1
|
Won S, Jung M, Bang J, Cho SY, Choi IG, Kwak HW. Lignin-based flame retardant via sequential purification-nanoparticle formation, and NP coupled chemical modification. Int J Biol Macromol 2024; 281:136499. [PMID: 39414190 DOI: 10.1016/j.ijbiomac.2024.136499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
A nonhalogenated and ecofriendly flame-retarding material was developed using lignin, one of the main components of lignocellulosic biopolymers. Lignin was purified, dissolved, and formulated as nanoparticles and implemented after processing in an ecofriendly water-based γ-valerolactone (GVL) system at different concentrations. Nitrogen‑phosphorus sequential chemical modification was performed using polyethyleneimine (PEI) and phytic acid (PA), The char residue increased by ≥10 % compared with lignin nanoparticles (LNPs). A 10 wt% lignin-based flame retardant (L-FR) based on the weight of cotton fabric was introduced using a simple dipping method. Compared to existing cotton fabrics, the combustion time of L-FR treated cotton fabrics was reduced by 6.8 s. The maximum flame height was reduced by 5.4 cm, and the charcoal residue increased by 25 %. The flame-retarding mechanism of L-FR involved low-temperature dehydration, thermal decomposition of cellulose by the phosphorus component of PA and generation of expansive gas by the nitrogen component of PEI. These results showed that lignin-based raw material processing, polymer processing, and chemical modification were biomass-based, suggesting that lignin could be converted into an ecofriendly flame retardant, highlighting the feasibility of high-value-added lignin.
Collapse
Affiliation(s)
- Sungwook Won
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Minjung Jung
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Junsik Bang
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Se Youn Cho
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Wanju-gun 55324, Republic of Korea
| | - In-Gyu Choi
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyo Won Kwak
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Xu F, Ma W, Wang W, Wang H, An S, Zhu Z, Wang R. Fully bio-based intumescent flame retardant hybrid: A green strategy towards reducing fire hazard and improving degradation of polylactic acid. Int J Biol Macromol 2024; 269:131985. [PMID: 38692538 DOI: 10.1016/j.ijbiomac.2024.131985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/20/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Polylactic acid (PLA) is a promising renewable polymer material with excellent biodegradability and good mechanical properties. However, the easy flammability and slow natural degradation limited its further applications, especially in high-security fields. In this work, a fully bio-based intumescent flame-retardant system was designed to reduce the fire hazard of PLA. Firstly, arginine (Arg) and phytic acid (PA) were combined through electrostatic ionic interaction, followed by the introduction of starch as a carbon source, namely APS. The UL-94 grade of PLA/APS composites reached V-0 grade by adding 3 wt% of APS and exhibited excellent anti-dripping performance. With APS addition increasing to 7 wt%, LOI value increased to 26 % and total heat release decreased from 58.4 (neat PLA) to 51.1 MJ/m2. Moreover, the addition of APS increased its crystallinity up to 83.5 % and maintained the mechanical strength of pristine PLA. Noteworthy, APS accelerated the degradation rate of PLA under submerged conditions. Compared with pristine PLA, PLA/APS showed more apparent destructive network morphology and higher mass and Mn loss, suggesting effective degradation promotion. This work provides a full biomass modification strategy to construct renewable plastic with both good flame retardancy and high degradation efficiency.
Collapse
Affiliation(s)
- Fei Xu
- Materials Design & Engineering Department, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Wenjing Ma
- Materials Design & Engineering Department, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Wenqing Wang
- Materials Design & Engineering Department, Beijing Institute of Fashion Technology, Beijing 100029, China; Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, China.
| | - Hanwen Wang
- Materials Design & Engineering Department, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Shijie An
- Materials Design & Engineering Department, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Zhiguo Zhu
- Materials Design & Engineering Department, Beijing Institute of Fashion Technology, Beijing 100029, China; Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, China.
| | - Rui Wang
- Materials Design & Engineering Department, Beijing Institute of Fashion Technology, Beijing 100029, China; Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, China
| |
Collapse
|
3
|
Tuble KAQ, Omisol CJM, Abilay GY, Tomon TRB, Aguinid BJM, Dumancas GG, Malaluan RM, Lubguban AA. Synergistic effect of phytic acid and eggshell bio-fillers on the dual-phase fire-retardancy of intumescent coatings applied on cellulosic substrates. CHEMOSPHERE 2024; 358:142226. [PMID: 38704039 DOI: 10.1016/j.chemosphere.2024.142226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Cellulosic substrates, including wood and thatch, have become icons for sustainable architecture and construction, however, they suffer from high flammability because of their inherent cellulosic composition. Current control measures for such hazards include applying intumescent fire-retardant (IFR) coatings that swell and form a char layer upon ignition, protecting the underlying substrate from burning. Typically, conventional IFR coatings are opaque and are made of halogenated compounds that release toxic fumes when ignited, compromising the roofing's aesthetic value and sustainability. In this work, phytic acid, a naturally occurring phosphorus source extracted from rice bran, was used to synthesize phytic acid-based fire-retardants (PFR) via esterification under reflux, along with powdered chicken eggshells (CES) as calcium carbonate (CaCO3) bio-filler. These components were incorporated into melamine formaldehyde resin to produce the transparent IFR coating. It was revealed that the developed IFR coatings achieved the highest fire protection rating based on UL94 flammability standards compared to the control. The coatings also yielded increased LOI values, indicative of self-extinguishing properties. A 17 °C elevation of the IFR coating's melting temperature and a significant ∼172% increase in enthalpy change from the control were observed, indicating enhanced fire-retardancy. The thermal stability of the coatings was improved, denoted by reduced mass losses, and increased residual masses after thermal degradation. As validated by microscopy and spectroscopy, the abundance of phosphorus and carbon groups in the coatings' condensed phase after combustion indicates enhanced char formation. In the gas phase, TG-FTIR showed the evolution of non-flammable CO2, and fire-retardant PO and P-O-C. Mechanical property testing confirmed no reduction in the adhesion strength of the IFR coating. With these results, the developed IFR coating exhibited enhanced fire-retardancy whilst remaining optically transparent, suggestive of a dual-phase IFR protective mechanism involving the release of gaseous combustion diluents and the formation of a thermally insulating char layer.
Collapse
Affiliation(s)
- Kent Andrew Q Tuble
- Center for Sustainable Polymers, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Philippines; Department of Materials & Resources Engineering and Technology, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Philippines
| | - Christine Joy M Omisol
- Center for Sustainable Polymers, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Philippines
| | - Gerson Y Abilay
- Center for Sustainable Polymers, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Philippines; Department of Materials & Resources Engineering and Technology, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Philippines
| | - Tomas Ralph B Tomon
- Center for Sustainable Polymers, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Philippines
| | - Blessy Joy M Aguinid
- Center for Sustainable Polymers, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Philippines
| | | | - Roberto M Malaluan
- Center for Sustainable Polymers, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Philippines; Department of Chemical Engineering and Technology, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Philippines
| | - Arnold A Lubguban
- Center for Sustainable Polymers, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Philippines; Department of Chemical Engineering and Technology, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Philippines.
| |
Collapse
|
4
|
Zhang G, Liu C, Yang L, Kong Y, Fan X, Zhang J, Liu X, Yuan B. A flame-retardant and conductive fabric-based triboelectric nanogenerator: Application in fire alarm and emergency evacuation. J Colloid Interface Sci 2024; 658:219-229. [PMID: 38104404 DOI: 10.1016/j.jcis.2023.12.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
The fabrics commonly used in architectural decorative materials pose significant fire hazards due to their flammability and rapid fire spread. Moreover, the traditional fire-alarm systems may fail to function properly in complex fire environments owing to power supply disruptions. In this study, we developed a low-cost and eco-friendly flame-retardant conductive fabric-based triboelectric nanogenerator (FCF-TENG) by integrating flame-retardant conductive nylon fabric and polytetrafluoroethylene soaked cotton fabric. This nanogenerator exhibits excellent flame-retardant properties and remarkable energy-harvesting capabilities. The nylon fabric, treated with layer-by-layer self-assembly method, possesses outstanding self-extinguishing capability and melt-dripping resistance. Additionally, the electrical performance of FCF-TENG significantly improves, with a 10-fold boost in conductivity, and the open-circuit voltage increases by 84% to 92 V. Besides, by incorporating the rectifier circuit, the FCF-TENG is capable of completely charging a 1 μF capacitor within 30 s. Furthermore, the FCF-TENG was successfully applied as a self-powered sensor in the fire-alarm system and served as a safety exit indicator for evacuees and fire rescue. This work presents an effective and innovative application of multifunctional smart textiles for energy harvesting and self-powered sensing.
