1
|
Waidi YO, Debnath S, Datta S, Chatterjee K. 3D-Printed Silk Proteins for Bone Tissue Regeneration and Associated Immunomodulation. Biomacromolecules 2024; 25:5512-5540. [PMID: 39133748 DOI: 10.1021/acs.biomac.4c00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Current bone repair methods have limitations, prompting the exploration of innovative approaches. Tissue engineering emerges as a promising solution, leveraging biomaterials to craft scaffolds replicating the natural bone environment, facilitating cell growth and differentiation. Among fabrication techniques, three-dimensional (3D) printing stands out for its ability to tailor intricate scaffolds. Silk proteins (SPs), known for their mechanical strength and biocompatibility, are an excellent choice for engineering 3D-printed bone tissue engineering (BTE) scaffolds. This article comprehensively reviews bone biology, 3D printing, and the unique attributes of SPs, specifically detailing criteria for scaffold fabrication such as composition, structure, mechanics, and cellular responses. It examines the structural, mechanical, and biological attributes of SPs, emphasizing their suitability for BTE. Recent studies on diverse 3D printing approaches using SPs-based for BTE are highlighted, alongside advancements in their 3D and four-dimensional (4D) printing and their role in osteo-immunomodulation. Future directions in the use of SPs for 3D printing in BTE are outlined.
Collapse
Affiliation(s)
- Yusuf Olatunji Waidi
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| | - Souvik Debnath
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| | - Sudipto Datta
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| | - Kaushik Chatterjee
- Department of Bioengineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| |
Collapse
|
2
|
Maharjan S, Ma C, Singh B, Kang H, Orive G, Yao J, Shrike Zhang Y. Advanced 3D imaging and organoid bioprinting for biomedical research and therapeutic applications. Adv Drug Deliv Rev 2024; 208:115237. [PMID: 38447931 PMCID: PMC11031334 DOI: 10.1016/j.addr.2024.115237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/15/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Organoid cultures offer a valuable platform for studying organ-level biology, allowing for a closer mimicry of human physiology compared to traditional two-dimensional cell culture systems or non-primate animal models. While many organoid cultures use cell aggregates or decellularized extracellular matrices as scaffolds, they often lack precise biochemical and biophysical microenvironments. In contrast, three-dimensional (3D) bioprinting allows precise placement of organoids or spheroids, providing enhanced spatial control and facilitating the direct fusion for the formation of large-scale functional tissues in vitro. In addition, 3D bioprinting enables fine tuning of biochemical and biophysical cues to support organoid development and maturation. With advances in the organoid technology and its potential applications across diverse research fields such as cell biology, developmental biology, disease pathology, precision medicine, drug toxicology, and tissue engineering, organoid imaging has become a crucial aspect of physiological and pathological studies. This review highlights the recent advancements in imaging technologies that have significantly contributed to organoid research. Additionally, we discuss various bioprinting techniques, emphasizing their applications in organoid bioprinting. Integrating 3D imaging tools into a bioprinting platform allows real-time visualization while facilitating quality control, optimization, and comprehensive bioprinting assessment. Similarly, combining imaging technologies with organoid bioprinting can provide valuable insights into tissue formation, maturation, functions, and therapeutic responses. This approach not only improves the reproducibility of physiologically relevant tissues but also enhances understanding of complex biological processes. Thus, careful selection of bioprinting modalities, coupled with appropriate imaging techniques, holds the potential to create a versatile platform capable of addressing existing challenges and harnessing opportunities in these rapidly evolving fields.
Collapse
Affiliation(s)
- Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Chenshuo Ma
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Bibhor Singh
- Winthrop L. Chenery Upper Elementary School, Belmont, MA 02478, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea; College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, 01007, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| |
Collapse
|
3
|
Ming Z, Tang X, Liu J, Ruan B. Advancements in Research on Constructing Physiological and Pathological Liver Models and Their Applications Utilizing Bioprinting Technology. Molecules 2023; 28:molecules28093683. [PMID: 37175094 PMCID: PMC10180184 DOI: 10.3390/molecules28093683] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
In recent decades, significant progress has been made in liver tissue engineering through the use of 3D bioprinting technology. This technology offers the ability to create personalized biological structures with precise geometric design capabilities. The complex and multifaceted nature of liver diseases underscores the need for advanced technologies to accurately mimic the physiological and mechanical characteristics, as well as organ-level functions, of liver tissue in vitro. Bioprinting stands out as a superior option over traditional two-dimensional cell culture models and animal models due to its stronger biomimetic advantages. Through the use of bioprinting, it is possible to create liver tissue with a level of structural and functional complexity that more closely resembles the real organ, allowing for more accurate disease modeling and drug testing. As a result, it is a promising tool for restoring and replacing damaged tissue and organs in the field of liver tissue engineering and drug research. This article aims to present a comprehensive overview of the progress made in liver tissue engineering using bioprinting technology to provide valuable insights for researchers. The paper provides a detailed account of the history of liver tissue engineering, highlights the current 3D bioprinting methods and bioinks that are widely used, and accentuates the importance of existing in vitro liver tissue models based on 3D bioprinting and their biomedical applications. Additionally, the article explores the challenges faced by 3D bioprinting and predicts future trends in the field. The progress of 3D bioprinting technology is poised to bring new approaches to printing liver tissue in vitro, while offering powerful tools for drug development, testing, liver disease modeling, transplantation, and regeneration, which hold great academic and practical significance.
Collapse
Affiliation(s)
- Zibei Ming
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Xinyu Tang
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Jing Liu
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Banfeng Ruan
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| |
Collapse
|
4
|
A Comprehensive Review on Silk Fibroin as a Persuasive Biomaterial for Bone Tissue Engineering. Int J Mol Sci 2023; 24:ijms24032660. [PMID: 36768980 PMCID: PMC9917095 DOI: 10.3390/ijms24032660] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/02/2023] Open
Abstract
Bone tissue engineering (BTE) utilizes a special mix of scaffolds, cells, and bioactive factors to regulate the microenvironment of bone regeneration and form a three-dimensional bone simulation structure to regenerate bone tissue. Silk fibroin (SF) is perhaps the most encouraging material for BTE given its tunable mechanical properties, controllable biodegradability, and excellent biocompatibility. Numerous studies have confirmed the significance of SF for stimulating bone formation. In this review, we start by introducing the structure and characteristics of SF. After that, the immunological mechanism of SF for osteogenesis is summarized, and various forms of SF biomaterials and the latest development prospects of SF in BTE are emphatically introduced. Biomaterials based on SF have great potential in bone tissue engineering, and this review will serve as a resource for future design and research.
