1
|
Jalal S, Dastidar S, Tedesco FS. Advanced models of human skeletal muscle differentiation, development and disease: Three-dimensional cultures, organoids and beyond. Curr Opin Cell Biol 2021; 73:92-104. [PMID: 34384976 PMCID: PMC8692266 DOI: 10.1016/j.ceb.2021.06.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 02/08/2023]
Abstract
Advanced in vitro models of human skeletal muscle tissue are increasingly needed to model complex developmental dynamics and disease mechanisms not recapitulated in animal models or in conventional monolayer cell cultures. There has been impressive progress towards creating such models by using tissue engineering approaches to recapitulate a range of physical and biochemical components of native human skeletal muscle tissue. In this review, we discuss recent studies focussed on developing complex in vitro models of human skeletal muscle beyond monolayer cell cultures, involving skeletal myogenic differentiation from human primary myoblasts or pluripotent stem cells, often in the presence of structural scaffolding support. We conclude with our outlook on the future of advanced skeletal muscle three-dimensional cultures (e.g. organoids and biofabrication) to produce physiologically and clinically relevant platforms for disease modelling and therapy development in musculoskeletal and neuromuscular disorders.
Collapse
Affiliation(s)
- Salma Jalal
- Department of Cell and Developmental Biology, University College London, WC1E 6DE London, United Kingdom
| | - Sumitava Dastidar
- Department of Cell and Developmental Biology, University College London, WC1E 6DE London, United Kingdom
| | - Francesco Saverio Tedesco
- Department of Cell and Developmental Biology, University College London, WC1E 6DE London, United Kingdom; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom; Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, United Kingdom; Department of Paediatric Neurology, Great Ormond Street Hospital for Children, WC1N 3JH London, United Kingdom.
| |
Collapse
|
2
|
Tacchi F, Orozco-Aguilar J, Gutiérrez D, Simon F, Salazar J, Vilos C, Cabello-Verrugio C. Scaffold biomaterials and nano-based therapeutic strategies for skeletal muscle regeneration. Nanomedicine (Lond) 2021; 16:2521-2538. [PMID: 34743611 DOI: 10.2217/nnm-2021-0224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Skeletal muscle is integral to the functioning of the human body. Several pathological conditions, such as trauma (primary lesion) or genetic diseases such as Duchenne muscular dystrophy (DMD), can affect and impair its functions or exceed its regeneration capacity. Tissue engineering (TE) based on natural, synthetic and hybrid biomaterials provides a robust platform for developing scaffolds that promote skeletal muscle regeneration, strength recovery, vascularization and innervation. Recent 3D-cell printing technology and the use of nanocarriers for the release of drugs, peptides and antisense oligonucleotides support unique therapeutic alternatives. Here, the authors present recent advances in scaffold biomaterials and nano-based therapeutic strategies for skeletal muscle regeneration and perspectives for future endeavors.
Collapse
Affiliation(s)
- Franco Tacchi
- Department of Biological Sciences, Laboratory of Muscle Pathology, Fragility & Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile.,Millennium Institute on Immunology & Immunotherapy, Santiago, 8370146, Chile.,Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, 8350709, Chile
| | - Josué Orozco-Aguilar
- Department of Biological Sciences, Laboratory of Muscle Pathology, Fragility & Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile.,Millennium Institute on Immunology & Immunotherapy, Santiago, 8370146, Chile.,Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, 8350709, Chile
| | - Danae Gutiérrez
- Department of Biological Sciences, Laboratory of Muscle Pathology, Fragility & Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile.,Millennium Institute on Immunology & Immunotherapy, Santiago, 8370146, Chile.,Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, 8350709, Chile
| | - Felipe Simon
- Millennium Institute on Immunology & Immunotherapy, Santiago, 8370146, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD),Universidad de Chile, Santiago, 8370146, Chile.,Department of Biological Sciences, Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile
| | - Javier Salazar
- Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, 8350709, Chile.,Laboratory of Nanomedicine & Targeted Delivery, Center for Medical Research, School of Medicine, Universidad de Talca, Talca, 3460000, Chile
| | - Cristian Vilos
- Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, 8350709, Chile.,Laboratory of Nanomedicine & Targeted Delivery, Center for Medical Research, School of Medicine, Universidad de Talca, Talca, 3460000, Chile
| | - Claudio Cabello-Verrugio
- Department of Biological Sciences, Laboratory of Muscle Pathology, Fragility & Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile.,Millennium Institute on Immunology & Immunotherapy, Santiago, 8370146, Chile.,Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, 8350709, Chile
| |
Collapse
|
3
|
Mini review: Biomaterials in repair and regeneration of nerve in a volumetric muscle loss. Neurosci Lett 2021; 762:136145. [PMID: 34332029 DOI: 10.1016/j.neulet.2021.136145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 06/28/2021] [Accepted: 07/26/2021] [Indexed: 01/23/2023]
Abstract
Volumetric muscle loss (VML) following a severe trauma or injury is beyond the intrinsic regenerative capacity of muscle tissues, and hence interventional therapy is required. Extensive muscle loss concomitant with damage to neuromuscular components overwhelms the muscles' remarkable regenerative capacity. The loss of nervous and vascular tissue leads to further damage and atrophy, so a combined treatment for neuromuscular junction (NMJ) along with the volumetric muscle regeneration is important. There have been immense advances in the field of tissue engineering for skeletal muscle tissue and peripheral nerve regeneration, but very few address the interdependence of the tissues and the need for combined therapies to repair and regenerate fully functional muscle tissue. This review addresses the problem and presents an overview of the biomaterials that have been studied for tissue engineering of neuromuscular tissues associated with skeletal muscles.
