1
|
Kelly S, Genevskiy V, Björklund S, Gonzalez-Martinez JF, Poeschke L, Schröder M, Nilius G, Tatkov S, Kocherbitov V. Water Sorption and Structural Properties of Human Airway Mucus in Health and Muco-Obstructive Diseases. Biomacromolecules 2024; 25:1578-1591. [PMID: 38333985 PMCID: PMC10934264 DOI: 10.1021/acs.biomac.3c01170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Muco-obstructive diseases change airway mucus properties, impairing mucociliary transport and increasing the likelihood of infections. To investigate the sorption properties and nanostructures of mucus in health and disease, we investigated mucus samples from patients and cell cultures (cc) from healthy, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF) airways. Atomic force microscopy (AFM) revealed mucin monomers with typical barbell structures, where the globule to spacer volume ratio was the highest for CF mucin. Accordingly, synchrotron small-angle X-ray scattering (SAXS) revealed more pronounced scattering from CF mucin globules and suggested shorter carbohydrate side chains in CF mucin and longer side chains in COPD mucin. Quartz crystal microbalance with dissipation (QCM-D) analysis presented water sorption isotherms of the three types of human airway mucus, where, at high relative humidity, COPD mucus had the highest water content compared to cc-CF and healthy airway mucus (HAM). The higher hydration of the COPD mucus is consistent with the observation of longer side chains of the COPD mucins. At low humidity, no dehydration-induced glass transition was observed in healthy and diseased mucus, suggesting mucus remained in a rubbery state. However, in dialyzed cc-HAM, a sorption-desorption hysteresis (typically observed in the glassy state) appeared, suggesting that small molecules present in mucus suppress the glass transition.
Collapse
Affiliation(s)
- Susyn
J. Kelly
- Fisher
& Paykel Healthcare Ltd., 15 Maurice Paykel Place, East Tamaki, Auckland NZ-2013, New Zealand
- Department
of Clinical Sciences, Ross University of
Veterinary Medicine, Basseterre KN-0101, Saint
Kitts and Nevis
| | - Vladislav Genevskiy
- Biomedical
Science, Faculty of Health and Society, Malmö University, Malmö SE-20506, Sweden
- Biofilms
Research Center for Biointerfaces, Faculty of Health and Society, Malmö University, Malmö SE-20506, Sweden
| | - Sebastian Björklund
- Biomedical
Science, Faculty of Health and Society, Malmö University, Malmö SE-20506, Sweden
- Biofilms
Research Center for Biointerfaces, Faculty of Health and Society, Malmö University, Malmö SE-20506, Sweden
| | | | - Lara Poeschke
- Evang. Kliniken
Essen-Mitte GmbH, Essen DE-45136, Germany
| | - Maik Schröder
- Evang. Kliniken
Essen-Mitte GmbH, Essen DE-45136, Germany
| | - Georg Nilius
- Evang. Kliniken
Essen-Mitte GmbH, Essen DE-45136, Germany
- Universität
Witten/Herdecke, Witten DE-58455, Germany
| | - Stanislav Tatkov
- Fisher
& Paykel Healthcare Ltd., 15 Maurice Paykel Place, East Tamaki, Auckland NZ-2013, New Zealand
| | - Vitaly Kocherbitov
- Biomedical
Science, Faculty of Health and Society, Malmö University, Malmö SE-20506, Sweden
- Biofilms
Research Center for Biointerfaces, Faculty of Health and Society, Malmö University, Malmö SE-20506, Sweden
| |
Collapse
|
2
|
Anbo H, Sakuma K, Fukuchi S, Ota M. How AlphaFold2 Predicts Conditionally Folding Regions Annotated in an Intrinsically Disordered Protein Database, IDEAL. BIOLOGY 2023; 12:182. [PMID: 36829461 PMCID: PMC9952413 DOI: 10.3390/biology12020182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
AlphaFold2 (AF2) is a protein structure prediction program which provides accurate models. In addition to predicting structural domains, AF2 assigns intrinsically disordered regions (IDRs) by identifying regions with low prediction reliability (pLDDT). Some regions in IDRs undergo disorder-to-order transition upon binding the interaction partner. Here we assessed model structures of AF2 based on the annotations in IDEAL, in which segments with disorder-to-order transition have been collected as Protean Segments (ProSs). We non-redundantly selected ProSs from IDEAL and classified them based on the root mean square deviation to the corresponding region of AF2 models. Statistical analysis identified 11 structural and sequential features, possibly contributing toward the prediction of ProS structures. These features were categorized into two groups: one that contained pLDDT and the other that contained normalized radius of gyration. The typical ProS structures in the former group comprise a long α helix or a whole or part of the structural domain and those in the latter group comprise a short α helix with terminal loops.
Collapse
Affiliation(s)
- Hiroto Anbo
- Faculty of Engineering, Maebashi Institute of Technology, Maebashi 371-0816, Japan
| | - Koya Sakuma
- Graduate School of Informatics, Nagoya University, Nagoya 464-8601, Japan
| | - Satoshi Fukuchi
- Faculty of Engineering, Maebashi Institute of Technology, Maebashi 371-0816, Japan
| | - Motonori Ota
- Graduate School of Informatics, Nagoya University, Nagoya 464-8601, Japan
- Institute for Glyco-core Research, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
3
|
Riley NM, Wen RM, Bertozzi CR, Brooks JD, Pitteri SJ. Measuring the multifaceted roles of mucin-domain glycoproteins in cancer. Adv Cancer Res 2022; 157:83-121. [PMID: 36725114 PMCID: PMC10582998 DOI: 10.1016/bs.acr.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mucin-domain glycoproteins are highly O-glycosylated cell surface and secreted proteins that serve as both biochemical and biophysical modulators. Aberrant expression and glycosylation of mucins are known hallmarks in numerous malignancies, yet mucin-domain glycoproteins remain enigmatic in the broad landscape of cancer glycobiology. Here we review the multifaceted roles of mucins in cancer through the lens of the analytical and biochemical methods used to study them. We also describe a collection of emerging tools that are specifically equipped to characterize mucin-domain glycoproteins in complex biological backgrounds. These approaches are poised to further elucidate how mucin biology can be understood and subsequently targeted for the next generation of cancer therapeutics.
Collapse
Affiliation(s)
- Nicholas M Riley
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, United States.
| | - Ru M Wen
- Department of Urology, Stanford University School of Medicine, Stanford, CA, United States
| | - Carolyn R Bertozzi
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, United States; Howard Hughes Medical Institute, Stanford, CA, United States
| | - James D Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, CA, United States; Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, United States.
| |
Collapse
|
4
|
Ince D, Lucas TM, Malaker SA. Current strategies for characterization of mucin-domain glycoproteins. Curr Opin Chem Biol 2022; 69:102174. [PMID: 35752002 DOI: 10.1016/j.cbpa.2022.102174] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022]
Abstract
Glycosylation, and especially O-linked glycosylation, remains a critical blind spot in the understanding of post-translational modifications. Due to their nature as proteins defined by a large density and abundance of O-glycosylation, mucins present extra challenges in the analysis of their structure and function. However, recent breakthroughs in multiple areas of research have rendered mucin-domain glycoproteins more accessible to current characterization techniques. In particular, the adaptation of mucinases to glycoproteomic workflows, the manipulation of cellular glycosylation pathways, and the advances in synthetic methods to more closely mimic mucin domains have introduced new and exciting avenues to study mucin glycoproteins. Here, we summarize recent developments in understanding the structure and biological function of mucin domains and their associated glycans, from glycoproteomic tools and visualization methods to synthetic glycopeptide mimetics.