Collapse
|
5
|
Shabbirahmed AM, Sekar R, Gomez LA, Sekhar MR, Hiruthyaswamy SP, Basavegowda N, Somu P. Recent Developments of Silk-Based Scaffolds for Tissue Engineering and Regenerative Medicine Applications: A Special Focus on the Advancement of 3D Printing. Biomimetics (Basel) 2023; 8:16. [PMID: 36648802 PMCID: PMC9844467 DOI: 10.3390/biomimetics8010016] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Regenerative medicine has received potential attention around the globe, with improving cell performances, one of the necessary ideas for the advancements of regenerative medicine. It is crucial to enhance cell performances in the physiological system for drug release studies because the variation in cell environments between in vitro and in vivo develops a loop in drug estimation. On the other hand, tissue engineering is a potential path to integrate cells with scaffold biomaterials and produce growth factors to regenerate organs. Scaffold biomaterials are a prototype for tissue production and perform vital functions in tissue engineering. Silk fibroin is a natural fibrous polymer with significant usage in regenerative medicine because of the growing interest in leftovers for silk biomaterials in tissue engineering. Among various natural biopolymer-based biomaterials, silk fibroin-based biomaterials have attracted significant attention due to their outstanding mechanical properties, biocompatibility, hemocompatibility, and biodegradability for regenerative medicine and scaffold applications. This review article focused on highlighting the recent advancements of 3D printing in silk fibroin scaffold technologies for regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Asma Musfira Shabbirahmed
- Department of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, Tamil Nadu, India
| | - Rajkumar Sekar
- Department of Chemistry, Karpaga Vinayaga College of Engineering and Technology, GST Road, Chinna Kolambakkam, Chengalpattu 603308, Tamil Nadu, India
| | - Levin Anbu Gomez
- Department of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, Tamil Nadu, India
| | - Medidi Raja Sekhar
- Department of Chemistry, College of Natural Sciences, Kebri Dehar University, Korahe Zone, Somali Region, Kebri Dehar 3060, Ethiopia
| | | | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Prathap Somu
- Department of Bioengineering, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (Deemed to be University), Chennai 600124, Tamil Nadu, India
| |
Collapse
|
6
|
Sources, Chemical Functionalization, and Commercial Applications of Nanocellulose and Nanocellulose-Based Composites: A Review. Polymers (Basel) 2022; 14:polym14214468. [PMID: 36365462 PMCID: PMC9658553 DOI: 10.3390/polym14214468] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
Nanocellulose is the most abundant material extracted from plants, animals, and bacteria. Nanocellulose is a cellulosic material with nano-scale dimensions and exists in the form of cellulose nanocrystals (CNC), bacterial nanocellulose (BNC), and nano-fibrillated cellulose (NFC). Owing to its high surface area, non-toxic nature, good mechanical properties, low thermal expansion, and high biodegradability, it is obtaining high attraction in the fields of electronics, paper making, packaging, and filtration, as well as the biomedical industry. To obtain the full potential of nanocellulose, it is chemically modified to alter the surface, resulting in improved properties. This review covers the nanocellulose background, their extraction methods, and possible chemical treatments that can enhance the properties of nanocellulose and its composites, as well as their applications in various fields.
Collapse
|
7
|
Tan XH, Liu L, Mitryashkin A, Wang Y, Goh JCH. Silk Fibroin as a Bioink - A Thematic Review of Functionalization Strategies for Bioprinting Applications. ACS Biomater Sci Eng 2022; 8:3242-3270. [PMID: 35786841 DOI: 10.1021/acsbiomaterials.2c00313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bioprinting is an emerging tissue engineering technique that has attracted the attention of researchers around the world, for its ability to create tissue constructs that recapitulate physiological function. While the technique has been receiving hype, there are still limitations to the use of bioprinting in practical applications, much of which is due to inappropriate bioink design that is unable to recapitulate complex tissue architecture. Silk fibroin (SF) is an exciting and promising bioink candidate that has been increasingly popular in bioprinting applications because of its processability, biodegradability, and biocompatibility properties. However, due to its lack of optimum gelation properties, functionalization strategies need to be employed so that SF can be effectively used in bioprinting applications. These functionalization strategies are processing methods which allow SF to be compatible with specific bioprinting techniques. Previous literature reviews of SF as a bioink mainly focus on discussing different methods to functionalize SF as a bioink, while a comprehensive review on categorizing SF functional methods according to their potential applications is missing. This paper seeks to discuss and compartmentalize the different strategies used to functionalize SF for bioprinting and categorize the strategies for each bioprinting method (namely, inkjet, extrusion, and light-based bioprinting). By compartmentalizing the various strategies for each printing method, the paper illustrates how each strategy is better suited for a target tissue application. The paper will also discuss applications of SF bioinks in regenerating various tissue types and the challenges and future trends that SF can take in its role as a bioink material.
Collapse
Affiliation(s)
- Xuan Hao Tan
- Department of Biomedical Engineering, College of Engineering and Design, National University of Singapore, 15 Kent Ridge Crescent, E7-06-03, Singapore 119276, Singapore.,Integrative Sciences and Engineering Programme, National University of Singapore, University Hall, Tan Chin Tuan Wing, #05-03, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
| | - Ling Liu
- Department of Biomedical Engineering, College of Engineering and Design, National University of Singapore, 15 Kent Ridge Crescent, E7-06-03, Singapore 119276, Singapore
| | - Alexander Mitryashkin
- Department of Biomedical Engineering, College of Engineering and Design, National University of Singapore, 15 Kent Ridge Crescent, E7-06-03, Singapore 119276, Singapore
| | - Yunyun Wang
- Department of Biomedical Engineering, College of Engineering and Design, National University of Singapore, 15 Kent Ridge Crescent, E7-06-03, Singapore 119276, Singapore
| | - James Cho Hong Goh
- Department of Biomedical Engineering, College of Engineering and Design, National University of Singapore, 15 Kent Ridge Crescent, E7-06-03, Singapore 119276, Singapore.,Integrative Sciences and Engineering Programme, National University of Singapore, University Hall, Tan Chin Tuan Wing, #05-03, 21 Lower Kent Ridge Road, Singapore 119077, Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore 119288, Singapore
| |
Collapse
|
8
|
Zhang Z, Zeng J, Groll J, Matsusaki M. Layer-by-layer assembly methods and their biomedical applications. Biomater Sci 2022; 10:4077-4094. [DOI: 10.1039/d2bm00497f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Various biomedical applications arising due to the development of different LbL assembly methods with unique process properties.
Collapse
Affiliation(s)
- Zhuying Zhang
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Jinfeng Zeng
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Research Fellow of Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB) and Bavarian Polymer Institute (BPI), University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
9
|
Tong A, Pham QL, Abatemarco P, Mathew A, Gupta D, Iyer S, Voronov R. Review of Low-Cost 3D Bioprinters: State of the Market and Observed Future Trends. SLAS Technol 2021; 26:333-366. [PMID: 34137286 DOI: 10.1177/24726303211020297] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Three-dimensional (3D) bioprinting has become mainstream for precise and repeatable high-throughput fabrication of complex cell cultures and tissue constructs in drug testing and regenerative medicine, food products, dental and medical implants, biosensors, and so forth. Due to this tremendous growth in demand, an overwhelming amount of hardware manufacturers have recently flooded the market with different types of low-cost bioprinter models-a price segment that is most affordable to typical-sized laboratories. These machines range in sophistication, type of the underlying printing technology, and possible add-ons/features, which makes the selection process rather daunting (especially for a nonexpert customer). Yet, the review articles available in the literature mostly focus on the technical aspects of the printer technologies under development, as opposed to explaining the differences in what is already on the market. In contrast, this paper provides a snapshot of the fast-evolving low-cost bioprinter niche, as well as reputation profiles (relevant to delivery time, part quality, adherence to specifications, warranty, maintenance, etc.) of the companies selling these machines. Specifically, models spanning three dominant technologies-microextrusion, droplet-based/inkjet, and light-based/crosslinking-are reviewed. Additionally, representative examples of high-end competitors (including up-and-coming microfluidics-based bioprinters) are discussed to highlight their major differences and advantages relative to the low-cost models. Finally, forecasts are made based on the trends observed during this survey, as to the anticipated trickling down of the high-end technologies to the low-cost printers. Overall, this paper provides insight for guiding buyers on a limited budget toward making informed purchasing decisions in this fast-paced market.