Collapse
|
4
|
Sun C, Shen L, Zhang Z, Xie X. Therapeutic Strategies for Duchenne Muscular Dystrophy: An Update. Genes (Basel) 2020; 11:genes11080837. [PMID: 32717791 PMCID: PMC7463903 DOI: 10.3390/genes11080837] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 12/25/2022] Open
Abstract
Neuromuscular disorders encompass a heterogeneous group of conditions that impair the function of muscles, motor neurons, peripheral nerves, and neuromuscular junctions. Being the most common and most severe type of muscular dystrophy, Duchenne muscular dystrophy (DMD), is caused by mutations in the X-linked dystrophin gene. Loss of dystrophin protein leads to recurrent myofiber damage, chronic inflammation, progressive fibrosis, and dysfunction of muscle stem cells. Over the last few years, there has been considerable development of diagnosis and therapeutics for DMD, but current treatments do not cure the disease. Here, we review the current status of DMD pathogenesis and therapy, focusing on mutational spectrum, diagnosis tools, clinical trials, and therapeutic approaches including dystrophin restoration, gene therapy, and myogenic cell transplantation. Furthermore, we present the clinical potential of advanced strategies combining gene editing, cell-based therapy with tissue engineering for the treatment of muscular dystrophy.
Collapse
Affiliation(s)
- Chengmei Sun
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining 314400, China; (C.S.); (L.S.); (Z.Z.)
- Department of Medical Oncology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Luoan Shen
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining 314400, China; (C.S.); (L.S.); (Z.Z.)
| | - Zheng Zhang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining 314400, China; (C.S.); (L.S.); (Z.Z.)
| | - Xin Xie
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining 314400, China; (C.S.); (L.S.); (Z.Z.)
- Department of Medical Oncology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
- Correspondence: ; Tel.: +86-0571-87572326
| |
Collapse
|
5
|
Jana S, Franchi F, Lerman A. Trilayered tissue structure with leaflet-like orientations developed through in vivo tissue engineering. ACTA ACUST UNITED AC 2019; 15:015004. [PMID: 31814596 DOI: 10.1088/1748-605x/ab52e2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A tissue-engineered heart valve can be an alternative to current mechanical or bioprosthetic valves that face limitations, especially in pediatric patients. However, it remains challenging to produce a functional tissue-engineered heart valve with three leaflets mimicking the trilayered, oriented structure of a native valve leaflet. In our previous study, a flat, trilayered nanofibrous substrate mimicking the orientations of three layers in a native leaflet-circumferential, random and radial orientations in fibrosa, spongiosa and ventricularis layers, respectively, was developed through electrospinning. In this study, we sought to develop a trilayered tissue structure mimicking the orientations of a native valve leaflet through in vivo tissue engineering, a practical regenerative medicine technology that can be used to develop an autologous heart valve. Thus, the nanofibrous substrate was placed inside the closed trileaflet-shaped cavity of a mold and implanted subcutaneously in a rat model for in vivo tissue engineering. After two months, the explanted tissue construct had a trilayered structure mimicking the orientations of a native valve leaflet. The infiltrated cells and their deposited collagen fibrils were oriented along the nanofibers in each layer of the substrate. Besides collagen, presence of glycosaminoglycans and elastin in the construct was observed.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Bioengineering, University of Missouri Columbia, MO 65211, United States of America. Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States of America
| | | | | |
Collapse
|
6
|
Zhang P, Zhang C, Li J, Han J, Liu X, Yang H. The physical microenvironment of hematopoietic stem cells and its emerging roles in engineering applications. Stem Cell Res Ther 2019; 10:327. [PMID: 31744536 PMCID: PMC6862744 DOI: 10.1186/s13287-019-1422-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/22/2019] [Accepted: 09/23/2019] [Indexed: 12/18/2022] Open
Abstract
Stem cells are considered the fundamental underpinnings of tissue biology. The stem cell microenvironment provides factors and elements that play significant roles in controlling the cell fate direction. The bone marrow is an important environment for functional hematopoietic stem cells in adults. Remarkable progress has been achieved in the area of hematopoietic stem cell fate modulation based on the recognition of biochemical factors provided by bone marrow niches. In this review, we focus on emerging evidence that hematopoietic stem cell fate is altered in response to a variety of microenvironmental physical cues, such as geometric properties, matrix stiffness, and mechanical forces. Based on knowledge of these biophysical cues, recent developments in harnessing hematopoietic stem cell niches ex vivo are also discussed. A comprehensive understanding of cell microenvironments helps provide mechanistic insights into pathophysiological mechanisms and underlies biomaterial-based hematopoietic stem cell engineering.
Collapse
Affiliation(s)
- Pan Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Chen Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Jing Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Jiyang Han
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Xiru Liu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| |
Collapse
|
7
|
Protocol for Determining the Induction of Human Embryonic Stem Cells into Myogenic Lineage Using Electrospun Nanofibers. Methods Mol Biol 2019. [PMID: 31707645 DOI: 10.1007/7651_2019_255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
An efficient method for the development of myogenic differentiation using the stem cells can be beneficial in patients with severely compromised mobility, muscular damage, or degenerative diseases. The stem cells can prove to be excellent clinical source of myogenic progenitor cells due to their ability of self-proliferation, renewal, and differentiation into a specific phenotype. They represent an essential component of tissue engineering along with other factors (e.g., 3D scaffolds, ECM mimicking environment, and growth factors). In this chapter, we describe the experimental protocols for isolation of the embryonic stem cells, their proliferation on nanofiber scaffolds, and finally their differentiation into myogenic cells. Furthermore, this chapter elaborates experimental methods to assess the myogenic fate of embryonic stem cells on the nanofiber scaffolds.