Collapse
Affiliation(s)
- Guangyi Zhang
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China
| | - Chao Liu
- Hubei Sanjiang Aerospace Jianghe Chemical Technology Co., Ltd., Yichang 444200, China
| | - Lujia Yang
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China
| | - Yue Kong
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China
| | - Xu Fan
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China
| | - Jie Zhang
- Hubei Sanjiang Aerospace Jianghe Chemical Technology Co., Ltd., Yichang 444200, China
| | - Xiaoyong Liu
- Hefei Institute for Public Safety Research, Tsinghua University, Hefei 230601, China
| | - Bihe Yuan
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
5
|
Liu J, Qi P, Chen F, Zhang J, Li H, Sun J, Gu X, Zhang S. A universal eco-friendly flame retardant strategy for polylactic acid fabrics and other polymer substrates. Int J Biol Macromol 2024; 260:129411. [PMID: 38232893 DOI: 10.1016/j.ijbiomac.2024.129411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Various polymer substrates have their particular combustion features, therefore, developing an effective universal flame retardant strategy for various polymer substrates is of great practical importance. Meanwhile, as substitutes for petroleum-based products, bio-based flame retardants and biodegradable polylactic acid (PLA) meet the requirements of sustainable development. In this work, a fully bio-based flame retardant coating (PAGS) was prepared using phytic acid (PA) and guanosine (GS). PAGS was used as a universal flame retardant coatings for polylactic acid (PLA) fabrics and other substrates, including cotton fabrics, polyethylene terephthalate (PET) fabrics, polyamide (PA) fabrics, polyurethane (PU) foams, polyethylene terephthalate (PET) films, and woods. The PAGS-treated substrates were able to self-extinguish and eliminate molten droplets. Similarly, the PAGS coating significantly suppressed the heat release of each substrate. The P-containing free radicals in the gas phase were able to interact with highly reactive H, HO and alkyl radicals, blocking the chain reaction during combustion. The flammable gas density was also diluted by nonflammable gases. The formed continuous porous and dense intumescent char layer hindered heat and oxygen. It is suggested that this work provides a simple and efficient flame retardant strategy for improving the fire safety of various polymer substrates.
Collapse
Affiliation(s)
- Jian Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peng Qi
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; School of Fashion and Textiles, The Hong Kong Polytechnic University, 999077, Hong Kong
| | - Feng Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jingfan Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongfei Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jun Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaoyu Gu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Sheng Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
6
|
Microstructural and thermal investigation of the bioinspired and synthetic fire-retardant materials deposited on cotton using LBL process. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1346-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
7
|
Rahman MZ, Wang X, Song L, Hu Y. A novel green phosphorus-containing flame retardant finishing on polysaccharide-modified polyamide 66 fabric for improving hydrophilicity and durability. Int J Biol Macromol 2023; 239:124252. [PMID: 36996951 DOI: 10.1016/j.ijbiomac.2023.124252] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/12/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Rising concerns about the toxic effects and environmental issues associated with various fireproof treatments on textiles have led to a demand for "green" materials. Chitosan (CS) is an amino polysaccharide green, recyclable, and non-toxic highly biocompatible biopolymer that consists of multiple hydroxyl groups and has a wide range of applications, including as a flame retardant additive. In this study, an eco-friendly bio-based formaldehyde-free flame retardant containing a higher level of phosphorus and nitrogen in phytic acid ammonia (PAA) was synthesized to amplify the most plentiful green chitosan (CS)-modified polyamide 66 (PA66) fabric surface through a simple pad-dry-cure technique for the improvement of durable flame retardancy with hydrophilicity. The findings revealed that each UV-grafted CS fabric could entirely stop the melt-dripping tendency during the vertical burning (UL-94) test and reached a V-1 rating. Meanwhile, limiting oxygen index (LOI) testing showed a rapid increase from 18.5 % to 24 % for the PA66 control and the PAA-treated (i.e., PA66-g-5CS-PAA) fabric samples, respectively. Moreover, compared to the PA66 control sample, a dramatic decrease in the peak heat release rate (PHRR), fire growth rate (FGR), and total heat release (THR) by approximately over 52 %, 0.63 %, and 19.7 %, respectively, was observed for the PA66-g-5CS-PAA fabric sample. Additionally, this arrangement of PAA catalyzed the charring of grafted CS and acted as a condensed phase flame retardant, resulting in a significant improvement in char yield% in both air and N2 atmospheres for the PA66-g-5CS-PAA fabric sample in TGA. In addition, only the lower grafting ratio of CS with PAA-treated fabric sample (i.e., PA66-g-2CS-PAA) could encourage it to gain its lowest water contact angle of 00, as well as impersonating a positive effect in improving the flame retardant coating durability in washing and sustaining even after 10 home laundering cycles. This phenomenon suggests that an actual hydrophilic and durable flame retardant finishing procedure for polyamide 66 fabrics might be applied with the novel, plentiful, sustainable, and environmentally friendly bio-based green PAA ingredient.
Collapse
|
8
|
Cheng B, Zhou Q, Chen J, Zhang X, Zhu C, Wu M. Vinylated Modification of Biophytic Acid and Flame-Retardant/Crease-Proofing Finishing of Cotton Fabrics via In Situ Copolymerization. MATERIALS (BASEL, SWITZERLAND) 2022; 16:286. [PMID: 36614625 PMCID: PMC9821944 DOI: 10.3390/ma16010286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
The vinyl phytic acid (GPA) was prepared using biophytic acid (PA) and glycidyl methacrylate (GMA), in which double bonds were introduced into the phytic acid molecule to increase the active groups in the phytic acid molecule. Furthermore, itaconic acid (IA) containing two unsaturated double bonds and GPA was polymerized in situ and crosslinked on the surface of cotton fabrics, and flame retardant and crease-proofed fabrics were obtained. The effects of GPA, IA, and the initiator on the flame-retardant and crease-proofing properties of the fabrics were analyzed by a single-factor and double-dip double-nip experiment. A flame-retardant and wrinkle-resistant fabric was obtained when the limiting oxygen index (LOI) and wrinkle recovery angle (WRA) were 28% and 270°, respectively. During combustion, the thermal properties of the fabrics changed; typically, the extrapolated initial temperature (Te) decreased, and moisture release increased. After burning, the fabrics had good shape retention, and the carbon residue content increased to 48%, which effectively inhibited or slowed down the combustion and heat release of the textiles. However, the whiteness, mechanical properties, and washability of the products need to be further improved.
Collapse
|
9
|
Non-Isocyanate Polyurethane Bio-Foam with Inherent Heat and Fire Resistance. Polymers (Basel) 2022; 14:polym14225019. [PMID: 36433146 PMCID: PMC9697988 DOI: 10.3390/polym14225019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Polyurethanes (PUs) are versatile and widespread, particularly as flexible and rigid foams. To avoid isocyanates and other toxic reagents required for synthesis, such as phosgene, alternative synthetic routes have been utilized to produce non-isocyanate polyurethanes (NIPUs). A thermally and flame-resistant rigid NIPU was produced from environmentally benign and bio-sourced ingredients, requiring no catalyst or solvents. A foamed structure was obtained by the addition of glutaraldehyde and four different carboxylic acids: malic acid, maleic acid, citric acid, and aconitic acid. The resulting morphology, thermal degradation, and flame resistance of each foam were compared. The properties vary with each carboxylic acid used, but in each case, peak thermal degradation and peak heat release are postponed by >100 °C compared to commercial rigid PU foam. Furthermore, in a butane torch test, NIPU foams exhibit an 80% higher remaining mass and a 75% reduction in afterburn time, compared to commercial polyurethane. This bio-based polyurethane eliminates the hazards of traditional PUs, while imparting inherent thermal stability and flame resistance uncharacteristic of conventional foams.
