on the ways in which surface decorations enhance carrier cells and therapeutic effects. Key benefits of surface-modified cells include protecting the carrier cell, reducing particle clearance, enhancing cell trafficking, masking cell-surface antigens, modulating inflammatory phenotype of carrier cells, and delivering therapeutic agents to target tissues. While most of these technologies are still in the proof-of-concept stage, the promising therapeutic efficacy of these constructs from in vitro and in vivo preclinical studies has laid a strong foundation for eventual clinical translation. Cell surface engineering with materials can imbue a diverse range of advantages for cell therapy, creating opportunities for innovative functionalities, for improved therapeutic efficacy, and transforming the fundamental and translational landscape of cell therapies.
Collapse
Affiliation(s)
- Kolade Adebowale
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Rick Liao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Vineeth Chandran Suja
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Neha Kapate
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Andrew Lu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, 02134, USA
| | - Yongsheng Gao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA
| |
Collapse
|
4
|
Lei C, Li Z, Ma S, Zhang Q, Guo J, Ouyang Q, Lei Q, Zhou L, Yang J, Lin J, Ettlinger R, Wuttke S, Li X, Brinker CJ, Zhu W. Improving normothermic machine perfusion and blood transfusion through biocompatible blood silicification. Proc Natl Acad Sci U S A 2024; 121:e2322418121. [PMID: 39159377 PMCID: PMC11363281 DOI: 10.1073/pnas.2322418121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/11/2024] [Indexed: 08/21/2024] Open
Abstract
The growing world population and increasing life expectancy are driving the need to improve the quality of blood transfusion, organ transplantation, and preservation. Here, to improve the ability of red blood cells (RBCs) for normothermic machine perfusion, a biocompatible blood silicification approach termed "shielding-augmenting RBC-in-nanoscale amorphous silica (SARNAS)" has been developed. The key to RBC surface engineering and structure augmentation is the precise control of the hydrolysis form of silicic acid to realize stabilization of RBC within conformal nanoscale silica-based exoskeletons. The formed silicified RBCs (Si-RBCs) maintain membrane/structural integrity, normal cellular functions (e.g., metabolism, oxygen-carrying capability), and enhance resistance to external stressors as well as tunable mechanical properties, resulting in nearly 100% RBC cryoprotection. In vivo experiments confirm their excellent biocompatibility. By shielding RBC surface antigens, the Si-RBCs provide universal blood compatibility, the ability for allogeneic mechanical perfusion, and more importantly, the possibility for cross-species transfusion. Being simple, reliable, and easily scalable, the SARNAS strategy holds great promise to revolutionize the use of engineered blood for future clinical applications.
Collapse
Affiliation(s)
- Chuanyi Lei
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou510006, People’s Republic of China
| | - Zeyu Li
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou510006, People’s Republic of China
| | - Shuhao Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics, and Center for X-Mechanics, Zhejiang University, Hangzhou310027, People’s Republic of China
| | - Qi Zhang
- The Second Affiliated Hospital of Anhui Medical University, Hefei23060, People’s Republic of China
| | - Jimin Guo
- Center for Micro-Engineered Materials and the Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, NM87131
| | - Qing Ouyang
- Department of Hepatobiliary Surgery and Liver Transplant Center, The General Hospital of Southern Theater, Guangzhou510010, People’s Republic of China
| | - Qi Lei
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou510006, People’s Republic of China
| | - Liang Zhou
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou510006, People’s Republic of China
| | - Junxian Yang
- Research Department of Medical Sciences, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou510080, China
| | - Jiangguo Lin
- Research Department of Medical Sciences, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou510080, China
| | - Romy Ettlinger
- EastChem School of Chemistry, University of St Andrews, North Haugh, St. AndrewsKY16 9ST, United Kingdom
| | - Stefan Wuttke
- BCMaterials, Basque Center for Materials, UPV/EHU Science Park, Leioa48950, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao48009, Spain
| | - Xuejin Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics, and Center for X-Mechanics, Zhejiang University, Hangzhou310027, People’s Republic of China
| | - C. Jeffrey Brinker
- Center for Micro-Engineered Materials and the Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, NM87131
| | - Wei Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou510006, People’s Republic of China
| |
Collapse
|
5
|
Whitewolf J, Highley CB. Conformal encapsulation of mammalian stem cells using modified hyaluronic acid. J Mater Chem B 2024; 12:7122-7134. [PMID: 38946474 PMCID: PMC11268093 DOI: 10.1039/d4tb00223g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024]
Abstract
Micro- and nanoencapsulation of cells has been studied as a strategy to protect cells from environmental stress and promote survival during delivery. Hydrogels used in encapsulation can be modified to influence cell behaviors and direct assembly in their surroundings. Here, we report a system that conformally encapsulated stem cells using hyaluronic acid (HA). We successfully modified HA with lipid, thiol, and maleimide pendant groups to facilitate a hydrogel system in which HA was deposited onto cell plasma membranes and subsequently crosslinked through thiol-maleimide click chemistry. We demonstrated conformal encapsulation of both neural stem cells (NSCs) and mesenchymal stromal cells (MSCs), with viability of both cell types greater than 90% after encapsulation. Additional material could be added to the conformal hydrogel through alternating addition of thiol-modified and maleimide-modified HA in a layering process. After encapsulation, we tracked egress and viability of the cells over days and observed differential responses of cell types to conformal hydrogels both according to cell type and the amount of material deposited on the cell surfaces. Through the design of the conformal hydrogels, we showed that multicellular assembly could be created in suspension and that encapsulated cells could be immobilized on surfaces. In conjunction with photolithography, conformal hydrogels enabled rapid assembly of encapsulated cells on hydrogel substrates with resolution at the scale of 100 μm.
Collapse
Affiliation(s)
- Jack Whitewolf
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA.
| | - Christopher B Highley
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA.
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
6
|
Kavand A, Noverraz F, Gerber-Lemaire S. Recent Advances in Alginate-Based Hydrogels for Cell Transplantation Applications. Pharmaceutics 2024; 16:469. [PMID: 38675129 PMCID: PMC11053880 DOI: 10.3390/pharmaceutics16040469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
With its exceptional biocompatibility, alginate emerged as a highly promising biomaterial for a large range of applications in regenerative medicine. Whether in the form of microparticles, injectable hydrogels, rigid scaffolds, or bioinks, alginate provides a versatile platform for encapsulating cells and fostering an optimal environment to enhance cell viability. This review aims to highlight recent studies utilizing alginate in diverse formulations for cell transplantation, offering insights into its efficacy in treating various diseases and injuries within the field of regenerative medicine.
Collapse
Affiliation(s)
| | | | - Sandrine Gerber-Lemaire
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (A.K.); (F.N.)
| |
Collapse
|
7
|
Borges J, Zeng J, Liu XQ, Chang H, Monge C, Garot C, Ren K, Machillot P, Vrana NE, Lavalle P, Akagi T, Matsusaki M, Ji J, Akashi M, Mano JF, Gribova V, Picart C. Recent Developments in Layer-by-Layer Assembly for Drug Delivery and Tissue Engineering Applications. Adv Healthc Mater 2024; 13:e2302713. [PMID: 38116714 PMCID: PMC11469081 DOI: 10.1002/adhm.202302713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/27/2023] [Indexed: 12/21/2023]
Abstract
Surfaces with biological functionalities are of great interest for biomaterials, tissue engineering, biophysics, and for controlling biological processes. The layer-by-layer (LbL) assembly is a highly versatile methodology introduced 30 years ago, which consists of assembling complementary polyelectrolytes or biomolecules in a stepwise manner to form thin self-assembled films. In view of its simplicity, compatibility with biological molecules, and adaptability to any kind of supporting material carrier, this technology has undergone major developments over the past decades. Specific applications have emerged in different biomedical fields owing to the possibility to load or immobilize biomolecules with preserved bioactivity, to use an extremely broad range of biomolecules and supporting carriers, and to modify the film's mechanical properties via crosslinking. In this review, the focus is on the recent developments regarding LbL films formed as 2D or 3D objects for applications in drug delivery and tissue engineering. Possible applications in the fields of vaccinology, 3D biomimetic tissue models, as well as bone and cardiovascular tissue engineering are highlighted. In addition, the most recent technological developments in the field of film construction, such as high-content liquid handling or machine learning, which are expected to open new perspectives in the future developments of LbL, are presented.