Collapse
Affiliation(s)
- Anh Tong
- The Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA
| | - Quang Long Pham
- The Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA
| | - Paul Abatemarco
- The Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA
| | - Austin Mathew
- Department of Biomedical Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA
| | - Dhruv Gupta
- The Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA
| | - Siddharth Iyer
- The Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA
| | - Roman Voronov
- The Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA.,Department of Biomedical Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA
| |
Collapse
|
10
|
Sun W, Gregory DA, Tomeh MA, Zhao X. Silk Fibroin as a Functional Biomaterial for Tissue Engineering. Int J Mol Sci 2021; 22:ijms22031499. [PMID: 33540895 PMCID: PMC7867316 DOI: 10.3390/ijms22031499] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 12/22/2022] Open
Abstract
Tissue engineering (TE) is the approach to combine cells with scaffold materials and appropriate growth factors to regenerate or replace damaged or degenerated tissue or organs. The scaffold material as a template for tissue formation plays the most important role in TE. Among scaffold materials, silk fibroin (SF), a natural protein with outstanding mechanical properties, biodegradability, biocompatibility, and bioresorbability has attracted significant attention for TE applications. SF is commonly dissolved into an aqueous solution and can be easily reconstructed into different material formats, including films, mats, hydrogels, and sponges via various fabrication techniques. These include spin coating, electrospinning, freeze drying, physical, and chemical crosslinking techniques. Furthermore, to facilitate fabrication of more complex SF-based scaffolds with high precision techniques including micro-patterning and bio-printing have recently been explored. This review introduces the physicochemical and mechanical properties of SF and looks into a range of SF-based scaffolds that have been recently developed. The typical TE applications of SF-based scaffolds including bone, cartilage, ligament, tendon, skin, wound healing, and tympanic membrane, will be highlighted and discussed, followed by future prospects and challenges needing to be addressed.
Collapse
Affiliation(s)
- Weizhen Sun
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; (W.S.); (D.A.G.); (M.A.T.)
| | - David Alexander Gregory
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; (W.S.); (D.A.G.); (M.A.T.)
- Department of Material Science and Engineering, University of Sheffield, Sheffield S3 7HQ, UK
| | - Mhd Anas Tomeh
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; (W.S.); (D.A.G.); (M.A.T.)
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; (W.S.); (D.A.G.); (M.A.T.)
- School of Pharmacy, Changzhou University, Changzhou 213164, China
- Correspondence: ; Tel.: +44(0)-114-222-8256
| |
Collapse
|
11
|
Tang M, Rich JN, Chen S. Biomaterials and 3D Bioprinting Strategies to Model Glioblastoma and the Blood-Brain Barrier. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004776. [PMID: 33326131 PMCID: PMC7854518 DOI: 10.1002/adma.202004776] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/06/2020] [Indexed: 05/13/2023]
Abstract
Glioblastoma (GBM) is the most prevalent and lethal adult primary central nervous system cancer. An immunosuppresive and highly heterogeneous tumor microenvironment, restricted delivery of chemotherapy or immunotherapy through the blood-brain barrier (BBB), together with the brain's unique biochemical and anatomical features result in its universal recurrence and poor prognosis. As conventional models fail to predict therapeutic efficacy in GBM, in vitro 3D models of GBM and BBB leveraging patient- or healthy-individual-derived cells and biomaterials through 3D bioprinting technologies potentially mimic essential physiological and pathological features of GBM and BBB. 3D-bioprinted constructs enable investigation of cellular and cell-extracellular matrix interactions in a species-matched, high-throughput, and reproducible manner, serving as screening or drug delivery platforms. Here, an overview of current 3D-bioprinted GBM and BBB models is provided, elaborating on the microenvironmental compositions of GBM and BBB, relevant biomaterials to mimic the native tissues, and bioprinting strategies to implement the model fabrication. Collectively, 3D-bioprinted GBM and BBB models are promising systems and biomimetic alternatives to traditional models for more reliable mechanistic studies and preclinical drug screenings that may eventually accelerate the drug development process for GBM.
Collapse
Affiliation(s)
- Min Tang
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jeremy N. Rich
- Division of Regenerative Medicine, Department of Medicine, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093, USA
| | - Shaochen Chen
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, Materials Science and Engineering Program, Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
12
|
Bicer M, Kumar BG, Melikov R, Bakis Dogru I, Sadeghi S, Rangelow IW, Alaca BE, Nizamoglu S. Silk as a biodegradable resist for field-emission scanning probe lithography. NANOTECHNOLOGY 2020; 31:435303. [PMID: 32503021 DOI: 10.1088/1361-6528/ab99f5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The patterning of silk allows for manufacturing various structures with advanced functionalities for optical and tissue engineering and drug delivery applications. Here, we propose a high-resolution nanoscale patterning method based on field-emission scanning probe lithography (FE-SPL) that crosslinks the biomaterial silk on conductive indium tin oxide (ITO) promoting the use of a biodegradable material as resist and water as a developer. During the lithographic process, Fowler-Nordheim electron emission from a sharp tip was used to manipulate the structure of silk fibroin from random coil to beta sheet and the emission formed nanoscale latent patterns with a critical dimension (CD) of ∼50 nm. To demonstrate the versatility of the method, we patterned standard and complex shapes. This method is particularly attractive due to its ease of operation without relying on a vacuum or a special gaseous environment and without any need for complex electronics or optics. Therefore, this study paves a practical and cost-effective way toward patterning biopolymers at ultra-high level resolution.
Collapse
Affiliation(s)
- Mahmut Bicer
- Department of Mechanical Engineering, Koc University, Istanbul, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Li X, Liu B, Pei B, Chen J, Zhou D, Peng J, Zhang X, Jia W, Xu T. Inkjet Bioprinting of Biomaterials. Chem Rev 2020; 120:10793-10833. [PMID: 32902959 DOI: 10.1021/acs.chemrev.0c00008] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The inkjet technique has the capability of generating droplets in the picoliter volume range, firing thousands of times in a few seconds and printing in the noncontact manner. Since its emergence, inkjet technology has been widely utilized in the publishing industry for printing of text and pictures. As the technology developed, its applications have been expanded from two-dimensional (2D) to three-dimensional (3D) and even used to fabricate components of electronic devices. At the end of the twentieth century, researchers were aware of the potential value of this technology in life sciences and tissue engineering because its picoliter-level printing unit is suitable for depositing biological components. Currently inkjet technology has been becoming a practical tool in modern medicine serving for drug development, scaffold building, and cell depositing. In this article, we first review the history, principles and different methods of developing this technology. Next, we focus on the recent achievements of inkjet printing in the biological field. Inkjet bioprinting of generic biomaterials, biomacromolecules, DNAs, and cells and their major applications are introduced in order of increasing complexity. The current limitations/challenges and corresponding solutions of this technology are also discussed. A new concept, biopixels, is put forward with a combination of the key characteristics of inkjet printing and basic biological units to bring a comprehensive view on inkjet-based bioprinting. Finally, a roadmap of the entire 3D bioprinting is depicted at the end of this review article, clearly demonstrating the past, present, and future of 3D bioprinting and our current progress in this field.
Collapse
Affiliation(s)
- Xinda Li
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Boxun Liu
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Ben Pei
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jianwei Chen
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, People's Republic of China.,East China Institute of Digital Medical Engineering, Shangrao 334000, People's Republic of China
| | - Dezhi Zhou
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jiayi Peng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Xinzhi Zhang
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Tao Xu
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, People's Republic of China
| |
Collapse
|
14
|
Gupta S, Alrabaiah H, Christophe M, Rahimi-Gorji M, Nadeem S, Bit A. Evaluation of silk-based bioink during pre and post 3D bioprinting: A review. J Biomed Mater Res B Appl Biomater 2020; 109:279-293. [PMID: 32865306 DOI: 10.1002/jbm.b.34699] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 12/25/2022]
Abstract
During past few decades, the demand for the replacement of damaged organs is increasing consistently. This is due to the advancement in tissue engineering, which opens the possibility of regeneration of damaged organs or tissues into functional parts with the help of 3D bioprinting. Bioprinting technology presents an excellent potential to develop complex structures with precise control over cell suspension and structure. A brief description of different types of 3D bioprinting techniques, including inkjet-based, laser-based, and extrusion-based bioprinting is presented here. Due to innate advantageous features like tunable biodegradability, biocompatibility, elasticity and mechanical robustness, silk has carved a niche in the realm of tissue engineering. In this review article, the focus is to highlight the possible approach of exploring silk as bioink for fabrication of bioprinted implants using 3D bioprinting. This review discusses different type of degumming, dissolution techniques for extraction of proteins from different sources of silk. Different recently reported 3D bioprinting techniques suitable for silk-based bioink are further elaborated. Postprinting characterization of resultant scaffolds are also describe here. However, there is an astounding progress in 3D bioprinting technology, still there is a need to develop further the current bioprinting technology to make it suitable for generation of heterogeneous tissue construct. The possibility of utilizing the adhesive property of sericin to consider it as bioink is elaborated.
