1
|
Hammami K, Souissi Y, Souii A, Gorrab A, Hassen W, Chouchane H, Masmoudi AS, Cherif A, Neifar M. Pseudomonas rhizophila S211 as a microbial cell factory for direct bioconversion of waste cooking oil into medium-chain-length polyhydroxyalkanoates. 3 Biotech 2024; 14:207. [PMID: 39184912 PMCID: PMC11341804 DOI: 10.1007/s13205-024-04048-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024] Open
Abstract
The present study examines the use of waste cooking oil (WCO) as a substrate for medium-chain-length polyhydroxyalkanoates (mcl-PHA) production by Pseudomonas rhizophila S211. The genome analysis revealed that the S211 strain has a mcl-PHA cluster (phaC1ZC2DFI) encoding two class II PHA synthases (PhaC1 and PhaC2) separated by a PHA depolymerase (PhaZ), a transcriptional activator (PhaD) and two phasin-like proteins (PhaFI). Genomic annotation also identified a gene encoding family I.3 lipase that was able to hydrolyze plant oils and generate fatty acids as favorable carbon sources for cell growth and PHA synthesis via β-oxidation pathway. Using a three-variable Doehlert experimental design, the optimum conditions for mcl-PHA accumulation were achieved in 10% of WCO-based medium with an inoculum size of 10% and an incubation period of 48 h at 30 °C. The experimental yield of PHA from WCO was 1.8 g/L close to the predicted yield of 1.68 ± 0.14 g/L. Moreover, 1H nuclear magnetic resonance spectroscopy analysis confirmed the extracted mcl-PHA. Overall, this study describes P. rhizophila as a cell factory for biosynthesis of biodegradable plastics and proposes green and efficient approach to cooking oil waste management by decreasing the cost of mcl-PHA production, which can help reduce the dependence on petroleum-based plastics.
Collapse
Affiliation(s)
- Khouloud Hammami
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Yasmine Souissi
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
- Department of Engineering, German University of Technology in Oman, Muscat, Oman
| | - Amal Souii
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Afwa Gorrab
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Wafa Hassen
- Research Unit of Analysis and Process Applied on the Environmental-APAE UR17ES32, Higher Institute of Applied Sciences and Technology Mahdia “ISSAT”, University of Monastir, 5100 Mahdia, Tunisia
| | - Habib Chouchane
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Ahmed Slaheddine Masmoudi
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Ameur Cherif
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Mohamed Neifar
- APVA-LR16ES20, National School of Engineers of Sfax (ENIS), University of Sfax, Sfax, Tunisia
- Common Services Unit “Bioreactor Coupled With an Ultrafilter”, ENIS, University of Sfax, 3030 Sfax, Tunisia
| |
Collapse
|
2
|
Meng H, Köbbing S, Blank LM. Establishing a straightforward I-SceI-mediated recombination one-plasmid system for efficient genome editing in P. putida KT2440. Microb Biotechnol 2024; 17:e14531. [PMID: 39031514 PMCID: PMC11258999 DOI: 10.1111/1751-7915.14531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/04/2024] [Indexed: 07/22/2024] Open
Abstract
Pseudomonas putida has become an increasingly important chassis for producing valuable bioproducts. This development is not least due to the ever-improving genetic toolbox, including gene and genome editing techniques. Here, we present a novel, one-plasmid design of a critical genetic tool, the pEMG/pSW system, guaranteeing one engineering cycle to be finalized in 3 days. The pEMG/pSW system proved in the last decade to be valuable for targeted genome engineering in Pseudomonas, as it enables the deletion of large regions of the genome, the integration of heterologous gene clusters or the targeted generation of point mutations. Here, to expedite genetic engineering, two alternative plasmids were constructed: (1) The sacB gene from Bacillus subtilis was integrated into the I-SceI expressing plasmid pSW-2 as a counterselection marker to accelerated plasmid curing; (2) double-strand break introducing gene I-sceI and sacB counterselection marker were integrated into the backbone of the original pEMG vector, named pEMG-RIS. The single plasmid of pEMG-RIS allows rapid genome editing despite the low transcriptional activity of a single copy of the I-SceI encoding gene. Here, the usability of the pEMG-RIS is shown in P. putida KT2440 by integrating an expression cassette including an msfGFP gene in 3 days. In addition, a large fragment of 12.1 kb was also integrated. In summary, we present an updated pEMG/pSW genome editing system that allows efficient and rapid genome editing in P. putida. All plasmids designed in this study will be available via the Addgene platform.
Collapse
Affiliation(s)
- Hao Meng
- iAMB—Institute of Applied Microbiology, ABBt—Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Sebastian Köbbing
- iAMB—Institute of Applied Microbiology, ABBt—Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Lars M. Blank
- iAMB—Institute of Applied Microbiology, ABBt—Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| |
Collapse
|
3
|
Zhila NO, Sapozhnikova KY, Kiselev EG, Shishatskaya EI, Volova TG. Biosynthesis of Polyhydroxyalkanoates in Cupriavidus necator B-10646 on Saturated Fatty Acids. Polymers (Basel) 2024; 16:1294. [PMID: 38732762 PMCID: PMC11085183 DOI: 10.3390/polym16091294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/20/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024] Open
Abstract
It has been established that the wild-type Cupriavidus necator B-10646 strain uses saturated fatty acids (SFAs) for growth and polyhydroxyalkanoate (PHA) synthesis. It uses lauric (12:0), myristic (14:0), palmitic (16:0) and stearic (18:0) acids as carbon sources; moreover, the elongation of the C-chain negatively affects the biomass and PHA yields. When bacteria grow on C12 and C14 fatty acids, the total biomass and PHA yields are comparable up to 7.5 g/L and 75%, respectively, which twice exceed the values that occur on longer C16 and C18 acids. Regardless of the type of SFAs, bacteria synthesize poly(3-hydroxybutyrate), which have a reduced crystallinity (Cx from 40 to 57%) and a molecular weight typical for poly(3-hydroxybutyrate) (P(3HB)) (Mw from 289 to 465 kDa), and obtained polymer samples demonstrate melting and degradation temperatures with a gap of about 100 °C. The ability of bacteria to assimilate SFAs opens up the possibility of attracting the synthesis of PHAs on complex fat-containing substrates, including waste.
Collapse
Affiliation(s)
- Natalia O. Zhila
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (K.Y.S.); (E.G.K.); (E.I.S.); (T.G.V.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia
| | - Kristina Yu. Sapozhnikova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (K.Y.S.); (E.G.K.); (E.I.S.); (T.G.V.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia
| | - Evgeniy G. Kiselev
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (K.Y.S.); (E.G.K.); (E.I.S.); (T.G.V.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia
| | - Ekaterina I. Shishatskaya
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (K.Y.S.); (E.G.K.); (E.I.S.); (T.G.V.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia
| | - Tatiana G. Volova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (K.Y.S.); (E.G.K.); (E.I.S.); (T.G.V.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia
| |
Collapse
|
4
|
Ren ZW, Wang ZY, Ding YW, Dao JW, Li HR, Ma X, Yang XY, Zhou ZQ, Liu JX, Mi CH, Gao ZC, Pei H, Wei DX. Polyhydroxyalkanoates: the natural biopolyester for future medical innovations. Biomater Sci 2023; 11:6013-6034. [PMID: 37522312 DOI: 10.1039/d3bm01043k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are a family of natural microbial biopolyesters with the same basic chemical structure and diverse side chain groups. Based on their excellent biodegradability, biocompatibility, thermoplastic properties and diversity, PHAs are highly promising medical biomaterials and elements of medical devices for applications in tissue engineering and drug delivery. However, due to the high cost of biotechnological production, most PHAs have yet to be applied in the clinic and have only been studied at laboratory scale. This review focuses on the biosynthesis, diversity, physical properties, biodegradability and biosafety of PHAs. We also discuss optimization strategies for improved microbial production of commercial PHAs via novel synthetic biology tools. Moreover, we also systematically summarize various medical devices based on PHAs and related design approaches for medical applications, including tissue repair and drug delivery. The main degradation product of PHAs, 3-hydroxybutyrate (3HB), is recognized as a new functional molecule for cancer therapy and immune regulation. Although PHAs still account for only a small percentage of medical polymers, up-and-coming novel medical PHA devices will enter the clinical translation stage in the next few years.
Collapse
Affiliation(s)
- Zi-Wei Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Ze-Yu Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Yan-Wen Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Jin-Wei Dao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, 678400, China
| | - Hao-Ru Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Xue Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Xin-Yu Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Zi-Qi Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Jia-Xuan Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Chen-Hui Mi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Zhe-Chen Gao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Hua Pei
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China.
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China.
- Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an, 710069, China
- Zigong Affiliated Hospital of Southwest Medical University, Zigong Psychiatric Research Center, Zigong Institute of Brain Science, Zigong, 643002, Sichuan, China
| |
Collapse
|
5
|
Goswami L, Kushwaha A, Napathorn SC, Kim BS. Valorization of organic wastes using bioreactors for polyhydroxyalkanoate production: Recent advancement, sustainable approaches, challenges, and future perspectives. Int J Biol Macromol 2023; 247:125743. [PMID: 37423435 DOI: 10.1016/j.ijbiomac.2023.125743] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Microbial polyhydroxyalkanoates (PHA) are encouraging biodegradable polymers, which may ease the environmental problems caused by petroleum-derived plastics. However, there is a growing waste removal problem and the high price of pure feedstocks for PHA biosynthesis. This has directed to the forthcoming requirement to upgrade waste streams from various industries as feedstocks for PHA production. This review covers the state-of-the-art progress in utilizing low-cost carbon substrates, effective upstream and downstream processes, and waste stream recycling to sustain entire process circularity. This review also enlightens the use of various batch, fed-batch, continuous, and semi-continuous bioreactor systems with flexible results to enhance the productivity and simultaneously cost reduction. The life-cycle and techno-economic analyses, advanced tools and strategies for microbial PHA biosynthesis, and numerous factors affecting PHA commercialization were also covered. The review includes the ongoing and upcoming strategies viz. metabolic engineering, synthetic biology, morphology engineering, and automation to expand PHA diversity, diminish production costs, and improve PHA production with an objective of "zero-waste" and "circular bioeconomy" for a sustainable future.
Collapse
Affiliation(s)
- Lalit Goswami
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Anamika Kushwaha
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | | | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
6
|
Zhuo XZ, Chou SC, Li SY. Producing medium-chain-length polyhydroxyalkanoate from diverse feedstocks by deregulating unsaturated fatty acid biosynthesis in Escherichia coli. BIORESOURCE TECHNOLOGY 2022; 365:128078. [PMID: 36216288 DOI: 10.1016/j.biortech.2022.128078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The fatty acid metabolism in Escherichia coli has served as a basic metabolic chassis for medium-chain-length polyhydroxyalkanoate (mcl-PHA) production. In this study, the phaG and phaC1 genes from Pseudomonas entomophila L48 were first cloned as pGRN08. E. coli BL21P (E. coli BL21(DE3) ΔptsG) containing pGRN08 was able to produce 23 ± 3 and 7 ± 0 mg/L homopolymer poly(3-hydroxydecanoate)(P(3HD)) from glucose and xylose, respectively. Next, a gene, PSEEN0908 (encoding a putative 3-hydroxyacyl-CoA ligase), from P. entomophila L48 was found to increase the performance of mcl-PHA production. The induction of the fatty acid biosynthesis repressor (FabR), a transcription regulator that represses UFA biosynthesis, in E. coli substantially increased the mcl-PHA production by an order of magnitude from both unrelated and related carbon source conversion. A mcl-PHA concentration of 179 ± 1 mg/L and a content of 5.79 ± 0.16 % were obtained, where 31 mol% was 3-hydroxyoctanoate (3HO) and 69 mol% was 3HD.
Collapse
Affiliation(s)
- Xiao-Zhen Zhuo
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Shu-Chiao Chou
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Si-Yu Li
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
7
|
Biopolymer production in microbiology by application of metabolic engineering. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03820-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Gao Q, Yang H, Wang C, Xie XY, Liu KX, Lin Y, Han SY, Zhu M, Neureiter M, Lin Y, Ye JW. Advances and trends in microbial production of polyhydroxyalkanoates and their building blocks. Front Bioeng Biotechnol 2022; 10:966598. [PMID: 35928942 PMCID: PMC9343942 DOI: 10.3389/fbioe.2022.966598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
With the rapid development of synthetic biology, a variety of biopolymers can be obtained by recombinant microorganisms. Polyhydroxyalkanoates (PHA) is one of the most popular one with promising material properties, such as biodegradability and biocompatibility against the petrol-based plastics. This study reviews the recent studies focusing on the microbial synthesis of PHA, including chassis engineering, pathways engineering for various substrates utilization and PHA monomer synthesis, and PHA synthase modification. In particular, advances in metabolic engineering of dominant workhorses, for example Halomonas, Ralstonia eutropha, Escherichia coli and Pseudomonas, with outstanding PHA accumulation capability, were summarized and discussed, providing a full landscape of diverse PHA biosynthesis. Meanwhile, we also introduced the recent efforts focusing on structural analysis and mutagenesis of PHA synthase, which significantly determines the polymerization activity of varied monomer structures and PHA molecular weight. Besides, perspectives and solutions were thus proposed for achieving scale-up PHA of low cost with customized material property in the coming future.
Collapse
Affiliation(s)
- Qiang Gao
- Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, QH, China
| | - Hao Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Chi Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xin-Ying Xie
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Kai-Xuan Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Ying Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuang-Yan Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Mingjun Zhu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Markus Neureiter
- Institute for Environmental Biotechnology, Department of Agrobiotechnology, University of Natural Resources and Life Sciences, Tulln, Austria
- *Correspondence: Markus Neureiter, ; Yina Lin, ; Jian-Wen Ye,
| | - Yina Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Markus Neureiter, ; Yina Lin, ; Jian-Wen Ye,
| | - Jian-Wen Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Markus Neureiter, ; Yina Lin, ; Jian-Wen Ye,
| |
Collapse
|
9
|
Ma Y, Zheng X, Lin Y, Zhang L, Yuan Y, Wang H, Winterburn J, Wu F, Wu Q, Ye JW, Chen GQ. Engineering an oleic acid-induced system for Halomonas, E. coli and Pseudomonas. Metab Eng 2022; 72:325-336. [PMID: 35513297 DOI: 10.1016/j.ymben.2022.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/11/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022]
Abstract
Ligand-induced system plays an important role for microbial engineering due to its tunable gene expression control over timings and levels. An oleic acid (OA)-induced system was recently constructed based on protein FadR, a transcriptional regulator involved in fatty acids metabolism, for metabolic control in Escherichia coli. In this study, we constructed a synthetic FadR-based OA-induced systems in Halomonas bluephagenesis by hybridizing the porin promoter core region and FadR-binding operator (fadO). The dynamic control range was optimized over 150-fold, and expression leakage was significantly reduced by tuning FadR expression and positioning fadO, forming a series of OA-induced systems with various expression strengths, respectively. Additionally, ligand orthogonality and cross-species portability were also studied and showed highly linear correlation among Halomonas spp., Escherichia coli and Pseudomonas spp. Finally, OA-induced systems with medium- and small-dynamic control ranges were employed to dynamically control the expression levels of morphology associated gene minCD, and monomer precursor 4-hydroxybutyrate-CoA (4HB-CoA) synthesis pathway for polyhydroxyalkanoates (PHA), respectively, in the presence of oleic acid as an inducer. As a result, over 10 g/L of poly-3-hydroxybutyrate (PHB) accumulated by elongated cell sizes, and 6 g/L of P(3HB-co-9.57 mol% 4HB) were obtained by controlling the dose and induction time of oleic acid only. This study provides a systematic approach for ligand-induced system engineering, and demonstrates an alternative genetic tool for dynamic control of industrial biotechnology.
Collapse
Affiliation(s)
- Yueyuan Ma
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiangrui Zheng
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Yina Lin
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Lizhan Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yiping Yuan
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Huan Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - James Winterburn
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Fuqing Wu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiong Wu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jian-Wen Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China; Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China; Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China; MOE Key Laboratory for Industrial Biocatalysts, Dept Chemical Engineering, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
10
|
Liu H, Chen Y, Zhang Y, Zhao W, Guo H, Wang S, Xia W, Wang S, Liu R, Yang C. Enhanced production of polyhydroxyalkanoates in Pseudomonas putida KT2440 by a combination of genome streamlining and promoter engineering. Int J Biol Macromol 2022; 209:117-124. [PMID: 35395277 DOI: 10.1016/j.ijbiomac.2022.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/19/2022] [Accepted: 04/02/2022] [Indexed: 11/05/2022]
Abstract
Polyhydroxyalkanoates (PHAs), a class of bioplastics produced by a variety of microorganisms, have become the ideal alternatives for oil-derived plastics due to their superior physicochemical and material characteristics. Pseudomonas putida KT2440 can produce medium-chain-length PHA (mcl-PHA) from various substrates. In this study, a novel strategy of the large-scale deletion of genomic islands (GIs) coupling with promoter engineering was developed in P. putida KT2440 for constructing the minimal genome cell factories (MGF) capable of efficiently producing mcl-PHA. Firstly, P. putida KTU-U13, a 13 GIs- and upp-deleted mutant derived from the parental strain P. putida KT2440, was used as a starting strain for further deletion of GIs to generate a series of genome-reduced strains. Subsequently, the two minimal genome strains KTU-U24 and KTU-U27, which had a 7.19% and 8.35% reduction relative to the genome size of KT2440 and were advantageous over the strain KTU (KT2440∆upp) and KTU-U13 in several physiological traits such as the maximum specific growth rate, plasmid transformation efficiency, heterologous protein expression capacity and PHA production capacity, were selected as the chassis cells for PHA metabolic engineering. To prevent the formation of the by-product gluconic acid, the glucose dehydrogenase gene was deleted in KTU-U24 and KTU-U27, resulting in KTU-U24∆gcd and KTU-U27∆gcd. To enhance the transcriptional level of PHA synthase genes (phaC) and the supply of the precursor acetyl-CoA, a strong endogenous promoter P46 was inserted into upstream of the phaC operon and pyruvate dehydrogenase gene in the genome of KTU-U24∆gcd and KTU-U27∆gcd, to generate KTU-U24∆gcd-P46CA and KTU-U27∆gcd-P46CA, with the PHA yield of 50.5 wt% and 53.8 wt% (weight percent of PHA in cell dry weight). Finally, KTU-U27∆gcd-P46CA, the most minimal KT2440 chassis currently available, was able to accumulate the PHA to 55.82 wt% in a 5-l fermentor, which is the highest PHA yield obtained with P. putida KT2440 so far. This study suggests that genome streamlining in combination with promoter engineering may be a feasible strategy for the development of the MGF for the efficient production of high value products. Moreover, further streamlining of the P. putida KT2440 genome has great potential to create the optimal chassis for synthetic biology applications.