Collapse
|
10
|
Liu BW, Zhao HB, Wang YZ. Advanced Flame-Retardant Methods for Polymeric Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107905. [PMID: 34837231 DOI: 10.1002/adma.202107905] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Most organic polymeric materials have high flammability, for which the large amounts of smoke, toxic gases, heat, and melt drips produced during their burning cause immeasurable damages to human life and property every year. Despite some desirable results having been achieved by conventional flame-retardant methods, their application is encountering more and more difficulties with the ever-increasing high flame-retardant requirements such as high flame-retardant efficiency, great persistence, low release of heat, smoke, and toxic gases, and more importantly not deteriorating or even enhancing the overall properties of polymers. Under such condition, some advanced flame-retardant methods have been developed in the past years based on "all-in-one" intumescence, nanotechnology, in situ reinforcement, intrinsic char formation, plasma treatment, biomimetic coatings, etc., which have provided potential solutions to the dilemma of conventional flame-retardant methods. This review briefly outlines the development, application, and problems of conventional flame-retardant methods, including bulk-additive, bulk-copolymerization, and surface treatment, and focuses on the raise, development, and potential application of advanced flame-retardant methods. The future development of flame-retardant methods is further discussed.
Collapse
Affiliation(s)
- Bo-Wen Liu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Hai-Bo Zhao
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
11
|
Rahman MZ, Kundu CK, Wang X, Nabipour H, Song L, Hu Y. Microwave-initiated modification of polyamide 6.6 fabric surfaces for superior hydrophilic and flame retardant properties. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
12
|
Layer-by-Layer Self-Assembly Coating for Multi-Functionalized Fabrics: A Scientometric Analysis in CiteSpace (2005-2021). Molecules 2022; 27:molecules27196767. [PMID: 36235299 PMCID: PMC9573603 DOI: 10.3390/molecules27196767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
Surface-engineered coatings have been increasingly applied to functionalize fabrics due to the ease of deposition of the coatings and their effectiveness in endowing the fabric with abundant properties. Among the surface modification methods, layer-by-layer (LbL) self-assembly has emerged as an important approach for creating multifunctional surfaces on fabrics. In this review, bibliometric analysis with the visualization analysis of LbL self-assembly coatings on fabrics was performed on publications extracted from the Web of Science (WOS) from 2005 to 2021 based on the CiteSpace software. The analysis results showed that research on LbL self-assembly coatings on fabrics has attracted much attention, and this technique has plentiful and flexible applications. Moreover, research on the LbL self-assembly method in the field of functionalization of fabrics has been summarized, which include flame retardant fabric, antibacterial fabric, ultraviolet resistant fabric, hydrophobic fabric and electromagnetic shielding fabric. It was found that the functionalization of the fabric has been changing from singularity to diversification. Based on the review, several future research directions can be proposed. The weatherability, comfort, cost and environmental friendliness should be considered when the multifunctional coatings are designed.
Collapse
|
13
|
Rodriguez-Melendez D, Langhansl M, Helmbrecht A, Palen B, Zollfrank C, Grunlan JC. Biorenewable Polyelectrolyte Nanocoating for Flame-Retardant Cotton-Based Paper. ACS OMEGA 2022; 7:32599-32603. [PMID: 36120026 PMCID: PMC9476518 DOI: 10.1021/acsomega.2c04194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Cotton-based raw paper, made of 100% cellulose, is used to make humidity-sensing, cottonid for bio-architecture applications. Despite its renewability and excellent mechanical properties, it is inherently flammable. In an effort to reduce its flammability, thin films of fully renewable and environmentally benign polyelectrolytes, chitosan (CH) and phytic acid (PA), were deposited on raw paper via layer-by-layer (LbL) assembly. Only four bilayers (BL) of the CH/PA coating are required to achieve self-extinguishing behavior, with a 69% reduction in peak heat release rate measured by microscale combustion calorimetry. These results demonstrate that this renewable intumescent LbL-assembled film provides an effective flame-retardant treatment for these environmentally friendly, climate-adaptive construction materials and could potentially be used to protect many cellulosic materials.
Collapse
Affiliation(s)
| | - Matthias Langhansl
- Chair
of Biogenic Polymers, TUM Campus Straubing
for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, D-94315 Straubing, Germany
| | - Alexander Helmbrecht
- Chair
of Biogenic Polymers, TUM Campus Straubing
for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, D-94315 Straubing, Germany
| | - Bethany Palen
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Cordt Zollfrank
- Chair
of Biogenic Polymers, TUM Campus Straubing
for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, D-94315 Straubing, Germany
| | - Jaime C. Grunlan
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Mechanical Engineering, Texas A&M
University, College Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77843, United States
| |
Collapse
|
14
|
A facile approach for synthesising and studying (chitosan-g-poly vinyl alcohol)/bio-CaCO3 fire retardant bionanocomposites. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03834-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Li N, Kang G, Liu H, Qiu W, Wang Q, Liu L, Wang X, Yu J, Li F, Wu D. Fabrication of eco-friendly and efficient flame retardant modified cellulose with antibacterial property. J Colloid Interface Sci 2022; 618:462-474. [DOI: 10.1016/j.jcis.2022.03.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/04/2022] [Accepted: 03/17/2022] [Indexed: 12/20/2022]
|
16
|
Mokhena TC, Sadiku ER, Ray SS, Mochane MJ, Matabola KP, Motloung M. Flame retardancy efficacy of phytic acid: An overview. J Appl Polym Sci 2022. [DOI: 10.1002/app.52495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | - Emmanuel Rotimi Sadiku
- Institute of Nano Engineering Research (INER), Department of Chemical, Metallurgical and Materials Engineering (Polymer Technology Division) Tshwane University of Technology Pretoria South Africa
| | - Suprakas Sinha Ray
- Centre for Nanostructures and Advanced Materials, DSI‐CSIR Nanotechnology Innovation Centre Council for Scientific and Industrial Research Pretoria South Africa
- Department of Chemical Sciences University of Johannesburg Johannesburg South Africa
| | | | | | - Mpho Motloung
- Centre for Nanostructures and Advanced Materials, DSI‐CSIR Nanotechnology Innovation Centre Council for Scientific and Industrial Research Pretoria South Africa
- Department of Chemical Sciences University of Johannesburg Johannesburg South Africa
| |
Collapse
|
17
|
Zhou Q, Chen J, Lu Z, Tian Q, Shao J. In Situ Synthesis of Silver Nanoparticles on Flame-Retardant Cotton Textiles Treated with Biological Phytic Acid and Antibacterial Activity. MATERIALS 2022; 15:ma15072537. [PMID: 35407868 PMCID: PMC9000066 DOI: 10.3390/ma15072537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/06/2022] [Accepted: 03/28/2022] [Indexed: 12/20/2022]
Abstract
Fabrics were flame-retardant finished using phytic acid, a cost-effective, ecologically acceptable, and easily available flame-retardant finishing chemical. Then, on the surface of the completed fabric, silver nanoparticles (Ag NPs) were grown in situ to minimize Ag NPs aggregation and heterogeneous post-finishing and to increase washing durability. Thus, flame-retardant and antibacterial qualities were added to textiles. The as-prepared textiles were evaluated for their combustion performance, thermal performance, and antibacterial capabilities. At the same time, their microstructures were studied using X-ray diffractometry (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The findings indicated that flame-retardant textiles had an excellent launderability (limiting oxygen index = 31% after 20 washing cycles). Meanwhile, Ag NPs-loaded flame-retardant textiles demonstrated self-extinguishing properties, with a limiting oxygen index (LOI) of 27%. Bacteriostatic widths of flame-retardant antibacterial textiles against Escherichia coli and Staphylococcus aureus were 5.28 and 4.32 mm, respectively, indicating that Ag NPs-loaded flame-retardant fabrics have certain flame-retardant and antibacterial capabilities. SEM and TEM analysis indicated that nanoparticles were uniformly dispersed over Ag NPs-loaded flame-retardant textiles and were around 20 nm in size. When compared to flame-retardant textiles, Ag NPs-loaded flame-retardant fabrics showed varied binding energy of P and N on the surface and Ag ion emergence. Thermogravimetric analysis at various heating rates revealed that the main pyrolysis temperature range of flame-retardant fabrics decreased, while the main pyrolysis temperature range of Ag NPs-loaded flame-retardant fabrics increased; the heating rate influenced the pyrolysis range but not the fabric mass loss. In situ reduction synthesis of Ag NPs-loaded flame-retardant textiles may successfully reduce agglomeration and heterogeneous dispersion of nano-materials during post-finishing.