Collapse
Affiliation(s)
- Sharda Gupta
- Biomedical Engineering Department, National Institute of Technology, Raipur, India
| | - Hussam Alrabaiah
- College of Engineering, Al Ain University, Al Ain, United Arab Emirates.,Department of Mathematics, College of Sciences, Tafila Technical University, At-Tafilah, Jordan
| | - Marquette Christophe
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon, Villeurbanne Cedex, France
| | | | - Sohail Nadeem
- Mathematics and its Applications in Life Sciences Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Arindam Bit
- Biomedical Engineering Department, National Institute of Technology, Raipur, India
| |
Collapse
|
15
|
Kaushik S, Thungon PD, Goswami P. Silk Fibroin: An Emerging Biocompatible Material for Application of Enzymes and Whole Cells in Bioelectronics and Bioanalytical Sciences. ACS Biomater Sci Eng 2020; 6:4337-4355. [PMID: 33455178 DOI: 10.1021/acsbiomaterials.9b01971] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Enzymes and whole cells serve as the active biological entities in a myriad of applications including bioprocesses, bioanalytics, and bioelectronics. Conserving the natural activity of these functional biological entities during their prolonged use is one of the major goals for validating their practical applications. Silk fibroin (SF) has emerged as a biocompatible material to interface with enzymes as well as whole cells. These biomaterials can be tailored both physically and chemically to create excellent scaffolds of different forms such as fibers, films, and powder for immobilization and stabilization of enzymes. The secondary structures of the SF-protein can be attuned to generate hydrophobic/hydrophilic pockets suitable to create the biocompatible microenvironments. The fibrous nature of the SF protein with a dominant hydrophobic property may also serve as an excellent support for promoting cellular adhesion and growth. This review compiles and discusses the recent literature on the application of SF as a biocompatible material at the interface of enzymes and cells in various fields, including the emerging area of bioelectronics and bioanalytical sciences.
Collapse
Affiliation(s)
- Sharbani Kaushik
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43201, United States
| | - Phurpa Dema Thungon
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
16
|
Abstract
Silk is a natural polymer sourced mainly from spiders and silkworms. Due to its biocompatibility, biodegradability, and mechanical properties, it has been heavily investigated for biomedical applications. It can be processed into a number of formats, such as scaffolds, films, and nanoparticles. Common methods of production create constructs with limited complexity. 3D printing allows silk to be printed into more intricate designs, increasing its potential applications. Extrusion and inkjet printing are the primary ways silk has been 3D printed, though other methods are beginning to be investigated. Silk has been integrated into bioink with other polymers, both natural and synthetic. The addition of silk is primarily done to offer more desirable viscosity characteristics and mechanical properties for printing. Silk-based bioinks have been used to fabricate medical devices and tissues. This article discusses recent research and printing parameters important for 3D printing with silk.
Collapse
Affiliation(s)
- Megan K DeBari
- Material Science and Engineering Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Mia N Keyser
- Biomedical Engineering Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Michelle A Bai
- Biomedical Engineering Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Rosalyn D Abbott
- Biomedical Engineering Department, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
17
|
Weems AC, Pérez-Madrigal MM, Arno MC, Dove AP. 3D Printing for the Clinic: Examining Contemporary Polymeric Biomaterials and Their Clinical Utility. Biomacromolecules 2020; 21:1037-1059. [PMID: 32058702 DOI: 10.1021/acs.biomac.9b01539] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The advent of additive manufacturing offered the potential to revolutionize clinical medicine, particularly with patient-specific implants across a range of tissue types. However, to date, there are very few examples of polymers being used for additive processes in clinical settings. The state of the art with regards to 3D printable polymeric materials being exploited to produce novel clinically relevant implants is discussed here. We focus on the recent advances in the development of implantable, polymeric medical devices and tissue scaffolds without diverging extensively into bioprinting. By introducing the major 3D printing techniques along with current advancements in biomaterials, we hope to provide insight into how these fields may continue to advance while simultaneously reviewing the ongoing work in the field.
Collapse
Affiliation(s)
- Andrew C Weems
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
| | | | - Maria C Arno
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
| | - Andrew P Dove
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
| |
Collapse
|
18
|
|
19
|
Patamia ED, Ostrovsky-Snider NA, Murphy AR. Photolithographic Masking Method to Chemically Pattern Silk Film Surfaces. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33612-33619. [PMID: 31502441 DOI: 10.1021/acsami.9b10226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A method has been developed for selectively patterning silk surfaces using a photolithographic process to mask off sections of silk films, which allows selective and precise patterning of features down to 40 μm. This process is highly versatile, utilizes only low-cost equipment and can be used to rapidly prototype flat silk substrates with spatially controlled chemical patterns. Here we demonstrate the usefulness of this technique to deposit fluorescent dyes, labeled proteins and conducting polymers or to modify the surface charge of the silk protein in desired regions on a silk film surface.
Collapse
Affiliation(s)
- Evan D Patamia
- Department of Chemistry , Western Washington University , 516 High Street , Bellingham , Washington 98225-9150 , United States
| | - Nicholas A Ostrovsky-Snider
- Department of Chemistry , Western Washington University , 516 High Street , Bellingham , Washington 98225-9150 , United States
| | - Amanda R Murphy
- Department of Chemistry , Western Washington University , 516 High Street , Bellingham , Washington 98225-9150 , United States
| |
Collapse
|
20
|
Poly(gamma-glutamic acid) based thermosetting hydrogels for injection: Rheology and functional parameters evaluation. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.03.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Abstract
Silk is an important biopolymer for (bio)medical applications because of its unique and highly versatile structure and its robust clinical track record in human medicine. Silk can be processed into many material formats, including physically and chemically cross-linked hydrogels that have almost limitless applications ranging from tissue engineering to biomedical imaging and sensing. This concise review provides a detailed background of silk hydrogels, including silk structure-function relationships, biocompatibility and biodegradation, and it explores recent developments in silk hydrogel utilization, with specific reference to drug and cell delivery. We address common pitfalls and misconceptions while identifying emerging opportunities, including 3D printing.
Collapse
|
22
|
Sharma A, Thakur M, Bhattacharya M, Mandal T, Goswami S. Commercial application of cellulose nano-composites - A review. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2019; 21:e00316. [PMID: 30847286 PMCID: PMC6389799 DOI: 10.1016/j.btre.2019.e00316] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 11/19/2022]
Abstract
Cellulose is the biosynthetic product from plants, animals and bacteria. Cellulose is the most abundant polymer having long linear chain like structure composed of (1,4) linked β-D glucopyranosyl units assembled into hierarchical structures of microfibrils with excellent strength and stiffness. And 'nanocellulose' refers to the cellulosic materials with defined nano-scale structural dimensions. They may be cellulose nanocrystal (CNC or NCC), cellulose nanofibers (CNF) or bacterial nanocellulose. Nanocellulose is non-toxic, biodegradable and biocompatible with no adverse effects on health and environment. Due to its low thermal expansion coefficient, high aspect ratio, better tensile strength, good mechanical and optical properties, they find many applications in thermo-reversible and tenable hydrogels, paper making, coating additives, food packaging, flexible screens, optically transparent films and light weight materials for ballistic protection, automobile windows. It also find potential in biopharmaceutical applications such as in drug delivery and for fabricating temporary implants with PHB like sutures, stents etc.