Collapse
|
8
|
Jana S, Bhagia A, Lerman A. Optimization of polycaprolactone fibrous scaffold for heart valve tissue engineering. ACTA ACUST UNITED AC 2019; 14:065014. [PMID: 31593551 DOI: 10.1088/1748-605x/ab3d24] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pore size is generally small in nanofibrous scaffolds prepared by electrospinning polymeric solutions. Increase of scaffold thickness leads to decrease in pore size, causing impediment to cell infiltration into the scaffolds during tissue engineering. In contrast, comparatively larger pore size can be realized in microfibrous scaffolds prepared from polymeric solutions at higher concentrations. Further, microfibrous scaffolds are conducive to infiltration of reparative M2 phenotype macrophages during in vivo/in situ tissue engineering. However, rise of mechanical properties of a fibrous scaffold with the increase of polymer concentration may limit the functionality of a scaffold-based, tissue-engineered heart valve. In this study, we developed microfibrous scaffolds from 14%, 16% and 18% (wt/v) polycaprolactone (PCL) polymer solutions prepared with chloroform solvent. Porcine valvular interstitial cells were cultured in the scaffolds for 14 d to investigate the effect of microfibers prepared with different PCL concentrations on the seeded cells. Further, fresh microfibrous scaffolds were implanted subcutaneously in a rat model for two months to investigate the effect of microfibers on infiltrated cells. Cell proliferation, and its morphologies, gene expression and deposition of different extracellular matrix proteins in the in vitro study were characterized. During the in vivo study, we characterized cell infiltration, and myofibroblast and M1/M2 phenotypes expression of the infiltrated cells. Among different PCL concentrations, microfibrous scaffolds from 14% solution were suitable for heart valve tissue engineering for their sufficient pore size and low but adequate tensile properties, which promoted cell adhesion to and proliferation in the scaffolds, and effective gene expression and extracellular matrix deposition by the cells in vitro. They also encouraged the cells in vivo for their infiltration and effective gene expression, including M2 phenotype expression.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, United States of America. Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States of America
| | | | | |
Collapse
|
9
|
Miao S, Nowicki M, Cui H, Lee SJ, Zhou X, Mills DK, Zhang LG. 4D anisotropic skeletal muscle tissue constructs fabricated by staircase effect strategy. Biofabrication 2019; 11:035030. [PMID: 31026857 PMCID: PMC6746184 DOI: 10.1088/1758-5090/ab1d07] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Like the morphology of native tissue fiber arrangement (such as skeletal muscle), unidirectional anisotropic scaffolds are highly desired as a means to guide cell behavior in anisotropic tissue engineering. In contrast, contour-like staircases exhibit directional topographical cues and are judged as an inevitable defect of fused deposition modeling (FDM). In this study, we will translate this staircase defect into an effective bioengineering strategy by integrating FDM with surface coating technique (FCT) to investigate the effect of topographical cues on regulating behaviors of human mesenchymal stem cells (hMSCs) toward skeletal muscle tissues. This integrated approach serves to fabricate shape-specific, multiple dimensional, anisotropic scaffolds using different biomaterials. 2D anisotropic scaffolds, first demonstrated with different polycaprolactone concentrations herein, efficiently direct hMSC alignment, especially when the scaffold is immobilized on a support ring. By surface coating the polymer solution inside FDM-printed sacrificial structures, 3D anisotropic scaffolds with thin wall features are developed and used to regulate seeded hMSCs through a self-established rotating bioreactor. Using layer-by-layer coating, along with a shape memory polymer, smart constructs exhibiting shape fix and recovery processes are prepared, bringing this study into the realm of 4D printing. Immunofluorescence staining and real-time quantitative polymerase chain reaction analysis confirm that the topographical cues created via FCT significantly enhance the expression of myogenic genes, including myoblast differentiation protein-1, desmin, and myosin heavy chain-2. We conclude that there are broad application potentials for this FCT strategy in tissue engineering as many tissues and organs, including skeletal muscle, possess highly organized and anisotropic extracellular matrix components.
Collapse
Affiliation(s)
- Shida Miao
- Department of Aerospace and Mechanical Engineering, The George Washington University, 800 22nd St, NW Washington DC 20052, United States of America
| | | | | | | | | | | | | |
Collapse
|
10
|
Luo B, Tian L, Chen N, Ramakrishna S, Thakor N, Yang IH. Electrospun nanofibers facilitate better alignment, differentiation, and long-term culture in an in vitro model of the neuromuscular junction (NMJ). Biomater Sci 2019; 6:3262-3272. [PMID: 30402630 DOI: 10.1039/c8bm00720a] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The neuromuscular junction (NMJ) is a specialized synapse between motor neurons and the muscle fibers they innervate. Due to the complexity of various signalling molecules and pathways, in vivo NMJs are difficult to study. Therefore, in vitro motor neuron-muscle co-culture plays a pivotal role in studying the mechanisms of NMJ formation associated with neurodegenerative diseases. There is a growing need to develop novel methodologies that can be used to develop long-term cultures of NMJs. To date, there have been few studies on NMJ development and long-term maintenance of the system, which is also the main challenge for the current in vitro models of NMJs. In this study, we demonstrate a long-term co-culture system of primary embryonic motor neurons from Sprague-Dawley rats and C2C12 cells on both random and aligned electrospun polylactic acid (PLA) nanofibrous scaffolds. This is the first study to explore the role of electrospun nanofibers in the long-term maintenance of NMJs. PLA nanofibrous scaffolds provide better contact guidance for C2C12 cells aligning along the fibers, thus guiding myotube formation. We can only maintain the co-culture system on a conventional glass substrate for 2 weeks, whilst 55% and 70% of the cells still survived on random and aligned PLA substrates after 7 weeks. Our nanofiber-based long-term co-culture system is used as an important tool for the fundamental research of NMJs.
Collapse
Affiliation(s)
- Baiwen Luo
- Singapore Institute for Neurotechnology, National University of Singapore, 28 Medical Drive, #05-COR, Singapore 119077. inhong.yang.@ku.ac.ae
| | | | | | | | | | | |
Collapse
|
11
|
Du Y, Ge J, Li Y, Ma PX, Lei B. Biomimetic elastomeric, conductive and biodegradable polycitrate-based nanocomposites for guiding myogenic differentiation and skeletal muscle regeneration. Biomaterials 2018; 157:40-50. [DOI: 10.1016/j.biomaterials.2017.12.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/05/2017] [Indexed: 02/08/2023]
|
12
|
|
13
|
Budhwani KI, Oliver PG, Buchsbaum DJ, Thomas V. Novel Biomimetic Microphysiological Systems for Tissue Regeneration and Disease Modeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1077:87-113. [PMID: 30357685 DOI: 10.1007/978-981-13-0947-2_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biomaterials engineered to closely mimic morphology, architecture, and nanofeatures of naturally occurring in vivo extracellular matrices (ECM) have gained much interest in regenerative medicine and in vitro biomimetic platforms. Similarly, microphysiological systems (MPS), such as lab-chip, have drummed up momentum for recapitulating precise biomechanical conditions to model the in vivo microtissue environment. However, porosity of in vivo scaffolds regulating barrier and interface functions is generally absent in lab-chip systems, or otherwise introduces considerable cost, complexity, and an unrealistic uniformity in pore geometry. We address this by integrating electrospun nanofibrous porous scaffolds in MPS to develop the lab-on-a-brane (LOB) MPS for more effectively modeling transport, air-liquid interface, and tumor progression and for personalized medicine applications.