Collapse
Affiliation(s)
- Qingqing Zhou
- School of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China;
- Yancheng Institute of Technology, College of Textiles and Clothing, Yancheng 224051, China; (J.C.); (Z.L.)
| | - Jiayi Chen
- Yancheng Institute of Technology, College of Textiles and Clothing, Yancheng 224051, China; (J.C.); (Z.L.)
| | - Zhenqian Lu
- Yancheng Institute of Technology, College of Textiles and Clothing, Yancheng 224051, China; (J.C.); (Z.L.)
| | - Qiang Tian
- Zibo Dayang Flame Retardant Products Co., Ltd., Zibo 255000, China;
| | - Jianzhong Shao
- School of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China;
- Correspondence: ; Tel.: +86-13770047378
| |
Collapse
|
18
|
Chen J, Huang W, Chen Y, Zhou Z, Liu H, Zhang W, Huang J. Facile Preparation of Chitosan-Based Composite Film with Good Mechanical Strength and Flame Retardancy. Polymers (Basel) 2022; 14:polym14071337. [PMID: 35406210 PMCID: PMC9002840 DOI: 10.3390/polym14071337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/05/2022] Open
Abstract
To improve on the poor strength and flame retardancy of a chitosan (CS)-based functional film, cellulose nanofiber (CNF) was taken as the reinforced material and both ammonium polyphosphate (APP) and branched polyethyleneimine (BPEI) as the flame-retardant additives in the CS matrix to prepare the CS/CNF/APP/BPEI composite film by simple drying. The resulting composite film showed good mechanical strength, with a tensile strength reaching 71.84 Mpa due to the high flexibility of CNF and the combination of CS, CNF and BPEI through strong hydrogen bonding interactions. The flame retardant-performance of the composite film greatly enhanced the limit oxygen index (LOI), up to 32.7% from 27.6% for the pure film, and the PHRR intensity decreased to 28.87 W/g from 39.38% in the micro-scale combustion calorimetry (MCC) test due to the ability of BPEI to stimulate the decomposition of APP, releasing non-flammable gases such as CO2, N2, NH3, etc., and forming a protective phosphating layer to block the entry of O2. Based on the good flame retardancy, mechanical strength and transparency, the CS/CNF/APP/BPEI composite film has a great potential for future applications.
Collapse
Affiliation(s)
- Jirui Chen
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China; (J.C.); (W.H.); (Y.C.); (Z.Z.); (H.L.)
- China Bamboo Charcoal Museum, Lishui 323300, China
| | - Wentao Huang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China; (J.C.); (W.H.); (Y.C.); (Z.Z.); (H.L.)
| | - Yifan Chen
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China; (J.C.); (W.H.); (Y.C.); (Z.Z.); (H.L.)
| | - Zenan Zhou
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China; (J.C.); (W.H.); (Y.C.); (Z.Z.); (H.L.)
| | - Huan Liu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China; (J.C.); (W.H.); (Y.C.); (Z.Z.); (H.L.)
| | - Wenbiao Zhang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China; (J.C.); (W.H.); (Y.C.); (Z.Z.); (H.L.)
- Correspondence: (W.Z.); (J.H.)
| | - Jingda Huang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China; (J.C.); (W.H.); (Y.C.); (Z.Z.); (H.L.)
- Correspondence: (W.Z.); (J.H.)
| |
Collapse
|
19
|
Azman Mohammad Taib MN, Hamidon TS, Garba ZN, Trache D, Uyama H, Hussin MH. Recent progress in cellulose-based composites towards flame retardancy applications. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
20
|
|
21
|
Cho W, Shields JR, Dubrulle L, Wakeman K, Bhattarai A, Zammarano M, Fox DM. Ion – complexed chitosan formulations as effective fire-retardant coatings for wood substrates. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Kulkarni S, Xia Z, Yu S, Kiratitanavit W, Morgan AB, Kumar J, Mosurkal R, Nagarajan R. Bio-Based Flame-Retardant Coatings Based on the Synergistic Combination of Tannic Acid and Phytic Acid for Nylon-Cotton Blends. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61620-61628. [PMID: 34908405 DOI: 10.1021/acsami.1c16474] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Natural and synthetic polymeric fibers are used extensively in making fabrics for a variety of civilian and military applications. Due to the durability and comfort, nyco, a 50-50% blend of nylon 66 and cotton, is used as the material of choice in many applications including military uniforms. This fabric is flammable due to the presence of cotton and nylon but has good mechanical properties and is comfortable to wear. Here, we report a novel surface functionalization method that utilizes a synergistic combination of bio-based materials, tannic acid (TA) and phytic acid (PA), to impart flame-retardant (FR) properties to the nyco fabric. TA and PA were sequentially attached to nylon and cotton fibers through hydrogen bonding interactions and phosphorylation, respectively. The surface functionalization of the treated fabrics was confirmed using Fourier-transform infrared spectroscopy. Thermogravimetric analysis, microscale combustion calorimetry, cone calorimetry, and vertical flame testing were employed to study the effect of the functionalization on the thermal stability and flammability of the nyco fabric. Though reasonable durable functionalization is observed from elemental analysis, it is not enough to impart wash-durable FR treatment. These results indicate that flame retardancy is enabled through the enhanced char formation provided by the combination of TA and PA. The TA-PA system applied to nyco shows great promise as a bio-based FR system. This study for the first time also provides evidence for the selectivity of TA in imparting FR characteristics for nylon and PA in imparting FR properties for cotton. The combination of TA and PA provides promising FR characteristics to nyco.
Collapse
Affiliation(s)
- Sourabh Kulkarni
- Department of Mechanical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
- The HEROES Initiative, Center for Advanced Materials, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Zhiyu Xia
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
- The HEROES Initiative, Center for Advanced Materials, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Shiran Yu
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
- The HEROES Initiative, Center for Advanced Materials, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Weeradech Kiratitanavit
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Alexander B Morgan
- Center for Flame Retardant Materials Science, University of Dayton Research Institute, Dayton, Ohio 45469, United States
| | - Jayant Kumar
- Department of Physics & Applied Physics, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
- The HEROES Initiative, Center for Advanced Materials, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Ravi Mosurkal
- Protection Materials Division, U.S. Army DEVCOM Soldier Center, Natick, Massachusetts 01760, United States
- The HEROES Initiative, Center for Advanced Materials, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Ramaswamy Nagarajan
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
- The HEROES Initiative, Center for Advanced Materials, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
23
|
Yang P, Wu H, Yang F, Yang J, Wang R, Zhu Z. A Novel Self-Assembled Graphene-Based Flame Retardant: Synthesis and Flame Retardant Performance in PLA. Polymers (Basel) 2021; 13:polym13234216. [PMID: 34883719 PMCID: PMC8659536 DOI: 10.3390/polym13234216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, a novel flame retardant (PMrG) was developed by self-assembling melamine and phytic acid (PA) onto rGO, and then applying it to the improvement of the flame resistance of PLA. PMrG simultaneously decreases the peak heat release rate (pHRR) and the total heat release (THR) of the composite during combustion, and enhances the LOI value and the time to ignition (TTI), thus significantly improving the flame retardancy of the composite. The flame retardant mechanism of the PMrG is also investigated. On one hand, the dehydration of PA and the decomposition of melamine in PMrG generate non-flammable volatiles, such as H2O and NH3, which dilute the oxygen concentration around the combustion front of the composite. On the other hand, the rGO, melamine, and PA components in PMrG create a synergistic effect in promoting the formation of a compact char layer during the combustion, which plays a barrier role and effectively suppresses the release of heat and smoke. In addition, the PMrGs in PLA exert a positive effect on the crystallization of the PLA matrix, thus playing the role of nucleation agent.
Collapse
|
24
|
Jin X, Cui S, Sun S, Sun J, Zhang S. The Preparation and Characterization of Polylactic Acid Composites with Chitin-Based Intumescent Flame Retardants. Polymers (Basel) 2021; 13:3513. [PMID: 34685273 PMCID: PMC8536992 DOI: 10.3390/polym13203513] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
In this work, a novel intumescent flame retardant (IFR) system was fabricated by the introduction of chitin as a green charring agent, ammonium polyphosphate (APP) as the acid source, and melamine (MEL) as the gas source. The obtained chitin-based IFR was then incorporated into a polylactic acid (PLA) matrix using melt compounding. The fire resistance of PLA/chitin composites was investigated via the limiting oxygen index (LOI), UL-94 vertical burning, and cone calorimeter (CONE) tests. The results demonstrated that the combination of 10%APP, 5%chitin and 5%MEL could result in a 26.0% LOI, a V-0 rating after UL and a 51.2% reduction in the peak heat release rate during the CONE test. Based on the mechanism analysis from both the morphology and the chemical structure of the char, it was suggested that chitin was a promising candidate as a charring agent for chitin reacted with APP and MEL with the formation of an intumescent layer on the surface.