Collapse
Affiliation(s)
- Amita Sharma
- Center of Innovative and Applied Bioprocessing, Knowledge City, Sector-81 Mohali, Punjab 140306 India
- Department of Chemical Engineering, National Institute of Technology, Durgapur, West Bengal 713209 India
| | - Manisha Thakur
- Center of Innovative and Applied Bioprocessing, Knowledge City, Sector-81 Mohali, Punjab 140306 India
| | - Munna Bhattacharya
- Center of Innovative and Applied Bioprocessing, Knowledge City, Sector-81 Mohali, Punjab 140306 India
| | - Tamal Mandal
- Department of Chemical Engineering, National Institute of Technology, Durgapur, West Bengal 713209 India
| | - Saswata Goswami
- Center of Innovative and Applied Bioprocessing, Knowledge City, Sector-81 Mohali, Punjab 140306 India
| |
Collapse
|
23
|
Koh LD, Yeo J, Lee YY, Ong Q, Han M, Tee BCK. Advancing the frontiers of silk fibroin protein-based materials for futuristic electronics and clinical wound-healing (Invited review). MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [DOI: 10.1016/j.msec.2018.01.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Ganesh Kumar B, Melikov R, Mohammadi Aria M, Ural Yalcin A, Begar E, Sadeghi S, Guven K, Nizamoglu S. Silk-Based Aqueous Microcontact Printing. ACS Biomater Sci Eng 2018; 4:1463-1470. [PMID: 29911181 PMCID: PMC5997385 DOI: 10.1021/acsbiomaterials.8b00040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/07/2018] [Indexed: 12/19/2022]
Abstract
Lithography, the transfer of patterns to a film or substrate, is the basis by which many modern technological devices and components are produced. However, established lithographic approaches generally use complex techniques, expensive equipment, and advanced materials. Here, we introduce a water-based microcontact printing method using silk that is simple, inexpensive, ecofriendly, and recyclable. Whereas the traditional microcontact printing technique facilitates only negative lithography, the synergetic interaction of the silk, water, and common chemicals in our technique enables both positive and negative patterning using a single stamp. Among diverse application possibilities, we exemplify a proof of concept of the method through optimizing its metal lift-off process and demonstrate the fabrication of electromagnetic metamaterial elements on both solid and flexible substrates. The results indicate that the method demonstrated herein is universally applicable to device production and technology development.
Collapse
Affiliation(s)
- Baskaran Ganesh Kumar
- Department
of Electrical and Electronics Engineering, Koc University, Istanbul 34450, Turkey
| | - Rustamzhon Melikov
- Department
of Electrical and Electronics Engineering, Koc University, Istanbul 34450, Turkey
| | | | | | - Efe Begar
- Department
of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Sadra Sadeghi
- Graduate
School of Material Science and Engineering, Koc University, Istanbul 34450, Turkey
| | - Kaan Guven
- Department
of Physics, Koc University, Istanbul 34450, Turkey
| | - Sedat Nizamoglu
- Department
of Electrical and Electronics Engineering, Koc University, Istanbul 34450, Turkey
- Graduate
School of Biomedical Engineering, Koc University, Istanbul 34450, Turkey
- Graduate
School of Material Science and Engineering, Koc University, Istanbul 34450, Turkey
| |
Collapse
|
25
|
Kim BJ, Cho H, Park JH, Mano JF, Choi IS. Strategic Advances in Formation of Cell-in-Shell Structures: From Syntheses to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706063. [PMID: 29441678 DOI: 10.1002/adma.201706063] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/12/2017] [Indexed: 05/24/2023]
Abstract
Single-cell nanoencapsulation, forming cell-in-shell structures, provides chemical tools for endowing living cells, in a programmed fashion, with exogenous properties that are neither innate nor naturally achievable, such as cascade organic-catalysis, UV filtration, immunogenic shielding, and enhanced tolerance in vitro against lethal factors in real-life settings. Recent advances in the field make it possible to further fine-tune the physicochemical properties of the artificial shells encasing individual living cells, including on-demand degradability and reconfigurability. Many different materials, other than polyelectrolytes, have been utilized as a cell-coating material with proper choice of synthetic strategies to broaden the potential applications of cell-in-shell structures to whole-cell catalysis and sensors, cell therapy, tissue engineering, probiotics packaging, and others. In addition to the conventional "one-time-only" chemical formation of cytoprotective, durable shells, an approach of autonomous, dynamic shellation has also recently been attempted to mimic the naturally occurring sporulation process and to make the artificial shell actively responsive and dynamic. Here, the recent development of synthetic strategies for formation of cell-in-shell structures along with the advanced shell properties acquired is reviewed. Demonstrated applications, such as whole-cell biocatalysis and cell therapy, are discussed, followed by perspectives on the field of single-cell nanoencapsulation.
Collapse
Affiliation(s)
- Beom Jin Kim
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Hyeoncheol Cho
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Ji Hun Park
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Insung S Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| |
Collapse
|
26
|
Zhang S, Geryak R, Geldmeier J, Kim S, Tsukruk VV. Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing. Chem Rev 2017; 117:12942-13038. [DOI: 10.1021/acs.chemrev.7b00088] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shuaidi Zhang
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Ren Geryak
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Jeffrey Geldmeier
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Sunghan Kim
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Vladimir V. Tsukruk
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
27
|
Thamm C, DeSimone E, Scheibel T. Characterization of Hydrogels Made of a Novel Spider Silk Protein eMaSp1s and Evaluation for 3D Printing. Macromol Biosci 2017; 17. [PMID: 28805010 DOI: 10.1002/mabi.201700141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/26/2017] [Indexed: 12/30/2022]
Abstract
Recombinantly produced spider silk proteins have high potential for bioengineering and various biomedical applications because of their biocompatibility, biodegradability, and low immunogenicity. Here, the recently described small spider silk protein eMaSp1s is assembled into hydrogels, which can be 3D printed into scaffolds. Further, blending with a recombinantly produced MaSp2 derivative eADF4(C16) alters the mechanical properties of the resulting hydrogels. Different spider silk hydrogels also show a distinct recovery after a high shear stress deformation, exhibiting the tunability of their features for selected applications.
Collapse
Affiliation(s)
- Christopher Thamm
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Universitätsstraße 30, 95440, Bayreuth, Germany
| | - Elise DeSimone
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Universitätsstraße 30, 95440, Bayreuth, Germany
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Universitätsstraße 30, 95440, Bayreuth, Germany.,Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Universität Bayreuth, Universitätsstraße 30, 95440, Bayreuth, Germany.,Bayerisches Polymerinstitut (BPI), Universitätsstraße 30, 95440, Bayreuth, Germany.,Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Universität Bayreuth, Universitätsstraße 30, 95440, Bayreuth, Germany.,Institut für Bio-Makromoleküle (bio-mac), Universität Bayreuth, Universitätsstraße 30, 95440, Bayreuth, Germany.,Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Universitätsstraße 30, 95440, Bayreuth, Germany
| |
Collapse
|
28
|
Multicomponent High-throughput Drug Screening via Inkjet Printing to Verify the Effect of Immunosuppressive Drugs on Immune T Lymphocytes. Sci Rep 2017; 7:6318. [PMID: 28740226 PMCID: PMC5524941 DOI: 10.1038/s41598-017-06690-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/16/2017] [Indexed: 02/01/2023] Open
Abstract
High-throughput drug screening based on a multi-component array can be used to identify a variety of interaction between cells and drugs for suitable purposes. The signaling of immune cells is affected by specific proteins, diverse drug combinations, and certain immunosuppressive drugs. The effect of a drug on an organism is usually complex and involves interactions at multiple levels. Herein, we developed a multilayer fabricating system through the high-throughput assembly of nanofilms with inkjet printing to investigate the effects of immunosuppressive drugs. Immunosuppressive drugs or agents occasionally cause side effects depending on drug combinations or a patient’s condition. By incorporating various drug combinations for understanding interaction between drugs and immune cells, we were able to develop an immunological drug screening kit with immunosuppressive drugs. Moreover, the ability to control the combination of drugs, as well as their potential for high-throughput preparation should be of great benefit to the biomedical and bioanalytical field.