Collapse
Affiliation(s)
- Karim I Budhwani
- Departments of Radiation Oncology and Materials Science & Engineering, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Patsy G Oliver
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Donald J Buchsbaum
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vinoy Thomas
- Department of Materials Science & Engineering, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
14
|
Snedeker JG, Foolen J. Tendon injury and repair - A perspective on the basic mechanisms of tendon disease and future clinical therapy. Acta Biomater 2017; 63:18-36. [PMID: 28867648 DOI: 10.1016/j.actbio.2017.08.032] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/16/2017] [Accepted: 08/25/2017] [Indexed: 12/16/2022]
Abstract
Tendon is an intricately organized connective tissue that efficiently transfers muscle force to the bony skeleton. Its structure, function, and physiology reflect the extreme, repetitive mechanical stresses that tendon tissues bear. These mechanical demands also lie beneath high clinical rates of tendon disorders, and present daunting challenges for clinical treatment of these ailments. This article aims to provide perspective on the most urgent frontiers of tendon research and therapeutic development. We start by broadly introducing essential elements of current understanding about tendon structure, function, physiology, damage, and repair. We then introduce and describe a novel paradigm explaining tendon disease progression from initial accumulation of damage in the tendon core to eventual vascular recruitment from the surrounding synovial tissues. We conclude with a perspective on the important role that biomaterials will play in translating research discoveries to the patient. STATEMENT OF SIGNIFICANCE Tendon and ligament problems represent the most frequent musculoskeletal complaints for which patients seek medical attention. Current therapeutic options for addressing tendon disorders are often ineffective, and the need for improved understanding of tendon physiology is urgent. This perspective article summarizes essential elements of our current knowledge on tendon structure, function, physiology, damage, and repair. It also describes a novel framework to understand tendon physiology and pathophysiology that may be useful in pushing the field forward.
Collapse
|
15
|
Abstract
Skeletal muscle is the largest tissue in the body and loss of its function or its regenerative properties results in debilitating musculoskeletal disorders. Understanding the mechanisms that drive skeletal muscle formation will not only help to unravel the molecular basis of skeletal muscle diseases, but also provide a roadmap for recapitulating skeletal myogenesis in vitro from pluripotent stem cells (PSCs). PSCs have become an important tool for probing developmental questions, while differentiated cell types allow the development of novel therapeutic strategies. In this Review, we provide a comprehensive overview of skeletal myogenesis from the earliest premyogenic progenitor stage to terminally differentiated myofibers, and discuss how this knowledge has been applied to differentiate PSCs into muscle fibers and their progenitors in vitro.
Collapse
Affiliation(s)
- Jérome Chal
- Department of Pathology, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Harvard Stem Cell Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Olivier Pourquié
- Department of Pathology, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Boston, MA 02115, USA .,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Harvard Stem Cell Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
16
|
Foolen J, Wunderli SL, Loerakker S, Snedeker JG. Tissue alignment enhances remodeling potential of tendon-derived cells - Lessons from a novel microtissue model of tendon scarring. Matrix Biol 2017. [PMID: 28636876 DOI: 10.1016/j.matbio.2017.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tendinopathy is a widespread and unresolved clinical challenge, in which associated pain and hampered mobility present a major cause for work-related disability. Tendinopathy associates with a change from a healthy tissue with aligned extracellular matrix (ECM) and highly polarized cells that are connected head-to-tail, towards a diseased tissue with a disorganized ECM and randomly distributed cells, scar-like features that are commonly attributed to poor innate regenerative capacity of the tissue. A fundamental clinical dilemma with this scarring process is whether treatment strategies should focus on healing the affected (disorganized) tissue or strengthen the remaining healthy (anisotropic) tissue. The question was thus asked whether the intrinsic remodeling capacity of tendon-derived cells depends on the organization of the 3D extracellular matrix (isotropic vs anisotropic). Progress in this field is hampered by the lack of suitable in vitro tissue platforms. We aimed at filling this critical gap by creating and exploiting a next generation tissue platform that mimics aspects of the tendon scarring process; cellular response to a gradient in tissue organization from isotropic (scarred/non-aligned) to highly anisotropic (unscarred/aligned) was studied, as was a transient change from isotropic towards highly anisotropic. Strikingly, cells residing in an 'unscarred' anisotropic tissue indicated superior remodeling capacity (increased gene expression levels of collagen, matrix metalloproteinases MMPs, tissue inhibitors of MMPs), when compared to their 'scarred' isotropic counterparts. A numerical model then supported the hypothesis that cellular remodeling capacity may correlate to cellular alignment strength. This in turn may have improved cellular communication, and could thus relate to the more pronounced connexin43 gap junctions observed in anisotropic tissues. In conclusion, increased tissue anisotropy was observed to enhance the cellular potential for functional remodeling of the matrix. This may explain the poor regenerative capacity of tenocytes in chronic tendinopathy, where the pathological process has resulted in ECM disorganization. Additionally, it lends support to treatment strategies that focus on strengthening the remaining healthy tissue, rather than regenerating scarred tissue.
Collapse
Affiliation(s)
- Jasper Foolen
- Department of Orthopaedics, University Hospital Balgrist, Lengghalde 5, CH-8008 Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Lengghalde 5, CH-8008 Zurich, Switzerland; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Stefania L Wunderli
- Department of Orthopaedics, University Hospital Balgrist, Lengghalde 5, CH-8008 Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Lengghalde 5, CH-8008 Zurich, Switzerland
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jess G Snedeker
- Department of Orthopaedics, University Hospital Balgrist, Lengghalde 5, CH-8008 Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Lengghalde 5, CH-8008 Zurich, Switzerland.
