1
|
Miar S, Gonzales G, Dion G, Ong JL, Malka R, Bizios R, Branski RC, Guda T. Electrospun composite-coated endotracheal tubes with controlled siRNA and drug delivery to lubricate and minimize upper airway injury. Biomaterials 2024; 309:122602. [PMID: 38768544 DOI: 10.1016/j.biomaterials.2024.122602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Endotracheal Tubes (ETTs) maintain and secure a patent airway; however, prolonged intubation often results in unintended injury to the mucosal epithelium and inflammatory sequelae which complicate recovery. ETT design and materials used have yet to adapt to address intubation associated complications. In this study, a composite coating of electrospun polycaprolactone (PCL) fibers embedded in a four-arm polyethylene glycol acrylate matrix (4APEGA) is developed to transform the ETT from a mechanical device to a dual-purpose device capable of delivering multiple therapeutics while preserving coating integrity. Further, the composite coating system (PCL-4APEGA) is capable of sustained delivery of dexamethasone from the PCL phase and small interfering RNA (siRNA) containing polyplexes from the 4APEGA phase. The siRNA is released rapidly and targets smad3 for immediate reduction in pro-fibrotic transforming growth factor-beta 1 (TGFϐ1) signaling in the upper airway mucosa as well as suppressing long-term sequelae in inflammation from prolonged intubation. A bioreactor was used to study mucosal adhesion to the composite PCL-4APEGA coated ETTs and investigate continued mucus secretory function in ex vivo epithelial samples. The addition of the 4APEGA coating and siRNA delivery to the dexamethasone delivery was then evaluated in a swine model of intubation injury and observed to restore mechanical function of the vocal folds and maintain epithelial thickness when observed over 14 days of intubation. This study demonstrated that increase in surface lubrication paired with surface stiffness reduction significantly decreased fibrotic behavior while reducing epithelial adhesion and abrasion.
Collapse
Affiliation(s)
- Solaleh Miar
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, USA; Department of Civil, Environmental, and Biomedical Engineering, University of Hartford, West Hartford, CT, USA.
| | - Gabriela Gonzales
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, USA.
| | - Gregory Dion
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Joo L Ong
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, USA.
| | - Ronit Malka
- Department of Otolaryngology - Head and Neck Surgery, Brooke Army Medical Center, JBSA, Fort Sam Houston, TX, 78234, USA.
| | - Rena Bizios
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, USA.
| | - Ryan C Branski
- Departments of Rehabilitation Medicine and Otolaryngology-Head and Neck Surgery, NYU Grossman School of Medicine, New York, NY, USA.
| | - Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, USA; Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
2
|
Ren Y, Zeng L, Tang Y, Liao J, Jiang M, Cao X, Fan H, Chen J. Enhancing spleen-targeted mRNA delivery with branched biodegradable tails in lipid nanoparticles. J Mater Chem B 2024; 12:8062-8066. [PMID: 39099464 DOI: 10.1039/d4tb00960f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The application of mRNA therapy is constrained by the current lipid nanoparticles' (LNPs) inability to target non-liver tissues. In this study, we demonstrate that ionizable lipids equipped with branched and biodegradable tails enhance the selective delivery of mRNA to the spleen, particularly to antigen-presenting cells. This approach offers novel insights into how the chemical structure of LNPs influences their organ-specific targeting capabilities.
Collapse
Affiliation(s)
- Yupeng Ren
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, 2 Taoyuan Street, Xiangtan 411201, P. R. China.
| | - Ling Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Yingsen Tang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Jing Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Meng Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Xinxiu Cao
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, 2 Taoyuan Street, Xiangtan 411201, P. R. China.
| | - Hui Fan
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, 2 Taoyuan Street, Xiangtan 411201, P. R. China.
| | - Jinjin Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
3
|
Leng Q, Anand A, Mixson AJ. pH modification of gel mobility shift improves polyplex selection In Vivo. Biochem Biophys Res Commun 2024; 738:150566. [PMID: 39180892 DOI: 10.1016/j.bbrc.2024.150566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 08/17/2024] [Indexed: 08/27/2024]
Abstract
Cationic polymers that bind with the plasmids to form polyplexes protect the DNA from enzymatic degradation and improve cellular and tissue uptake. Complete or near complete gel retardation of the polyplex is an important assay to determine the optimal polymer: plasmid ratio for in vitro and in vivo studies. Nevertheless, despite minimal to moderate gel retardation of histidine-lysine (HK) polyplexes formed with low peptide: plasmid DNA ratios (1:2 and 1:4; w:w), the polyplexes effectively targeted the tumor in vivo. To understand the lack of predictability of the initial gel mobility shift assays, we revisited the retardation and stability of polyplexes with these electrophoresis assays. Because the histidine component with a pKa of about 6.0 will have a greater positive charge and may bind plasmids with a higher affinity at lower pHs, we compared the retardation of the two HK polyplexes when the pH of the running buffer of the gel mobility shift assay was altered. Both HK polyplexes were retarded significantly more when the running buffer had a pH of 7.3 instead of the standard pH of 8.3. Indeed, the HK polyplexes formed at the 1:2 ratio showed complete retardation at pH 7.3. Consequently, while both HK polyplexes formed at these low ratios targeted the tumor, the polyplex formed with the 1:2 ratio had reduced tumor gene expression variability and lower lung and liver values. Thus, the selection of the optimal ratios for the linear HK and plasmid for transfection studies in vivo was improved with a running buffer pH of 7.3.