Collapse
|
29
|
Włodarczyk-Biegun MK, del Campo A. 3D bioprinting of structural proteins. Biomaterials 2017; 134:180-201. [DOI: 10.1016/j.biomaterials.2017.04.019] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/04/2017] [Accepted: 04/12/2017] [Indexed: 12/23/2022]
|
30
|
3D bioprinting of cell-laden hydrogels for advanced tissue engineering. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017. [DOI: 10.1016/j.cobme.2017.04.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
31
|
Qi Y, Wang H, Wei K, Yang Y, Zheng RY, Kim IS, Zhang KQ. A Review of Structure Construction of Silk Fibroin Biomaterials from Single Structures to Multi-Level Structures. Int J Mol Sci 2017; 18:E237. [PMID: 28273799 PMCID: PMC5372488 DOI: 10.3390/ijms18030237] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/05/2017] [Accepted: 01/11/2017] [Indexed: 12/25/2022] Open
Abstract
The biological performance of artificial biomaterials is closely related to their structure characteristics. Cell adhesion, migration, proliferation, and differentiation are all strongly affected by the different scale structures of biomaterials. Silk fibroin (SF), extracted mainly from silkworms, has become a popular biomaterial due to its excellent biocompatibility, exceptional mechanical properties, tunable degradation, ease of processing, and sufficient supply. As a material with excellent processability, SF can be processed into various forms with different structures, including particulate, fiber, film, and three-dimensional (3D) porous scaffolds. This review discusses and summarizes the various constructions of SF-based materials, from single structures to multi-level structures, and their applications. In combination with single structures, new techniques for creating special multi-level structures of SF-based materials, such as micropatterning and 3D-printing, are also briefly addressed.
Collapse
Affiliation(s)
- Yu Qi
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Hui Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Kai Wei
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Ya Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Ru-Yue Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Ick Soo Kim
- Nano Fusion Technology Research Lab, Interdisciplinary Cluster for Cutting Edge Research (ICCER), Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Shinshu University, Ueda, Nagano 386 8567, Japan.
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| |
Collapse
|
32
|
Gibney R, Matthyssen S, Patterson J, Ferraris E, Zakaria N. The Human Cornea as a Model Tissue for Additive Biomanufacturing: A Review. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.procir.2017.04.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Donderwinkel I, van Hest JCM, Cameron NR. Bio-inks for 3D bioprinting: recent advances and future prospects. Polym Chem 2017. [DOI: 10.1039/c7py00826k] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the last decade, interest in the field of three-dimensional (3D) bioprinting has increased enormously. This review describes all the currently used bio-printing inks, including polymeric hydrogels, polymer bead microcarriers, cell aggregates and extracellular matrix proteins.
Collapse
Affiliation(s)
- Ilze Donderwinkel
- Department of Materials Science and Engineering
- Monash University
- Clayton
- Australia
- Department of Bio-organic Chemistry
| | - Jan C. M. van Hest
- Department of Bio-organic Chemistry
- Radboud University
- 6525 AJ Nijmegen
- The Netherlands
- Department of Chemical Engineering and Chemistry
| | - Neil R. Cameron
- Department of Materials Science and Engineering
- Monash University
- Clayton
- Australia
- School of Engineering
| |
Collapse
|
34
|
Richardson JJ, Cui J, Björnmalm M, Braunger JA, Ejima H, Caruso F. Innovation in Layer-by-Layer Assembly. Chem Rev 2016; 116:14828-14867. [PMID: 27960272 DOI: 10.1021/acs.chemrev.6b00627] [Citation(s) in RCA: 451] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Methods for depositing thin films are important in generating functional materials for diverse applications in a wide variety of fields. Over the last half-century, the layer-by-layer assembly of nanoscale films has received intense and growing interest. This has been fueled by innovation in the available materials and assembly technologies, as well as the film-characterization techniques. In this Review, we explore, discuss, and detail innovation in layer-by-layer assembly in terms of past and present developments, and we highlight how these might guide future advances. A particular focus is on conventional and early developments that have only recently regained interest in the layer-by-layer assembly field. We then review unconventional assemblies and approaches that have been gaining popularity, which include inorganic/organic hybrid materials, cells and tissues, and the use of stereocomplexation, patterning, and dip-pen lithography, to name a few. A relatively recent development is the use of layer-by-layer assembly materials and techniques to assemble films in a single continuous step. We name this "quasi"-layer-by-layer assembly and discuss the impacts and innovations surrounding this approach. Finally, the application of characterization methods to monitor and evaluate layer-by-layer assembly is discussed, as innovation in this area is often overlooked but is essential for development of the field. While we intend for this Review to be easily accessible and act as a guide to researchers new to layer-by-layer assembly, we also believe it will provide insight to current researchers in the field and help guide future developments and innovation.
Collapse
Affiliation(s)
- Joseph J Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia.,Manufacturing, CSIRO , Clayton, Victoria 3168, Australia
| | - Jiwei Cui
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Mattias Björnmalm
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Julia A Braunger
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Hirotaka Ejima
- Institute of Industrial Science, The University of Tokyo , Tokyo 153-8505, Japan
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| |
Collapse
|
35
|
Qin N, Zhang S, Jiang J, Corder SG, Qian Z, Zhou Z, Lee W, Liu K, Wang X, Li X, Shi Z, Mao Y, Bechtel HA, Martin MC, Xia X, Marelli B, Kaplan DL, Omenetto FG, Liu M, Tao TH. Nanoscale probing of electron-regulated structural transitions in silk proteins by near-field IR imaging and nano-spectroscopy. Nat Commun 2016; 7:13079. [PMID: 27713412 PMCID: PMC5059764 DOI: 10.1038/ncomms13079] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/01/2016] [Indexed: 12/20/2022] Open
Abstract
Silk protein fibres produced by silkworms and spiders are renowned for their unparalleled mechanical strength and extensibility arising from their high-β-sheet crystal contents as natural materials. Investigation of β-sheet-oriented conformational transitions in silk proteins at the nanoscale remains a challenge using conventional imaging techniques given their limitations in chemical sensitivity or limited spatial resolution. Here, we report on electron-regulated nanoscale polymorphic transitions in silk proteins revealed by near-field infrared imaging and nano-spectroscopy at resolutions approaching the molecular level. The ability to locally probe nanoscale protein structural transitions combined with nanometre-precision electron-beam lithography offers us the capability to finely control the structure of silk proteins in two and three dimensions. Our work paves the way for unlocking essential nanoscopic protein structures and critical conditions for electron-induced conformational transitions, offering new rules to design protein-based nanoarchitectures. Silk protein fibres are exceptionally strong, owing to their high β-sheet nanocrystal content. Here, the authors use an electron beam to guide silk β-sheet crystals through structural transitions, and visualize the changes by infrared near-field optics, achieving close to molecular-level resolution.