Collapse
Affiliation(s)
- Xiaodong Jin
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; (X.J.); (S.C.)
| | - Suping Cui
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; (X.J.); (S.C.)
| | - Shibing Sun
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; (X.J.); (S.C.)
| | - Jun Sun
- Beijing Key Laboratory of Advanced Functional Polymer Composites, School of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (J.S.); (S.Z.)
| | - Sheng Zhang
- Beijing Key Laboratory of Advanced Functional Polymer Composites, School of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (J.S.); (S.Z.)
| |
Collapse
|
25
|
Preparation of High-Efficiency Flame-Retardant and Superhydrophobic Cotton Fabric by a Multi-Step Dipping. COATINGS 2021. [DOI: 10.3390/coatings11101147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cotton fabric, as an important material, is suffering from some defects such as flammability, easy pollution and so on; therefore, it is important to make a flame-retardant and superhydrophobic modification on cotton fabric. In this study, we demonstrated a preparation of high-efficiency flame-retardant and superhydrophobic cotton fabric with double coated construction by a simple multi-step dipping. First, the fabric was immersed in branched poly(ethylenimine) (BPEI) and ammonium polyphosphate (APP) water dispersions successively, and then immersed in polydimethylsiloxane (PDMS)/cellulose nanocrystals (CNC)-SiO2 toluene dispersion to form a BPEI/APP/PDMS/CNC-SiO2 (BAPC) composite coating on the surface of the cotton fabric. Here, the hydrophobic modified CNC-SiO2 rods were used to construct the superhydrophobic layer and the BPEI/APP mixture was used as the flame-retardant layer, as well as SiO2 particles which could further improve the flame-retardant effect. PDMS was mainly used as an adhesive between the BPEI/APP layer and the CNC-SiO2 layer. The resulting cotton fabric shows outstanding flame-retardant properties, in that the value of oxygen index meter (LOI) reaches 69.8, as well as excellent superhydrophobicity, in that the water contact angle (WCA) is up to 156.6°. Meanwhile, there is a good abrasion resistance, the superhydrophobicity is not lost until the 16th abrasion cycles and the flame retardant retains well, even after 100 abrasion cycles in an automatic vertical flammability cabinet under a pressure of 8.8 kPa.
Collapse
|
26
|
Flame Retardant Functionalization of Microcrystalline Cellulose by Phosphorylation Reaction with Phytic Acid. Int J Mol Sci 2021; 22:ijms22179631. [PMID: 34502540 PMCID: PMC8431816 DOI: 10.3390/ijms22179631] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/23/2021] [Accepted: 09/04/2021] [Indexed: 11/16/2022] Open
Abstract
The functionalization of microcrystalline cellulose (MCC) is an important strategy for broadening its application fields. In the present work, MCC was functionalized by phosphorylation reaction with phytic acid (PA) for enhanced flame retardancy. The conditions of phosphorylation reaction including PA concentration, MCC/PA weight ratio and temperature were discussed, and the thermal degradation, heat release and char-forming properties of the resulting PA modified MCC were studied by thermogravimetric analysis and pyrolysis combustion flow calorimetry. The PA modified MCC, which was prepared at 90 °C, 50%PA and 1:3 weight ratio of MCC to PA, exhibited early thermal dehydration with rapid char formation as well as low heat release capability. This work suggests a novel strategy for the phosphorylation of cellulose using PA and reveals that the PA phosphorylated MCC can act as a promising flame retardant material.
Collapse
|
27
|
Gu J, Yan X, Li J, Qian Y, Zhu C, Qi D. Durable flame-retardant behavior of cotton textile with a water-based ammonium vinyl phosphonate. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109658] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Innovative Polyelectrolyte Treatment to Flame-Retard Wood. Polymers (Basel) 2021; 13:polym13172884. [PMID: 34502926 PMCID: PMC8433691 DOI: 10.3390/polym13172884] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 11/21/2022] Open
Abstract
Fire protection has been a major challenge in wood construction for many years, mainly due to the high flame spread risk associated with wood flooring. Wood fire-retardancy is framed by two main axes: coating and bulk impregnation. There is a growing need for economically and environmentally friendly alternatives. The study of polyelectrolyte complexes (PECs) for wood substrates is in its infancy, but PECs’ versatility and eco-friendly character are already recognized for fabric fire-retardancy fabrics. In this study, a new approach to PEC characterization is proposed. First, PECs, which consist of polyethyleneimine and sodium phytate, were chemically and thermally characterized to select the most promising systems. Then, yellow birch (Betula alleghaniensis Britt.) was surface-impregnated under reduced pressure with the two PECs identified as the best options. Overall, wood fire-retardancy was improved with a low weight gain of 2 wt.% without increasing water uptake.
Collapse
|
29
|
Miao Z, Yan D, Zhang T, Yang F, Zhang S, Liu W, Wu Z. High-Efficiency Flame Retardants of a P-N-Rich Polyphosphazene Elastomer Nanocoating on Cotton Fabric. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32094-32105. [PMID: 34219461 DOI: 10.1021/acsami.1c05884] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Modification by intumescent flame retardants is an effective way to impart antiflame properties to fabric materials. Polyphosphazene elastomers contain all three elements required by intumescent flame retardants: an acid source, a gas source, and a carbon source, making them all-in-one integrated intumescent flame retardants. In this work, halogen-free poly(dimethoxy)phosphazene (PDMP) loaded with 29.0 wt % phosphorus and 13.1 wt % nitrogen is shown to be an ideal flame retardant for fabric materials. For the first time, transparent and elastic PDMP was applied as an intumescent flame retardant for cotton fabric. The PDMP-coated cotton shows remarkable high-efficiency flame-retardant properties: (1) a self-extinguishing property during the vertical flame test is obtained when the add-on level reaches 5.3 wt %, with a lower smoke release character; (2) the limiting oxygen index (LOI) values of coated cotton are improved with increasing add-on level, and the thickness of the coating is measured to be at the nanolevel, 2540 nm when 10.9 wt % PDMP is coated. The coated cotton shows enhanced carbonization ability at lower temperatures, which is the key to imparting flame-retardant properties to cotton, and the PDMP-coated cotton shows remarkably lower peak heat release rate and total heat release compared to the control cotton during combustion. The durability of modified cotton was tested after 50 laundering cycles, which showed that the coating maintains 80% of its initial mass, and the after-laundering sample preserves the characteristics of self-extinguishing and a high LOI. Thus, the PDMP nanocoating-modified flame-retardant cotton fabric is sufficiently durable for practical application.
Collapse
Affiliation(s)
- Zhenwei Miao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongpeng Yan
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Teng Zhang
- School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Fan Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuangkun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhanpeng Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
30
|
Cheng XW, Zhang W, Wu YX, Ma YD, Xu JT, Guan JP. Borate functionalized caramel as effective intumescent flame retardant for wool fabric. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2020.109469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
31
|
Bio-inspired and dual interaction-based layer-by-layer assembled coatings for superior flame retardancy and hydrophilicity of polyamide 6.6 textiles. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110320] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Wang R, Guo S. Phytic acid and its interactions: Contributions to protein functionality, food processing, and safety. Compr Rev Food Sci Food Saf 2021; 20:2081-2105. [DOI: 10.1111/1541-4337.12714] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/15/2020] [Accepted: 01/06/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Ruican Wang
- Department of Food Science University of Wisconsin‐Madison Madison Wisconsin USA
| | - Shuntang Guo
- Beijing Key Laboratory of Plant Protein and Cereal Processing, College of Food Science & Nutritional Engineering China Agricultural University Beijing China
| |
Collapse
|
33
|
Ur Rehman Z, Niaz AK, Song JI, Heun Koo B. Excellent Fire Retardant Properties of CNF/VMT Based LBL Coatings Deposited on Polypropylene and Wood-Ply. Polymers (Basel) 2021; 13:303. [PMID: 33477966 PMCID: PMC7844820 DOI: 10.3390/polym13020303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022] Open
Abstract
In this report, layer by layer (LBL) fire retardant coatings were produced on wood ply and Polypropylene Homopolymer/Flax fiber composites. FE-SEM and EDAX analysis was carried out to analyze the surface morphology, thickness, growth rate and elemental composition of the samples. Coatings with a high degree of uniformity were formed on Polypropylene composite (PP/flax), while coatings with highest thickness were obtained on wood ply (wood). FTIR and Raman spectroscopy were further used for the molecular identifications of the coatings, which confirmed the maximum deposition of the solution components on the wood substrate. A physiochemical analysis and model was proposed to explain the forces of adhesion between the substrate and solution molecules. Fire protection and thermal properties were studied using TGA and UL-94 tests. It was explored, that the degradation of the coated substrates was highly protected by the coatings as follows: wood > PP/flax > PP. From the UL-94 test, it was further discovered that more than 83% of the coated wood substrate was protected from burning, compared to the 0% of the uncoated substrate. The flammability resistance of the samples was ranked as wood > PP/flax > PP.