Collapse
Affiliation(s)
- Honglu Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yaping Chen
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yiting Zhang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Wanwan Zhao
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Hongfu Guo
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Siqi Wang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenjie Xia
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Shufang Wang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ruihua Liu
- Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
11
|
El-Malek FA, Steinbüchel A. Post-Synthetic Enzymatic and Chemical Modifications for Novel Sustainable Polyesters. Front Bioeng Biotechnol 2022; 9:817023. [PMID: 35071219 PMCID: PMC8766639 DOI: 10.3389/fbioe.2021.817023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Because of their biodegradability, compostability, compatibility and flexible structures, biodegradable polymers such as polyhydroxyalkanoates (PHA) are an important class of biopolymers with various industrial and biological uses. PHAs are thermoplastic polyesters with a limited processability due to their low heat resistance. Furthermore, due to their high crystallinity, some PHAs are stiff and brittle. These features result sometimes in very poor mechanical characteristics with low extension at break values which limit the application range of some natural PHAs. Several in vivo approaches for PHA copolymer modifications range from polymer production to enhance PHA-based material performance after synthesis. The methods for enzymatic and chemical polymer modifications are aiming at modifying the structures of the polyesters and thereby their characteristics while retaining the biodegradability. This survey illustrates the efficient use of enzymes and chemicals in post-synthetic PHA modifications, offering insights on these green techniques for modifying and improving polymer performance. Important studies in this sector will be reviewed, as well as chances and obstacles for their stability and hyper-production.
Collapse
Affiliation(s)
- Fady Abd El-Malek
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Lodz, Poland
| | - Alexander Steinbüchel
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
12
|
Zhu Y, Ai M, Jia X. Optimization of a Two-Species Microbial Consortium for Improved Mcl-PHA Production From Glucose-Xylose Mixtures. Front Bioeng Biotechnol 2022; 9:794331. [PMID: 35083203 PMCID: PMC8784772 DOI: 10.3389/fbioe.2021.794331] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) have attracted much attention as a good substitute for petroleum-based plastics, especially mcl-PHA due to their superior physical and mechanical properties with broader applications. Artificial microbial consortia can solve the problems of low metabolic capacity of single engineered strains and low conversion efficiency of natural consortia while expanding the scope of substrate utilization. Therefore, the use of artificial microbial consortia is considered a promising method for the production of mcl-PHA. In this work, we designed and constructed a microbial consortium composed of engineered Escherichia coli MG1655 and Pseudomonas putida KT2440 based on the "nutrition supply-detoxification" concept, which improved mcl-PHA production from glucose-xylose mixtures. An engineered E. coli that preferentially uses xylose was engineered with an enhanced ability to secrete acetic acid and free fatty acids (FFAs), producing 6.44 g/L acetic acid and 2.51 g/L FFAs with 20 g/L xylose as substrate. The mcl-PHA producing strain of P. putida in the microbial consortium has been engineered to enhance its ability to convert acetic acid and FFAs into mcl-PHA, producing 0.75 g/L mcl-PHA with mixed substrates consisting of glucose, acetic acid, and octanoate, while also reducing the growth inhibition of E. coli by acetic acid. The further developed artificial microbial consortium finally produced 1.32 g/L of mcl-PHA from 20 g/L of a glucose-xylose mixture (1:1) after substrate competition control and process optimization. The substrate utilization and product synthesis functions were successfully divided into the two strains in the constructed artificial microbial consortium, and a mutually beneficial symbiosis of "nutrition supply-detoxification" with a relatively high mcl-PHA titer was achieved, enabling the efficient accumulation of mcl-PHA. The consortium developed in this study is a potential platform for mcl-PHA production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Yinzhuang Zhu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Mingmei Ai
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xiaoqiang Jia
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| |
Collapse
|
13
|
Production of Polyhydroxyalkanoates in Unsterilized Hyper-Saline Medium by Halophiles Using Waste Silkworm Excrement as Carbon Source. Molecules 2021; 26:molecules26237122. [PMID: 34885704 PMCID: PMC8659123 DOI: 10.3390/molecules26237122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 12/03/2022] Open
Abstract
The chlorophyll ethanol-extracted silkworm excrement was hardly biologically reused or fermented by most microorganisms. However, partial extremely environmental halophiles were reported to be able to utilize a variety of inexpensive carbon sources to accumulate polyhydroxyalkanoates. In this study, by using the nile red staining and gas chromatography assays, two endogenous haloarchaea strains: Haloarcula hispanica A85 and Natrinema altunense A112 of silkworm excrement were shown to accumulate poly(3-hydroxybutyrate) up to 0.23 g/L and 0.08 g/L, respectively, when using the silkworm excrement as the sole carbon source. The PHA production of two haloarchaea showed no significant decreases in the silkworm excrement medium without being sterilized compared to that of the sterilized medium. Meanwhile, the CFU experiments revealed that there were more than 60% target PHAs producing haloarchaea cells at the time of the highest PHAs production, and the addition of 0.5% glucose into the open fermentation medium can largely increase both the ratio of target haloarchaea cells (to nearly 100%) and the production of PHAs. In conclusion, our study demonstrated the feasibility of using endogenous haloarchaea to utilize waste silkworm excrement, effectively. The introduce of halophiles could provide a potential way for open fermentation to further lower the cost of the production of PHAs.
Collapse
|
14
|
Yu Y, Kim M, Lee GS, Lee HW, Kim JG, Kim BS. Organocatalyzed Synthesis and Degradation of Functionalized Poly(4-allyloxymethyl-β-propiolactone)s. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yeji Yu
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Minseong Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Gue Seon Lee
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hyo Won Lee
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Jeung Gon Kim
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
15
|
Li M, Ma Y, Zhang X, Zhang L, Chen X, Ye JW, Chen GQ. Tailor-Made Polyhydroxyalkanoates by Reconstructing Pseudomonas Entomophila. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102766. [PMID: 34322928 DOI: 10.1002/adma.202102766] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/29/2021] [Indexed: 06/13/2023]
Abstract
Microbial polyhydroxyalkanoates (PHA) containing short- and medium/long-chain-length monomers, abbreviated as SCL-co-MCL/LCL PHAs, generate suitable thermal and mechanical properties. However, SCL-co-MCL/LCL PHAs with carbon chain longer than nine are difficult to synthesize due to the low specificity of PHA synthase PhaC and the lack of either SCL- or MCL/LCL monomer precursor fluxes. This study succeeds in reprogramming a β-oxidation weakened Pseudomonas entomophila containing synthesis pathways of SCL 3-hydroxybutyryl-CoA (3HB) from glucose and MCL/LCL 3-hydroxyalkanoyl-CoA from fatty acids with carbon chain lengths from 9 to 18, respectively, that are polymerized under a low specificity PhaC61-3 to form P(3HB-co-MCL/LCL 3HA) copolymers. Through rational flux-tuning approaches, the optimized recombinant P. entomophila accumulates 55 wt% poly-3-hydroxybutyrate in 8.4 g L-1 cell dry weight. Combined with weakened β-oxidation, a series of novel P(3HB-co-MCL/LCL 3HA) copolymers with over 60 wt% PHA in 9 g L-1 cell dry weight have been synthesized for the first time. P. entomophila has become a high-performing platform to generate tailor-made new SCL-co-MCL/LCL PHAs.