Collapse
Affiliation(s)
- Deniz Ince
- Department of Chemistry, Yale University, 275 Prospect St, New Haven, CT 06511, United States
| | - Taryn M Lucas
- Department of Chemistry, Yale University, 275 Prospect St, New Haven, CT 06511, United States
| | - Stacy A Malaker
- Department of Chemistry, Yale University, 275 Prospect St, New Haven, CT 06511, United States.
| |
Collapse
|
5
|
Watchorn J, Clasky AJ, Prakash G, Johnston IAE, Chen PZ, Gu FX. Untangling Mucosal Drug Delivery: Engineering, Designing, and Testing Nanoparticles to Overcome the Mucus Barrier. ACS Biomater Sci Eng 2022; 8:1396-1426. [PMID: 35294187 DOI: 10.1021/acsbiomaterials.2c00047] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mucus is a complex viscoelastic gel and acts as a barrier covering much of the soft tissue in the human body. High vascularization and accessibility have motivated drug delivery to various mucosal surfaces; however, these benefits are hindered by the mucus layer. To overcome the mucus barrier, many nanomedicines have been developed, with the goal of improving the efficacy and bioavailability of drug payloads. Two major nanoparticle-based strategies have emerged to facilitate mucosal drug delivery, namely, mucoadhesion and mucopenetration. Generally, mucoadhesive nanoparticles promote interactions with mucus for immobilization and sustained drug release, whereas mucopenetrating nanoparticles diffuse through the mucus and enhance drug uptake. The choice of strategy depends on many factors pertaining to the structural and compositional characteristics of the target mucus and mucosa. While there have been promising results in preclinical studies, mucus-nanoparticle interactions remain poorly understood, thus limiting effective clinical translation. This article reviews nanomedicines designed with mucoadhesive or mucopenetrating properties for mucosal delivery, explores the influence of site-dependent physiological variation among mucosal surfaces on efficacy, transport, and bioavailability, and discusses the techniques and models used to investigate mucus-nanoparticle interactions. The effects of non-homeostatic perturbations on protein corona formation, mucus composition, and nanoparticle performance are discussed in the context of mucosal delivery. The complexity of the mucosal barrier necessitates consideration of the interplay between nanoparticle design, tissue-specific differences in mucus structure and composition, and homeostatic or disease-related changes to the mucus barrier to develop effective nanomedicines for mucosal delivery.
Collapse
Affiliation(s)
- Jeffrey Watchorn
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Aaron J Clasky
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Gayatri Prakash
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Ian A E Johnston
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Paul Z Chen
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Frank X Gu
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada.,Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
6
|
Conte G, Costabile G, Baldassi D, Rondelli V, Bassi R, Colombo D, Linardos G, Fiscarelli EV, Sorrentino R, Miro A, Quaglia F, Brocca P, d’Angelo I, Merkel OM, Ungaro F. Hybrid Lipid/Polymer Nanoparticles to Tackle the Cystic Fibrosis Mucus Barrier in siRNA Delivery to the Lungs: Does PEGylation Make the Difference? ACS APPLIED MATERIALS & INTERFACES 2022; 14:7565-7578. [PMID: 35107987 PMCID: PMC8855343 DOI: 10.1021/acsami.1c14975] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/19/2022] [Indexed: 06/01/2023]
Abstract
Inhaled siRNA therapy has a unique potential for treatment of severe lung diseases, such as cystic fibrosis (CF). Nevertheless, a drug delivery system tackling lung barriers is mandatory to enhance gene silencing efficacy in the airway epithelium. We recently demonstrated that lipid-polymer hybrid nanoparticles (hNPs), comprising a poly(lactic-co-glycolic) acid (PLGA) core and a lipid shell of dipalmitoyl phosphatidylcholine (DPPC), may assist the transport of the nucleic acid cargo through mucus-covered human airway epithelium. To study in depth the potential of hNPs for siRNA delivery to the lungs and to investigate the hypothesized benefit of PEGylation, here, an siRNA pool against the nuclear factor-κB (siNFκB) was encapsulated inside hNPs, endowed with a non-PEGylated (DPPC) or a PEGylated (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) or DSPE-PEG) lipid shell. Resulting hNPs were tested for their stability profiles and transport properties in artificial CF mucus, mucus collected from CF cells, and sputum samples from a heterogeneous and representative set of CF patients. Initial information on hNP properties governing their interaction with airway mucus was acquired by small-angle X-ray scattering (SAXS) studies in artificial and cellular CF mucus. The diffusion profiles of hNPs through CF sputa suggested a crucial role of lung colonization of the corresponding donor patient, affecting the mucin type and content of the sample. Noteworthy, PEGylation did not boost mucus penetration in complex and sticky samples, such as CF sputa from patients with polymicrobial colonization. In parallel, in vitro cell uptake studies performed on mucus-lined Calu-3 cells grown at the air-liquid interface (ALI) confirmed the improved ability of non-PEGylated hNPs to overcome mucus and cellular lung barriers. Furthermore, effective in vitro NFκB gene silencing was achieved in LPS-stimulated 16HBE14o- cells. Overall, the results highlight the potential of non-PEGylated hNPs as carriers for pulmonary delivery of siRNA for local treatment of CF lung disease. Furthermore, this study provides a detailed understanding of how distinct models may provide different information on nanoparticle interaction with the mucus barrier.
Collapse
Affiliation(s)
- Gemma Conte
- Di.S.T.A.Bi.F., University of Campania Luigi Vanvitelli, Caserta 81100, Italy
| | - Gabriella Costabile
- Department
of Pharmacy, University of Napoli Federico
II, Napoli 80131, Italy
| | - Domizia Baldassi
- Department
of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-Universität, München, Munich 81377, Germany
| | - Valeria Rondelli
- Department
of Medical Biotechnologies and Translational Medicine, University of Milano, Segrate (MI) 20090, Italy
| | - Rosaria Bassi
- Department
of Medical Biotechnologies and Translational Medicine, University of Milano, Segrate (MI) 20090, Italy
| | - Diego Colombo
- Department
of Medical Biotechnologies and Translational Medicine, University of Milano, Segrate (MI) 20090, Italy
| | | | | | - Raffaella Sorrentino
- Department
of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, Napoli 80131, Italy
| | - Agnese Miro
- Department
of Pharmacy, University of Napoli Federico
II, Napoli 80131, Italy
| | - Fabiana Quaglia
- Department
of Pharmacy, University of Napoli Federico
II, Napoli 80131, Italy
| | - Paola Brocca
- Department
of Medical Biotechnologies and Translational Medicine, University of Milano, Segrate (MI) 20090, Italy
| | - Ivana d’Angelo
- Di.S.T.A.Bi.F., University of Campania Luigi Vanvitelli, Caserta 81100, Italy
| | - Olivia M. Merkel
- Department
of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-Universität, München, Munich 81377, Germany
| | - Francesca Ungaro
- Department
of Pharmacy, University of Napoli Federico
II, Napoli 80131, Italy
| |
Collapse
|
7
|
Di Cola E, Cantu' L, Brocca P, Rondelli V, Fadda GC, Canelli E, Martelli P, Clementino A, Sonvico F, Bettini R, Del Favero E. Novel O/W nanoemulsions for nasal administration: Structural hints in the selection of performing vehicles with enhanced mucopenetration. Colloids Surf B Biointerfaces 2019; 183:110439. [PMID: 31473410 DOI: 10.1016/j.colsurfb.2019.110439] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/30/2019] [Accepted: 08/14/2019] [Indexed: 12/24/2022]
Abstract
We propose novel oil-in-water nanoemulsions (O/W NEs) including PEGylated surfactants and chitosan, showing good biocompatibility and optimization for nasal administration of drugs or vaccines. The transmucosal route has been shown to be ideal for a fast and efficient absorption and represents a viable alternative when the oral administration is problematic. The critical structural features in view of optimal encapsulation and transmucosal delivery were assessed by characterizing the NEs with complementary scattering techniques, i.e. dynamic light scattering (DLS), small angle X-ray (SAXS) and neutron scattering (SANS). Combined results allowed for selecting the formulations with the best suited structural properties and in addition establishing their propensity to enter the mucus barrier. To this scope, mucin was used as a model system and the effect of adding chitosan to the NEs, as adjuvant, was investigated. Remarkably, the presence of chitosan had a positive impact on the diffusion of the NE particles through the mucin matrix. We can infer that chitosan-mucin interaction induces density inhomogeneity and an increase in the pore size within the gel matrix that enhances the PEGylated NEs mobility. The coupling of mucoadhesive and mucopenetrating agents is shown to be a promising strategy for innovative transmucosal delivery systems.