Collapse
Grants
- GA259370 ERC "BIOMIM"
- GA692924 ERC "BioactiveCoatings"
- GA790435 ERC "Regenerbone"
- ANR-17-CE13-022 Agence Nationale de la Recherche "CODECIDE", "OBOE", "BuccaVac"
- ANR-18-CE17-0016 Agence Nationale de la Recherche "CODECIDE", "OBOE", "BuccaVac"
- 192974 Agence Nationale de la Recherche "CODECIDE", "OBOE", "BuccaVac"
- ANR-20-CE19-022 BIOFISS Agence Nationale de la Recherche "CODECIDE", "OBOE", "BuccaVac"
- ANR22-CE19-0024 SAFEST Agence Nationale de la Recherche "CODECIDE", "OBOE", "BuccaVac"
- DOS0062033/0 FUI-BPI France
- 883370 European Research Council "REBORN"
- 2020.00758.CEECIND Portuguese Foundation for Science and Technology
- UIDB/50011/2020,UIDP/50011/2020,LA/P/0006/2020 FCT/MCTES (PIDDAC)
- 751061 European Union's Horizon 2020 "PolyVac"
- 11623 Sidaction
- 20H00665 JSPS Grant-in-Aid for Scientific Research
- 3981662 BPI France Aide Deep Tech programme
- ECTZ60600 Agence Nationale de Recherches sur le Sida et les Hépatites Virales
- 101079482 HORIZON EUROPE Framework Programme "SUPRALIFE"
- 101058554 Horizon Europe EIC Accelerator "SPARTHACUS"
- Sidaction
- Agence Nationale de Recherches sur le Sida et les Hépatites Virales
Collapse
Affiliation(s)
- João Borges
- CICECO – Aveiro Institute of MaterialsDepartment of ChemistryUniversity of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - Jinfeng Zeng
- Division of Applied ChemistryGraduate School of EngineeringOsaka University2‐1 YamadaokaSuitaOsaka565–0871Japan
| | - Xi Qiu Liu
- School of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Hao Chang
- Hangzhou Institute of MedicineChinese Academy of SciencesHangzhouZhejiang310022China
| | - Claire Monge
- Laboratory of Tissue Biology and Therapeutic Engineering (LBTI)UMR5305 CNRS/Universite Claude Bernard Lyon 17 Passage du VercorsLyon69367France
| | - Charlotte Garot
- Université de Grenoble AlpesCEAINSERM U1292 BiosantéCNRS EMR 5000 Biomimetism and Regenerative Medicine (BRM)17 avenue des MartyrsGrenobleF‐38054France
| | - Ke‐feng Ren
- Department of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Paul Machillot
- Université de Grenoble AlpesCEAINSERM U1292 BiosantéCNRS EMR 5000 Biomimetism and Regenerative Medicine (BRM)17 avenue des MartyrsGrenobleF‐38054France
| | - Nihal E. Vrana
- SPARTHA Medical1 Rue Eugène BoeckelStrasbourg67000France
| | - Philippe Lavalle
- SPARTHA Medical1 Rue Eugène BoeckelStrasbourg67000France
- Institut National de la Santé et de la Recherche MédicaleInserm UMR_S 1121 Biomaterials and BioengineeringCentre de Recherche en Biomédecine de Strasbourg1 rue Eugène BoeckelStrasbourg67000France
- Université de StrasbourgFaculté de Chirurgie Dentaire1 place de l'HôpitalStrasbourg67000France
| | - Takami Akagi
- Building Block Science Joint Research ChairGraduate School of Frontier BiosciencesOsaka University1–3 YamadaokaSuitaOsaka565–0871Japan
| | - Michiya Matsusaki
- Division of Applied ChemistryGraduate School of EngineeringOsaka University2‐1 YamadaokaSuitaOsaka565–0871Japan
| | - Jian Ji
- Department of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Mitsuru Akashi
- Building Block Science Joint Research ChairGraduate School of Frontier BiosciencesOsaka University1–3 YamadaokaSuitaOsaka565–0871Japan
| | - João F. Mano
- CICECO – Aveiro Institute of MaterialsDepartment of ChemistryUniversity of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - Varvara Gribova
- Institut National de la Santé et de la Recherche MédicaleInserm UMR_S 1121 Biomaterials and BioengineeringCentre de Recherche en Biomédecine de Strasbourg1 rue Eugène BoeckelStrasbourg67000France
- Université de StrasbourgFaculté de Chirurgie Dentaire1 place de l'HôpitalStrasbourg67000France
| | - Catherine Picart
- Université de Grenoble AlpesCEAINSERM U1292 BiosantéCNRS EMR 5000 Biomimetism and Regenerative Medicine (BRM)17 avenue des MartyrsGrenobleF‐38054France
| |
Collapse
|
8
|
Tian F, Zhou Y, Ma Z, Tang R, Wang X. Organismal Function Enhancement through Biomaterial Intervention. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:377. [PMID: 38392750 PMCID: PMC10891834 DOI: 10.3390/nano14040377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 02/24/2024]
Abstract
Living organisms in nature, such as magnetotactic bacteria and eggs, generate various organic-inorganic hybrid materials, providing unique functionalities. Inspired by such natural hybrid materials, researchers can reasonably integrate biomaterials with living organisms either internally or externally to enhance their inherent capabilities and generate new functionalities. Currently, the approaches to enhancing organismal function through biomaterial intervention have undergone rapid development, progressing from the cellular level to the subcellular or multicellular level. In this review, we will concentrate on three key strategies related to biomaterial-guided bioenhancement, including biointerface engineering, artificial organelles, and 3D multicellular immune niches. For biointerface engineering, excess of amino acid residues on the surfaces of cells or viruses enables the assembly of materials to form versatile artificial shells, facilitating vaccine engineering and biological camouflage. Artificial organelles refer to artificial subcellular reactors made of biomaterials that persist in the cytoplasm, which imparts cells with on-demand regulatory ability. Moreover, macroscale biomaterials with spatiotemporal regulation characters enable the local recruitment and aggregation of cells, denoting multicellular niche to enhance crosstalk between cells and antigens. Collectively, harnessing the programmable chemical and biological attributes of biomaterials for organismal function enhancement shows significant potential in forthcoming biomedical applications.
Collapse
Affiliation(s)
- Fengchao Tian
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310058, China; (F.T.); (Y.Z.)
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China;
| | - Yuemin Zhou
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310058, China; (F.T.); (Y.Z.)
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China;
| | - Zaiqiang Ma
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China;
| | - Ruikang Tang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310058, China; (F.T.); (Y.Z.)
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China;
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310058, China; (F.T.); (Y.Z.)
| |
Collapse
|
9
|
Almeida‐Pinto J, Lagarto MR, Lavrador P, Mano JF, Gaspar VM. Cell Surface Engineering Tools for Programming Living Assemblies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304040. [PMID: 37823678 PMCID: PMC10700290 DOI: 10.1002/advs.202304040] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/10/2023] [Indexed: 10/13/2023]
Abstract
Breakthroughs in precision cell surface engineering tools are supporting the rapid development of programmable living assemblies with valuable features for tackling complex biological problems. Herein, the authors overview the most recent technological advances in chemically- and biologically-driven toolboxes for engineering mammalian cell surfaces and triggering their assembly into living architectures. A particular focus is given to surface engineering technologies for enabling biomimetic cell-cell social interactions and multicellular cell-sorting events. Further advancements in cell surface modification technologies may expand the currently available bioengineering toolset and unlock a new generation of personalized cell therapeutics with clinically relevant biofunctionalities. The combination of state-of-the-art cell surface modifications with advanced biofabrication technologies is envisioned to contribute toward generating living materials with increasing tissue/organ-mimetic bioactivities and therapeutic potential.
Collapse
Affiliation(s)
- José Almeida‐Pinto
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - Matilde R. Lagarto
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - Pedro Lavrador
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - João F. Mano
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - Vítor M. Gaspar
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| |
Collapse
|
10
|
Yang H, Yao L, Wang Y, Chen G, Chen H. Advancing cell surface modification in mammalian cells with synthetic molecules. Chem Sci 2023; 14:13325-13345. [PMID: 38033886 PMCID: PMC10685406 DOI: 10.1039/d3sc04597h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Biological cells, being the fundamental entities of life, are widely acknowledged as intricate living machines. The manipulation of cell surfaces has emerged as a progressively significant domain of investigation and advancement in recent times. Particularly, the alteration of cell surfaces using meticulously crafted and thoroughly characterized synthesized molecules has proven to be an efficacious means of introducing innovative functionalities or manipulating cells. Within this realm, a diverse array of elegant and robust strategies have been recently devised, including the bioorthogonal strategy, which enables selective modification. This review offers a comprehensive survey of recent advancements in the modification of mammalian cell surfaces through the use of synthetic molecules. It explores a range of strategies, encompassing chemical covalent modifications, physical alterations, and bioorthogonal approaches. The review concludes by addressing the present challenges and potential future opportunities in this rapidly expanding field.
Collapse
Affiliation(s)
- He Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| | - Lihua Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| | - Yichen Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| | - Gaojian Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University Suzhou 215006 Jiangsu P. R. China
| | - Hong Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| |
Collapse
|
11
|
Xue Z, Mei D, Zhang L. Advances in single-cell nanoencapsulation and applications in diseases. J Microencapsul 2022; 39:481-494. [PMID: 35998209 DOI: 10.1080/02652048.2022.2111472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Single-cell nanoencapsulation is a method of coating the surface of single cell with nanomaterials. In the early 20th century, with the introduction of various types of organic or inorganic nano-polymer materials, the selection of cell types, and the functional modification of the outer coating, this technology has gradually matured. Typical preparation methods include interfacial polycondensation, complex condensation, spray drying, microdroplet ejection, and layer-by-layer (LbL) self-assembly. The LbL assembly technology utilises nanomaterials with opposite charges deposited on cells by strong interaction (electrostatic interaction) or weak interaction (hydrogen bonding, hydrophobic interaction), which drives compounds to spontaneously form films with complete structure, stable performance and unique functions on cells. According to the needs of the disease, choosing appropriate cell types and biocompatible and biodegradable nanomaterials could achieve the purpose of promoting cell proliferation, immune isolation, reducing phagocytosis of the reticuloendothelial system, prolonging the circulation time in vivo, and avoiding repeated administration. Therefore, encapsulated cells could be utilised in various biomedical fields, such as cell catalysis, biotherapy, vaccine manufacturing and antitumor therapy. This article reviews cell nanoencapsulation therapies for diseases, including the various cell sources used, nanoencapsulation technology and the latest advances in preclinical and clinical research.