Collapse
Affiliation(s)
- Mengyi Li
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yueyuan Ma
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xu Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Lizhan Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xinyu Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jian-Wen Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center of Life Sciences, Tsinghua University, Beijing, 100084, China
- MOE Key Lab of Industrial Biocatalysts, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
16
|
Pan L, Li J, Wang R, Wang Y, Lin Q, Li C, Wang Y. Biosynthesis of polyhydroxyalkanoate from food waste oil by Pseudomonas alcaligenes with simultaneous energy recovery from fermentation wastewater. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 131:268-276. [PMID: 34175751 DOI: 10.1016/j.wasman.2021.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/02/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Bioconversion of food waste oil (FWO) into biodegradable plastic is a promising method for converting waste into high-value products. In this study, a strain (Pseudomonas sp. H3) was isolated for polyhydroxyalkanoate (PHA) synthesis from FWO. After 72 h of cultivation with 20 g/L of FWO, the high cell dry weight (CDW) of 3.6 g/L, PHA yield of 2.4 g/L, and PHA content of 65 wt% were obtained under the optimal temperature (25 °C) and inoculum amount (6% (v/v)). Fed-batch fermentation was conducted in a 5 L bioreactor with a maximum CDW of 16 g/L, PHA content of 54 wt%, and PHA productivity of 0.23 g/(L·h) after 36 h. The PHA had a molecular weight of 54 782 Da and a low polydispersity index of 1.41 with glass transition, melting, and degradation temperatures of -20 °C, 34 °C, and 210 °C, respectively. To further utilize the wastewater after PHA production, anaerobic digestion was employed for CH4 production, and the CH4 yield was 284 mL/g volatile solids. Microbial community analysis showed that the abundance of acetate-oxidizing bacteria and Methanobacterium significantly increased during anaerobic digestion. This study describes a new strain for the economical synthesis of biodegradable plastics and presents a novel framework for fully utilizing FWO with the production of PHA and CH4.
Collapse
Affiliation(s)
- Lanjia Pan
- Amoy Institute of Technovation, Xiamen 361000, PR China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Jie Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Ruming Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yu Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qinghuai Lin
- Amoy Institute of Technovation, Xiamen 361000, PR China
| | - Chunxing Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, PR China.
| | - Yin Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
| |
Collapse
|
17
|
Bedade DK, Edson CB, Gross RA. Emergent Approaches to Efficient and Sustainable Polyhydroxyalkanoate Production. Molecules 2021; 26:3463. [PMID: 34200447 PMCID: PMC8201374 DOI: 10.3390/molecules26113463] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Petroleum-derived plastics dominate currently used plastic materials. These plastics are derived from finite fossil carbon sources and were not designed for recycling or biodegradation. With the ever-increasing quantities of plastic wastes entering landfills and polluting our environment, there is an urgent need for fundamental change. One component to that change is developing cost-effective plastics derived from readily renewable resources that offer chemical or biological recycling and can be designed to have properties that not only allow the replacement of current plastics but also offer new application opportunities. Polyhydroxyalkanoates (PHAs) remain a promising candidate for commodity bioplastic production, despite the many decades of efforts by academicians and industrial scientists that have not yet achieved that goal. This article focuses on defining obstacles and solutions to overcome cost-performance metrics that are not sufficiently competitive with current commodity thermoplastics. To that end, this review describes various process innovations that build on fed-batch and semi-continuous modes of operation as well as methods that lead to high cell density cultivations. Also, we discuss work to move from costly to lower cost substrates such as lignocellulose-derived hydrolysates, metabolic engineering of organisms that provide higher substrate conversion rates, the potential of halophiles to provide low-cost platforms in non-sterile environments for PHA formation, and work that uses mixed culture strategies to overcome obstacles of using waste substrates. We also describe historical problems and potential solutions to downstream processing for PHA isolation that, along with feedstock costs, have been an Achilles heel towards the realization of cost-efficient processes. Finally, future directions for efficient PHA production and relevant structural variations are discussed.
Collapse
Affiliation(s)
- Dattatray K. Bedade
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
| | - Cody B. Edson
- New York State Center for Polymer Synthesis, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
| | - Richard A. Gross
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
- New York State Center for Polymer Synthesis, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
| |
Collapse
|
18
|
Carvalho LT, Vieira TA, Zhao Y, Celli A, Medeiros SF, Lacerda TM. Recent advances in the production of biomedical systems based on polyhydroxyalkanoates and exopolysaccharides. Int J Biol Macromol 2021; 183:1514-1539. [PMID: 33989687 DOI: 10.1016/j.ijbiomac.2021.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/10/2023]
Abstract
In recent years, growing attention has been devoted to naturally occurring biological macromolecules and their ensuing application in agriculture, cosmetics, food and pharmaceutical industries. They inherently have antigenicity, low immunogenicity, excellent biocompatibility and cytocompatibility, which are ideal properties for the design of biomedical devices, especially for the controlled delivery of active ingredients in the most diverse contexts. Furthermore, these properties can be modulated by chemical modification via the incorporation of other (macro)molecules in a random or controlled way, aiming at improving their functionality for each specific application. Among the wide variety of natural polymers, microbial polyhydroxyalkanoates (PHAs) and exopolysaccharides (EPS) are often considered for the development of original biomaterials due to their unique physicochemical and biological features. Here, we aim to fullfil a gap on the present associated literature, bringing an up-to-date overview of ongoing research strategies that make use of PHAs (poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyvalerate), poly (3-hydroxyoctanoate), poly(3-hydroxypropionate), poly (3-hydroxyhexanoate-co-3-hydroxyoctanoate), and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)) and EPS (bacterial cellulose, alginates, curdlan, pullulan, xanthan gum, dextran, hyaluronan, and schizophyllan) as sources of interesting and versatile biomaterials. For the first time, a monograph addressing the properties, pros and cons, status, challenges, and recent progresses regarding the application of these two important classes of biopolymers in biomedicine is presented.
Collapse
Affiliation(s)
- Layde T Carvalho
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil
| | - Thiago A Vieira
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil
| | - Yanjun Zhao
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery 449 and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Annamaria Celli
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Simone F Medeiros
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil; Chemical Engineering Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil.
| | - Talita M Lacerda
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil.
| |
Collapse
|
19
|
Li HL, Deng RX, Wang W, Liu KQ, Hu HB, Huang XQ, Zhang XH. Biosynthesis and Characterization of Medium-Chain-Length Polyhydroxyalkanoate with an Enriched 3-Hydroxydodecanoate Monomer from a Pseudomonas chlororaphis Cell Factory. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3895-3903. [PMID: 33759523 DOI: 10.1021/acs.jafc.1c00500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polyhydroxyalkanoates (PHAs) have been reported with agricultural and medical applications in virtue of their biodegradable and biocompatible properties. Here, we systematically engineered three modules for the enhanced biosynthesis of medium-chain-length polyhydroxyalkanoate (mcl-PHA) in Pseudomonas chlororaphis HT66. The phzE, fadA, and fadB genes were deleted to block the native phenazine pathway and weaken the fatty acid β-oxidation pathway. Additionally, a PHA depolymerase gene phaZ was knocked out to prevent the degradation of mcl-PHA. Three genes involved in the mcl-PHA biosynthesis pathway were co-overexpressed to increase carbon flux. The engineered strain HT4Δ::C1C2J exhibited an 18.2 g/L cell dry weight with 84.9 wt % of mcl-PHA in a shake-flask culture, and the 3-hydroxydodecanoate (3HDD) monomer was increased to 71.6 mol %. Thermophysical and mechanical properties of mcl-PHA were improved with an enriched ratio of 3HDD. This study demonstrated a rational metabolic engineering approach to enhance the production of mcl-PHA with the enriched dominant monomer and improved material properties.
Collapse
Affiliation(s)
- Hui-Ling Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ru-Xiang Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kai-Quan Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Hong-Bo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xian-Qing Huang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue-Hong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
20
|
Silva JB, Pereira JR, Marreiros BC, Reis MA, Freitas F. Microbial production of medium-chain length polyhydroxyalkanoates. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.01.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Liu LY, Xie GJ, Xing DF, Liu BF, Ding J, Ren NQ. Biological conversion of methane to polyhydroxyalkanoates: Current advances, challenges, and perspectives. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2020; 2:100029. [PMID: 36160923 PMCID: PMC9487992 DOI: 10.1016/j.ese.2020.100029] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 05/13/2023]
Abstract
Methane emissions and plastic pollution are critical global challenges. The biological conversion of methane to poly-β-hydroxybutyrate (PHB) not only mitigates methane emissions but also provides biodegradable polymer substitutes for petroleum-based materials used in plastics production. This work provides an early overview of the methane-based PHB advances and discusses challenges and related strategies. Recent advances of PHB, including PHB biosynthetic pathways, methanotrophs, bioreactors, and the performances of PHB materials are introduced. Major challenges of methane-based PHB production are discussed in detail; these include low efficiency of methanotrophs, low gas-liquid mass transfer efficiency, and poor material properties. To overcome these limitations, various approaches are also explored, such as feast-famine regimes, engineered microorganisms, gas-permeable membrane bioreactors, two-phase partitioning bioreactors, poly-β-hydroxybutyrate-co-hydroxyvalerate synthesis, and molecular weight manipulation.