Collapse
Affiliation(s)
- Emanuela Di Cola
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, via fratelli Cervi 93, 20900 Segrate (Mi), Italy; Institute Laue-Langevin (ILL), 71 avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France.
| | - Laura Cantu'
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, via fratelli Cervi 93, 20900 Segrate (Mi), Italy
| | - Paola Brocca
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, via fratelli Cervi 93, 20900 Segrate (Mi), Italy
| | - Valeria Rondelli
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, via fratelli Cervi 93, 20900 Segrate (Mi), Italy
| | - Giulia C Fadda
- Université Paris 13, UFR SMBH, 74 rue Marcel Cauchin, 93017 Bobigny, France; Laboratoire Leon Brillouin, CEA Saclay, F-91191 Gif sur Yvette Cedex, France
| | - Elena Canelli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Strada del Taglio 10, 43126 Parma, Italy
| | - Paolo Martelli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Strada del Taglio 10, 43126 Parma, Italy
| | - Adryana Clementino
- Dipartimento di Scienze degli Alimenti e del Farmaco, Parco Area delle Scienze 27/A, 43124 Parma, Italy; Biopharmanet TEC - Centro Interdipartimentale di Ricerca per l'Innovazione dei Prodotti per la Salute, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Fabio Sonvico
- Dipartimento di Scienze degli Alimenti e del Farmaco, Parco Area delle Scienze 27/A, 43124 Parma, Italy; Biopharmanet TEC - Centro Interdipartimentale di Ricerca per l'Innovazione dei Prodotti per la Salute, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Ruggero Bettini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Parco Area delle Scienze 27/A, 43124 Parma, Italy; Biopharmanet TEC - Centro Interdipartimentale di Ricerca per l'Innovazione dei Prodotti per la Salute, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Elena Del Favero
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, via fratelli Cervi 93, 20900 Segrate (Mi), Italy.
| |
Collapse
|
8
|
Rondelli V, Cola ED, Koutsioubas A, Alongi J, Ferruti P, Ranucci E, Brocca P. Mucin Thin Layers: A Model for Mucus-Covered Tissues. Int J Mol Sci 2019; 20:E3712. [PMID: 31362433 PMCID: PMC6695901 DOI: 10.3390/ijms20153712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/31/2022] Open
Abstract
The fate of macromolecules of biological or pharmacological interest that enter the mucus barrier is a current field of investigation. Studies of the interaction between the main constituent of mucus, mucins, and molecules involved in topical transmucoidal drug or gene delivery is a prerequisite for nanomedicine design. We studied the interaction of mucin with the bio-inspired arginine-derived amphoteric polymer d,l-ARGO7 by applying complementary techniques. Small angle X-ray scattering in bulk unveiled the formation of hundreds of nanometer-sized clusters, phase separated from the mucin mesh. Quartz microbalance with dissipation and neutron reflectometry measurements on thin mucin layers deposited on silica supports highlighted the occurrence of polymer interaction with mucin on the molecular scale. Rinsing procedures on both experimental set ups showed that interaction induces alteration of the deposited hydrogel. We succeeded in building up a new significant model for epithelial tissues covered by mucus, obtaining the deposition of a mucin layer 20 Å thick on the top of a glycolipid enriched phospholipid single membrane, suitable to be investigated by neutron reflectometry. The model is applicable to unveil the cross structural details of mucus-covered epithelia in interaction with macromolecules within the Å discreteness.
Collapse
Affiliation(s)
- Valeria Rondelli
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, L.I.T.A., Via F.lli Cervi 93, 20090 Segrate, Italy.
| | - Emanuela Di Cola
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, L.I.T.A., Via F.lli Cervi 93, 20090 Segrate, Italy
| | - Alexandros Koutsioubas
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, 85748 Garching, Germany
| | - Jenny Alongi
- Department of Chemistry, Università degli Studi di Milano, Via Camillo Golgi 19, 20133 Milano, Italy
| | - Paolo Ferruti
- Department of Chemistry, Università degli Studi di Milano, Via Camillo Golgi 19, 20133 Milano, Italy
| | - Elisabetta Ranucci
- Department of Chemistry, Università degli Studi di Milano, Via Camillo Golgi 19, 20133 Milano, Italy
| | - Paola Brocca
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, L.I.T.A., Via F.lli Cervi 93, 20090 Segrate, Italy
| |
Collapse
|
9
|
Znamenskaya Falk Y, Engblom J, Pedersen JS, Arnebrant T, Kocherbitov V. Effects of Hydration on Structure and Phase Behavior of Pig Gastric Mucin Elucidated by SAXS. J Phys Chem B 2018; 122:7539-7546. [DOI: 10.1021/acs.jpcb.8b05496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yana Znamenskaya Falk
- Biomedical Science, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden
- Biofilms—Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden
| | - Johan Engblom
- Biomedical Science, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden
- Biofilms—Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden
| | - Jan Skov Pedersen
- Department of Chemistry and Interdisciplinary Nanosciene Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Thomas Arnebrant
- Biomedical Science, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden
- Biofilms—Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden
| | - Vitaly Kocherbitov
- Biomedical Science, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden
- Biofilms—Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden
| |
Collapse
|
10
|
Rossi S, Vigani B, Bonferoni MC, Sandri G, Caramella C, Ferrari F. Rheological analysis and mucoadhesion: A 30 year-old and still active combination. J Pharm Biomed Anal 2018; 156:232-238. [PMID: 29729636 DOI: 10.1016/j.jpba.2018.04.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/19/2018] [Accepted: 04/24/2018] [Indexed: 02/06/2023]
Abstract
At the end of 80s and in the early 90s, an increasing interest in the development of mucoadhesive formulations occurred in the pharmaceutical field. Such formulations, prolonging the drug permanence on the mucosa of action/absorption, improve drug availability/bioavailability and therefore its therapeutic effectiveness. Among the various methods reported in the literature for the evaluation of the mucoadhesive properties of polymers, in the early 1990s, the study of the rheological variation of the polymer solutions after mixing with a mucin solution/dispersion has been proposed as an approach to measure the strength of the mucoadhesive joint. Even today, both viscosity and viscoelastic measurements are used to evaluate the ability of polymers and formulations to adhere to the mucosa of application/action. This review aims at providing an overview of the rheological approaches employed in the development and characterization of mucoadhesive formulation, highlighting their advantages and disadvantages. To do this the scientific path that, since the beginning of the 90s, has led to the affirmation of the rheological analysis as a useful tool for the evaluation of the strength of the mucoadhesive bond is retraced.