| |
Collapse
|
17
|
Leino M, Astrand C, Hughes-Brittain N, Robb B, McKean R, Chotteau V. Human embryonic stem cell dispersion in electrospun PCL fiber scaffolds by coating with laminin-521 and E-cadherin-Fc. J Biomed Mater Res B Appl Biomater 2017; 106:1226-1236. [PMID: 28577328 DOI: 10.1002/jbm.b.33928] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 04/21/2017] [Accepted: 05/12/2017] [Indexed: 12/14/2022]
Abstract
Advances in human pluripotent cell cultivation and differentiation protocols have led to production of stem cell-derived progenitors as a promising cell source for replacement therapy. Three-dimensional (3-D) culture is a better mimic of the natural niche for stem cells and is widely used for disease modeling. Here, we describe a nonaggregate culture system of human embryonic stem cells inside electrospun polycaprolactone (PCL) fiber scaffolds combined with defined extracellular proteins naturally occurring in the stem cell niche. PCL fiber scaffolds coated with recombinant human laminin-521 readily supported initial stem cell attachment and growth from a single-cell suspension. The combination of recombinant E-cadherin-Fc and laminin-521 further improved cell dispersion rendering a uniform cell population. Finally, we showed that the cells cultured in E-cadherin-Fc- and laminin-521-coated PCL scaffolds could differentiate into all three germ layers. Importantly, we provided a chemically defined 3-D system in which pluripotent stem cells grown and differentiated avoiding the formation of cell aggregates. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1226-1236, 2018.
Collapse
Affiliation(s)
- Mattias Leino
- School of Biotechnology, Cell Technology Group (CETEG), KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Carolina Astrand
- School of Biotechnology, Cell Technology Group (CETEG), KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Nanayaa Hughes-Brittain
- The Electrospinning Company Ltd, R70 Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0QX, UK
| | - Brendan Robb
- The Electrospinning Company Ltd, R70 Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0QX, UK
| | - Robert McKean
- The Electrospinning Company Ltd, R70 Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0QX, UK
| | - Véronique Chotteau
- School of Biotechnology, Cell Technology Group (CETEG), KTH - Royal Institute of Technology, Stockholm, Sweden.,AdBIOPRO, Competence Centre for Advanced Bioproduction by Continuous Bioprocessing, KTH, Stockholm, Sweden
| |
Collapse
|
18
|
Skeletal Muscle Cell Induction from Pluripotent Stem Cells. Stem Cells Int 2017; 2017:1376151. [PMID: 28529527 PMCID: PMC5424488 DOI: 10.1155/2017/1376151] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/28/2017] [Indexed: 12/19/2022] Open
Abstract
Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have the potential to differentiate into various types of cells including skeletal muscle cells. The approach of converting ESCs/iPSCs into skeletal muscle cells offers hope for patients afflicted with the skeletal muscle diseases such as the Duchenne muscular dystrophy (DMD). Patient-derived iPSCs are an especially ideal cell source to obtain an unlimited number of myogenic cells that escape immune rejection after engraftment. Currently, there are several approaches to induce differentiation of ESCs and iPSCs to skeletal muscle. A key to the generation of skeletal muscle cells from ESCs/iPSCs is the mimicking of embryonic mesodermal induction followed by myogenic induction. Thus, current approaches of skeletal muscle cell induction of ESCs/iPSCs utilize techniques including overexpression of myogenic transcription factors such as MyoD or Pax3, using small molecules to induce mesodermal cells followed by myogenic progenitor cells, and utilizing epigenetic myogenic memory existing in muscle cell-derived iPSCs. This review summarizes the current methods used in myogenic differentiation and highlights areas of recent improvement.
Collapse
|
19
|
Sharifi F, Patel BB, Dzuilko AK, Montazami R, Sakaguchi DS, Hashemi N. Polycaprolactone Microfibrous Scaffolds to Navigate Neural Stem Cells. Biomacromolecules 2016; 17:3287-3297. [PMID: 27598294 DOI: 10.1021/acs.biomac.6b01028] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fibrous scaffolds have shown promise in tissue engineering due to their ability to improve cell alignment and migration. In this paper, poly(ε-caprolactone) (PCL) fibers are fabricated in different sizes using a microfluidic platform. By using this approach, we demonstrated considerable flexibility in ability to control the size of the fibers. It was shown that the average diameter of the fibers was obtained in the range of 2.6-36.5 μm by selecting the PCL solution flow rate from 1 to 5 μL min-1 and the sheath flow rate from 20 to 400 μL min-1 in the microfluidic channel. The microfibers were used to create 3D microenvironments in order to investigate growth and differentiation of adult hippocampal stem/progenitor cells (AHPCs) in vitro. The results indicated that the 3D topography of the PCL substrates, along with chemical (extracellular matrix) guidance cues supported the adhesion, survival, and differentiation of the AHPCs. Additionally, it was found that the cell deviation angle for 44-66% of cells on different types of fibers was less than 10°. This reveals the functionality of PCL fibrous scaffolds for cell alignment important in applications such as reconnecting serious nerve injuries and guiding the direction of axon growth as well as regenerating blood vessels, tendons, and muscle tissue.
Collapse
Affiliation(s)
- Farrokh Sharifi
- Department of Mechanical Engineering, ‡Department of Genetics, Development and Cell Biology and Neuroscience, and §Center of Advanced Host Defense Immunobiotics and Translational Medicine, Iowa State University , Ames, Iowa 50011, United States
| | - Bhavika B Patel
- Department of Mechanical Engineering, ‡Department of Genetics, Development and Cell Biology and Neuroscience, and §Center of Advanced Host Defense Immunobiotics and Translational Medicine, Iowa State University , Ames, Iowa 50011, United States
| | - Adam K Dzuilko
- Department of Mechanical Engineering, ‡Department of Genetics, Development and Cell Biology and Neuroscience, and §Center of Advanced Host Defense Immunobiotics and Translational Medicine, Iowa State University , Ames, Iowa 50011, United States
| | - Reza Montazami
- Department of Mechanical Engineering, ‡Department of Genetics, Development and Cell Biology and Neuroscience, and §Center of Advanced Host Defense Immunobiotics and Translational Medicine, Iowa State University , Ames, Iowa 50011, United States
| | - Donald S Sakaguchi
- Department of Mechanical Engineering, ‡Department of Genetics, Development and Cell Biology and Neuroscience, and §Center of Advanced Host Defense Immunobiotics and Translational Medicine, Iowa State University , Ames, Iowa 50011, United States
| | - Nastaran Hashemi
- Department of Mechanical Engineering, ‡Department of Genetics, Development and Cell Biology and Neuroscience, and §Center of Advanced Host Defense Immunobiotics and Translational Medicine, Iowa State University , Ames, Iowa 50011, United States
| |
Collapse
|
20
|
Bursac N, Juhas M, Rando TA. Synergizing Engineering and Biology to Treat and Model Skeletal Muscle Injury and Disease. Annu Rev Biomed Eng 2016; 17:217-42. [PMID: 26643021 DOI: 10.1146/annurev-bioeng-071114-040640] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although skeletal muscle is one of the most regenerative organs in our body, various genetic defects, alterations in extrinsic signaling, or substantial tissue damage can impair muscle function and the capacity for self-repair. The diversity and complexity of muscle disorders have attracted much interest from both cell biologists and, more recently, bioengineers, leading to concentrated efforts to better understand muscle pathology and develop more efficient therapies. This review describes the biological underpinnings of muscle development, repair, and disease, and discusses recent bioengineering efforts to design and control myomimetic environments, both to study muscle biology and function and to aid in the development of new drug, cell, and gene therapies for muscle disorders. The synergy between engineering-aided biological discovery and biology-inspired engineering solutions will be the path forward for translating laboratory results into clinical practice.