Collapse
Affiliation(s)
- Nan Qin
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Shaoqing Zhang
- Department of Mechanical Engineering, the University of Texas at Austin, Austin, Texas 78712, USA
| | - Jianjuan Jiang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | | | - Zhigang Qian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhitao Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Woonsoo Lee
- Department of Mechanical Engineering, the University of Texas at Austin, Austin, Texas 78712, USA
| | - Keyin Liu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xiaohan Wang
- Department of Mechanical Engineering, the University of Texas at Austin, Austin, Texas 78712, USA
| | - Xinxin Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Zhifeng Shi
- Department of Neurosurgery, Huashan Hospital of Fudan University, Wulumuqi Zhong Road 12, Shanghai, 200040, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital of Fudan University, Wulumuqi Zhong Road 12, Shanghai, 200040, China
| | - Hans A Bechtel
- Nano-FTIR, Advanced Light Source Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Michael C Martin
- Nano-FTIR, Advanced Light Source Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Xiaoxia Xia
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Benedetto Marelli
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA.,Department of Chemical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | - Fiorenzo G Omenetto
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA.,Department of Physics, Tufts University, Medford, Massachusetts 02155, USA
| | - Mengkun Liu
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA
| | - Tiger H Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.,Department of Mechanical Engineering, the University of Texas at Austin, Austin, Texas 78712, USA.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China
| |
Collapse
|
36
|
Silva JM, Reis RL, Mano JF. Biomimetic Extracellular Environment Based on Natural Origin Polyelectrolyte Multilayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4308-42. [PMID: 27435905 DOI: 10.1002/smll.201601355] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/15/2016] [Indexed: 05/23/2023]
Abstract
Surface modification of biomaterials is a well-known approach to enable an adequate biointerface between the implant and the surrounding tissue, dictating the initial acceptance or rejection of the implantable device. Since its discovery in early 1990s layer-by-layer (LbL) approaches have become a popular and attractive technique to functionalize the biomaterials surface and also engineering various types of objects such as capsules, hollow tubes, and freestanding membranes in a controllable and versatile manner. Such versatility enables the incorporation of different nanostructured building blocks, including natural biopolymers, which appear as promising biomimetic multilayered systems due to their similarity to human tissues. In this review, the potential of natural origin polymer-based multilayers is highlighted in hopes of a better understanding of the mechanisms behind its use as building blocks of LbL assembly. A deep overview on the recent progresses achieved in the design, fabrication, and applications of natural origin multilayered films is provided. Such films may lead to novel biomimetic approaches for various biomedical applications, such as tissue engineering, regenerative medicine, implantable devices, cell-based biosensors, diagnostic systems, and basic cell biology.
Collapse
Affiliation(s)
- Joana M Silva
- 3Bs Research Group-Biomaterials Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Rui L Reis
- 3Bs Research Group-Biomaterials Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - João F Mano
- 3Bs Research Group-Biomaterials Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| |
Collapse
|
37
|
Gregory DA, Zhang Y, Smith PJ, Zhao X, Ebbens SJ. Reactive Inkjet Printing of Biocompatible Enzyme Powered Silk Micro-Rockets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4048-4055. [PMID: 27345008 DOI: 10.1002/smll.201600921] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/25/2016] [Indexed: 06/06/2023]
Abstract
Inkjet-printed enzyme-powered silk-based micro-rockets are able to undergo autonomous motion in a vast variety of fluidic environments including complex media such as human serum. By means of digital inkjet printing it is possible to alter the catalyst distribution simply and generate varying trajectory behavior of these micro-rockets. Made of silk scaffolds containing enzymes these micro-rockets are highly biocompatible and non-biofouling.
Collapse
Affiliation(s)
- David A Gregory
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, Mappin Street, S1 3JD, UK
| | - Yu Zhang
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, Mappin Street, S1 3JD, UK
| | - Patrick J Smith
- Department of Mechanical Engineering, University of Sheffield, Sheffield, 64 Garden Street, S1 4BJ, UK
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, Mappin Street, S1 3JD, UK
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, 213164, China
| | - Stephen J Ebbens
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, Mappin Street, S1 3JD, UK
| |
Collapse
|
38
|
Gudapati H, Dey M, Ozbolat I. A comprehensive review on droplet-based bioprinting: Past, present and future. Biomaterials 2016; 102:20-42. [PMID: 27318933 DOI: 10.1016/j.biomaterials.2016.06.012] [Citation(s) in RCA: 385] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/01/2016] [Accepted: 06/05/2016] [Indexed: 02/06/2023]
Abstract
Droplet-based bioprinting (DBB) offers greater advantages due to its simplicity and agility with precise control on deposition of biologics including cells, growth factors, genes, drugs and biomaterials, and has been a prominent technology in the bioprinting community. Due to its immense versatility, DBB technology has been adopted by various application areas, including but not limited to, tissue engineering and regenerative medicine, transplantation and clinics, pharmaceutics and high-throughput screening, and cancer research. Despite the great benefits, the technology currently faces several challenges such as a narrow range of available bioink materials, bioprinting-induced cell damage at substantial levels, limited mechanical and structural integrity of bioprinted constructs, and restrictions on the size of constructs due to lack of vascularization and porosity. This paper presents a first-time review of DBB and comprehensively covers the existing DBB modalities including inkjet, electrohydrodynamic, acoustic, and micro-valve bioprinting. The recent notable studies are highlighted, the relevant bioink biomaterials and bioprinters are expounded, the application areas are presented, and the future prospects are provided to the reader.
Collapse
Affiliation(s)
- Hemanth Gudapati
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Madhuri Dey
- Department of Chemistry, Penn State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Ibrahim Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA.
| |
Collapse
|
39
|
Melke J, Midha S, Ghosh S, Ito K, Hofmann S. Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater 2016; 31:1-16. [PMID: 26360593 DOI: 10.1016/j.actbio.2015.09.005] [Citation(s) in RCA: 456] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/24/2015] [Accepted: 09/06/2015] [Indexed: 01/08/2023]
Abstract
Silk fibroin (SF) is a fibrous protein which is produced mainly by silkworms and spiders. Its unique mechanical properties, tunable biodegradation rate and the ability to support the differentiation of mesenchymal stem cells along the osteogenic lineage, have made SF a favorable scaffold material for bone tissue engineering. SF can be processed into various scaffold forms, combined synergistically with other biomaterials to form composites and chemically modified, which provides an impressive toolbox and allows SF scaffolds to be tailored to specific applications. This review discusses and summarizes recent advancements in processing SF, focusing on different fabrication and functionalization methods and their application to grow bone tissue in vitro and in vivo. Potential areas for future research, current challenges, uncertainties and gaps in knowledge are highlighted. STATEMENT OF SIGNIFICANCE Silk fibroin is a natural biomaterial with remarkable biomedical and mechanical properties which make it favorable for a broad range of bone tissue engineering applications. It can be processed into different scaffold forms, combined synergistically with other biomaterials to form composites and chemically modified which provides a unique toolbox and allows silk fibroin scaffolds to be tailored to specific applications. This review discusses and summarizes recent advancements in processing silk fibroin, focusing on different fabrication and functionalization methods and their application to grow bone tissue in vitro and in vivo. Potential areas for future research, current challenges, uncertainties and gaps in knowledge are highlighted.
Collapse
|
40
|
Teramoto H, Nakajima KI, Kojima K. Azide-Incorporated Clickable Silk Fibroin Materials with the Ability to Photopattern. ACS Biomater Sci Eng 2016; 2:251-258. [DOI: 10.1021/acsbiomaterials.5b00469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hidetoshi Teramoto
- Genetically Modified Organism
Research Center, National Institute of Agrobiological Sciences (NIAS), 1-2
Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Ken-ichi Nakajima
- Genetically Modified Organism
Research Center, National Institute of Agrobiological Sciences (NIAS), 1-2
Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Katsura Kojima
- Genetically Modified Organism
Research Center, National Institute of Agrobiological Sciences (NIAS), 1-2
Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| |
Collapse
|
41
|
Werner V, Meinel L. From silk spinning in insects and spiders to advanced silk fibroin drug delivery systems. Eur J Pharm Biopharm 2015; 97:392-9. [DOI: 10.1016/j.ejpb.2015.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/07/2015] [Accepted: 03/12/2015] [Indexed: 01/24/2023]
|
42
|
Perotto G, Cittadini M, Tao H, Kim S, Yang M, Kaplan DL, Martucci A, Omenetto FG. Fabrication of Tunable, High-Refractive-Index Titanate-Silk Nanocomposites on the Micro- and Nanoscale. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:6728-6732. [PMID: 26414278 DOI: 10.1002/adma.201501704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/25/2015] [Indexed: 06/05/2023]
Abstract
The combination of water-based titanate nanosheets dispersion and silk fibroin solution allows the realization of a versatile nanocomposite. Different fabrication techniques can be easily applied on these nanocomposites to manipulate the end form of these materials on the micro- and nanoscale. Easy tunability of the refractive index from n = 1.55 up to n = 1.97 is achieved, making it attractive for flexible, biopolymer-based optical devices.