Collapse
Affiliation(s)
- Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy.
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy
| | | | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy
| | - Carla Caramella
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy
| | - Franca Ferrari
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy
| |
Collapse
|
11
|
Mackie AR, Goycoolea FM, Menchicchi B, Caramella CM, Saporito F, Lee S, Stephansen K, Chronakis IS, Hiorth M, Adamczak M, Waldner M, Nielsen HM, Marcelloni L. Innovative Methods and Applications in Mucoadhesion Research. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201600534] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/10/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Alan R. Mackie
- Institute of Food Research; Norwich Research Park Norwich NR4 7UA UK
- School of Food Science and Nutrition; University of Leeds; LS2 9JT Leeds UK
| | - Francisco M. Goycoolea
- School of Food Science and Nutrition; University of Leeds; LS2 9JT Leeds UK
- Institut für Biologie und Biotechnologie der Pflanzen; Westfälische Wilhelms-Universität Münster; Schlossgarten 3 48149 Münster Germany
| | - Bianca Menchicchi
- Department of Medicine 1; University of Erlangen-Nueremberg; Hartmanstrasse 14 91052 Erlangen Germany
- Nanotechnology Group; Department of Plant Biology and Biotechnology; University of Münster; Schlossgarten 3 48149 Münster Germany
| | | | - Francesca Saporito
- Department of Drug Sciences; University of Pavia; Via Taramelli, 12 27100 Pavia Italy
| | - Seunghwan Lee
- Department of Mechanical Engineering; Technical University of Denmark; Produktionstorvet 2800 Kgs Lyngby Copenhagen Denmark
| | - Karen Stephansen
- National Food Institute; Technical University of Denmark; Søltofts Plads, 2800 Kgs Lyngby Copenhagen Denmark
| | - Ioannis S. Chronakis
- National Food Institute; Technical University of Denmark; Søltofts Plads, 2800 Kgs Lyngby Copenhagen Denmark
| | - Marianne Hiorth
- School of Pharmacy; University of Oslo; Postboks 1068 Blindern 0316 OSLO Norway
| | - Malgorzata Adamczak
- School of Pharmacy; University of Oslo; Postboks 1068 Blindern 0316 OSLO Norway
| | - Max Waldner
- Medizinische Klinik 1; Ulmenweg 18 91054 Erlangen Germany
| | - Hanne Mørck Nielsen
- Department of Pharmacy; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Luciano Marcelloni
- S.I.I.T. S.r.l Pharmaceutical & Health Food Supplements; Via Canova 5/7-20090 Trezzano S/N Milan Italy
| |
Collapse
|
12
|
Surface rearrangement of adsorbed EGCG–mucin complexes on hydrophilic surfaces. Int J Biol Macromol 2017; 95:704-712. [DOI: 10.1016/j.ijbiomac.2016.11.108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/29/2016] [Accepted: 11/29/2016] [Indexed: 12/13/2022]
|
13
|
Madsen JB, Sotres J, Pakkanen KI, Efler P, Svensson B, Abou Hachem M, Arnebrant T, Lee S. Structural and Mechanical Properties of Thin Films of Bovine Submaxillary Mucin versus Porcine Gastric Mucin on a Hydrophobic Surface in Aqueous Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:9687-9696. [PMID: 27597630 DOI: 10.1021/acs.langmuir.6b02057] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The structural and mechanical properties of thin films generated from two types of mucins, namely, bovine submaxillary mucin (BSM) and porcine gastric mucin (PGM) in aqueous environment were investigated with several bulk and surface analytical techniques. Both mucins generated hydrated films on hydrophobic polydimethylsiloxane (PDMS) surfaces from spontaneous adsorption arising from their amphiphilic characteristic. However, BSM formed more elastic films than PGM at neutral pH condition. This structural difference was manifested from the initial film formation processes to the responses to shear stresses applied to the films. Acidification of environmental pH led to strengthening the elastic character of BSM films with increased adsorbed mass, whereas an opposite trend was observed for PGM films. We propose that this contrast originates from that negatively charged motifs are present for both the central and terminal regions of BSM molecule, whereas a similar magnitude of negative charges is localized at the termini of PGM molecule. Given that hydrophobic motifs acting as an anchor are also localized in the terminal region, electrostatic repulsion between anchoring units of PGM molecules on a nonpolar PDMS surface leads to weakening of the mechanical integrity of the films.
Collapse
Affiliation(s)
- Jan Busk Madsen
- Department of Mechanical Engineering, Technical University of Denmark , 2800 Kongens Lyngby, Denmark
| | - Javier Sotres
- Department of Biomedical Sciences, Faculty of Health and Societyand Biofilms-Research Center for Biointerfaces, Malmö University , 20506, Malmö, Sweden
| | - Kirsi I Pakkanen
- Department of Mechanical Engineering, Technical University of Denmark , 2800 Kongens Lyngby, Denmark
| | - Petr Efler
- Department of Mechanical Engineering, Technical University of Denmark , 2800 Kongens Lyngby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark , 2800 Kongens Lyngby, Denmark
| | - Maher Abou Hachem
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark , 2800 Kongens Lyngby, Denmark
| | - Thomas Arnebrant
- Department of Biomedical Sciences, Faculty of Health and Societyand Biofilms-Research Center for Biointerfaces, Malmö University , 20506, Malmö, Sweden
| | - Seunghwan Lee
- Department of Mechanical Engineering, Technical University of Denmark , 2800 Kongens Lyngby, Denmark
| |
Collapse
|
14
|
Georgiades P, di Cola E, Heenan RK, Pudney PDA, Thornton DJ, Waigh TA. A combined small-angle X-ray and neutron scattering study of the structure of purified soluble gastrointestinal mucins. Biopolymers 2016; 101:1154-64. [PMID: 25041765 PMCID: PMC4654235 DOI: 10.1002/bip.22523] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 07/02/2014] [Indexed: 11/10/2022]
Abstract
The structures of purified soluble porcine gastric (Muc5ac) and duodenal (Muc2) mucin solutions at neutral and acidic pH were examined using small-angle X-ray scattering and small-angle neutron scattering experiments. We provide evidence for the morphology of the network above the semidilute overlap concentration and above the entanglement concentration. Furthermore, we investigated the gelation of both types of mucin solutions in response to a reduction in pH, where we observed the formation of large-scale heterogeneities within the polymer solutions, typical of microphase-separated gels. The concentration dependence of the inhomogeneity length scale (Ξ) and the amplitude of the excess scattering intensity [I(ex) (0)] are consistent with previously studied gelled synthetic polymeric systems. The persistence lengths of the chains were found to be similar for both Muc5ac and Muc2 from Kratky plots of the neutron data (8 ± 2 nm).