Collapse
Affiliation(s)
- Ziyang Xue
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China
| | - Dan Mei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China
| |
Collapse
|
12
|
Wang W, Wang S. Cell-based biocomposite engineering directed by polymers. LAB ON A CHIP 2022; 22:1042-1067. [PMID: 35244136 DOI: 10.1039/d2lc00067a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biological cells such as bacterial, fungal, and mammalian cells always exploit sophisticated chemistries and exquisite micro- and nano-structures to execute life activities, providing numerous templates for engineering bioactive and biomorphic materials, devices, and systems. To transform biological cells into functional biocomposites, polymer-directed cell surface engineering and intracellular functionalization have been developed over the past two decades. Polymeric materials can be easily adopted by various cells through polymer grafting or in situ hydrogelation and can successfully bridge cells with other functional materials as interfacial layers, thus achieving the manufacture of advanced biocomposites through bioaugmentation of living cells and transformation of cells into templated materials. This review article summarizes the recent progress in the design and construction of cell-based biocomposites by polymer-directed strategies. Furthermore, the applications of cell-based biocomposites in broad fields such as cell research, biomedicine, and bioenergy are discussed. Last, we provide personal perspectives on challenges and future trends in this interdisciplinary area.
Collapse
Affiliation(s)
- Wenshuo Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Díez-Pascual AM, Rahdar A. LbL Nano-Assemblies: A Versatile Tool for Biomedical and Healthcare Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:949. [PMID: 35335762 PMCID: PMC8954003 DOI: 10.3390/nano12060949] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023]
Abstract
Polyelectrolytes (PEs) have been the aim of many research studies over the past years. PE films are prepared by the simple and versatile layer-by-layer (LbL) approach using alternating assemblies of polymer pairs involving a polyanion and a polycation. The adsorption of the alternating PE multiple layers is driven by different forces (i.e., electrostatic interactions, H-bonding, charge transfer interactions, hydrophobic forces, etc.), which enable an accurate control over the physical properties of the film (i.e., thickness at the nanoscale and morphology). These PE nano-assemblies have a wide range of biomedical and healthcare applications, including drug delivery, protein delivery, tissue engineering, wound healing, and so forth. This review provides a concise overview of the most outstanding research on the design and fabrication of PE nanofilms. Their nanostructures, molecular interactions with biomolecules, and applications in the biomedical field are briefly discussed. Finally, the perspectives of further research directions in the development of LbL nano-assemblies for healthcare and medical applications are highlighted.
Collapse
Affiliation(s)
- Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran;
| |
Collapse
|
14
|
Pawlak A, Belbekhouche S. New approach to develop functionalized polyelectrolyte tube using bacteria as template. J Appl Polym Sci 2022. [DOI: 10.1002/app.51687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- André Pawlak
- Institut National de la Santé et de la Recherche Médicale (INSERM) Créteil France
- Université Paris Est, Faculté de Médecine Créteil France
| | - Sabrina Belbekhouche
- Université Paris Est Creteil CNRS, Institut Chimie et Matériaux Paris Est Thiais France
| |
Collapse
|
15
|
Galvan Y, Bauernfeind J, Wolf P, Zarraga R, Haumann M, Vogel N. Materials with Hierarchical Porosity Enhance the Stability of Infused Ionic Liquid Films. ACS OMEGA 2021; 6:20956-20965. [PMID: 34423203 PMCID: PMC8374917 DOI: 10.1021/acsomega.1c02405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Defined surface functionalities can control the properties of a material. The layer-by-layer method is an experimentally simple yet very versatile method to coat a surface with nanoscale precision. The method is widely used to either control the chemical properties of the surface via the introduction of functional moieties bound to the polymer or create nanoscale surface topographies if one polymeric species is replaced by a colloidal dispersion. Such roughness can enhance the stability of a liquid film on top of the surface by capillary adhesion. Here, we investigate whether a similar effect allows an increased retention of liquid films within a porous surface and thus potentially increases the stability of ionic liquid films infused within a porous matrix in the supported ionic liquid-phase catalysis. The complex geometry of the porous material, long diffusion pathways, and small sizes of necks connecting individual pores all contribute to difficulties to reliably coat the required porous materials. We optimize the coating process to ensure uniform surface functionalization via two steps. Diffusion limitations are overcome by force-wetting the pores, which transports the functional species convectively into the materials. Electrostatic repulsion, which can limit pore accessibility, is mitigated by the addition of electrolytes to screen charges. We introduce nanoscale topography in microscale porous SiC monoliths to enhance the retention of an ionic liquid film. We use γ-Al2O3 to coat monoliths and test the retention of 1-butyl-2,3-dimethylimidazolium chloride under exposure to a continuous gas stream, a setup commonly used in the water-gas shift reaction. Our study showcases that a hierarchical topography can improve the stability of impregnated ionic liquid films, with a potential advantage of improved supported ionic liquid-phase catalysis.
Collapse
Affiliation(s)
- Yaraset Galvan
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
- Departamento
de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, 36050 Guanajuato, Mexico
| | - Johannes Bauernfeind
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Patrick Wolf
- Lehrstuhl
für Chemische Reaktionstechnik (CRT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Ramon Zarraga
- Departamento
de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, 36050 Guanajuato, Mexico
| | - Marco Haumann
- Lehrstuhl
für Chemische Reaktionstechnik (CRT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Nicolas Vogel
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| |
Collapse
|
16
|
Biomaterials for Cell-Surface Engineering and Their Efficacy. J Funct Biomater 2021; 12:jfb12030041. [PMID: 34287337 PMCID: PMC8293134 DOI: 10.3390/jfb12030041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/30/2022] Open
Abstract
Literature in the field of stem cell therapy indicates that, when stem cells in a state of single-cell suspension are injected systemically, they show poor in vivo survival, while such cells show robust cell survival and regeneration activity when transplanted in the state of being attached on a biomaterial surface. Although an attachment-deprived state induces anoikis, when cell-surface engineering technology was adopted for stem cells in a single-cell suspension state, cell survival and regenerative activity dramatically improved. The biochemical signal coming from ECM (extracellular matrix) molecules activates the cell survival signal transduction pathway and prevents anoikis. According to the target disease, various therapeutic cells can be engineered to improve their survival and regenerative activity, and there are several types of biomaterials available for cell-surface engineering. In this review, biomaterial types and application strategies for cell-surface engineering are presented along with their expected efficacy.
Collapse
|
17
|
Lee H, Kim N, Rheem HB, Kim BJ, Park JH, Choi IS. A Decade of Advances in Single-Cell Nanocoating for Mammalian Cells. Adv Healthc Mater 2021; 10:e2100347. [PMID: 33890422 DOI: 10.1002/adhm.202100347] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/06/2021] [Indexed: 12/14/2022]
Abstract
Strategic advances in the single-cell nanocoating of mammalian cells have noticeably been made during the last decade, and many potential applications have been demonstrated. Various cell-coating strategies have been proposed via adaptation of reported methods in the surface sciences and/or materials identification that ensure the sustainability of labile mammalian cells during chemical manipulation. Here an overview of the methodological development and potential applications to the healthcare sector in the nanocoating of mammalian cells made during the last decade is provided. The materials used for the nanocoating are categorized into polymers, hydrogels, polyphenolic compounds, nanoparticles, and minerals, and the corresponding strategies are described under the given set of materials. It also suggests, as a future direction, the creation of the cytospace system that is hierarchically composed of the physically separated but mutually interacting cellular hybrids.