Collapse
Affiliation(s)
- Giovanni Perotto
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Michela Cittadini
- Dipartimento di Ingegneria Industriale, Università degli Studi di Padova, Via Marzolo 9, 35100, Padova, Italy
| | - Hu Tao
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Sunghwan Kim
- Department of Physics, Ajou University, Suwon, 443-749, South Korea
| | - Miaomiao Yang
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Alessandro Martucci
- Dipartimento di Ingegneria Industriale, Università degli Studi di Padova, Via Marzolo 9, 35100, Padova, Italy
| | - Fiorenzo G Omenetto
- Department of Biomedical Engineering and Department of Physics, Tufts University, 4 Colby St., Medford, MA, 02155, USA
| |
Collapse
|
43
|
Jungst T, Smolan W, Schacht K, Scheibel T, Groll J. Strategies and Molecular Design Criteria for 3D Printable Hydrogels. Chem Rev 2015; 116:1496-539. [PMID: 26492834 DOI: 10.1021/acs.chemrev.5b00303] [Citation(s) in RCA: 424] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tomasz Jungst
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg , Pleicherwall 2, 97070 Würzburg, Germany
| | - Willi Smolan
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg , Pleicherwall 2, 97070 Würzburg, Germany
| | - Kristin Schacht
- Chair of Biomaterials, Faculty of Engineering Science, University of Bayreuth , Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Thomas Scheibel
- Chair of Biomaterials, Faculty of Engineering Science, University of Bayreuth , Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Jürgen Groll
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg , Pleicherwall 2, 97070 Würzburg, Germany
| |
Collapse
|
44
|
Ajiro H, Kuroda A, Kan K, Akashi M. Stereocomplex Film Using Triblock Copolymers of Polylactide and Poly(ethylene glycol) Retain Paxlitaxel on Substrates by an Aqueous Inkjet System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10583-10589. [PMID: 26343286 DOI: 10.1021/acs.langmuir.5b03169] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The stereocomplex formation of poly(L,L-lactide) (PLLA) and poly(D,D-lactide) (PDLA) using an inkjet system was expanded to the amphiphilic copolymers, using poly(ethylene glycol) (PEG) as a hydrophilic polymer. The diblock copolymers, which are composed of PEG and PLLA (MPEG-co-PLLA) and PEG and PDLA (MPEG-co-PDLA), were employed for thin-film preparation using an aqueous inkjet system. The solvent and temperature conditions were optimized for the stereocomplex formation between MPEG-co-PLLA and MPEG-co- PDLA. As a result, the stereocomplex was adequately formed in acetonitrile/water (1:1, v/v) at 40 °C. The aqueous conditions improved the stereocomplex film preparation, which have suffered from clogging when using the organic solvents in previous work. The triblock copolymers, PLLA-co-PEG-co-PLLA and PDLA-co-PEG-co-PDLA, were employed for square patterning with the inkjet system, which produced thin films. The amphiphilic polymer film was able to retain hydrophobic compounds inside. The present result contributed to the rapid film preparation by inkjet, retaining drugs with difficult solubility in water, such as paclitaxel within the films.
Collapse
Affiliation(s)
- Hiroharu Ajiro
- Department of Applied Chemistry, Osaka University , 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University , 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST) , 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Ayaka Kuroda
- Department of Applied Chemistry, Osaka University , 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | - Mitsuru Akashi
- Department of Applied Chemistry, Osaka University , 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University , 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University , 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
45
|
Monge C, Almodóvar J, Boudou T, Picart C. Spatio-Temporal Control of LbL Films for Biomedical Applications: From 2D to 3D. Adv Healthc Mater 2015; 4:811-30. [PMID: 25627563 PMCID: PMC4540079 DOI: 10.1002/adhm.201400715] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/19/2014] [Indexed: 12/15/2022]
Abstract
Introduced in the '90s by Prof. Moehwald, Lvov, and Decher, the layer-by-layer (LbL) assembly of polyelectrolytes has become a popular technique to engineer various types of objects such as films, capsules and free standing membranes, with an unprecedented control at the nanometer and micrometer scales. The LbL technique allows to engineer biofunctional surface coatings, which may be dedicated to biomedical applications in vivo but also to fundamental studies and diagnosis in vitro. Initially mostly developed as 2D coatings and hollow capsules, the range of complex objects created by the LbL technique has greatly expanded in the past 10 years. In this Review, the aim is to highlight the recent progress in the field of LbL films for biomedical applications and to discuss the various ways to spatially and temporally control the biochemical and mechanical properties of multilayers. In particular, three major developments of LbL films are discussed: 1) the new methods and templates to engineer LbL films and control cellular processes from adhesion to differentiation, 2) the major ways to achieve temporal control by chemical, biological and physical triggers and, 3) the combinations of LbL technique, cells and scaffolds for repairing 3D tissues, including cardio-vascular devices, bone implants and neuro-prosthetic devices.
Collapse
Affiliation(s)
- Claire Monge
- CNRS, UMR 5628, LMGP, 3 parvis Louis Néel, F-38016, Grenoble, France; Université de Grenoble Alpes, Grenoble Institute of Technology, 3 parvis Louis Néel, F-38016, Grenoble, France
| | | | | | | |
Collapse
|
46
|
Drachuk I, Suntivich R, Calabrese R, Harbaugh S, Kelley-Loughnane N, Kaplan DL, Stone M, Tsukruk VV. Printed Dual Cell Arrays for Multiplexed Sensing. ACS Biomater Sci Eng 2015; 1:287-294. [DOI: 10.1021/ab500085k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Irina Drachuk
- School
of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Rattanon Suntivich
- School
of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Rossella Calabrese
- Department
of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Svetlana Harbaugh
- Air
Force Research Laboratory, Directorate of Human Effectiveness, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Nancy Kelley-Loughnane
- Air
Force Research Laboratory, Directorate of Human Effectiveness, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - David L. Kaplan
- Department
of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Morley Stone
- Air
Force Research Laboratory, Directorate of Human Effectiveness, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Vladimir V. Tsukruk
- School
of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
47
|
Schacht K, Jüngst T, Schweinlin M, Ewald A, Groll J, Scheibel T. Dreidimensional gedruckte, zellbeladene Konstrukte aus Spinnenseide. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201409846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Schacht K, Jüngst T, Schweinlin M, Ewald A, Groll J, Scheibel T. Biofabrication of cell-loaded 3D spider silk constructs. Angew Chem Int Ed Engl 2015; 54:2816-20. [PMID: 25640578 DOI: 10.1002/anie.201409846] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/21/2014] [Indexed: 01/24/2023]
Abstract
Biofabrication is an emerging and rapidly expanding field of research in which additive manufacturing techniques in combination with cell printing are exploited to generate hierarchical tissue-like structures. Materials that combine printability with cytocompatibility, so called bioinks, are currently the biggest bottleneck. Since recombinant spider silk proteins are non-immunogenic, cytocompatible, and exhibit physical crosslinking, their potential as a new bioink system was evaluated. Cell-loaded spider silk constructs can be printed by robotic dispensing without the need for crosslinking additives or thickeners for mechanical stabilization. Cells are able to adhere and proliferate with good viability over at least one week in such spider silk scaffolds. Introduction of a cell-binding motif to the spider silk protein further enables fine-tuned control over cell-material interactions. Spider silk hydrogels are thus a highly attractive novel bioink for biofabrication.
Collapse
Affiliation(s)
- Kristin Schacht
- Lehrstuhl Biomaterialien, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth (Germany)
| | | | | | | | | | | |
Collapse
|
49
|
Oliveira MB, Mano JF. High-throughput screening for integrative biomaterials design: exploring advances and new trends. Trends Biotechnol 2014; 32:627-36. [DOI: 10.1016/j.tibtech.2014.09.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/20/2014] [Accepted: 09/25/2014] [Indexed: 12/21/2022]
|