Collapse
Affiliation(s)
- Pantelis Georgiades
- Biological Physics, Department of Physics and Astronomy, University of Manchester, Manchester, M60 1QD, UK; Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | | | | | |
Collapse
|
15
|
Georgiades P, Pudney PDA, Thornton DJ, Waigh TA. Particle tracking microrheology of purified gastrointestinal mucins. Biopolymers 2016; 101:366-77. [PMID: 23955640 DOI: 10.1002/bip.22372] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/05/2013] [Indexed: 12/24/2022]
Abstract
The rheological characteristics of gastric and duodenal mucin solutions, the building blocks of the mucus layer that covers the epithelia of the two organs, were investigated using particle tracking microrheology. We used biochemically well characterized purified porcine mucins (MUC5AC and MUC2) as models for human mucins, to probe their viscoelasticity as a function of mucin concentration and pH. Furthermore, we used both reducing (dithiothreitol, DTT) and chaotropic agents (guanidinium chloride and urea) to probe the mesoscopic forces that mediate the integrity of the polymer network. At neutral pH both gastric and duodenal mucins formed self-assembled semi-dilute networks above a certain critical mucin concentration (c*) with the viscosity (η) scaling as η∼c(0.53±0.08) for MUC5AC and η∼c(0.53±0.06) for MUC2, where c is the mucin concentration. Above an even higher mucin concentration threshold (ce , the entanglement concentration) reptation occurs and there is a dramatic increase in the viscosity scaling, η∼c(3.92±0.38) for MUC5AC and η∼c(5.1±0.8) for MUC2. The dynamics of the self-assembled comb polymers is examined in terms of a scaling model for flexible polyelectrolyte combs. Both duodenum and gastric mucin are found to be pH switchable gels, gelation occurring at low pHs. There is a hundred-fold increase in the elastic shear modulus once the pH is decreased. The addition of DTT, guanidinium chloride and urea disassembles both the semi-dilute and gel structures causing a large increase in the compliance (decrease in their shear moduli). Addition of the polyphenol EGCG has a reverse effect on mucin viscoelasticity, that is, it triggers a sol-gel transition in semi-dilute mucin solutions at neutral pH.
Collapse
Affiliation(s)
- Pantelis Georgiades
- Biological Physics, Department of Physics and Astronomy, University of Manchester, Manchester, M60 1QD, UK; Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | |
Collapse
|
16
|
Menchicchi B, Fuenzalida JP, Hensel A, Swamy MJ, David L, Rochas C, Goycoolea FM. Biophysical Analysis of the Molecular Interactions between Polysaccharides and Mucin. Biomacromolecules 2015; 16:924-35. [DOI: 10.1021/bm501832y] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- B. Menchicchi
- Westfälische Wilhelms-Universität Münster, Institute of Plant Biology and Biotechnology (IBBP), Schlossgarten 3, 48149 - Münster, Germany
| | - J. P. Fuenzalida
- Westfälische Wilhelms-Universität Münster, Institute of Plant Biology and Biotechnology (IBBP), Schlossgarten 3, 48149 - Münster, Germany
| | - A. Hensel
- Westfälische Wilhelms-Universität Münster, Institute for Pharmaceutical Biology and Phytochemistry (IPBP), Hittorfstraße 56, D-48149 - Münster, Germany
| | - M. J. Swamy
- University of Hyderabad, School of Chemistry, Hyderabad, Andra Pradesh, India
| | - L. David
- Université de Lyon, Université Claude Bernard Lyon 1, Laboratoire Ingénierie des Matériaux Polymères,
IMP CNRS UMR 5223, 15
Boulevard A. Latarjet, 69622 Villeurbanne Cedex, France
| | - C. Rochas
- CERMAV-CNRS, Domaine
Universitaire, BP 68, F-38402 Saint-Martin-d’Heres, France
| | - F. M. Goycoolea
- Westfälische Wilhelms-Universität Münster, Institute of Plant Biology and Biotechnology (IBBP), Schlossgarten 3, 48149 - Münster, Germany
| |
Collapse
|
17
|
Georgiades P, Pudney PDA, Rogers S, Thornton DJ, Waigh TA. Tea derived galloylated polyphenols cross-link purified gastrointestinal mucins. PLoS One 2014; 9:e105302. [PMID: 25162539 PMCID: PMC4146515 DOI: 10.1371/journal.pone.0105302] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/22/2014] [Indexed: 12/24/2022] Open
Abstract
Polyphenols derived from tea are thought to be important for human health. We show using a combination of particle tracking microrheology and small-angle neutron scattering that polyphenols acts as cross-linkers for purified gastrointestinal mucin, derived from the stomach and the duodenum. Both naturally derived purified polyphenols, and green and black tea extracts are shown to act as cross-linkers. The main active cross-linking component is found to be the galloylated forms of catechins. The viscosity, elasticity and relaxation time of the mucin solutions experience an order of magnitude change in value upon addition of the polyphenol cross-linkers. Similarly small-angle neutron scattering experiments demonstrate a sol-gel transition with the addition of polyphenols, with a large increase in the scattering at low angles, which is attributed to the formation of large scale (>10 nm) heterogeneities during gelation. Cross-linking of mucins by polyphenols is thus expected to have an impact on the physicochemical environment of both the stomach and duodenum; polyphenols are expected to modulate the barrier properties of mucus, nutrient absorption through mucus and the viscoelastic microenvironments of intestinal bacteria.
Collapse
Affiliation(s)
- Pantelis Georgiades
- Biological Physics, Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, United Kingdom
- * E-mail:
| | - Paul D. A. Pudney
- Strategic Science Group, Unilever Discover, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire, United Kingdom
| | - Sarah Rogers
- ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, United Kingdom
| | - David J. Thornton
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester, United Kingdom
| | - Thomas A. Waigh
- Biological Physics, Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- Photon Science Institute, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
18
|
Ashton L, Pudney P, Blanch E, Yakubov G. Understanding glycoprotein behaviours using Raman and Raman optical activity spectroscopies: characterising the entanglement induced conformational changes in oligosaccharide chains of mucin. Adv Colloid Interface Sci 2013; 199-200:66-77. [PMID: 23859222 DOI: 10.1016/j.cis.2013.06.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/27/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
Abstract
We illustrate the great potential of Raman and ROA spectroscopies for investigating the structure and organisation of glycoproteins and the complex matrices they can form. In combination these spectroscopic techniques are sensitive to changes in conformation revealing details of secondary and tertiary structures, probing hydrogen bonding interactions, as well as resolving side chain orientation and the absolute configuration of chiral substructures. To demonstrate this potential we have characterised the structural changes in a complex glycoprotein, mucin. Spectral changes were observed during the entanglement transition as the mucin concentration was increased. By applying two-dimensional correlation analysis (2DCos) to the ROA and Raman concentration-dependent spectral sets delicate transitions in mucin conformation could also be determined. From ~20-40 mg/ml conformational transitions assigned mainly to the sugar N-acetyl-d-galactosamine (GalNAc), which is the linking saccharide unit to the protein backbone, were monitored. Further changes in local oligosaccharide conformation above 40 mg/ml were also monitored, together with other structural transitions observed in the protein core, particularly β-structure formation. Consequently, these spectral techniques were shown to monitor the formation of transient entanglements formed by brush-brush interactions between oligosaccharide combs of mucin molecules identifying changes in both carbohydrate and protein moieties. This work clearly shows how these methods can be used to elucidate fresh insights into the complex behaviour of these large complex molecules.