Collapse
Affiliation(s)
- Hojae Lee
- Center for Cell‐Encapsulation Research Department of Chemistry KAIST Daejeon 34141 Korea
| | - Nayoung Kim
- Center for Cell‐Encapsulation Research Department of Chemistry KAIST Daejeon 34141 Korea
| | - Hyeong Bin Rheem
- Center for Cell‐Encapsulation Research Department of Chemistry KAIST Daejeon 34141 Korea
| | - Beom Jin Kim
- Department of Chemistry University of Ulsan Ulsan 44610 Korea
| | - Ji Hun Park
- Department of Science Education Ewha Womans University Seoul 03760 Korea
| | - Insung S. Choi
- Center for Cell‐Encapsulation Research Department of Chemistry KAIST Daejeon 34141 Korea
| |
Collapse
|
18
|
Zhang Z, Liu Q, Tan J, Zhan X, Liu T, Wang Y, Lu G, Wu M, Zhang Y. Coating with flexible DNA network enhanced T-cell activation and tumor killing for adoptive cell therapy. Acta Pharm Sin B 2021; 11:1965-1977. [PMID: 34386331 PMCID: PMC8343197 DOI: 10.1016/j.apsb.2021.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/11/2021] [Accepted: 03/28/2021] [Indexed: 12/12/2022] Open
Abstract
Adoptive cell therapy (ACT) is an emerging powerful cancer immunotherapy, which includes a complex process of genetic modification, stimulation and expansion. During these in vitro or ex vivo manipulation, sensitive cells are inescapability subjected to harmful external stimuli. Although a variety of cytoprotection strategies have been developed, their application on ACT remains challenging. Herein, a DNA network is constructed on cell surface by rolling circle amplification (RCA), and T cell-targeted trivalent tetrahedral DNA nanostructure is used as a rigid scaffold to achieve high-efficient and selective coating for T cells. The cytoprotective DNA network on T-cell surface makes them aggregate over time to form cell clusters, which exhibit more resistance to external stimuli and enhanced activities in human peripheral blood mononuclear cells and liver cancer organoid killing model. Overall, this work provides a novel strategy for in vitro T cell-selective protection, which has a great potential for application in ACT.
Collapse
Affiliation(s)
- Ziyan Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Qiaojuan Liu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jizhou Tan
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoxia Zhan
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ting Liu
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuting Wang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Gen Lu
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou 510080, China
| | - Minhao Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuanqing Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
19
|
Pawlak A, Belbekhouche S. Controlling the growth of Escherichia coli by layer-by-layer encapsulation. Colloids Surf B Biointerfaces 2021; 206:111950. [PMID: 34218012 DOI: 10.1016/j.colsurfb.2021.111950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/16/2021] [Accepted: 06/25/2021] [Indexed: 11/19/2022]
Abstract
Escherichia coli is one of the most common commensal aerobic bacteria in the gut microbiota of humans (and other mammals). Nevertheless, if left free to proliferate, it can induce a large range of diseases from diarrhoea to extra-intestinal diseases. In recent years, this bacterium had become increasingly resistant to antibiotics. It is therefore essential to implement new approaches able to maintain both bacterial viability and to control their proliferation. In this context, we developed a process to encapsulate Escherichia coli in polymer shells. We took advantage of the fact that this bacterium has a negatively charged surface and modified it via a layer-by-layer process, i.e. with oppositely charged polyelectrolyte pairs (namely chitosan as the polycation and alginate or dextran sulfate as polyanion). We successfully demonstrate the controlled coating of the bacterial surface via zeta potential measurement, the viability of the encapsulated bacteria and a delay in growth due to the multilayer coating. This delay was dependent on the number of polyelectrolyte layers.
Collapse
Affiliation(s)
- André Pawlak
- Institut National de la Santé et de la Recherche Médicale (INSERM), IMRB U955, Créteil, F-94010, France; Université Paris Est, Faculté de Médecine, UMRS 955, Créteil, F-94010, France
| | - Sabrina Belbekhouche
- Université Paris Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, 94320, Thiais, France.
| |
Collapse
|
20
|
Wang Y, Li B, Li Y, Chen X. Research progress on enhancing the performance of autotrophic nitrogen removal systems using microbial immobilization technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145136. [PMID: 33609842 DOI: 10.1016/j.scitotenv.2021.145136] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
The autotrophic nitrogen removal process has great potential to be applied to the biological removal of nitrogen from wastewater, but its application is hindered by its unstable operation under adverse environmental conditions, such as those presented by low temperatures, high organic matter concentrations, or the presence of toxic substances. Granules and microbial entrapment technology can effectively retain and enrich microbial assemblages in reactors to improve operating efficiency and reactor stability. The carriers can also protect the reactor's internal microorganisms from interference from the external environment. This article critically reviews the existing literature on autotrophic nitrogen removal systems using immobilization technology. We focus our discussion on the natural aggregation process (granulation) and entrapment technology. The selection of carrier materials and entrapment methods are identified and described in detail and the mechanisms through which entrapment technology protects microorganisms are analyzed. This review will provide a better understanding of the mechanisms through which immobilization operates and the prospects for immobilization technology to be applied in autotrophic nitrogen removal systems.
Collapse
Affiliation(s)
- Yue Wang
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Bolin Li
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China.
| | - Ye Li
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Xiaoguo Chen
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| |
Collapse
|
21
|
Cui Y, Li B, Wang X, Tang R. Organism–Materials Integration: A Promising Strategy for Biomedical Applications. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Yihao Cui
- Center for Biomaterials and Biopathways Department of Chemistry Zhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Benke Li
- Center for Biomaterials and Biopathways Department of Chemistry Zhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies Zhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways Department of Chemistry Zhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
- Qiushi Academy for Advanced Studies Zhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| |
Collapse
|
22
|
Li G, Zhao M, Xu F, Yang B, Li X, Meng X, Teng L, Sun F, Li Y. Synthesis and Biological Application of Polylactic Acid. Molecules 2020; 25:E5023. [PMID: 33138232 PMCID: PMC7662581 DOI: 10.3390/molecules25215023] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 12/12/2022] Open
Abstract
Over the past few decades, with the development of science and technology, the field of biomedicine has rapidly developed, especially with respect to biomedical materials. Low toxicity and good biocompatibility have always been key targets in the development and application of biomedical materials. As a degradable and environmentally friendly polymer, polylactic acid, also known as polylactide, is favored by researchers and has been used as a commercial material in various studies. Lactic acid, as a synthetic raw material of polylactic acid, can only be obtained by sugar fermentation. Good biocompatibility and biodegradability have led it to be approved by the U.S. Food and Drug Administration (FDA) as a biomedical material. Polylactic acid has good physical properties, and its modification can optimize its properties to a certain extent. Polylactic acid blocks and blends play significant roles in drug delivery, implants, and tissue engineering to great effect. This article describes the synthesis of polylactic acid (PLA) and its raw materials, physical properties, degradation, modification, and applications in the field of biomedicine. It aims to contribute to the important knowledge and development of PLA in biomedical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fengying Sun
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (M.Z.); (F.X.); (B.Y.); (X.L.); (X.M.); (L.T.)
| | - Youxin Li
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (M.Z.); (F.X.); (B.Y.); (X.L.); (X.M.); (L.T.)
| |
Collapse
|
23
|
Hui Chong LS, Zhang J, Bhat KS, Yong D, Song J. Bioinspired cell-in-shell systems in biomedical engineering and beyond: Comparative overview and prospects. Biomaterials 2020; 266:120473. [PMID: 33120202 DOI: 10.1016/j.biomaterials.2020.120473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 10/07/2020] [Accepted: 10/18/2020] [Indexed: 12/28/2022]
Abstract
With the development in tissue engineering, cell transplantation, and genetic technologies, living cells have become an important therapeutic tool in clinical medical care. For various cell-based technologies including cell therapy and cell-based sensors in addition to fundamental studies on single-cell biology, the cytoprotection of individual living cells is a prerequisite to extend cell storage life or deliver cells from one place to another, resisting various external stresses. Nature has evolved a biological defense mechanism to preserve their species under unfavorable conditions by forming a hard and protective armor. Particularly, plant seeds covered with seed coat turn into a dormant state against stressful environments, due to mechanical and water/gas constraints imposed by hard seed coat. However, when the environmental conditions become hospitable to seeds, seed coat is ruptured, initiating seed germination. This seed dormancy and germination mechanism has inspired various approaches that artificially induce cell sporulation via chemically encapsulating individual living cells within a thin but tough shell forming a 3D "cell-in-shell" structure. Herein, the recent advance of cell encapsulation strategies along with the potential advantages of the 3D "cell-in-shell" system is reviewed. Diverse coating materials including polymeric shells and hybrid shells on different types of cells ranging from microbes to mammalian cells will be discussed in terms of enhanced cytoprotective ability, control of division, chemical functionalization, and on-demand shell degradation. Finally, current and potential applications of "cell-in-shell" systems for cell-based technologies with remaining challenges will be explored.