Collapse
Affiliation(s)
- Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708;
| | - Mark Juhas
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708;
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305.,Rehabilitation Research & Development Service, VA Palo Alto Health Care System, Palo Alto, California 94304
| |
Collapse
|
21
|
Ostrovidov S, Shi X, Sadeghian RB, Salehi S, Fujie T, Bae H, Ramalingam M, Khademhosseini A. Stem Cell Differentiation Toward the Myogenic Lineage for Muscle Tissue Regeneration: A Focus on Muscular Dystrophy. Stem Cell Rev Rep 2016; 11:866-84. [PMID: 26323256 DOI: 10.1007/s12015-015-9618-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skeletal muscle tissue engineering is one of the important ways for regenerating functionally defective muscles. Among the myopathies, the Duchenne muscular dystrophy (DMD) is a progressive disease due to mutations of the dystrophin gene leading to progressive myofiber degeneration with severe symptoms. Although current therapies in muscular dystrophy are still very challenging, important progress has been made in materials science and in cellular technologies with the use of stem cells. It is therefore useful to review these advances and the results obtained in a clinical point of view. This article focuses on the differentiation of stem cells into myoblasts, and their application in muscular dystrophy. After an overview of the different stem cells that can be induced to differentiate into the myogenic lineage, we introduce scaffolding materials used for muscular tissue engineering. We then described some widely used methods to differentiate different types of stem cell into myoblasts. We highlight recent insights obtained in therapies for muscular dystrophy. Finally, we conclude with a discussion on stem cell technology. We discussed in parallel the benefits brought by the evolution of the materials and by the expansion of cell sources which can differentiate into myoblasts. We also discussed on future challenges for clinical applications and how to accelerate the translation from the research to the clinic in the frame of DMD.
Collapse
Affiliation(s)
- Serge Ostrovidov
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| | - Xuetao Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction & School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Ramin Banan Sadeghian
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| | - Sahar Salehi
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| | - Toshinori Fujie
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480, Japan
| | - Hojae Bae
- College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, 143-701, Republic of Korea
| | - Murugan Ramalingam
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
- Christian Medical College Bagayam Campus, Centre for Stem Cell Research, Vellore, 632002, India
| | - Ali Khademhosseini
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan.
- College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, 143-701, Republic of Korea.
- Division of Biomedical Engineering, Department of Medicine, Harvard Medical School, Biomaterials Innovation Research Center, Brigham and Women's Hospital, Boston, MA, 02139, USA.
- Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
- Department of Physics, King Abdulaziz University, Jeddah, 21569, Saudi Arabia.
| |
Collapse
|
22
|
Aligned Nanotopography Promotes a Migratory State in Glioblastoma Multiforme Tumor Cells. Sci Rep 2016; 6:26143. [PMID: 27189099 PMCID: PMC4870554 DOI: 10.1038/srep26143] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/27/2016] [Indexed: 01/17/2023] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive, Grade IV astrocytoma with a poor survival rate, primarily due to the GBM tumor cells migrating away from the primary tumor site along the nanotopography of white matter tracts and blood vessels. It is unclear whether this nanotopography influences the biomechanical properties (i.e. cytoskeletal stiffness) of GBM tumor cells. Although GBM tumor cells have an innate propensity to migrate, we believe this capability is enhanced due to the influence of nanotopography on the tumor cells’ biomechanical properties. In this study, we used an aligned nanofiber film that mimics the nanotopography in the tumor microenvironment to investigate the mechanical properties of GBM tumor cells in vitro. The data demonstrate that the cytoskeletal stiffness, cell traction stress, and focal adhesion area were significantly lower in the GBM tumor cells compared to healthy astrocytes. Moreover, the cytoskeletal stiffness was significantly reduced when cultured on aligned nanofiber films compared to smooth and randomly aligned nanofiber films. Gene expression analysis showed that tumor cells cultured on the aligned nanotopography upregulated key migratory genes and downregulated key proliferative genes. Therefore, our data suggest that the migratory potential is elevated when GBM tumor cells are migrating along aligned nanotopographical substrates.
Collapse
|
23
|
Chang FC, Tsao CT, Lin A, Zhang M, Levengood SL, Zhang M. PEG-chitosan hydrogel with tunable stiffness for study of drug response of breast cancer cells. Polymers (Basel) 2016; 8:112. [PMID: 27595012 PMCID: PMC5004991 DOI: 10.3390/polym8040112] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 03/21/2016] [Indexed: 01/23/2023] Open
Abstract
Mechanical properties of the extracellular matrix have a profound effect on the behavior of anchorage-dependent cells. However, the mechanisms that define the effects of matrix stiffness on cell behavior remains unclear. Therefore, the development and fabrication of synthetic matrices with well-defined stiffness is invaluable for studying the interactions of cells with their biophysical microenvironment in vitro. We demonstrate a methoxypolyethylene glycol (mPEG)-modified chitosan hydrogel network where hydrogel stiffness can be easily modulated under physiological conditions by adjusting the degree of mPEG grafting onto chitosan (PEGylation). We show that the storage modulus of the hydrogel increases as PEGylation decreases and the gels exhibit instant self-recovery after deformation. Breast cancer cells cultured on the stiffest hydrogels adopt a more malignant phenotype with increased resistance to doxorubicin as compared with cells cultured on tissue culture polystyrene or Matrigel. This work demonstrates the utility of mPEG-modified chitosan hydrogel, with tunable mechanical properties, as an improved replacement of conventional culture system for in vitro characterization of breast cancer cell phenotype and evaluation of cancer therapies.