Collapse
|
19
|
Bansil R, Celli JP, Hardcastle JM, Turner BS. The Influence of Mucus Microstructure and Rheology in Helicobacter pylori Infection. Front Immunol 2013; 4:310. [PMID: 24133493 PMCID: PMC3794295 DOI: 10.3389/fimmu.2013.00310] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 09/16/2013] [Indexed: 12/24/2022] Open
Abstract
The bacterium Helicobacter pylori (H. pylori), has evolved to survive in the highly acidic environment of the stomach and colonize on the epithelial surface of the gastric mucosa. Its pathogenic effects are well known to cause gastritis, peptic ulcers, and gastric cancer. In order to infect the stomach and establish colonies on the mucus epithelial surface, the bacterium has to move across the gel-like gastric mucus lining of the stomach under acidic conditions. In this review we address the question of how the bacterium gets past the protective mucus barrier from a biophysical perspective. We begin by reviewing the molecular structure of gastric mucin and discuss the current state of understanding concerning mucin polymerization and low pH induced gelation. We then focus on the viscoelasticity of mucin in view of its relevance to the transport of particles and bacteria across mucus, the key first step in H. pylori infection. The second part of the review focuses on the motility of H. pylori in mucin solutions and gels, and how infection with H. pylori in turn impacts the viscoelastic properties of mucin. We present recent microscopic results tracking the motion of H. pylori in mucin solutions and gels. We then discuss how the biochemical strategy of urea hydrolysis required for survival in the acid is also relevant to the mechanism that enables flagella-driven swimming across the mucus gel layer. Other aspects of the influence of H. pylori infection such as, altering gastric mucin expression, its rate of production and its composition, and the influence of mucin on factors controlling H. pylori virulence and proliferation are briefly discussed with references to relevant literature.
Collapse
Affiliation(s)
- Rama Bansil
- Department of Physics, Boston University , Boston, MA , USA
| | | | | | | |
Collapse
|
20
|
Znamenskaya Y, Sotres J, Gavryushov S, Engblom J, Arnebrant T, Kocherbitov V. Water Sorption and Glass Transition of Pig Gastric Mucin Studied by QCM-D. J Phys Chem B 2013; 117:2554-63. [DOI: 10.1021/jp311968b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yana Znamenskaya
- Biomedical Science, Faculty
of Health and Society, Malmö University, SE-205 06 Malmö, Sweden
| | - Javier Sotres
- Biomedical Science, Faculty
of Health and Society, Malmö University, SE-205 06 Malmö, Sweden
| | - Sergei Gavryushov
- Biomedical Science, Faculty
of Health and Society, Malmö University, SE-205 06 Malmö, Sweden
| | - Johan Engblom
- Biomedical Science, Faculty
of Health and Society, Malmö University, SE-205 06 Malmö, Sweden
| | - Thomas Arnebrant
- Biomedical Science, Faculty
of Health and Society, Malmö University, SE-205 06 Malmö, Sweden
| | - Vitaly Kocherbitov
- Biomedical Science, Faculty
of Health and Society, Malmö University, SE-205 06 Malmö, Sweden
| |
Collapse
|
21
|
Kulichikhin VG, Yampolskaya GP. Colloid-chemical aspects of protein crystallization. Russ Chem Bull 2013. [DOI: 10.1007/s11172-013-0045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
22
|
Offengenden M, Wu J. Egg white ovomucin gels: structured fluids with weak polyelectrolyte properties. RSC Adv 2013. [DOI: 10.1039/c2ra22501h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
23
|
Liu X, Dedinaite A, Rutland M, Thormann E, Visnevskij C, Makuska R, Claesson PM. Electrostatically anchored branched brush layers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:15537-15547. [PMID: 23046176 DOI: 10.1021/la3028989] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A novel type of block copolymer has been synthesized. It consists of a linear cationic block and an uncharged bottle-brush block. The nonionic bottle-brush block contains 45 units long poly(ethylene oxide) side chains. This polymer was synthesized with the intention of creating branched brush layers firmly physisorbed to negatively charged surfaces via the cationic block, mimicking the architecture (but not the chemistry) of bottle-brush molecules suggested to be present on the cartilage surface, and contributing to the efficient lubrication of synovial joints. The adsorption properties of the diblock copolymer as well as of the two blocks separately were studied on silica surfaces using quartz crystal microbalance with dissipation monitoring (QCM-D) and optical reflectometry. The adsorption kinetics data highlight that the diblock copolymers initially adsorb preferentially parallel to the surface with both the cationic block and the uncharged bottle-brush block in contact with the surface. However, as the adsorption proceeds, a structural change occurs within the layer, and the PEO bottle-brush block extends toward solution, forming a surface-anchored branched brush layer. As the adsorption plateau is reached, the diblock copolymer layer is 46-48 nm thick, and the water content in the layer is above 90 wt %. The combination of strong electrostatic anchoring and highly hydrated branched brush structures provide strong steric repulsion, low friction forces, and high load bearing capacity. The strong electrostatic anchoring also provides high stability of preadsorbed layers under different ionic strength conditions.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Department of Chemistry, Surface and Corrosion Science, School of Chemical Sciences and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Our purpose here is not to address specific issues of mucus pathology, but to illustrate how polymer networks theory and its remarkable predictive power can be applied to study the supramolecular dynamics of mucus. Avoiding unnecessary mathematical formalization, in the light of available theory, we focus on the rather slow progress and the still large number of missing gaps in the complex topology and supramolecular dynamics of airway mucus. We start with the limited information on the polymer physics of respiratory mucins to then converge on the supramolecular organization and resulting physical properties of the mucus gel. In each section, we briefly discuss progress on the subject, the uncertainties associated with the established knowledge, and the many riddles that still remain.
Collapse
Affiliation(s)
- Pedro Verdugo
- Friday Harbor Laboratories, University of Washington, Friday Harbor, 98250, USA.
| |
Collapse
|
25
|
Haugstad KE, Gerken TA, Stokke BT, Dam TK, Brewer CF, Sletmoen M. Enhanced self-association of mucins possessing the T and Tn carbohydrate cancer antigens at the single-molecule level. Biomacromolecules 2012; 13:1400-9. [PMID: 22428527 PMCID: PMC3364602 DOI: 10.1021/bm300135h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mucins are linear O-glycosylated glycoproteins involved in inflammation, cell adhesion, and tumorigenesis. Cancer-associated mucins often possess increased expression of the T (Galβ1,3GalNAcαThr/Ser) and Tn (GalNAcαThr/Ser) cancer antigens, which are diagnostic markers for several cancers, including colon cancer. We have used AFM based single-molecule forced unbinding under near physiological conditions to investigate the self-interactions between porcine submaxillary mucin (PSM) as well as between PSM analogs possessing various carbohydrates including the T- and Tn-antigen. Distributions of unbinding forces and corresponding force loading rates were determined for force loading rates from 0.18 nN/s to 39 nN/s, and processed to yield most probable unbinding forces f* and lifetimes of the interactions. Parameter f* varied in the range 27 to 50 pN at force loading rates of about 2 nN/s among the various mucins. All mucin samples investigated showed self-interaction, but the tendency was greatest for PSM displaying only the Tn-antigen (Tn-PSM) or a mixture of Tn-, T-antigen, and the trisaccharide Fucα1,2Galβ1,3GalNAc (Tri-PSM). Weaker self-interactions were observed for native PSM (Fd-PSM), which consists of a nearly equal mixture of the longer core 1 blood group A tetrasaccharide (GalNAcα1,3(Fucα1,2)Galβ1,3GalNAcαSer/Thr) and Tn-antigen. The data are consistent with the truncated Tn and T glycans enhancing self-interaction of the mucins. These carbohydrate cancer antigens may, thus, play an active role in the disease by constitutively activating mucin and mucin-type receptors by self-association on cells.