Collapse
Affiliation(s)
- Lydia Shi Hui Chong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore; Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research, 2 Fusionopolis Way, 168384, Singapore
| | - Jingyi Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore; Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research, 2 Fusionopolis Way, 168384, Singapore
| | - Kiesar Sideeq Bhat
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Derrick Yong
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research, 2 Fusionopolis Way, 168384, Singapore
| | - Juha Song
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore.
| |
Collapse
|
24
|
Arno MC. Engineering the Mammalian Cell Surface with Synthetic Polymers: Strategies and Applications. Macromol Rapid Commun 2020; 41:e2000302. [DOI: 10.1002/marc.202000302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/27/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Maria C. Arno
- School of Chemistry University of Birmingham Edgbaston Birmingham B15 2TT UK
- Institute of Cancer and Genomic Sciences University of Birmingham Edgbaston Birmingham B15 2TT UK
| |
Collapse
|
25
|
Wei Y, Xu H, Xu S, Su H, Zhang L, Sun R, Huang D, Zhao L, Wang K, Hu Y, Lian X. Inhibiting Cell Viability and Motility by Layer-by-Layer Assembly and Biomineralization. ACS OMEGA 2020; 5:17118-17128. [PMID: 32715197 PMCID: PMC7376689 DOI: 10.1021/acsomega.0c00846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Herein, we proposed a drug-free strategy named cell surface shellization to inhibit the motility of SKOV-3 and HeLa cells. We alternately deposited two- or three-layer cationic polyelectrolyte (PE) and anionic PE films on the surface of SKOV-3 and HeLa cells. Then, a mineral shell (calcium carbonate, CaCO3) was formed on the surface of polymer shells via electrostatic force and biomineralization. The CCK-8 assay results and live/dead staining showed that the surface shells strongly aggravated the cytotoxicity. The monolayer scratch wound migration assay results and immunofluorescence staining results showed that the shells, especially the mineral shells, could efficiently inhibit the migration of SKOV-3 and HeLa cells without any anticancer drugs. The immunofluorescence results of the three small G proteins of the cells showed that the immunofluorescence intensity in SKOV-3 did not change. Preliminary results from our laboratory showed an increase in MMP-9 secreted by cancer cells after coating with films or mineral shells. It suggests that mechanisms that inhibit cell migration are related to the MMP signaling pathway. All the results indicated that shellization (films or nanomineral shells) but not limited to calcification can be used as one of the tools to change the function of cells.
Collapse
Affiliation(s)
- Yan Wei
- . Phone: +86-351-6014477. Fax: +86-351-6011816
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hasturk O, Sahoo JK, Kaplan DL. Synthesis and Characterization of Silk Ionomers for Layer-by-Layer Electrostatic Deposition on Individual Mammalian Cells. Biomacromolecules 2020; 21:2829-2843. [PMID: 32530610 PMCID: PMC7658502 DOI: 10.1021/acs.biomac.0c00523] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanocoating of individual mammalian cells with polymer layers has been of increasing interest in biotechnology and biomedical engineering applications. Electrostatic layer-by-layer (LbL) deposition of polyelectrolytes on negatively charged cell surfaces has been utilized for cell nanocoatings using synthetic or natural polymers with a net charge at physiological conditions. Here, our previous synthesis of silk-based ionomers through modification of silk fibroin (SF) with polyglutamate (PG) and polylysine (PL) was exploited for the nanocoating of mammalian cells. SF-PL constructs were cytotoxic to mammalian cells, thus an alternative approach for the synthesis of silk ionomers through carboxylation and amination of regenerated SF chains was utilized. Through the optimization of material properties and composition of incubation buffers, silk ionomers could be electrostatically assembled on the surface of murine fibroblasts and human mesenchymal stem cells (hMSCs) to form nanoscale multilayers without significantly impairing cell viability. The resulting silk-based protein nanoshells were transient and degraded over time, allowing for cell proliferation. The strategies presented here provide a basis for the cytocompatible nanoencapsulation of mammalian cells within silk-based artificial cell walls, with potential benefits for future studies on surface engineering of mammalian cells, as well as for utility in cell therapies, 3D printing, and preservation.
Collapse
Affiliation(s)
- Onur Hasturk
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Jugal Kishore Sahoo
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| |
Collapse
|
27
|
Jiang L, Liu H, Huang C, Shen X. Blood Group Antigen Shielding Facilitated by Selective Cell Surface Engineering. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22426-22432. [PMID: 32347090 DOI: 10.1021/acsami.0c00914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Production of red blood cells (RBCs) without immunogenicity of blood group antigens is of special interest in blood transfusion therapy in clinical chemistry. In this study, a selective cell surface engineering method was developed for the preparation of antigen-shielded RBCs based on molecular imprinting. Using an epitope imprinting method, biocompatible molecularly imprinted nanogels (MIgels) were prepared with a high affinity to the blood group antigens of RBCs. The antigen-shielded RBCs could avoid the agglutination caused by blood group mismatch, resulting in the antigen-shielded RBCs in efficiently substituting RBCs in case of a shortage of blood supply. Moreover, the antigen-shielded RBCs could maintain the normal physiological structure and functions of the original RBCs. We believe that the selective cell surface engineering presented in this work may offer significant benefits in specific cell protection for biomedical application.
Collapse
Affiliation(s)
- Long Jiang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huajing Liu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chuixiu Huang
- Department of Forensic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiantao Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
28
|
Guo Z, Richardson JJ, Kong B, Liang K. Nanobiohybrids: Materials approaches for bioaugmentation. SCIENCE ADVANCES 2020; 6:eaaz0330. [PMID: 32206719 PMCID: PMC7080450 DOI: 10.1126/sciadv.aaz0330] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/20/2019] [Indexed: 05/10/2023]
Abstract
Nanobiohybrids, synthesized by integrating functional nanomaterials with living systems, have emerged as an exciting branch of research at the interface of materials engineering and biological science. Nanobiohybrids use synthetic nanomaterials to impart organisms with emergent properties outside their scope of evolution. Consequently, they endow new or augmented properties that are either innate or exogenous, such as enhanced tolerance against stress, programmed metabolism and proliferation, artificial photosynthesis, or conductivity. Advances in new materials design and processing technologies made it possible to tailor the physicochemical properties of the nanomaterials coupled with the biological systems. To date, many different types of nanomaterials have been integrated with various biological systems from simple biomolecules to complex multicellular organisms. Here, we provide a critical overview of recent developments of nanobiohybrids that enable new or augmented biological functions that show promise in high-tech applications across many disciplines, including energy harvesting, biocatalysis, biosensing, medicine, and robotics.
Collapse
Affiliation(s)
- Ziyi Guo
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Graduate School of Biomedical Engineering, and Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Joseph J. Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200438 P. R. China
- Corresponding author. (B.K.); (K.L.)
| | - Kang Liang
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Graduate School of Biomedical Engineering, and Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
- Corresponding author. (B.K.); (K.L.)
| |
Collapse
|
29
|
Zhao Y, Fan M, Chen Y, Liu Z, Shao C, Jin B, Wang X, Hui L, Wang S, Liao Z, Ling D, Tang R, Wang B. Surface-anchored framework for generating RhD-epitope stealth red blood cells. SCIENCE ADVANCES 2020; 6:eaaw9679. [PMID: 32219154 PMCID: PMC7083617 DOI: 10.1126/sciadv.aaw9679] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 12/26/2019] [Indexed: 05/10/2023]
Abstract
Rhesus D (RhD) is one of the most important immunogenic antigens on red blood cells (RBCs). However, the supply of RhD-negative blood frequently faces critical shortages in clinical practice, and the positive-to-negative transition of the RhD antigen remains a great challenge. Here, we developed an alternative approach for sheltering the epitopes on RhD-positive RBCs using a surface-anchored framework, which is flexible but can achieve an optimal shield effect with minimal physicochemical influence on the cell. The chemical framework completely obstructed the RhD antigens on the cell surface, and the assessments of both blood transfusion in a mouse model and immunostimulation with human RhD-positive RBCs in a rabbit model confirmed the RhD-epitope stealth characteristics of the engineered RBCs. This work provides an efficient methodology for improving the cell surface for universal blood transfusion and generally indicates the potential of rationally designed cell surface engineering for transfusion and transplantation medicine.