Collapse
|
22
|
Surendran A, Lakshmanan M, Chee JY, Sulaiman AM, Thuoc DV, Sudesh K. Can Polyhydroxyalkanoates Be Produced Efficiently From Waste Plant and Animal Oils? Front Bioeng Biotechnol 2020; 8:169. [PMID: 32258007 PMCID: PMC7090169 DOI: 10.3389/fbioe.2020.00169] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/19/2020] [Indexed: 12/19/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are a potential replacement for some petrochemical-based plastics. PHAs are polyesters synthesized and stored by various bacteria and archaea in their cytoplasm as water-insoluble inclusions. PHAs are usually produced when the microbes are cultured with nutrient-limiting concentrations of nitrogen, phosphorus, sulfur, or oxygen and excess carbon sources. Such fermentation conditions have been optimized by industry to reduce the cost of PHAs produced commercially. Industrially, these biodegradable polyesters are derived from microbial fermentation processes utilizing various carbon sources. One of the major constraints in scaling-up PHA production is the cost of the carbon source metabolized by the microorganisms. Hence, cheap and renewable carbon substrates are currently being investigated around the globe. Plant and animal oils have been demonstrated to be excellent carbon sources for high yield production of PHAs. Waste streams from oil mills or the used oils, which are even cheaper, are also used. This approach not only reduces the production cost for PHAs, but also makes a significant contribution toward the reduction of environmental pollution caused by the used oil. Advancements in the genetic and metabolic engineering of bacterial strains have enabled a more efficient utilization of various carbon sources, in achieving high PHA yields with specified monomer compositions. This review discusses recent developments in the biosynthesis and classification of various forms of PHAs produced using crude and waste oils from the oil palm and fish industries. The biodegradability of the PHAs produced from these oils will also be discussed.
Collapse
Affiliation(s)
- Arthy Surendran
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Manoj Lakshmanan
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
- USM-RIKEN International Centre for Aging Science (URICAS), School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Jiun Yee Chee
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | | | - Doan Van Thuoc
- Faculty of Biology, Hanoi National University of Education, Hanoi, Vietnam
| | - Kumar Sudesh
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
- USM-RIKEN International Centre for Aging Science (URICAS), School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
23
|
Arumugam A, Furhana Shereen M. Bioconversion of Calophyllum inophyllum oilcake for intensification of rhamnolipid and polyhydroxyalkanoates co-production by Enterobacter aerogenes. BIORESOURCE TECHNOLOGY 2020; 296:122321. [PMID: 31677405 DOI: 10.1016/j.biortech.2019.122321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
The biologically derived products are highly valued due to their biodegradability, low toxicity, and renewability. However, most production processes are exorbitant due to high raw material cost and the downstream processing required for product recovery and purification. Therefore, the present study utilized the low-cost lignocellulosic biomass, Calophyllum inophyllum oilcake for the simultaneous production of PHA and rhamnolipid by a facultative anaerobe Enterobacter aerogenes. Both the products are produced during the stationary phase and constitute β- hydroxyalkanoic acids, which makes it feasible for the co-production through a single fermentation process. From the batch fermentation studies, it was revealed that the under optimum condition rhamnolipid and PHA yield are 5.81 g/L and 4.2 g/L: 5%(v/v) of inoculum size, pH of 6.5, C:N ratio of 5:1 and urea are found to be the best nitrogen source for the fermentation process. Characterization studies for extracted PHA and RL was done using- FTIR, NMR and TGA analysis.
Collapse
Affiliation(s)
- A Arumugam
- School of Chemical & Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, India.
| | - M Furhana Shereen
- School of Chemical & Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, India
| |
Collapse
|
24
|
Larrañaga A, Lizundia E. A review on the thermomechanical properties and biodegradation behaviour of polyesters. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109296] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Zhao F, He F, Liu X, Shi J, Liang J, Wang S, Yang C, Liu R. Metabolic engineering of Pseudomonas mendocina NK-01 for enhanced production of medium-chain-length polyhydroxyalkanoates with enriched content of the dominant monomer. Int J Biol Macromol 2019; 154:1596-1605. [PMID: 31706817 DOI: 10.1016/j.ijbiomac.2019.11.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/02/2019] [Accepted: 11/06/2019] [Indexed: 10/25/2022]
Abstract
In this study, six genes involved in β-oxidation pathway of P. mendocina NK-01 were deleted to construct mutant strains NKU-∆β1 and NKU-∆β5. Compared with the wild strain NKU, the mcl-PHA titers of NKU-∆β5 were respectively increased by 5.58- and 4.85-fold for culturing with sodium octanoate and sodium decanoate. And the mcl-PHA titers of NKU-∆β1 was increased by 10.02-fold for culturing with dodecanoic acid. The contents of dominant monomers 3-hydroxydecanoate (3HD) and 3-hydroxydodecanoate (3HDD) of the mcl-PHA synthesized by NKU-∆β5 were obviously increased to 90.01 and 58.60 mol%, respectively. Further deletion of genes phaG and phaZ, the 3HD and 3HDD contents were further improved to 94.71 and 68.67 mol%, respectively. The highest molecular weight of mcl-PHA obtained in this study was 80.79 × 104 Da, which was higher than the previously reported mcl-PHA. With the increase of dominant monomer contents, the synthesized mcl-PHA showed better thermal properties, mechanical properties and crystallization properties. Interestingly, the cell size of NKU-∆β5 was larger than that of NKU due to the accumulation of more PHA granules. This study indicated that a systematically metabolic engineering approach for P. mendocina NK-01 could significantly improve the mcl-PHA titer, dominant monomer contents and physical properties of mcl-PHA.
Collapse
Affiliation(s)
- Fengjie Zhao
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Fanyang He
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Xiangsheng Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Jie Shi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Jingnan Liang
- Core Facility of Equipment, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shufang Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin 300071, China.
| | - Ruihua Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.
| |
Collapse
|
26
|
Zheng Y, Chen JC, Ma YM, Chen GQ. Engineering biosynthesis of polyhydroxyalkanoates (PHA) for diversity and cost reduction. Metab Eng 2019; 58:82-93. [PMID: 31302223 DOI: 10.1016/j.ymben.2019.07.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/23/2019] [Accepted: 07/11/2019] [Indexed: 11/29/2022]
Abstract
PHA, a family of natural biopolymers aiming to replace non-degradable plastics for short-term usages, has been developed to include various structures such as short-chain-length (scl) and medium-chain-length (mcl) monomers as well as their copolymers. However, PHA market has been grown slowly since 1980s due to limited variety with good mechanical properties and the high production cost. Here, we review most updated strategies or approaches including metabolic engineering, synthetic biology and morphology engineering on expanding PHA diversity, reducing production cost and enhancing PHA production. The extremophilic Halomonas spp. are taken as examples to show the feasibility and challenges to develop next generation industrial biotechnology (NGIB) for producing PHA more competitively.
Collapse
Affiliation(s)
- Yang Zheng
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jin-Chun Chen
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yi-Ming Ma
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guo-Qiang Chen
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China; Center for Nano- and Micro-Mechanics, Tsinghua University, Beijing, 100084, China; Dept of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
27
|
Zhang X, Li Z, Che X, Yu L, Jia W, Shen R, Chen J, Ma Y, Chen GQ. Synthesis and Characterization of Polyhydroxyalkanoate Organo/Hydrogels. Biomacromolecules 2019; 20:3303-3312. [PMID: 31094501 DOI: 10.1021/acs.biomac.9b00479] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthetic organogels/hydrogels are attracting growing interests due to their potential applications in biomedical fields, organic electronics, and photovoltaics. Photogelation methods for synthesis of organogels/hydrogels have been shown particularly promising because of the high efficiency and simple synthetic procedures. This study synthesized new biodegradable polyhydroxyalkanoates (PHA)-based organogels/hydrogels via UV photo-cross-linking using unsaturated PHA copolymer poly[(R)-3-hydroxyundecanoate-co-(R)-3-hydroxy-10-undecenoate] (PHU10U) with polyethylene glycol dithiol (PDT) as a photo-cross-linker. The PHU10U was synthesized by an engineered Pseudomonas entomophila and characterized via Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance (NMR), and 13C NMR. With decreasing the molar ratio of PHU10U to PDT, both the swelling ratio and pore size were decreased. Meanwhile, increasing densities of the gel networks resulted in a higher compressive modulus. Cell cytotoxicity studies based on the CCK-8 assay on both the PHU10U precursor and PHU10U/PDT hydrogels showed that the novel PHA-based biodegradables acting as hydrogels possess good biocompatibility.