Collapse
Affiliation(s)
| | | | | | - Bon Heun Koo
- College of Mechatronic Engineering, Changwon National University, Changwon, Gyeongsangnam-do 51140, Korea; (Z.U.R.); (A.K.N.); (J.-I.S.)
| |
Collapse
|
34
|
Rui W, Wenqing W, Fanghe W, Anying Z, Xiuqin Z, Deyi W. Construction of nano-multilayer coatings on copolyester fabrics using UV-grafting mediated layer-by-layer self-assembly for improved anti-droplet and flame retardent performance. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2020.109405] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Magovac E, Jordanov I, Grunlan JC, Bischof S. Environmentally-Benign Phytic Acid-Based Multilayer Coating for Flame Retardant Cotton. MATERIALS 2020; 13:ma13235492. [PMID: 33276519 PMCID: PMC7730485 DOI: 10.3390/ma13235492] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/20/2022]
Abstract
Chemically bleached cotton fabric was treated with phytic acid (PA), chitosan (CH) and urea by means of layer-by-layer (LbL) deposition to impart flame retardant (FR) behavior using only benign and renewable molecules. Samples were treated with 8, 10, 12 and 15 bilayers (BL) of anionic PA and cationic CH, with urea mixed into the aqueous CH solution. Flammability was evaluated by measuring limiting oxygen index (LOI) and through vertical flame testing. LOI values are comparable to those obtained with commercial flame-retardant finishes, and applying 10 or more bilayers renders cotton self-extinguishing and able to pass the vertical flame test. Microscale combustion calorimeter (MCC) measurements show the average reduction of peak heat release rate (pHRR) of all treated fabrics of ~61% and the reduction of total heat release (THR) of ~74%, in comparison to untreated cotton. Decomposition temperatures peaks (T1max) measured by thermogravimetric analyzer (TG) decreased by approximately 62 °C, while an average residue at 650 °C is ~21% for 10 and more bilayers. Images of post-burn char indicate that PA/CH-urea treatment is intumescent. The ability to deposit such a safe and effective FR treatment, with relatively few layers, makes LbL an alternative to current commercial treatments.
Collapse
Affiliation(s)
- Eva Magovac
- Faculty of Textile Technology, University of Zagreb, HR-10000 Zagreb, Croatia;
| | - Igor Jordanov
- Faculty of Technology and Metallurgy, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, Republic of North Macedonia;
| | - Jaime C. Grunlan
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77840, USA
- Correspondence: (J.C.G.); (S.B.)
| | - Sandra Bischof
- Faculty of Textile Technology, University of Zagreb, HR-10000 Zagreb, Croatia;
- Correspondence: (J.C.G.); (S.B.)
| |
Collapse
|
36
|
Zhang L, Yi D, Hao J, Gao M. One‐step treated wood by using natural source phytic acid and uracil for enhanced mechanical properties and flame retardancy. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lichen Zhang
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science and Engineering Beijing Institute of Technology Beijing China
| | - Deqi Yi
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science and Engineering Beijing Institute of Technology Beijing China
| | - Jianwei Hao
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science and Engineering Beijing Institute of Technology Beijing China
| | - Ming Gao
- School of Chemical and Environmental Engineering North China Institute of Science and Technology Beijing China
| |
Collapse
|
37
|
Machado I, Hsieh I, Calado V, Chapin T, Ishida H. Nacre-Mimetic Green Flame Retardant: Ultra-High Nanofiller Content, Thin Nanocomposite as an Effective Flame Retardant. Polymers (Basel) 2020; 12:E2351. [PMID: 33066458 PMCID: PMC7602158 DOI: 10.3390/polym12102351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 02/04/2023] Open
Abstract
A nacre-mimetic brick-and-mortar structure was used to develop a new flame-retardant technology. A second biomimetic approach was utilized to develop a non-flammable elastomeric benzoxazine for use as a polymer matrix that effectively adheres to the hydrophilic laponite nanofiller. A combination of laponite and benzoxazine is used to apply an ultra-high nanofiller content, thin nanocomposite coating on a polyurethane foam. The technology used is made environmentally friendly by eliminating the need to add any undesirable flame retardants, such as phosphorus additives or halogenated compounds. The very-thin coating on the polyurethane foam (PUF) is obtained through a single dip-coating. The structure of the polymer has been confirmed by proton nuclear magnetic resonance spectroscopy (1H NMR) and Fourier transform infrared spectroscopy (FTIR). The flammability of the polymer and nanocomposite was evaluated by heat release capacity using microscale combustion calorimetry (MCC). A material with heat release capacity (HRC) lower than 100 J/Kg is considered non-ignitable. The nanocomposite developed exhibits HRC of 22 J/Kg, which is well within the classification of a non-ignitable material. The cone calorimeter test was also used to investigate the flame retardancy of the nanocomposite's thin film on polyurethane foam. This test confirms that the second peak of the heat release rate (HRR) decreased 62% or completely disappeared for the coated PUF with different loadings. Compression tests show an increase in the modulus of the PUF by 88% for the 4 wt% coating concentration. Upon repeated modulus tests, the rigidity decreases, approaching the modulus of the uncoated PUF. However, the effect of this repeated mechanical loading does not significantly affect the flame retarding performance.
Collapse
Affiliation(s)
- Irlaine Machado
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-7202, USA;
| | - Isabel Hsieh
- Hathaway Brown School, Shaker Heights, OH 44122, USA;
| | - Veronica Calado
- School of Chemistry, Universidade Federal do Rio de Janeiro, Rua Horácio Macedo 2030, Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil;
| | - Thomas Chapin
- Underwriters Laboratories Inc. (UL), 2500 Dundee Rd., Northbrook, IL 60062S, USA;
| | - Hatsuo Ishida
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-7202, USA;
| |
Collapse
|
38
|
Jin X, Xiang E, Zhang R, Qin D, Jiang M, Jiang Z. Halloysite nanotubes immobilized by chitosan/tannic acid complex as a green flame retardant for bamboo fiber/poly(lactic acid) composites. J Appl Polym Sci 2020. [DOI: 10.1002/app.49621] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiaobei Jin
- Key Laboratory of National Forestry and Grassland Administration for Bamboo and Rattan Science & Technology International Centre for Bamboo and Rattan Beijing China
| | - Elin Xiang
- Research Institute of Wood Industry, Chinese Academy of Forestry Beijing China
| | - Rong Zhang
- Key Laboratory of National Forestry and Grassland Administration for Bamboo and Rattan Science & Technology International Centre for Bamboo and Rattan Beijing China
| | - Daochun Qin
- Key Laboratory of National Forestry and Grassland Administration for Bamboo and Rattan Science & Technology International Centre for Bamboo and Rattan Beijing China
| | - Mingliang Jiang
- Research Institute of Wood Industry, Chinese Academy of Forestry Beijing China
| | - Zehui Jiang
- Key Laboratory of National Forestry and Grassland Administration for Bamboo and Rattan Science & Technology International Centre for Bamboo and Rattan Beijing China
| |
Collapse
|
39
|
Otto DP, de Villiers MM. Layer-By-Layer Nanocoating of Antiviral Polysaccharides on Surfaces to Prevent Coronavirus Infections. Molecules 2020; 25:E3415. [PMID: 32731428 PMCID: PMC7435837 DOI: 10.3390/molecules25153415] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 12/28/2022] Open
Abstract
In 2020, the world is being ravaged by the coronavirus, SARS-CoV-2, which causes a severe respiratory disease, Covid-19. Hundreds of thousands of people have succumbed to the disease. Efforts at curing the disease are aimed at finding a vaccine and/or developing antiviral drugs. Despite these efforts, the WHO warned that the virus might never be eradicated. Countries around the world have instated non-pharmaceutical interventions such as social distancing and wearing of masks in public to curb the spreading of the disease. Antiviral polysaccharides provide the ideal opportunity to combat the pathogen via pharmacotherapeutic applications. However, a layer-by-layer nanocoating approach is also envisioned to coat surfaces to which humans are exposed that could harbor pathogenic coronaviruses. By coating masks, clothing, and work surfaces in wet markets among others, these antiviral polysaccharides can ensure passive prevention of the spreading of the virus. It poses a so-called "eradicate-in-place" measure against the virus. Antiviral polysaccharides also provide a green chemistry pathway to virus eradication since these molecules are primarily of biological origin and can be modified by minimal synthetic approaches. They are biocompatible as well as biodegradable. This surface passivation approach could provide a powerful measure against the spreading of coronaviruses.