Collapse
Affiliation(s)
- Yueqi Zhao
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Mingjie Fan
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Yanni Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Zhaoming Liu
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Changyu Shao
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Biao Jin
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China
| | - Lanlan Hui
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Shuaifei Wang
- Institute of Pharmaceutics and Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhaoping Liao
- Department of Transfusion, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Daishun Ling
- Institute of Pharmaceutics and Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China
| | - Ben Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
30
|
Hasturk O, Kaplan DL. Cell armor for protection against environmental stress: Advances, challenges and applications in micro- and nanoencapsulation of mammalian cells. Acta Biomater 2019; 95:3-31. [PMID: 30481608 PMCID: PMC6534491 DOI: 10.1016/j.actbio.2018.11.040] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/19/2018] [Accepted: 11/23/2018] [Indexed: 12/11/2022]
Abstract
Unlike unicellular organisms and plant cells surrounded with a cell wall, naked plasma membranes of mammalian cells make them more susceptible to environmental stresses encountered during in vitro biofabrication and in vivo cell therapy applications. Recent advances in micro- and nanoencapsulation of single mammalian cells provide an effective strategy to isolate cells from their surroundings and protect them against harsh environmental conditions. Microemulsification and droplet-based microfluidics have enabled researchers to encapsulate single cells within a variety of microscale hydrogel materials with a range of biochemical and mechanical properties and functionalities including enhanced cell-matrix interactions or on-demand degradation. In addition to microcapsules, nanocoatings of various organic and inorganic substances on mammalian cells have allowed for the formation of protective shells. A wide range of synthetic and natural polymers, minerals and supramolecular metal-organic complexes have been deposited as nanolayers on the cells via electrostatic interactions, receptor-ligand binding, non-specific interactions, and in situ polymerization/crosslinking. Here, current strategies in encapsulation of single mammalian cells along with challenges and advances are reviewed. Protection of encapsulated stem cells, fibroblasts, red and white blood cells and cancer cells against harsh in vitro and in vivo conditions including anoikis, UV radiation, physical forces, proteolytic enzymes and immune clearance are discussed. STATEMENT OF SIGNIFICANCE: The mechanical fragility of the plasma membrane and susceptibility to extracellular biochemical factors due to the lack of a physical barrier like a tough cell wall or exoskeleton make mammalian cells extra sensitive to harsh environmental conditions. This sensitively, in turn, limits the ex vivo storage, handling and manipulation of mammalian cells, as well as their in vivo applications. Environmental stresses such as exposure to UV, reactive chemicals and mechanical stress during biofabrication processes like 3D bioprinting can often compromise cell viability and function. Micro- and nanoencapsulation of single mammalian cells in protective shells have emerged as promising approaches to isolate cells from their surroundings and enhance resistance against perturbations in conditions during regenerative medicine and tissue engineering applications. In this review, the current state of art of single cell encapsulation strategies and the challenges associated with these technologies are discussed in detail. This is followed by the review of the protection provided by cell armor against a range of harsh in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Onur Hasturk
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
31
|
Layer-by-layer assembly as a robust method to construct extracellular matrix mimic surfaces to modulate cell behavior. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.02.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Biomaterials: Foreign Bodies or Tuners for the Immune Response? Int J Mol Sci 2019; 20:ijms20030636. [PMID: 30717232 PMCID: PMC6386828 DOI: 10.3390/ijms20030636] [Citation(s) in RCA: 333] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022] Open
Abstract
The perspectives of regenerative medicine are still severely hampered by the host response to biomaterial implantation, despite the robustness of technologies that hold the promise to recover the functionality of damaged organs and tissues. In this scenario, the cellular and molecular events that decide on implant success and tissue regeneration are played at the interface between the foreign body and the host inflammation, determined by innate and adaptive immune responses. To avoid adverse events, rather than the use of inert scaffolds, current state of the art points to the use of immunomodulatory biomaterials and their knowledge-based use to reduce neutrophil activation, and optimize M1 to M2 macrophage polarization, Th1 to Th2 lymphocyte switch, and Treg induction. Despite the fact that the field is still evolving and much remains to be accomplished, recent research breakthroughs have provided a broader insight on the correct choice of biomaterial physicochemical modifications to tune the reaction of the host immune system to implanted biomaterial and to favor integration and healing.
Collapse
|
33
|
Liu T, Wang Y, Zhong W, Li B, Mequanint K, Luo G, Xing M. Biomedical Applications of Layer-by-Layer Self-Assembly for Cell Encapsulation: Current Status and Future Perspectives. Adv Healthc Mater 2019; 8:e1800939. [PMID: 30511822 DOI: 10.1002/adhm.201800939] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/10/2018] [Indexed: 12/23/2022]
Abstract
Encapsulating living cells within multilayer functional shells is a crucial extension of cellular functions and a further development of cell surface engineering. In the last decade, cell encapsulation has been widely utilized in many cutting-edge biomedical fields. Compared with other techniques for cell encapsulation, layer-by-layer (LbL) self-assembly technology, due to the versatility and tunability to fabricate diverse multilayer shells with controllable compositions and structures, is considered as a promising approach for cell encapsulation. This review summarizes the state-of-the-art and potential future biomedical applications of LbL cell encapsulation. First of all, a brief introduction to the LbL self-assembly technique, including assembly mechanisms and technologies, is made. Next, different cell encapsulation strategies by LbL self-assembly techniques are explained. Then, the biomedical applications of LbL cell encapsulation in cell-based biosensors, cell transplantation, cell/molecule delivery, and tissue engineering, are highlighted. Finally, discussions on the current limitations and future perspectives of LbL cell encapsulation are also provided.
Collapse
Affiliation(s)
- Tengfei Liu
- Institute of Burn Research; State Key Laboratory of Trauma; Burn and Combined Injury; Southwest Hospital; Third Military Medical University (Army Medical University); Gaotanyan Street Chongqing 400038 China
| | - Ying Wang
- Institute of Burn Research; State Key Laboratory of Trauma; Burn and Combined Injury; Southwest Hospital; Third Military Medical University (Army Medical University); Gaotanyan Street Chongqing 400038 China
| | - Wen Zhong
- Department of Biosystem Engineering; Faculty of Agriculture; University of Manitoba; Winnpeg MB Canada
| | - Bingyun Li
- School of Medicine; West Virginia University; Morgantown WV 26506-9196 USA
| | - Kibret Mequanint
- Department of Chemical and Biochemical Engineering; University of Western; Ontario London N6A 5B9 Canada
| | - Gaoxing Luo
- Institute of Burn Research; State Key Laboratory of Trauma; Burn and Combined Injury; Southwest Hospital; Third Military Medical University (Army Medical University); Gaotanyan Street Chongqing 400038 China
| | - Malcolm Xing
- Institute of Burn Research; State Key Laboratory of Trauma; Burn and Combined Injury; Southwest Hospital; Third Military Medical University (Army Medical University); Gaotanyan Street Chongqing 400038 China
- Department of Mechanical Engineering; Faculty of Engineering; University of Manitoba; Winnipeg MB R3T 2N2 Canada
| |
Collapse
|
34
|
|
35
|
Shutava TG, Livanovich KS, Sharamet AA. Layer-by-layer films of polysaccharides modified with polyethylene glycol and dextran. Colloids Surf B Biointerfaces 2018; 173:412-420. [PMID: 30321799 DOI: 10.1016/j.colsurfb.2018.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/07/2018] [Accepted: 10/04/2018] [Indexed: 01/18/2023]
Abstract
Layer-by-layer (LbL) films with enhanced resistance to protein adsorption were obtained on the basis of N-grafted copolymers of chitosan with polyethylene glycol (PEG) or dextran (DEX). The copolymers with the backbone molecular weight of 18 and 450 kDa, side chains of PEG of 5.0 and 0.9 kDa, DEX of 6.0 kDa and the degree of amine groups substitution χSub as high as ∼0.25 were alternated with dextran sulfate (DS) to assemble up to 10 bilayer films. The film material contains 85±5% of water with virtually no effect of the copolymer structure. By utilizing the graft copolymers and applying suitable number of copolymer/DS bilayers to the surface, the mass of adsorbed fetal bovine serum proteins was decreased by 70-85% as compared to that on unmodified chitosan/DS film. In terms of overlapping side chains on the LbL surface the copolymers of PEG and DEX are equally effective in tailoring protein-resistant materials.
Collapse
Affiliation(s)
- Tatsiana G Shutava
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, Minsk, Belarus.
| | - Kanstantsin S Livanovich
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Anastasiya A Sharamet
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, Minsk, Belarus
| |
Collapse
|
36
|
Lee JK, Choi IS, Oh TI, Lee E. Cell-Surface Engineering for Advanced Cell Therapy. Chemistry 2018; 24:15725-15743. [PMID: 29791047 DOI: 10.1002/chem.201801710] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/22/2018] [Indexed: 12/16/2022]
Abstract
Stem cells opened great opportunity to overcome diseases that conventional therapy had only limited success. Use of scaffolds made from biomaterials not only helps handling of stem cells for delivery or transplantation but also supports enhanced cell survival. Likewise, cell encapsulation can provide stability for living animal cells even in a state of separateness. Although various chemical reactions were tried to encapsulate stolid microbial cells such as yeasts, a culture environment for the growth of animal cells allows only highly biocompatible reactions. Therefore, the animal cells were mostly encapsulated in hydrogels, which resulted in enhanced cell survival. Interestingly, major findings of chemistry on biological interfaces demonstrate that cell encapsulation in hydrogels have a further a competence for modulating cell characteristics that can go beyond just enhancing the cell survival. In this review, we present a comprehensive overview on the chemical reactions applied to hydrogel-based cell encapsulation and their effects on the characteristics and behavior of living animal cells.