Collapse
Affiliation(s)
- Xu Zhang
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Zihua Li
- School of Pharmaceutical Sciences , Tsinghua University , Beijing 100084 , China
| | - Xuemei Che
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China.,Center for Nano- and Micro Mechanics, Tsinghua University , Beijing 100084 , China
| | - Linping Yu
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Wangyue Jia
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Rui Shen
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Jinchun Chen
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Yiming Ma
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Guo-Qiang Chen
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China.,Center for Nano- and Micro Mechanics, Tsinghua University , Beijing 100084 , China.,MOE Key Lab for Industrial Biocatalysis, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
28
|
Li M, Chen X, Che X, Zhang H, Wu LP, Du H, Chen GQ. Engineering Pseudomonas entomophila for synthesis of copolymers with defined fractions of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates. Metab Eng 2018; 52:253-262. [PMID: 30582985 DOI: 10.1016/j.ymben.2018.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 01/06/2023]
Abstract
Polyhydroxyalkanoates (PHA) composed of both short-chain-length (SCL) and medium-chain-length (MCL) monomers (SCL-co-MCL PHA) combine the advantages of high strength and elasticity provided by SCL PHA and MCL PHA, respectively. Synthesis of SCL-co-MCL PHA, namely, copolymers of 3-hydroxybutyrate (3HB) and MCL 3-hydroxyalkanoates (3HA) such as 3-hydroxydecanoate (3HD) and longer chain 3HA, has been a challenge for a long time. This study aims to engineer Pseudomonas entomophila for synthesizing P(3HB-co-MCL 3HA) via weakening its β-oxidation pathway combined with insertion of 3HB synthesis pathway consisting of β-ketothiolase (phaA) and acetoacetyl-CoA reductase (phaB). 3HB and MCL 3HA polymerization is catalyzed by a low specificity PHA synthase (phaC), namely, mutated PhaC61-3. The link between the fatty acid de novo synthesis and PHA synthesis was further blocked to increase the supply for SCL and MCL monomers in P. entomophila. The so-constructed P. entomophila was successfully used to synthesize novel PHA copolymers of P(3HB-co-3HD), P(3HB-co-3HDD) and P(3HB-co-3H9D) consisting of 3HB and 3-hydroxydecanoate (3HD), 3-hydroxydodecanoate (3HDD) and 3-hydroxy-9-decanent (3H9D), respectively. MCL 3HA compositions of P(3HB-co-3HD) and P(3HB-co-3HDD) can be adjusted from 0 to approximate 100 mol%. Results demonstrated that the engineered P. entomophila could be a platform for tailor-made P(3HB-co-MCL 3HA).
Collapse
Affiliation(s)
- Mengyi Li
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiangbin Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xuemei Che
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; Center for Nano- and Micro-Mechanics, Tsinghua University, Beijing 100084, China
| | | | - Lin-Ping Wu
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Hetong Du
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guo-Qiang Chen
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; Center for Nano- and Micro-Mechanics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
29
|
Mohd Fadzil FI, Mizuno S, Hiroe A, Nomura CT, Tsuge T. Low Carbon Concentration Feeding Improves Medium-Chain-Length Polyhydroxyalkanoate Production in Escherichia coli Strains With Defective β-Oxidation. Front Bioeng Biotechnol 2018; 6:178. [PMID: 30560122 PMCID: PMC6287193 DOI: 10.3389/fbioe.2018.00178] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 11/07/2018] [Indexed: 01/13/2023] Open
Abstract
Medium-chain-length (MCL) polyhydroxyalkanoates (PHAs) of near homopolymeric composition are unnatural polymers, having almost identical repeating units throughout the polymer chain. These homopolymeric PHAs can be produced by β-oxidation defective bacterial hosts. Escherichia coli is an attractive workhorse for the production of such genetically engineered PHAs; however, achieving efficient production of the near homopolymers by β-oxidation defective strains is a major challenge because of a lack of process development studies. In order to address this issue, we investigated the optimization of carbon feeding for efficient production of MCL-PHAs by an E. coli strain with defective β-oxidation, LSBJ. Engineered bacteria were cultured in shake-flasks with intermittent feeding of a fatty acid substrate [either decanoate (C10) or dodecanoate (C12)] at various concentrations together with a co-carbon source (glucose, glycerol, or xylose) in order to support cell growth. It was found that feeding low concentrations of both fatty acids and co-carbon sources led to an enhanced production of MCL-PHAs. Additionally, the supplementation of yeast extract improved cell growth, resulting in achieving higher titers of MCL-PHA. As a result, poly(3-hydroxydecanoate) [P(3HD)] and poly(3-hydroxydodecanoate) [P(3HDD)] were produced up to 5.44 g/L and 3.50 g/L, respectively, as near homopolymers by employing the developed feeding strategy. To the best of our knowledge, we record the highest titer of P(3HD) ever reported so far.
Collapse
Affiliation(s)
- Fakhrul Ikhma Mohd Fadzil
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Shoji Mizuno
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Ayaka Hiroe
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, Japan.,Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| | - Christopher T Nomura
- Department of Chemistry, College of Environmental Science and Forestry, State University of New York, New York, NY, United States
| | - Takeharu Tsuge
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
30
|
Increased synthesis of poly(3-hydroxydodecanoate) by random mutagenesis of polyhydroxyalkanoate synthase. Appl Microbiol Biotechnol 2018; 102:7927-7934. [PMID: 30032431 DOI: 10.1007/s00253-018-9230-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 10/28/2022]
Abstract
Poly(3-hydroxydodecanoate) [P(3HDD)], a medium-chain-length polyhydroxyalkanoate (PHA), is expected to be used as a novel type of bioplastic characterized by a soft and transparent nature. In this study, to achieve a high yield of P(3HDD), PHA synthase was modified through random mutagenesis of a region of the PHA synthase 1 gene from Pseudomonas putida KT2440 (phaC1Pp). Screening of the mutant library using a β-oxidation-deficient Escherichia coli LSBJ was performed. As a result, four mutants, designated w10, w14, w309, and w311, were selected from 10,000 mutants. The w311 mutant had two amino acid replacements (E358G and N398S), and showed the highest production of P(3HDD) with increased polymer molecular weights when compared to the native enzyme. Saturation mutagenesis at the N398 position, which was found to be highly conserved among Pseudomonas PhaCs, revealed that amino acids with hydrophobic and smaller residues either retained or increased P(3HDD) production. This study demonstrates the benefit of using the PHA synthase mutants to enhance the production of P(3HDD).
Collapse
|
31
|
Liu MH, Chen YJ, Lee CY. Characterization of medium-chain-length polyhydroxyalkanoate biosynthesis by Pseudomonas mosselii TO7 using crude glycerol. Biosci Biotechnol Biochem 2018; 82:532-539. [DOI: 10.1080/09168451.2017.1422386] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract
Polyhydroxyalkanoates (PHAs) are biopolyesters produced by microorganisms that are environmentally friendly. PHAs can be used to replace traditional plastic to reduce environmental pollution in various fields. PHA production costs are high because PHA must be produced from a carbon substrate. The purpose of this study was to find the strain that can used the BDF by-product as the sole carbon source to produce high amounts of medium-chain-length PHA. Three isolates were evaluated for potential PHA production by using biodiesel-derived crude glycerol as the sole carbon source. Among them, Pseudomonas mosselii TO7 yielded high PHA content. The PHA produced from P. mosselii TO7 were medium-chain-length-PHAs. The PHA content of 48% cell dry weight in 48 h with a maximum PHA productivity of 13.16 mg PHAs L−1 h−1. The narrow polydispersity index value of 1.3 reflected the homogeneity of the polymer chain, which was conducive to industrial applications.
Collapse
Affiliation(s)
- Ming-Hsu Liu
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yi-Jr Chen
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
- Department of Nutrition and Health Sciences, Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan
| | - Chia-Yin Lee
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
32
|
Chen GQ, Jiang XR. Engineering microorganisms for improving polyhydroxyalkanoate biosynthesis. Curr Opin Biotechnol 2017; 53:20-25. [PMID: 29169056 DOI: 10.1016/j.copbio.2017.10.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 01/22/2023]
Abstract
Biosynthesis of polyhydroxyalkanoates (PHA) has been studied since the 1920s. The biosynthesis pathways have been well understood and various attempts have been made to improve the PHA biosynthesis efficiency. Recent progresses have been focused on systematic improvements on PHA biosynthesis including changing growth pattern for rapid proliferation, engineering to enlarge cell sizes for more PHA accumulation space, reprogramming the PHA synthesis pathways using optimized RBS and promoter, redirecting metabolic flux to PHA synthesis using CRISPR/Cas9 tools, and very importantly, the employment of non-traditional host such as halophiles for reduced complexity on PHA production. All of the efforts should lead to ultrahigh PHA accumulation, controllable PHA compositions and molecular weights, open and continuous PHA production with gravity separation processes, resulting in competitive PHA production cost.
Collapse
Affiliation(s)
- Guo-Qiang Chen
- MOE Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Manchester Institute of Biotechnology, Centre for Synthetic Biology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Xiao-Ran Jiang
- MOE Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
33
|
Gao J, Vo MT, Ramsay JA, Ramsay BA. Overproduction of MCL-PHA with high 3-hydroxydecanoate Content. Biotechnol Bioeng 2017; 115:390-400. [PMID: 29030961 DOI: 10.1002/bit.26474] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 11/12/2022]
Abstract
Methods of producing medium-chain-length poly-3-hydroxyalkanoate (mcl-PHA) with high content of the dominant subunit, 3-hydroxydecanoate (HD), were examined with an emphasis on a high yield of polymer from decanoic acid. High HD content was achieved by using a β-oxidation knockout mutant of Pseudomonas putida KT2440 (designated as P. putida DBA-F1) or by inhibiting β-oxidation with addition of acrylic acid (Aa) to wild type P. putida KT2440 in carbon-limited, fed-batch fermentations. At a substrate feed ratio of decanoic acid and acetic acid to glucose (DAA:G) of 6:4 g/g, P. putida DBA-F1 accumulated significantly higher HD (97 mol%), but much lower biomass (8.5 g/L) and PHA (42% of dry biomass) than the wild type. Both biomass and PHA concentrations were improved by decreasing the ratio of DAA:G to 4:6. Moreover, when the substrate feed ratio was further decreased to 2:8, 18 g/L biomass containing 59% mcl-PHA consisting of 100 mol% HD was achieved. The yield of PHA from decanoic acid was 1.24 (g/g) indicating that de novo synthesis had contributed to production. Yeast extract and tryptone (YET) addition allowed the mutant strain to accumulate 74% mcl-PHA by weight with 97 mol% HD at a production rate of 0.41 g/L/hr, at least twice that of published data for any β-oxidation knock-out mutant. Higher biomass concentration was achieved with Aa inhibition of β-oxidation in the wild type but the HD content (84 mol%) was less than that of the mutant. A carbon balance showed a marked increase in supernantant organic carbon for the mutant indicating overflow metabolism. Increasing the dominant monomer content (HD) greatly increased melting point, crystallinity, and rate of crystallization.