Collapse
Affiliation(s)
- Daniel P. Otto
- Research Focus Area for Chemical Resource Beneficiation, Laboratory for Analytical Services, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2531, South Africa
| | - Melgardt M. de Villiers
- Division of Pharmaceutical Sciences–Drug Delivery, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI 53705, USA;
| |
Collapse
|
40
|
Eco-friendly flame retardant poly(lactic acid) composites based on banana peel powders and phytic acid: flame retardancy and thermal property. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02176-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
41
|
Zilke O, Plohl D, Opwis K, Mayer-Gall T, Gutmann JS. A Flame-Retardant Phytic-Acid-Based LbL-Coating for Cotton Using Polyvinylamine. Polymers (Basel) 2020; 12:E1202. [PMID: 32466250 PMCID: PMC7284457 DOI: 10.3390/polym12051202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/02/2022] Open
Abstract
Phytic acid (PA), as a natural source of phosphorus, was immobilized on cotton (CO) in a layer-by-layer (LbL) approach with polyvinylamine (PVAm) as the oppositely charged electrolyte to create a partly bio-based flame-retardant finish. PVAm was employed as a synthetic nitrogen source with the highest density of amine groups of all polymers. Vertical flame tests revealed a flame-retardant behavior with no afterflame and afterglow time for a coating of 15 bilayers (BL) containing 2% phosphorus and 1.4% nitrogen. The coating achieved a molar P:N ratio of 3:5. Microscale combustion calorimetry (MCC) analyses affirmed the flame test findings by a decrease in peak heat release rate (pkHRR) by more than 60% relative to unfinished CO. Thermogravimetric analyses (TGA) and MCC measurements exhibited a shifted CO peak to lower temperatures indicating proceeding reactions to form an isolating char on the surface. Fourier transform infrared spectroscopy (FTIR) coupled online with a TGA system, allowed the identification of a decreased amount of acrolein, methanol, carbon monoxide and formaldehyde during sample pyrolysis and a higher amount of released water. Thereby the toxicity of released volatiles was reduced. Our results prove that PA enables a different reaction by catalyzing cellulosic dehydration, which results in the formation of a protective char on the surface of the burned fabric.
Collapse
Affiliation(s)
- Olga Zilke
- Deutsches Textilforschungszentrum Nord-West gGmbH, Adlerstrasse 1, D-47798 Krefeld, Germany; (D.P.); (K.O.); (T.M.-G.)
| | - Dennis Plohl
- Deutsches Textilforschungszentrum Nord-West gGmbH, Adlerstrasse 1, D-47798 Krefeld, Germany; (D.P.); (K.O.); (T.M.-G.)
| | - Klaus Opwis
- Deutsches Textilforschungszentrum Nord-West gGmbH, Adlerstrasse 1, D-47798 Krefeld, Germany; (D.P.); (K.O.); (T.M.-G.)
| | - Thomas Mayer-Gall
- Deutsches Textilforschungszentrum Nord-West gGmbH, Adlerstrasse 1, D-47798 Krefeld, Germany; (D.P.); (K.O.); (T.M.-G.)
- Physical Chemistry & CENIDE, University Duisburg-Essen, Universitätsstrasse 5, D-45117 Essen, Germany
| | - Jochen Stefan Gutmann
- Deutsches Textilforschungszentrum Nord-West gGmbH, Adlerstrasse 1, D-47798 Krefeld, Germany; (D.P.); (K.O.); (T.M.-G.)
- Physical Chemistry & CENIDE, University Duisburg-Essen, Universitätsstrasse 5, D-45117 Essen, Germany
| |
Collapse
|
42
|
Chen X, Li J, Xi X, Pizzi A, Zhou X, Fredon E, Du G, Gerardin C. Condensed tannin-glucose-based NIPU bio-foams of improved fire retardancy. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109121] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Biomolecules as Flame Retardant Additives for Polymers: A Review. Polymers (Basel) 2020; 12:polym12040849. [PMID: 32272648 PMCID: PMC7240707 DOI: 10.3390/polym12040849] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/02/2022] Open
Abstract
Biological molecules can be obtained from natural sources or from commercial waste streams and can serve as effective feedstocks for a wide range of polymer products. From foams to epoxies and composites to bulk plastics, biomolecules show processability, thermal stability, and mechanical adaptations to fulfill current material requirements. This paper summarizes the known bio-sourced (or bio-derived), environmentally safe, thermo-oxidative, and flame retardant (BEST-FR) additives from animal tissues, plant fibers, food waste, and other natural resources. The flammability, flame retardance, and—where available—effects on polymer matrix’s mechanical properties of these materials will be presented. Their method of incorporation into the matrix, and the matrices for which the BEST-FR should be applicable will also be made known if reported. Lastly, a review on terminology and testing methodology is provided with comments on future developments in the field.
Collapse
|
44
|
Barbalini M, Bartoli M, Tagliaferro A, Malucelli G. Phytic Acid and Biochar: An Effective All Bio-Sourced Flame Retardant Formulation for Cotton Fabrics. Polymers (Basel) 2020; 12:polym12040811. [PMID: 32260336 PMCID: PMC7240518 DOI: 10.3390/polym12040811] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 11/16/2022] Open
Abstract
Flame retardant systems based on bio-sourced products combine quite high fire performances with the low environmental impact related to their synthesis and exploitation. In this context, this work describes a new all bio-sourced flame retardant system designed and applied to cotton fabrics. In particular, it consists of phytic acid (PA), a phosphorus-based naturally occurring molecule extracted from different plant tissues, in combination with biochar (BC), a carbon-rich solid product obtained from the thermo-chemical conversion of biomasses in an oxygen-limited environment. PA and BC were mixed together at a 1:1 weight ratio in an aqueous medium, and applied to cotton at different loadings. As revealed by flammability and forced combustion tests, this bio-sourced system was able to provide significant improvements in flame retardance of cotton, even limiting the final dry add-on on the treated fabrics at 8 wt.% only. The so-treated fabrics were capable to achieve self-extinction in both horizontal and vertical flame spread tests; besides, they did not ignite under the exposure to 35 kW/m2 irradiative heat flux. Conversely, the proposed flame retardant treatment did not show a high washing fastness, though the washed flame retarded fabrics still exhibited a better flame retardant behavior than untreated cotton.