Collapse
Affiliation(s)
- Jungkyu K Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Korea
| | - Insung S Choi
- Department of Chemistry and Center for Cell-Encapsulation Research, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Tong In Oh
- Department of Biomedical Engineering, Kyung Hee University, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - EunAh Lee
- Impedance Imaging Research Center (IIRC), Kyung Hee University, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| |
Collapse
|
37
|
Dai B, Wang L, Wang Y, Yu G, Huang X. Single-Cell Nanometric Coating Towards Whole-Cell-Based Biodevices and Biosensors. ChemistrySelect 2018. [DOI: 10.1002/slct.201800963] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Bing Dai
- School of Technology; Harbin University; Harbin 150086 China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 China
| | - Yan Wang
- Departament de Química Inorgànica; Facultat de Química; Universitat de Barcelona, C/Martí i Franquès 1-11; Barcelona 08028 Spain
| | - Guangbin Yu
- School of Mechanical and Power Engineering; Harbin University of Science and Technology; Harbin 150080 China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 China
| |
Collapse
|
38
|
Zhang S, Xing M, Li B. Biomimetic Layer-by-Layer Self-Assembly of Nanofilms, Nanocoatings, and 3D Scaffolds for Tissue Engineering. Int J Mol Sci 2018; 19:E1641. [PMID: 29865178 PMCID: PMC6032323 DOI: 10.3390/ijms19061641] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 01/05/2023] Open
Abstract
Achieving surface design and control of biomaterial scaffolds with nanometer- or micrometer-scaled functional films is critical to mimic the unique features of native extracellular matrices, which has significant technological implications for tissue engineering including cell-seeded scaffolds, microbioreactors, cell assembly, tissue regeneration, etc. Compared with other techniques available for surface design, layer-by-layer (LbL) self-assembly technology has attracted extensive attention because of its integrated features of simplicity, versatility, and nanoscale control. Here we present a brief overview of current state-of-the-art research related to the LbL self-assembly technique and its assembled biomaterials as scaffolds for tissue engineering. An overview of the LbL self-assembly technique, with a focus on issues associated with distinct routes and driving forces of self-assembly, is described briefly. Then, we highlight the controllable fabrication, properties, and applications of LbL self-assembly biomaterials in the forms of multilayer nanofilms, scaffold nanocoatings, and three-dimensional scaffolds to systematically demonstrate advances in LbL self-assembly in the field of tissue engineering. LbL self-assembly not only provides advances for molecular deposition but also opens avenues for the design and development of innovative biomaterials for tissue engineering.
Collapse
Affiliation(s)
- Shichao Zhang
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA.
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- The Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA.
- West Virginia University Cancer Institute, Morgantown, WV 26506, USA.
| |
Collapse
|
39
|
Jonas AM, Glinel K, Behrens A, Anselmo AC, Langer RS, Jaklenec A. Controlling the Growth of Staphylococcus epidermidis by Layer-By-Layer Encapsulation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:16250-16259. [PMID: 29693369 DOI: 10.1021/acsami.8b01988] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Commensal skin bacteria such as Staphylococcus epidermidis are currently being considered as possible components in skin-care and skin-health products. However, considering the potentially adverse effects of commensal skin bacteria if left free to proliferate, it is crucial to develop methodologies that are capable of maintaining bacteria viability while controlling their proliferation. Here, we encapsulate S. epidermidis in shells of increasing thickness using layer-by-layer assembly, with either a pair of synthetic polyelectrolytes or a pair of oppositely charged polysaccharides. We study the viability of the cells and their delay of growth depending on the composition of the shell, its thickness, the charge of the last deposited layer, and the degree of aggregation of the bacteria which is varied using different coating procedures-among which is a new scalable process that easily leads to large amounts of nonaggregated bacteria. We demonstrate that the growth of bacteria is not controlled by the mechanical properties of the shell but by the bacteriostatic effect of the polyelectrolyte complex, which depends on the shell thickness and charge of its outmost layer, and involves the diffusion of unpaired amine sites through the shell. The lag times of growth are sufficient to prevent proliferation for daily topical applications.
Collapse
Affiliation(s)
- Alain M Jonas
- Institute of Condensed Matter and Nanosciences , Université catholique de Louvain , Croix du Sud 1/L7.04.02 , Louvain-la-Neuve 1348 , Belgium
- David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , 500 Main Street , Cambridge , Massachusetts 02139 , United States
| | - Karine Glinel
- Institute of Condensed Matter and Nanosciences , Université catholique de Louvain , Croix du Sud 1/L7.04.02 , Louvain-la-Neuve 1348 , Belgium
- David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , 500 Main Street , Cambridge , Massachusetts 02139 , United States
| | - Adam Behrens
- David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , 500 Main Street , Cambridge , Massachusetts 02139 , United States
| | - Aaron C Anselmo
- David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , 500 Main Street , Cambridge , Massachusetts 02139 , United States
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Robert S Langer
- David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , 500 Main Street , Cambridge , Massachusetts 02139 , United States
| | - Ana Jaklenec
- David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , 500 Main Street , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
40
|
Qu Y, He F, Yu C, Liang X, Liang D, Ma L, Zhang Q, Lv J, Wu J. Advances on graphene-based nanomaterials for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:764-780. [PMID: 29853147 DOI: 10.1016/j.msec.2018.05.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 03/26/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023]
Abstract
Graphene-based nanomaterials, such as graphene oxide and reduced graphene oxide, have been attracting increasing attention in the field of biology and biomedicine over the past few years. Incorporation of these novel materials with drug, gene, photosensitizer and other cargos to construct novel delivery systems has witnessed rapid advance on the basis of their large surface area, distinct surface properties, excellent biocompatibility and pH sensitivity. Moreover, the inherent photothermal effect of these appealing materials enables them with the ability of killing targeting cells via a physical mechanism. Recently, more attentions have been attached to tissue engineering, including bone, neural, cardiac, cartilage, musculoskeletal, and skin/adipose tissue engineering, due to the outstanding mechanical strength, stiffness, electrical conductivity, various two-dimensional (2D) and three-dimensional (3D) morphologies of graphene-based nanomaterials. Herein, emerging applications of these nanomaterials in bio-imaging, drug/gene delivery, phototherapy, multimodality therapy and tissue engineering were comprehensively reviewed. Inevitably, the burgeon of this kind of novel materials leads to the endeavor to consider their safety so that this issue has been deeply discussed and summarized in our review. We hope that this review offers an overall understanding of these nanomaterials for later in-depth investigations.
Collapse
Affiliation(s)
- Ying Qu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science, Shandong University, Jinan, Shandong, 250012, China
| | - Feng He
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science, Shandong University, Jinan, Shandong, 250012, China
| | - Chenggong Yu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science, Shandong University, Jinan, Shandong, 250012, China
| | - Xuewu Liang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science, Shandong University, Jinan, Shandong, 250012, China
| | - Dong Liang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science, Shandong University, Jinan, Shandong, 250012, China
| | - Long Ma
- Department of Analytical Chemistry, the testing center of Shandong Bureau, Jinan, Shandong, 250014, China
| | - Qiuqiong Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science, Shandong University, Jinan, Shandong, 250012, China
| | - Jiahui Lv
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science, Shandong University, Jinan, Shandong, 250012, China
| | - Jingde Wu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
41
|
Kim BJ, Cho H, Park JH, Mano JF, Choi IS. Strategic Advances in Formation of Cell-in-Shell Structures: From Syntheses to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706063. [PMID: 29441678 DOI: 10.1002/adma.201706063] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/12/2017] [Indexed: 05/24/2023]
Abstract
Single-cell nanoencapsulation, forming cell-in-shell structures, provides chemical tools for endowing living cells, in a programmed fashion, with exogenous properties that are neither innate nor naturally achievable, such as cascade organic-catalysis, UV filtration, immunogenic shielding, and enhanced tolerance in vitro against lethal factors in real-life settings. Recent advances in the field make it possible to further fine-tune the physicochemical properties of the artificial shells encasing individual living cells, including on-demand degradability and reconfigurability. Many different materials, other than polyelectrolytes, have been utilized as a cell-coating material with proper choice of synthetic strategies to broaden the potential applications of cell-in-shell structures to whole-cell catalysis and sensors, cell therapy, tissue engineering, probiotics packaging, and others. In addition to the conventional "one-time-only" chemical formation of cytoprotective, durable shells, an approach of autonomous, dynamic shellation has also recently been attempted to mimic the naturally occurring sporulation process and to make the artificial shell actively responsive and dynamic. Here, the recent development of synthetic strategies for formation of cell-in-shell structures along with the advanced shell properties acquired is reviewed. Demonstrated applications, such as whole-cell biocatalysis and cell therapy, are discussed, followed by perspectives on the field of single-cell nanoencapsulation.
Collapse
Affiliation(s)
- Beom Jin Kim
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Hyeoncheol Cho
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Ji Hun Park
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Insung S Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| |
Collapse
|
42
|
Shutava TG, Livanovich KS, Pankov VV. Synergetic effect of polyethylene glycol-grafted chitosan and bovine serum albumin on colloidal stability of polyelectrolyte nanocapsules. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Abbina S, Siren EMJ, Moon H, Kizhakkedathu JN. Surface Engineering for Cell-Based Therapies: Techniques for Manipulating Mammalian Cell Surfaces. ACS Biomater Sci Eng 2017; 4:3658-3677. [DOI: 10.1021/acsbiomaterials.7b00514] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Artificial Spores: Immunoprotective Nanocoating of Red Blood Cells with Supramolecular Ferric Ion-Tannic Acid Complex. Polymers (Basel) 2017; 9:polym9040140. [PMID: 30970819 PMCID: PMC6432373 DOI: 10.3390/polym9040140] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/12/2017] [Accepted: 04/12/2017] [Indexed: 01/22/2023] Open
Abstract
The blood-type-mismatch problem, in addition to shortage of blood donation, in blood transfusion has prompted the researchers to develop universal blood that does not require blood typing. In this work, the "cell-in-shell" (i.e., artificial spore) approach is utilized to shield the immune-provoking epitopes on the surface of red blood cells (RBCs). Individual RBCs are successfully coated with supramolecular metal-organic coordination complex of ferric ion (FeIII) and tannic acid (TA). The use of isotonic saline (0.85% NaCl) is found to be critical in the formation of stable, reasonably thick (20 nm) shells on RBCs without any aggregation and hemolysis. The formed "RBC-in-shell" structures maintain their original shapes, and effectively attenuate the antibody-mediated agglutination. Moreover, the oxygen-carrying capability of RBCs is not deteriorated after shell formation. This work suggests a simple but fast method for generating immune-camouflaged RBCs, which would contribute to the development of universal blood.