Collapse
Affiliation(s)
- Jie Gao
- Chemical Engineering, Queen's University, Kingston, Ontario, Canada
| | - Minh T Vo
- Chemical Engineering, Queen's University, Kingston, Ontario, Canada
| | - Juliana A Ramsay
- Chemical Engineering, Queen's University, Kingston, Ontario, Canada
| | - Bruce A Ramsay
- Chemical Engineering, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
34
|
Engineering bacteria for enhanced polyhydroxyalkanoates (PHA) biosynthesis. Synth Syst Biotechnol 2017; 2:192-197. [PMID: 29318199 PMCID: PMC5655382 DOI: 10.1016/j.synbio.2017.09.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 09/16/2017] [Accepted: 09/16/2017] [Indexed: 11/24/2022] Open
Abstract
Polyhydroxyalkanoates (PHA) have been produced by some bacteria as bioplastics for many years. Yet their commercialization is still on the way. A few issues are related to the difficulty of PHA commercialization: namely, high cost and instabilities on molecular weights (Mw) and structures, thus instability on thermo-mechanical properties. The high cost is the result of complicated bioprocessing associated with sterilization, low conversion of carbon substrates to PHA products, and slow growth of microorganisms as well as difficulty of downstream separation. Future engineering on PHA producing microorganisms should be focused on contamination resistant bacteria especially extremophiles, developments of engineering approaches for the extremophiles, increase on carbon substrates to PHA conversion and controlling Mw of PHA. The concept proof studies could still be conducted on E. coli or Pseudomonas spp. that are easily used for molecular manipulations. In this review, we will use E. coli and halophiles as examples to show how to engineer bacteria for enhanced PHA biosynthesis and for increasing PHA competitiveness.
Collapse
|
35
|
Wang Y, Chung A, Chen GQ. Synthesis of Medium-Chain-Length Polyhydroxyalkanoate Homopolymers, Random Copolymers, and Block Copolymers by an Engineered Strain of Pseudomonas entomophila. Adv Healthc Mater 2017; 6. [PMID: 28128887 DOI: 10.1002/adhm.201601017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 12/20/2016] [Indexed: 11/11/2022]
Abstract
Medium-chain-length polyhydroxyalkanoates (mcl-PHAs), widely used in medical area, are commonly synthesized by Pseudomonas spp. This study tries to use β-oxidation pathways engineered P. entomophila to achieve single source of a series of mcl-monomers for microbial production of PHA homopolymers. The effort is proven successful for the first time to obtain a wide range of mcl-PHA homopolymers from engineered P. entomophila LAC23 grown on various fatty acids, respectively, ranging from poly(3-hydroxyheptanoate) to poly(3-hydroxytetradecanoate). Effects of a PHA monomer chain length on thermal and crystallization properties including the changes of Tm , Tg , and Td5% are investigated. Additionally, strain LAC23 is used to synthesize random copolymers of 3-hydroxyoctanoate (3HO) and 3-hydroxydodecanoate (3HDD) or 3-hydroxytetradecanoates, their compositions could be controlled by adjusting the ratios of two related fatty acids. Meanwhile, block copolymer P(3HO)-b-P(3HDD) is synthesized by the same strain. It is found for the first time that even- and odd number mcl-PHA homopolymers have different physical properties. When the gene of the PHA synthase in the engineered P. entomophila is replaced by phaC from Aeromonas hydrophila 4AK4, poly(3-hydroxybutyrate-co-30 mol%-3-hydroxyhexanoate) is synthesized. Therefore, P. entomophila can be used to synthesize the whole range of PHA (C7-C14) homopolymers, random- and block copolymers.
Collapse
Affiliation(s)
- Ying Wang
- School of Life Science; Tsinghua University; Beijing 100084 China
- Tsinghua-Peking Center for Life Sciences; Tsinghua University; Beijing 100084 China
- Center for Synthetic and Systems Biology; Tsinghua University; Beijing 100084 China
- Department of Biological Engineering; School of Life Science; Beijing Institute of Technology; Beijing 100081 China
| | - Ahleum Chung
- School of Life Science; Tsinghua University; Beijing 100084 China
| | - Guo-Qiang Chen
- School of Life Science; Tsinghua University; Beijing 100084 China
- Tsinghua-Peking Center for Life Sciences; Tsinghua University; Beijing 100084 China
- Center for Synthetic and Systems Biology; Tsinghua University; Beijing 100084 China
- Center for Nano and Micro Mechanics; Tsinghua University; Beijing 100084 China
- MOE Key Lab for Industrial Biocatalysis; Tsinghua University; Beijing 100084 China
| |
Collapse
|
36
|
Synthetic Biology of Polyhydroxyalkanoates (PHA). ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 162:147-174. [DOI: 10.1007/10_2017_3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
37
|
Bacterial polyhydroxyalkanoates: Still fabulous? Microbiol Res 2016; 192:271-282. [PMID: 27664746 DOI: 10.1016/j.micres.2016.07.010] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 07/19/2016] [Accepted: 07/28/2016] [Indexed: 01/07/2023]
Abstract
Bacterial polyhydroxyalkanoates (PHA) are polyesters accumulated as carbon and energy storage materials under limited growth conditions in the presence of excess carbon sources. They have been developed as biomaterials with unique properties for the past many years being considered as a potential substitute for conventional non-degradable plastics. Due to the increasing concern towards global climate change, depleting petroleum resource and problems with an utilization of a growing number of synthetic plastics, PHAs have gained much more attention from industry and research. These environmentally friendly microbial polymers have great potential in biomedical, agricultural, and industrial applications. However, their production on a large scale is still limited. This paper describes the backgrounds of PHAs and discussed the current state of knowledge on the polyhydroxyalkanoates. Ability of bacteria to convert different carbon sources to PHAs, the opportunities and challenges of their introduction to global market as valuable renewable products have been also discussed.
Collapse
|
38
|
Abstract
Polyhydroxyalkanoates (PHAs) are a family of polyesters synthesized by bacteria. Similarly to the genome, transcriptome, and proteome (the entire array of nucleic acids and proteins present in a cell or population of cells at a given time), the PHA spectrum exhibits diverse and dynamic modifications - the 'PHAome' - reflecting not only by the diversity of monomers, homopolymers, random and block copolymers, functional and graft polymers, molecular weights, and combinations of the above, but also the ranges of PHAs with various molecular weights and monomer ratios that are present at a particular timepoint in a bacterial cell. Echoing the Materials Genome Initiative (MGI) launched in 2011 to develop an infrastructure to accelerate advanced materials discovery and deployment, understanding the PHAome and ensuring an ample supply of PHAs based on it will promote the discovery of new properties and applications of this family of advanced materials.
Collapse
|
39
|
Chen GQ, Hajnal I, Wu H, Lv L, Ye J. Engineering Biosynthesis Mechanisms for Diversifying Polyhydroxyalkanoates. Trends Biotechnol 2016; 33:565-574. [PMID: 26409776 DOI: 10.1016/j.tibtech.2015.07.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/24/2015] [Accepted: 07/30/2015] [Indexed: 11/15/2022]
Abstract
Polyhydroxyalkanoates (PHA) are a family of diverse biopolyesters synthesized by bacteria. PHA diversity, as reflected by its monomers, homopolymers, random and block copolymers, as well as functional polymers, can now be generated by engineering the three basic synthesis pathways including the acetoacetyl-CoA pathway, in situ fatty acid synthesis, and/or β-oxidation cycles, as well as PHA synthase specificity. It is now possible to tailor the PHA structures via genome editing or process engineering. The increasing PHA diversity and maturing PHA production technology should lead to more focused research into their low-cost and/or high-value applications.