Collapse
Affiliation(s)
- Fei-Chien Chang
- Department of Materials Science and Engineering, University of Washington, 302L Roberts Hall, Seattle, WA 98195, USA; (F.-C.C.); (C.-T.T.); (A.L.); (S.L.L.)
| | - Ching-Ting Tsao
- Department of Materials Science and Engineering, University of Washington, 302L Roberts Hall, Seattle, WA 98195, USA; (F.-C.C.); (C.-T.T.); (A.L.); (S.L.L.)
| | - Anqi Lin
- Department of Materials Science and Engineering, University of Washington, 302L Roberts Hall, Seattle, WA 98195, USA; (F.-C.C.); (C.-T.T.); (A.L.); (S.L.L.)
| | - Mengying Zhang
- Department of Molecular Engineering and Science Institute, University of Washington, Seattle, WA 98195, USA;
| | - Sheeny Lan Levengood
- Department of Materials Science and Engineering, University of Washington, 302L Roberts Hall, Seattle, WA 98195, USA; (F.-C.C.); (C.-T.T.); (A.L.); (S.L.L.)
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, 302L Roberts Hall, Seattle, WA 98195, USA; (F.-C.C.); (C.-T.T.); (A.L.); (S.L.L.)
| |
Collapse
|
24
|
Kalaoglu-Altan OI, Sanyal R, Sanyal A. “Clickable” Polymeric Nanofibers through Hydrophilic–Hydrophobic Balance: Fabrication of Robust Biomolecular Immobilization Platforms. Biomacromolecules 2015; 16:1590-7. [DOI: 10.1021/acs.biomac.5b00159] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Rana Sanyal
- Bogazici University, Department of Chemistry, Bebek, 34342, Istanbul, Turkey
- Bogazici University, Center for Life Sciences and
Technologies, Istanbul, Turkey
| | - Amitav Sanyal
- Bogazici University, Department of Chemistry, Bebek, 34342, Istanbul, Turkey
- Bogazici University, Center for Life Sciences and
Technologies, Istanbul, Turkey
| |
Collapse
|
25
|
Wolf MT, Dearth CL, Sonnenberg SB, Loboa EG, Badylak SF. Naturally derived and synthetic scaffolds for skeletal muscle reconstruction. Adv Drug Deliv Rev 2015; 84:208-21. [PMID: 25174309 DOI: 10.1016/j.addr.2014.08.011] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 07/22/2014] [Accepted: 08/20/2014] [Indexed: 12/15/2022]
Abstract
Skeletal muscle tissue has an inherent capacity for regeneration following injury. However, severe trauma, such as volumetric muscle loss, overwhelms these natural muscle repair mechanisms prompting the search for a tissue engineering/regenerative medicine approach to promote functional skeletal muscle restoration. A desirable approach involves a bioscaffold that simultaneously acts as an inductive microenvironment and as a cell/drug delivery vehicle to encourage muscle ingrowth. Both biologically active, naturally derived materials (such as extracellular matrix) and carefully engineered synthetic polymers have been developed to provide such a muscle regenerative environment. Next generation naturally derived/synthetic "hybrid materials" would combine the advantageous properties of these materials to create an optimal platform for cell/drug delivery and possess inherent bioactive properties. Advances in scaffolds using muscle tissue engineering are reviewed herein.
Collapse
Affiliation(s)
- Matthew T Wolf
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Christopher L Dearth
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Sonya B Sonnenberg
- Joint Department of Biomedical Engineering at University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| | - Elizabeth G Loboa
- Joint Department of Biomedical Engineering at University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA; Department of Materials Science & Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
26
|
Higuchi A, Ling QD, Kumar SS, Chang Y, Alarfaj AA, Munusamy MA, Murugan K, Hsu ST, Umezawa A. Physical cues of cell culture materials lead the direction of differentiation lineages of pluripotent stem cells. J Mater Chem B 2015; 3:8032-8058. [DOI: 10.1039/c5tb01276g] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Differentiation methods of hPSCs into specific cell lineages. Differentiation of hPSCsviaEB formation (types AB, A–D) or without EB formation (types E–H).