Collapse
Affiliation(s)
- Kristin E Haugstad
- Biophysics and Medical Technology, Department of Physics, The Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | | | | | | | | | | |
Collapse
|
26
|
Znamenskaya Y, Sotres J, Engblom J, Arnebrant T, Kocherbitov V. Effect of hydration on structural and thermodynamic properties of pig gastric and bovine submaxillary gland mucins. J Phys Chem B 2012; 116:5047-55. [PMID: 22455728 DOI: 10.1021/jp212495t] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the essential functions of mucous gel is protection of tissues against dehydration. The effect of hydration on the structural and thermodynamic properties of pig gastric mucin (PGM) and bovine submaxillary gland mucin (BSM) have been studied using atomic force microscopy (AFM), sorption, and differential scanning calorimetry (DSC). The analysis of sorption isotherms shows the higher water sorption capacity of PGM compared to BSM at RH levels lower than about 78%. The value of the hydration enthalpy at zero water content at 25 °C for both biopolymers is about -20 kJ/mol. Glass transitions of BSM and PGM occur at RH levels between 60 and 70% for both mucins. AFM indicates the presence of a dumbbell structure as well as a fiber-like structure in PGM samples. The experimental volume of the dry dumbbell molecule obtained by AFM is 3140 ± 340 nm(3). Using DSC data, the amount of nonfreezing water was calculated to be about 0.51 g/g of PGM. The phase diagram of PGM demonstrates two regions of different Tg: dependent and independent of hydration levels. In particular, at mucin concentrations from 0 to 67 wt %, the glass transition occurs at a constant temperature of about -15 °C. At higher concentrations of mucin, Tg is increasing with increasing mucin concentrations.
Collapse
Affiliation(s)
- Yana Znamenskaya
- Biomedical Science, Faculty of Health and Society, Malmö University , SE-205 06 Malmö, Sweden
| | | | | | | | | |
Collapse
|
27
|
Kulichikhin VG, Elenskii AA, Kharlov AE, Shabanov MP, Yampol’skaya GP. Peculiarities of the surface crystallization of sodium chloride on mucin films. COLLOID JOURNAL 2012. [DOI: 10.1134/s1061933x12010097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Chen EY, Daley D, Wang YC, Garnica M, Chen CS, Chin WC. Functionalized carboxyl nanoparticles enhance mucus dispersion and hydration. Sci Rep 2012; 2:211. [PMID: 22355725 PMCID: PMC3251626 DOI: 10.1038/srep00211] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 12/14/2011] [Indexed: 11/09/2022] Open
Abstract
Luminal accumulation of viscous, poorly hydrated, and less transportable mucus has been associated with altered mucus rheology and reduced mucociliary clearance. These symptoms are some of the cardinal clinical manifestations found throughout major respiratory diseases as well as gastrointestinal and digestive disorders. Applications of current mucolytics may yield short-term improvements but are continuously challenged by undesirable side-effects. While nanoparticles (NPs) can interact with mucin polymers,whether functionalized NPs can rectify mucus rheology is unknown. Herein, we report that carboxyl-functionalized NPs (24 nm and 120 nm) dramatically reduced mucin gel size and accelerated mucin matrix hydration rate (diffusivity). Our results suggest that carboxyl-functionalized NPs disperse mucin gels possibly by enhancing network hydration. This report highlights the prospective usages of carboxyl-functionalized NPs as a novel mucus dispersant or mucolytic agent in adjusting mucus rheological properties and improving mucociliary transport to relieve clinical symptoms of patients suffering from relevant diseases.
Collapse
Affiliation(s)
- Eric Y. Chen
- Bioengineering, University of California Merced, CA 95343, USA. 5200 North Lake Road, Merced, CA 95343, USA
| | - David Daley
- Bioengineering, University of California Merced, CA 95343, USA. 5200 North Lake Road, Merced, CA 95343, USA
| | - Yung-Chen Wang
- Bioengineering, University of California Merced, CA 95343, USA. 5200 North Lake Road, Merced, CA 95343, USA
| | - Maria Garnica
- Bioengineering, University of California Merced, CA 95343, USA. 5200 North Lake Road, Merced, CA 95343, USA
| | - Chi-Shuo Chen
- Bioengineering, University of California Merced, CA 95343, USA. 5200 North Lake Road, Merced, CA 95343, USA
| | - Wei-Chun Chin
- Bioengineering, University of California Merced, CA 95343, USA. 5200 North Lake Road, Merced, CA 95343, USA
| |
Collapse
|
29
|
Nordgård CT, Draget KI. Oligosaccharides As Modulators of Rheology in Complex Mucous Systems. Biomacromolecules 2011; 12:3084-90. [DOI: 10.1021/bm200727c] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Catherine Taylor Nordgård
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology, NTNU, 7491 Trondheim, Norway
| | - Kurt I. Draget
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology, NTNU, 7491 Trondheim, Norway
| |
Collapse
|
30
|
Structural investigation of porcine stomach mucin by X-ray fiber diffraction and homology modeling. Biochem Biophys Res Commun 2011; 406:570-3. [PMID: 21354107 DOI: 10.1016/j.bbrc.2011.02.092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 02/18/2011] [Indexed: 11/22/2022]
Abstract
The basic understanding of the three dimensional structure of mucin is essential to understand its physiological function. Technology has been developed to achieve orientated porcine stomach mucin molecules. X-ray fiber diffraction of partially orientated porcine stomach mucin molecules show d-spacing signals at 2.99, 4.06, 4.22, 4.7, 5.37 and 6.5 Å. The high intense d-spacing signal at 4.22 Å is attributed to the antiparallel β-sheet structure identified in the fraction of the homology modeled mucin molecule (amino acid residues 800-980) using Nidogen-Laminin complex structure as a template. The X-ray fiber diffraction signal at 6.5 Å reveals partial organization of oligosaccharides in porcine stomach mucin. This partial structure of mucin will be helpful in establishing a three dimensional structure for the whole mucin molecule.