Collapse
Affiliation(s)
- Guo-Qiang Chen
- Ministry of Education Key Lab of Bioinformatics, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China; Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Protein Therapeutics, Tsinghua University, Beijing 100084, China.
| | - Ivan Hajnal
- Ministry of Education Key Lab of Bioinformatics, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hong Wu
- Ministry of Education Key Lab of Bioinformatics, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Li Lv
- Ministry of Education Key Lab of Bioinformatics, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jianwen Ye
- Ministry of Education Key Lab of Bioinformatics, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
40
|
Unusual poly(3-hydroxyalkanoate) (PHA) biosynthesis behavior ofPseudomonas putidaBet001 andDelftia tsuruhatensisBet002 isolated from palm oil mill effluent. Biotechnol Appl Biochem 2016; 64:259-269. [DOI: 10.1002/bab.1482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 01/15/2016] [Indexed: 11/07/2022]
|
41
|
|
42
|
Elvers D, Song CH, Steinbüchel A, Leker J. Technology Trends in Biodegradable Polymers: Evidence from Patent Analysis. POLYM REV 2016. [DOI: 10.1080/15583724.2015.1125918] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Munawar KMM, Simarani K, Annuar MSM. Bioconversion of mixed free fatty acids to poly-3-hydroxyalkanoates by Pseudomonas putida BET001 and modeling of its fermentation in shake flasks. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2015.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
44
|
Chen JS, Colón B, Dusel B, Ziesack M, Way JC, Torella JP. Production of fatty acids in Ralstonia eutropha H16 by engineering β-oxidation and carbon storage. PeerJ 2015; 3:e1468. [PMID: 26664804 PMCID: PMC4675107 DOI: 10.7717/peerj.1468] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/12/2015] [Indexed: 12/23/2022] Open
Abstract
Ralstonia eutropha H16 is a facultatively autotrophic hydrogen-oxidizing bacterium capable of producing polyhydroxybutyrate (PHB)-based bioplastics. As PHB's physical properties may be improved by incorporation of medium-chain-length fatty acids (MCFAs), and MCFAs are valuable on their own as fuel and chemical intermediates, we engineered R. eutropha for MCFA production. Expression of UcFatB2, a medium-chain-length-specific acyl-ACP thioesterase, resulted in production of 14 mg/L laurate in wild-type R. eutropha. Total fatty acid production (22 mg/L) could be increased up to 2.5-fold by knocking out PHB synthesis, a major sink for acetyl-CoA, or by knocking out the acyl-CoA ligase fadD3, an entry point for fatty acids into β-oxidation. As ΔfadD3 mutants still consumed laurate, and because the R. eutropha genome is predicted to encode over 50 acyl-CoA ligases, we employed RNA-Seq to identify acyl-CoA ligases upregulated during growth on laurate. Knockouts of the three most highly upregulated acyl-CoA ligases increased fatty acid yield significantly, with one strain (ΔA2794) producing up to 62 mg/L free fatty acid. This study demonstrates that homologous β-oxidation systems can be rationally engineered to enhance fatty acid production, a strategy that may be employed to increase yield for a range of fuels, chemicals, and PHB derivatives in R. eutropha.
Collapse
Affiliation(s)
- Janice S. Chen
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, MA, United States
- Current affiliation: Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Brendan Colón
- Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Brendon Dusel
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, MA, United States
| | - Marika Ziesack
- Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Jeffrey C. Way
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, MA, United States
| | - Joseph P. Torella
- Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
45
|
Vastano M, Casillo A, Corsaro MM, Sannia G, Pezzella C. Production of medium chain length polyhydroxyalkanoates from waste oils by recombinantEscherichia coli. Eng Life Sci 2015. [DOI: 10.1002/elsc.201500022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Marco Vastano
- Dipartimento di Scienze Chimiche; Complesso Universitario Monte S. Angelo; Napoli Italy
| | - Angela Casillo
- Dipartimento di Scienze Chimiche; Complesso Universitario Monte S. Angelo; Napoli Italy
| | - Maria Michela Corsaro
- Dipartimento di Scienze Chimiche; Complesso Universitario Monte S. Angelo; Napoli Italy
| | - Giovanni Sannia
- Dipartimento di Scienze Chimiche; Complesso Universitario Monte S. Angelo; Napoli Italy
| | - Cinzia Pezzella
- Dipartimento di Scienze Chimiche; Complesso Universitario Monte S. Angelo; Napoli Italy
| |
Collapse
|
46
|
Mohd Razaif-Mazinah MR, Mohamad Annuar MS, Sharifuddin Y. Effects of even and odd number fatty acids cofeeding on PHA production and composition inPseudomonas putidaBet001 isolated from palm oil mill effluent. Biotechnol Appl Biochem 2015; 63:92-100. [DOI: 10.1002/bab.1354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/24/2015] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Yusrizam Sharifuddin
- Institute of Biological Sciences; Faculty of Science; University of Malaya; Kuala Lumpur Malaysia
| |
Collapse
|
47
|
Wang Y, Yin J, Chen GQ. Polyhydroxyalkanoates, challenges and opportunities. Curr Opin Biotechnol 2014; 30:59-65. [DOI: 10.1016/j.copbio.2014.06.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/23/2014] [Accepted: 06/05/2014] [Indexed: 01/04/2023]
|
48
|
Tan D, Wu Q, Chen JC, Chen GQ. Engineering Halomonas TD01 for the low-cost production of polyhydroxyalkanoates. Metab Eng 2014; 26:34-47. [PMID: 25217798 DOI: 10.1016/j.ymben.2014.09.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/29/2014] [Accepted: 09/02/2014] [Indexed: 12/14/2022]
Abstract
The halophile Halomonas TD01 and its derivatives have been successfully developed as a low-cost platform for the unsterile and continuous production of chemicals. Therefore, to increase the genetic engineering stability of this platform, the DNA restriction/methylation system of Halomonas TD01 was partially inhibited. In addition, a stable and conjugative plasmid pSEVA341 with a high-copy number was constructed to contain a LacI(q)-Ptrc system for the inducible expression of multiple pathway genes. The Halomonas TD01 platform, was further engineered with its 2-methylcitrate synthase and three PHA depolymerases deleted within the chromosome, resulting in the production of the Halomonas TD08 strain. The overexpression of the threonine synthesis pathway and threonine dehydrogenase made the recombinant Halomonas TD08 able to produce poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or PHBV consisting of 4-6 mol% 3-hydroxyvalerate or 3 HV, from various carbohydrates as the sole carbon source. The overexpression of the cell division inhibitor MinCD during the cell growth stationary phase in Halomonas TD08 elongated its shape to become at least 1.4-fold longer than its original size, resulting in enhanced PHB accumulation from 69 wt% to 82 wt% in the elongated cells, further promoting gravity-induced cell precipitations that simplify the downstream processing of the biomass. The resulted Halomonas strains contributed to further reducing the PHA production cost.
Collapse
Affiliation(s)
- Dan Tan
- MOE Key Lab of Bioinformatics, National Engineering Laboratory for Anti-tumor Protein Therapeutics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Institute of Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qiong Wu
- MOE Key Lab of Bioinformatics, National Engineering Laboratory for Anti-tumor Protein Therapeutics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jin-Chun Chen
- MOE Key Lab of Bioinformatics, National Engineering Laboratory for Anti-tumor Protein Therapeutics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guo-Qiang Chen
- MOE Key Lab of Bioinformatics, National Engineering Laboratory for Anti-tumor Protein Therapeutics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
49
|
Gumel AM, Annuar MSM, Heidelberg T. Growth kinetics, effect of carbon substrate in biosynthesis of mcl-PHA by Pseudomonas putida Bet001. Braz J Microbiol 2014; 45:427-38. [PMID: 25242925 PMCID: PMC4166266 DOI: 10.1590/s1517-83822014000200009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 09/09/2013] [Indexed: 11/22/2022] Open
Abstract
Growth associated biosynthesis of medium chain length poly-3-hydroxyalkanoates (mcl-PHA) in Pseudomonas putida Bet001 isolated from palm oil mill effluent was studied. Models with substrate inhibition terms described well the kinetics of its growth. Selected fatty acids (C8:0 to C18:1) and ammonium were used as carbon and nitrogen sources during growth and PHA biosynthesis, resulting in PHA accumulation of about 50 to 69% (w/w) and PHA yields ranging from 10.12 g L−1 to 15.45 g L−1, respectively. The monomer composition of the PHA ranges from C4 to C14, and was strongly influenced by the type of carbon substrate fed. Interestingly, an odd carbon chain length (C7) monomer was also detected when C18:1 was fed. Polymer showed melting temperature (Tm) of 42.0 (± 0.2) °C, glass transition temperature (Tg) of −1.0 (± 0.2) °C and endothermic melting enthalpy of fusion (ΔHf) of 110.3 (± 0.1) J g−1. The molecular weight (Mw) range of the polymer was relatively narrow between 55 to 77 kDa.
Collapse
Affiliation(s)
- A M Gumel
- Institute of Biological Sciences Faculty of Science University of Malaya Kuala Lumpur Malaysia Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - M S M Annuar
- Institute of Biological Sciences Faculty of Science University of Malaya Kuala Lumpur Malaysia Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - T Heidelberg
- Department of Chemistry Faculty of Science University of Malaya Kuala Lumpur Malaysia Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
50
|
Chen YJ, Huang YC, Lee CY. Production and characterization of medium-chain-length polyhydroxyalkanoates by Pseudomonas mosselii TO7. J Biosci Bioeng 2014; 118:145-52. [DOI: 10.1016/j.jbiosc.2014.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 11/25/2022]
|