Collapse
Affiliation(s)
- Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University
- Taoyuan 32001
- Taiwan
- National Research Institute for Child Health and Development
- Center for Regenerative Medicine
| | - Qing-Dong Ling
- Cathay Medical Research Institute
- Cathay General Hospital
- Taipei
- Taiwan
- Graduate Institute of Systems Biology and Bioinformatics
| | - S. Suresh Kumar
- Department of Medical Microbiology and Parasitology
- Universiti Putra Malaysia
- Selangor
- Malaysia
| | - Yung Chang
- Department of Chemical Engineering
- R&D Center for Membrane Technology
- Chung Yuan Christian University
- Taoyuan
- Taiwan
| | - Abdullah A. Alarfaj
- Department of Botany and Microbiology
- College of Science
- King Saud University
- Riyadh
- Saudi Arabia
| | - Murugan A. Munusamy
- Department of Botany and Microbiology
- College of Science
- King Saud University
- Riyadh
- Saudi Arabia
| | - Kadarkarai Murugan
- Division of Entomology
- Department of Zoology
- School of Life Sciences
- Bharathiar University
- Coimbatore 641046
| | - Shih-Tien Hsu
- Department of Internal Medicine
- Taiwan Landseed Hospital
- Taoyuan
- Taiwan
| | - Akihiro Umezawa
- National Research Institute for Child Health and Development
- Center for Regenerative Medicine
- Tokyo 157-8535
- Japan
| |
Collapse
|
27
|
Lee EA, Im SG, Hwang NS. Efficient myogenic commitment of human mesenchymal stem cells on biomimetic materials replicating myoblast topography. Biotechnol J 2014; 9:1604-12. [DOI: 10.1002/biot.201400020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 07/08/2014] [Accepted: 09/12/2014] [Indexed: 12/28/2022]
|
28
|
Dado-Rosenfeld D, Tzchori I, Fine A, Chen-Konak L, Levenberg S. Tensile forces applied on a cell-embedded three-dimensional scaffold can direct early differentiation of embryonic stem cells toward the mesoderm germ layer. Tissue Eng Part A 2014; 21:124-33. [PMID: 25002337 DOI: 10.1089/ten.tea.2014.0008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mechanical forces play an important role in the initial stages of embryo development; yet, the influence of forces, particularly of tensile forces, on embryonic stem cell differentiation is still unknown. The effects of tensile forces on mouse embryonic stem cell (mESC) differentiation within a three-dimensional (3D) environment were examined using an advanced bioreactor system. Uniaxial static or dynamic stretch was applied on cell-embedded collagen constructs. Six-day-long cyclic stretching of the seeded constructs led to a fourfold increase in Brachyury (BRACH-T) expression, associated with the primitive streak phase in gastrulation, confirmed also by immunofluorescence staining. Further examination of gene expression characteristic of mESC differentiation and pluripotency, under the same conditions, revealed changes mostly related to mesodermal processes. Additionally, downregulation of genes related to pluripotency and stemness was observed. Cyclic stretching of the 3D constructs resulted in actin fiber alignment parallel to the stretching direction. BRACH-T expression decreased under cyclic stretching with addition of myosin II inhibitor. No significant changes in gene expression were observed when mESCs were first differentiated in the form of embryoid bodies and then exposed to cyclic stretching, suggesting that forces primarily influence nondifferentiated cells. Understanding the effects of forces on stem cell differentiation provides a means of controlling their differentiation for later use in regenerative medicine applications and sheds light on their involvement in embryogenesis.
Collapse
Affiliation(s)
- Dekel Dado-Rosenfeld
- Department of Biomedical Engineering, Technion-Israel Institute of Technology , Haifa, Israel
| | | | | | | | | |
Collapse
|
29
|
WNT3A promotes myogenesis of human embryonic stem cells and enhances in vivo engraftment. Sci Rep 2014; 4:5916. [PMID: 25084050 PMCID: PMC5379990 DOI: 10.1038/srep05916] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/10/2014] [Indexed: 02/08/2023] Open
Abstract
The ability of human embryonic stem cells (hESCs) to differentiate into skeletal muscle cells is an important criterion in using them as a cell source to ameliorate skeletal muscle impairments. However, differentiation of hESCs into skeletal muscle cells still remains a challenge, often requiring introduction of transgenes. Here, we describe the use of WNT3A protein to promote in vitro myogenic commitment of hESC-derived cells and their subsequent in vivo function. Our findings show that the presence of WNT3A in culture medium significantly promotes myogenic commitment of hESC-derived progenitors expressing a mesodermal marker, platelet-derived growth factor receptor-α (PDGFRA), as evident from the expression of myogenic markers, including DES, MYOG, MYH1, and MF20. In vivo transplantation of these committed cells into cardiotoxin-injured skeletal muscles of NOD/SCID mice reveals survival and engraftment of the donor cells. The cells contributed to the regeneration of damaged muscle fibers and the satellite cell compartment. In lieu of the limited cell source for treating skeletal muscle defects, the hESC-derived PDGFRA(+) cells exhibit significant in vitro expansion while maintaining their myogenic potential. The results described in this study provide a proof-of-principle that myogenic progenitor cells with in vivo engraftment potential can be derived from hESCs without genetic manipulation.
Collapse
|
30
|
Tan ML, Shao P, Friedhuber AM, van Moorst M, Elahy M, Indumathy S, Dunstan DE, Wei Y, Dass CR. The potential role of free chitosan in bone trauma and bone cancer management. Biomaterials 2014; 35:7828-38. [PMID: 24947230 DOI: 10.1016/j.biomaterials.2014.05.087] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/28/2014] [Indexed: 11/30/2022]
Abstract
Bone defects caused by fractures or cancer-mediated destruction are debilitating. Chitosan is commonly used in scaffold matrices for bone healing, but rarely as a free drug. We demonstrate that free chitosan promotes osteoblast proliferation and osteogenesis in mesenchymal stem cells, increases osteopontin and collagen I expression, and reduces osteoclastogenesis. Chitosan inhibits invasion of endothelial cells, downregulating uPA/R, MT1-MMP, cdc42 and Rac1. Better healing of bone fractures with greater trabecular bone formation was observed in mice treated with chitosan. Chitosan induces apoptosis in osteotropic prostate and breast cancer cells via caspase-2 and -3 activation, and reduces their establishment in bone. Chitosan is pro-apoptotic in osteosarcoma cells, but not their normal counterpart, osteoblasts, or chondrosarcoma cells. Systemic delivery of chitosan does not perturb angiogenesis, bone volume or instinctive behaviour in pregnant mice, but decreases foetal length and changes pancreatic secretory acini. With certain controls in place, chitosan could be useful for bone trauma management.
Collapse
Affiliation(s)
- Mei L Tan
- Department of Orthopaedics, St Vincent's Health, University of Melbourne, Fitzroy 3065, Australia
| | - Peng Shao
- Department of Orthopaedics, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Anna M Friedhuber
- Department of Pathology, University of Melbourne, Parkville, VIC 3050, Australia
| | - Mallory van Moorst
- College of Health and Biomedicine, Victoria University, St Albans, VIC 3021, Australia
| | - Mina Elahy
- College of Health and Biomedicine, Victoria University, St Albans, VIC 3021, Australia
| | - Sivanjah Indumathy
- College of Health and Biomedicine, Victoria University, St Albans, VIC 3021, Australia
| | - Dave E Dunstan
- Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville, VIC 3050, Australia
| | - Yongzhong Wei
- Department of Orthopaedics, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Crispin R Dass
- School of Pharmacy, Curtin University, Bentley, WA 6102, Australia; Biosciences Research Precinct, Curtin University, Bentley, WA 6102, Australia.
| |
Collapse
|