Collapse
Affiliation(s)
- Marco Barbalini
- Department of Applied Science and Technology, and local INSTM Unit, Viale Teresa Michel 5, 15121 Alessandria, Italy;
| | - Mattia Bartoli
- Department of Applied Science and Technology, C.so Duca degli Abruzzi 24, 10129 Torino, Italy; (M.B.); (A.T.)
| | - Alberto Tagliaferro
- Department of Applied Science and Technology, C.so Duca degli Abruzzi 24, 10129 Torino, Italy; (M.B.); (A.T.)
| | - Giulio Malucelli
- Department of Applied Science and Technology, and local INSTM Unit, Viale Teresa Michel 5, 15121 Alessandria, Italy;
- Correspondence: ; Tel.: +39-0131-229369
| |
Collapse
|
45
|
Sol-Gel and Layer-by-Layer Coatings for Flame-Retardant Cotton Fabrics: Recent Advances. COATINGS 2020. [DOI: 10.3390/coatings10040333] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Surface-engineered coatings for the fire protection of cotton are being increasing used thanks to the ease of application of the coatings and their effectiveness in preventing flame propagation and improving resistance to irradiative heat flux exposure. Two main approaches have been extensively investigated, namely sol-gel derived coatings and layer-by-layer assemblies. These approaches are both capable of providing treated fabrics with outstanding flame-retardant features. Notwithstanding, according to the composition of the sol-gel recipes and the type of deposited layers, it is possible to design multifunctional (for example hydrophobic and electrically conductive) treatments. This review aims at discussing recent advances with respect to both strategies, highlighting current limitations, open challenges, and possible advances.
Collapse
|
46
|
Flame-Retardant Wood Composites Based on Immobilizing with Chitosan/Sodium Phytate/Nano-TiO2-ZnO Coatings via Layer-by-Layer Self-Assembly. COATINGS 2020. [DOI: 10.3390/coatings10030296] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Composite coatings of inorganic nanomaterials with polyelectrolytes are promising materials for wood modification. Endowing wood with flame retardancy behavior can not only broaden the range of applications of wood, but also improve the safety of wood products. In this work, chitosan/sodium phytate/TiO2-ZnO nanoparticle (CH/SP/nano-TiO2-ZnO) composite coatings were coated on wood surface through layer-by-layer self-assembly. The morphology and chemical composition of the modified wood samples were analyzed using scanning electron microscopy and energy dispersive spectrometry. The thermal degradation properties and flame retardancy of the samples treated with different assembly structures were observed by thermogravimetric analysis, limiting oxygen test, and combustion test. Due to the presence of an effective intumescent flame retardant system and a physical barrier, the CH/SP/nano-TiO2-ZnO coatings exhibited the best flame retardant performance and required only approximately six seconds for self-extinguishing. The coated samples had a limiting oxygen index of 8.4% greater than the original wood.
Collapse
|
47
|
Kandola BK, Williams KV, Ebdon JR. Organo-Inorganic Hybrid Intumescent Fire Retardant Coatings for Thermoplastics Based on Poly(Vinylphosphonic Acid). Molecules 2020; 25:E688. [PMID: 32041132 PMCID: PMC7037877 DOI: 10.3390/molecules25030688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 11/30/2022] Open
Abstract
Thin coatings of crosslinked poly(vinylphosphonic acid), PVPA, display good adhesion and excellent intumescent, fire-retardant barrier properties when applied to the surfaces of a typical thermoplastic, such as poly(methyl methacrylate), but perform relatively poorly in water-soak tests. To strengthen and further improve the barrier properties of the intumescent char and to make the coating more hydrophobic, PVPA has been complexed with various inorganic and organic species. The chars formed from coatings of some of these hybrid materials are less friable than chars from coatings synthesized from crosslinked PVPA alone, and show higher levels of water tolerance with no significant reduction in dry adhesion to the substrate.
Collapse
Affiliation(s)
- Baljinder K. Kandola
- Institute for Materials Research and Innovation, University of Bolton, Deane Road, Bolton BL3 5AB, UK; (K.V.W.); (J.R.E.)
| | - Katherine V. Williams
- Institute for Materials Research and Innovation, University of Bolton, Deane Road, Bolton BL3 5AB, UK; (K.V.W.); (J.R.E.)
- Exova Warringtonfire, Holmsfield Road, Warrington WA1 2DS, UK
| | - John R. Ebdon
- Institute for Materials Research and Innovation, University of Bolton, Deane Road, Bolton BL3 5AB, UK; (K.V.W.); (J.R.E.)
| |
Collapse
|
48
|
Lin B, Yuen ACY, Li A, Zhang Y, Chen TBY, Yu B, Lee EWM, Peng S, Yang W, Lu HD, Chan QN, Yeoh GH, Wang CH. MXene/chitosan nanocoating for flexible polyurethane foam towards remarkable fire hazards reductions. JOURNAL OF HAZARDOUS MATERIALS 2020; 381:120952. [PMID: 31400715 DOI: 10.1016/j.jhazmat.2019.120952] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/17/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
MXene/chitosan nanocoating for flexible polyurethane foam (PUF) was prepared via layer-by-layer (LbL) approach. MXene (Ti3C2) ultra-thin nanosheets were obtained through etching process of Ti3AlC2 followed by exfoliation. The deposition of MXene/chitosan nanocoating was conducted by alternatingly immersing the PUF into a chitosan solution and a Ti3C2 aqueous dispersion, which resulted in different number of bilayers (BL) ranging from 2, 5 and 8. Owing to the utilization of ultra-thin Ti3C2 nanosheets, the weight gain was only 6.9% for 8 BL coating of PUF, which minimised the unfavourable impact on the intrinsic properties of PUF. The Ti3C2/chitosan coating significantly reduced the flammability and smoke releases of PUF. Compared with unmodified PUF, the 8 BL coating reduced the peak heat release rate by 57.2%, alongside with a 65.5% reduction in the total heat release. The 8 BL coating also showed outstanding smoke suppression ability with total smoke release decreased by 71.1% and peak smoke production rate reduced by 60.3%, respectively. The peak production of CO and CO2 gases also decreased by 70.8% and 68.6%, respectively. Furthermore, an outstanding char formation performance of 37.2 wt.% residue was obtained for 8 BL coated PUF, indicating the excellent barrier and carbonization property of the hybrid coating.
Collapse
Affiliation(s)
- Bo Lin
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Anthony Chun Yin Yuen
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ao Li
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yang Zhang
- Department of Chemical and Materials Engineering, Hefei University, 99 Jinxiu Avenue, Hefei, Anhui, 230601, China
| | - Timothy Bo Yuan Chen
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Bin Yu
- Department of Architecture and Civil Engineering, City University of Hong Kong, 88 Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Eric Wai Ming Lee
- Department of Architecture and Civil Engineering, City University of Hong Kong, 88 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Shuhua Peng
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Wei Yang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia; Department of Chemical and Materials Engineering, Hefei University, 99 Jinxiu Avenue, Hefei, Anhui, 230601, China.
| | - Hong-Dian Lu
- Department of Chemical and Materials Engineering, Hefei University, 99 Jinxiu Avenue, Hefei, Anhui, 230601, China
| | - Qing Nian Chan
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Guan Heng Yeoh
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chun H Wang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
49
|
Zhou Q, Chen J, Zhou T, Shao J. In situ polymerization of polyaniline on cotton fabrics with phytic acid as a novel efficient dopant for flame retardancy and conductivity switching. NEW J CHEM 2020. [DOI: 10.1039/c9nj05689k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A flame-retardant conductive cotton fabric switch was successfully prepared by the in situ polymerization of polyaniline doped with novel phytic acid (PA) by impregnation in an ice water bath for 24 h.
Collapse
Affiliation(s)
- Qingqing Zhou
- School of Materials and Textiles
- Zhejiang Sci-Tech University
- Hangzhou
- China
- College of Textiles and Clothing
| | - Jiayi Chen
- College of Textiles and Clothing
- Yancheng Institute of Technology
- Yancheng
- China
| | - Tianchi Zhou
- College of Textiles and Clothing
- Yancheng Institute of Technology
- Yancheng
- China
| | - Jianzhong Shao
- School of Materials and Textiles
- Zhejiang Sci-Tech University
- Hangzhou
- China
| |
Collapse
|
50
|
Lan Y, Wang Y, Zhang H, Shan P, Shi X, Long M. A facile approach to achieve multifunctional polyethylene terephthalate fabrics with durable superhydrophobicity, photocatalysis and self-quenched flame retardance. NEW J CHEM 2020. [DOI: 10.1039/d0nj03259j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multifunctional PET fabrics were fabricated through combing layer-by-layer and spray coating methods.
Collapse
Affiliation(s)
- Yanrong Lan
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
- China
| | - Yingchun Wang
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
- China
| | - Han Zhang
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
- China
| | - Peng Shan
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
- China
- Institute of Life Science and Green Development
| | - Xiaomeng Shi
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
- China
| | - Mengying Long
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University
- Binhai New City
- China
| |
Collapse
|