Collapse
|
45
|
Strawski M, Granicka LH, Szklarczyk M. Redox properties of polyelectrolyte multilayer modified electrodes: a significant effect of the interactions between the polyelectrolyte layers in the films. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2016.12.194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
46
|
Abbina S, Vappala S, Kumar P, Siren EMJ, La CC, Abbasi U, Brooks DE, Kizhakkedathu JN. Hyperbranched polyglycerols: recent advances in synthesis, biocompatibility and biomedical applications. J Mater Chem B 2017; 5:9249-9277. [DOI: 10.1039/c7tb02515g] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hyperbranched polyglycerol is one of the most widely studied biocompatible dendritic polymer and showed promising applications. Here, we summarized the recent advancements in the field.
Collapse
Affiliation(s)
- Srinivas Abbina
- Department of Pathology and Laboratory Medicine
- University of British Columbia
- Vancouver
- Canada
- Center for Blood Research
| | - Sreeparna Vappala
- Department of Pathology and Laboratory Medicine
- University of British Columbia
- Vancouver
- Canada
- Center for Blood Research
| | - Prashant Kumar
- Center for Blood Research
- University of British Columbia
- Vancouver
- Canada
- Department of Chemistry
| | - Erika M. J. Siren
- Center for Blood Research
- University of British Columbia
- Vancouver
- Canada
- Department of Chemistry
| | - Chanel C. La
- Center for Blood Research
- University of British Columbia
- Vancouver
- Canada
- Department of Chemistry
| | - Usama Abbasi
- Department of Pathology and Laboratory Medicine
- University of British Columbia
- Vancouver
- Canada
- Center for Blood Research
| | - Donald E. Brooks
- Department of Pathology and Laboratory Medicine
- University of British Columbia
- Vancouver
- Canada
- Center for Blood Research
| | - Jayachandran N. Kizhakkedathu
- Department of Pathology and Laboratory Medicine
- University of British Columbia
- Vancouver
- Canada
- Center for Blood Research
| |
Collapse
|
47
|
Kim JY, Lee H, Park T, Park J, Kim MH, Cho H, Youn W, Kang SM, Choi IS. Artificial Spores: Cytocompatible Coating of Living Cells with Plant-Derived Pyrogallol. Chem Asian J 2016; 11:3183-3187. [DOI: 10.1002/asia.201601237] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Ji Yup Kim
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Korea
| | - Hojae Lee
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Korea
| | - Taegyun Park
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Korea
| | - Joonhong Park
- Department of Laboratory Medicine; College of Medicine; The Catholic University of Korea, St. Mary's Hospital; Seoul 06591 Korea
| | - Mi-Hee Kim
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Korea
| | - Hyeoncheol Cho
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Korea
| | - Wongu Youn
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Korea
| | - Sung Min Kang
- Department of Chemistry; Chungbuk National University; Cheongju 28644 Korea
| | - Insung S. Choi
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Korea
| |
Collapse
|
48
|
Bukara K, Drvenica I, Ilić V, Stančić A, Mišić D, Vasić B, Gajić R, Vučetić D, Kiekens F, Bugarski B. Comparative studies on osmosis based encapsulation of sodium diclofenac in porcine and outdated human erythrocyte ghosts. J Biotechnol 2016; 240:14-22. [PMID: 27773756 DOI: 10.1016/j.jbiotec.2016.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 10/16/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
Abstract
The objective of our study was to develop controlled drug delivery system based on erythrocyte ghosts for amphiphilic compound sodium diclofenac considering the differences between erythrocytes derived from two readily available materials - porcine slaughterhouse and outdated transfusion human blood. Starting erythrocytes, empty erythrocyte ghosts and diclofenac loaded ghosts were compared in terms of the encapsulation efficiency, drug releasing profiles, size distribution, surface charge, conductivity, surface roughness and morphology. The encapsulation of sodium diclofenac was performed by an osmosis based process - gradual hemolysis. During this process sodium diclofenac exerted mild and delayed antihemolytic effect and increased potassium efflux in porcine but not in outdated human erythrocytes. FTIR spectra revealed lack of any membrane lipid disorder and chemical reaction with sodium diclofenac in encapsulated ghosts. Outdated human erythrocyte ghosts with detected nanoscale damages and reduced ability to shrink had encapsulation efficiency of only 8%. On the other hand, porcine erythrocyte ghosts had encapsulation efficiency of 37% and relatively slow drug release rate. More preserved structure and functional properties of porcine erythrocytes related to their superior encapsulation and release performances, define them as more appropriate for the usage in sodium diclofenac encapsulation process.
Collapse
Affiliation(s)
- Katarina Bukara
- Department Pharmaceutics, Campus Drie Eiken, University of Antwerp, Antwerp, Belgium; Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia.
| | - Ivana Drvenica
- Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Vesna Ilić
- Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Ana Stančić
- Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Danijela Mišić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Borislav Vasić
- Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Zemun, Belgrade, Serbia
| | - Radoš Gajić
- Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Zemun, Belgrade, Serbia
| | - Dušan Vučetić
- Institute for Tranfusiology and Haemobiology of Military Medical Academy, Belgrade, Serbia
| | - Filip Kiekens
- Department Pharmaceutics, Campus Drie Eiken, University of Antwerp, Antwerp, Belgium
| | - Branko Bugarski
- Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
49
|
Drvenica IT, Bukara KM, Ilić VL, Mišić DM, Vasić BZ, Gajić RB, Đorđević VB, Veljović ĐN, Belić A, Bugarski BM. Biomembranes from slaughterhouse blood erythrocytes as prolonged release systems for dexamethasone sodium phosphate. Biotechnol Prog 2016; 32:1046-55. [PMID: 27254304 DOI: 10.1002/btpr.2304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 02/02/2016] [Indexed: 01/04/2023]
Abstract
The present study investigated preparation of bovine and porcine erythrocyte membranes from slaughterhouse blood as bio-derived materials for delivery of dexamethasone-sodium phosphate (DexP). The obtained biomembranes, i.e., ghosts were characterized in vitro in terms of morphological properties, loading parameters, and release behavior. For the last two, an UHPLC/-HESI-MS/MS based analytical procedure for absolute drug identification and quantification was developed. The results revealed that loading of DexP into both type of ghosts was directly proportional to the increase of drug concentration in the incubation medium, while incubation at 37°C had statistically significant effect on loaded amount of DexP (P < 0.05). The encapsulation efficiency was about fivefold higher in porcine compared to bovine ghosts. Insight into ghosts' surface morphology by field emission-scanning electron microscopy and atomic force microscopy confirmed that besides inevitable effects of osmosis, DexP inclusion itself had no observable additional effect on the morphology of the ghosts carriers. DexP release profiles were dependent on erythrocyte ghost type and amount of residual hemoglobin. However, sustained DexP release was achieved and shown over 3 days from porcine ghosts and 5 days from bovine erythrocyte ghosts. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1046-1055, 2016.
Collapse
Affiliation(s)
- Ivana T Drvenica
- Dept. of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Katarina M Bukara
- Dept. of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Vesna Lj Ilić
- Inst. for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Danijela M Mišić
- Inst. for Biological Research "Siniša Stanković,", University of Belgrade, Belgrade, Serbia
| | | | - Radoš B Gajić
- Inst. of Physics, University of Belgrade, Belgrade, Serbia
| | - Verica B Đorđević
- Dept. of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Đorđe N Veljović
- Dept. of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | | | - Branko M Bugarski
- Dept. of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
50
|
Oliveira MB, Hatami J, Mano JF. Coating Strategies Using Layer-by-layer Deposition for Cell Encapsulation. Chem Asian J 2016; 11:1753-64. [PMID: 27213990 DOI: 10.1002/asia.201600145] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Indexed: 12/19/2022]
Abstract
The layer-by-layer (LbL) deposition technique is widely used to develop multilayered films based on the directed assembly of complementary materials. In the last decade, thin multilayers prepared by LbL deposition have been applied in biological fields, namely, for cellular encapsulation, due to their versatile processing and tunable properties. Their use was suggested as an alternative approach to overcome the drawbacks of bulk hydrogels, for endocrine cells transplantation or tissue engineering approaches, as effective cytoprotective agents, or as a way to control cell division. Nanostructured multilayered materials are currently used in the nanomodification of the surfaces of single cells and cell aggregates, and are also suitable as coatings for cell-laden hydrogels or other biomaterials, which may later be transformed to highly permeable hollow capsules. In this Focus Review, we discuss the applications of LbL cell encapsulation in distinct fields, including cell therapy, regenerative medicine, and biotechnological applications. Insights regarding practical aspects required to employ LbL for cell encapsulation are also provided.
Collapse
Affiliation(s)
- Mariana B Oliveira
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Javad Hatami
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|