Collapse
|
31
|
Harvey NM, Yakubov GE, Stokes JR, Klein J. Normal and Shear Forces between Surfaces Bearing Porcine Gastric Mucin, a High-Molecular-Weight Glycoprotein. Biomacromolecules 2011; 12:1041-50. [DOI: 10.1021/bm101369d] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Neale M. Harvey
- The Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Gleb E. Yakubov
- Unilever R&D, Colworth Science Park, Bedford MK44 1LQ, United Kingdom
| | - Jason R. Stokes
- Unilever R&D, Colworth Science Park, Bedford MK44 1LQ, United Kingdom
| | - Jacob Klein
- The Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
32
|
Sadasivan VD, Narpala SR, Budil DE, Sacco A, Carrier RL. Modeling the human intestinal Mucin (MUC2) C-terminal cystine knot dimer. J Mol Model 2011; 17:2953-63. [DOI: 10.1007/s00894-010-0932-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 12/07/2010] [Indexed: 01/21/2023]
|
33
|
Svensson O, Arnebrant T. Mucin layers and multilayers — Physicochemical properties and applications. Curr Opin Colloid Interface Sci 2010. [DOI: 10.1016/j.cocis.2010.05.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Chen EYT, Wang YC, Chen CS, Chin WC. Functionalized positive nanoparticles reduce mucin swelling and dispersion. PLoS One 2010; 5:e15434. [PMID: 21085670 PMCID: PMC2978103 DOI: 10.1371/journal.pone.0015434] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 09/23/2010] [Indexed: 01/07/2023] Open
Abstract
Multi-functionalized nanoparticles (NPs) have been extensively investigated for their potential in household and commercial products, and biomedical applications. Previous reports have confirmed the cellular nanotoxicity and adverse inflammatory effects on pulmonary systems induced by NPs. However, possible health hazards resulting from mucus rheological disturbances induced by NPs are underexplored. Accumulation of viscous, poorly dispersed, and less transportable mucus leading to improper mucus rheology and dysfunctional mucociliary clearance are typically found to associate with many respiratory diseases such as asthma, cystic fibrosis (CF), and COPD (Chronic Obstructive Pulmonary Disease). Whether functionalized NPs can alter mucus rheology and its operational mechanisms have not been resolved. Herein, we report that positively charged functionalized NPs can hinder mucin gel hydration and effectively induce mucin aggregation. The positively charged NPs can significantly reduce the rate of mucin matrix swelling by a maximum of 7.5 folds. These NPs significantly increase the size of aggregated mucin by approximately 30 times within 24 hrs. EGTA chelation of indigenous mucin crosslinkers (Ca2+ ions) was unable to effectively disperse NP-induced aggregated mucins. Our results have demonstrated that positively charged functionalized NPs can impede mucin gel swelling by crosslinking the matrix. This report also highlights the unexpected health risk of NP-induced change in mucus rheological properties resulting in possible mucociliary transport impairment on epithelial mucosa and related health problems. In addition, our data can serve as a prospective guideline for designing nanocarriers for airway drug delivery applications.
Collapse
Affiliation(s)
- Eric Y. T. Chen
- Bioengineering, University of California Merced, Merced, California, United States of America
| | - Yung-Chen Wang
- Bioengineering, University of California Merced, Merced, California, United States of America
| | - Chi-Shuo Chen
- Bioengineering, University of California Merced, Merced, California, United States of America
| | - Wei-Chun Chin
- Bioengineering, University of California Merced, Merced, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
Chen EYT, Yang N, Quinton PM, Chin WC. A new role for bicarbonate in mucus formation. Am J Physiol Lung Cell Mol Physiol 2010; 299:L542-9. [PMID: 20693315 DOI: 10.1152/ajplung.00180.2010] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The impact of small anions on the physical properties of gel-forming mucin has been almost overlooked relative to that of cations. Recently, based on the coincident abnormalities in HCO(3)(-) secretion and abnormal mucus formed in the hereditary disease cystic fibrosis (CF), HCO(3)(-) was hypothesized to be critical in the formation of normal mucus by virtue of its ability to sequester Ca(2+) from condensed mucins being discharged from cells. However, direct evidence of the impact of HCO(3)(-) on mucus properties is lacking. Herein, we demonstrate for the first time that mucin diffusivity (∼1/viscosity) increases as a function of [HCO(3)(-)]. Direct measurements of exocytosed mucin-swelling kinetics from airway cells showed that mucin diffusivity increases by ∼300% with 20 mM extracellular HCO(3)(-) concentration. Supporting data indicate that HCO(3)(-) reduces free Ca(2+) concentration and decreases the amount of Ca(2+) that remains associated with mucins. The results demonstrate that HCO(3)(-) enhances mucin swelling and hydration by reducing Ca(2+) cross-linking in mucins, thereby decreasing its viscosity and likely increasing its transportability. In addition, HCO(3)(-) can function as a Ca(2+) chelator like EGTA to disperse mucin aggregates. This study indicates that poor HCO(3)(-) availability in CF may explain why secreted mucus remains aggregated and more viscous in affected organs. These insights bear on not only the fundamental pathogenesis in CF, but also on the process of gel mucus formation and release in general.
Collapse
Affiliation(s)
- Eric Y T Chen
- Bioengineering, Univ. of California at Merced, 95343, USA
| | | | | | | |
Collapse
|
36
|
|
37
|
Griffiths PC, Occhipinti P, Morris C, Heenan RK, King SM, Gumbleton M. PGSE-NMR and SANS Studies of the Interaction of Model Polymer Therapeutics with Mucin. Biomacromolecules 2009; 11:120-5. [DOI: 10.1021/bm9009667] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Peter Charles Griffiths
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom, Welsh School of Pharmacy, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, United Kingdom, and ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Paola Occhipinti
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom, Welsh School of Pharmacy, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, United Kingdom, and ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Christopher Morris
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom, Welsh School of Pharmacy, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, United Kingdom, and ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Richard K. Heenan
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom, Welsh School of Pharmacy, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, United Kingdom, and ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Stephen Michael King
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom, Welsh School of Pharmacy, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, United Kingdom, and ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Mark Gumbleton
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom, Welsh School of Pharmacy, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, United Kingdom, and ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| |
Collapse
|
38
|
Yakubov GE, McColl J, Bongaerts JHH, Ramsden JJ. Viscous boundary lubrication of hydrophobic surfaces by mucin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:2313-21. [PMID: 19146419 DOI: 10.1021/la8018666] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The lubricating behavior of the weakly charged short-side-chain glycoprotein mucin "Orthana" (Mw=0.55 MDa) has been investigated between hydrophobic and hydrophilic PDMS substrates using soft-contact tribometry. It was found that mucin facilitates lubrication between hydrophobic PDMS surfaces, leading to a 10-fold reduction in boundary friction coefficient for rough surfaces. The presence of mucin also results in a shift of the mixed lubrication regime to lower entrainment speeds. The observed boundary lubrication behavior of mucin was found to depend on the bulk concentration, and we linked this to the structure and dynamics of the adsorbed mucin films, which are assessed using optical waveguide light spectroscopy. We observe a composite structure of the adsorbed mucin layer, with its internal structure governed by entanglement. The film thickness of this adsorbed layer increases with concentration, while the boundary friction coefficient for rough surfaces was found to be inversely proportional to the thickness of the adsorbed film. This link between lubrication and structure of the film is consistent with a viscous boundary lubrication mechanism, i.e., a thicker adsorbed film, at a given sliding speed, results in a lower local shear rate and, hence, in a lower local shear stress. The estimated local viscosities of the adsorbed layer, derived from the friction measurements and the polymer layer density, are in agreement with each other.
Collapse
Affiliation(s)
- Gleb E Yakubov
- Unilever Corporate Research, Colworth Science Park, Bedfordshire MK44 1LQ, UK.
| | | | | | | |
Collapse
|