Collapse
Affiliation(s)
- Q Leng
- Department of Pathology, University of Maryland School of Medicine, 10 S. Pine St., University of Maryland, Baltimore, MD, 21201, USA
| | - A Anand
- Department of Pathology, University of Maryland School of Medicine, 10 S. Pine St., University of Maryland, Baltimore, MD, 21201, USA
| | - A James Mixson
- Department of Pathology, University of Maryland School of Medicine, 10 S. Pine St., University of Maryland, Baltimore, MD, 21201, USA.
| |
Collapse
|
4
|
Zhu Y, Therrien I, Wan Z, Yu Z, Zhu J, Zheng D, Sun H, Rojas OJ, Jiang F. One-pot complexation of phytic acid and polyethyleneimine on cellulosic microfibers towards insulative and flame-resistant foam. Int J Biol Macromol 2024; 275:133521. [PMID: 38960267 DOI: 10.1016/j.ijbiomac.2024.133521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/13/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Flame resistance is required for the deployment of bio-based materials, especially those forming cellular structures that endow thermal insulation. This study proposes a one-pot strategy to prepare cellular lignocellulosic composites with excellent flame resistance. Lignocellulosic microfibers were used as the substrate onto which a flame-retardant complex consisting of P-containing phytic acid (PA) and N-containing polyethyleneimine (PEI) was formed. Following the prediction of ab initio molecular dynamics simulation, PA and PEI are integrated onto MF-CTMP following a single-step complexation assembly triggered by pH effects. The PA-PEI modified MF-CTMP can be readily transformed into a composite solid foam by dewatering a wet foam followed by oven drying. At the expense of a slightly reduced thermal insulation (thermal conductivity increase from 33.6 ± 0.6 to 40.0 ± 0.6 mW/(m·K)) the presence of PA-PEI complexes significantly improved the mechanical performance of the foam and uniquely endows it with flame resistance. Compared to unmodified MF-CTMP foams, the composite foams showed significant improvement in the Young's, specific compression, and flexural moduli (increased by 13.5, 5.5, and 7.3 folds, respectively), a high oxygen index (up to 40.8 %) and self-extinguishing effects. The results suggest the suitability of the introduced lignocellulosic foam as an alternative to traditional synthetic polymer-based counterparts as well as inorganic matter for insulation, particularly relevant to the building sector.
Collapse
Affiliation(s)
- Yeling Zhu
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute and Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Biobased Colloids and Materials, Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Isabella Therrien
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute and Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Zhangmin Wan
- Biobased Colloids and Materials, Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Zhengyang Yu
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute and Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jiaying Zhu
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute and Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Dingyuan Zheng
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute and Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Hao Sun
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute and Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Orlando J Rojas
- Biobased Colloids and Materials, Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Feng Jiang
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute and Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
5
|
Pineda S, Staňo R, Murmiliuk A, Blanco PM, Montes P, Tošner Z, Groborz O, Pánek J, Hrubý M, Štěpánek M, Košovan P. Charge Regulation Triggers Condensation of Short Oligopeptides to Polyelectrolytes. JACS AU 2024; 4:1775-1785. [PMID: 38818083 PMCID: PMC11134362 DOI: 10.1021/jacsau.3c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 06/01/2024]
Abstract
Electrostatic interactions between charged macromolecules are ubiquitous in biological systems, and they are important also in materials design. Attraction between oppositely charged molecules is often interpreted as if the molecules had a fixed charge, which is not affected by their interaction. Less commonly, charge regulation is invoked to interpret such interactions, i.e., a change of the charge state in response to a change of the local environment. Although some theoretical and simulation studies suggest that charge regulation plays an important role in intermolecular interactions, experimental evidence supporting such a view is very scarce. In the current study, we used a model system, composed of a long polyanion interacting with cationic oligolysines, containing up to 8 lysine residues. We showed using both simulations and experiments that while these lysines are only weakly charged in the absence of the polyanion, they charge up and condense on the polycations if the pH is close to the pKa of the lysine side chains. We show that the lysines coexist in two distinct populations within the same solution: (1) practically nonionized and free in solution; (2) highly ionized and condensed on the polyanion. Using this model system, we demonstrate under what conditions charge regulation plays a significant role in the interactions of oppositely charged macromolecules and generalize our findings beyond the specific system used here.
Collapse
Affiliation(s)
- Sebastian
P. Pineda
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 40, Czech Republic
| | - Roman Staňo
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, Vienna 1090, Austria
- Vienna
Doctoral School in Physics, University of
Vienna, Boltzmanngasse 5, Vienna 1090, Austria
| | - Anastasiia Murmiliuk
- Jülich
Centre for Neutron Science JCNS at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, Garching 85748, Germany
| | - Pablo M. Blanco
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 40, Czech Republic
- Department
of Material Science and Physical Chemistry, Research Institute of
Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, C/Martí i Franquès 1, Barcelona 08028, Spain
- Department of Physics, NTNU - Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Patricia Montes
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 40, Czech Republic
| | - Zdeněk Tošner
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 40, Czech Republic
| | - Ondřej Groborz
- Institute
of Macromolecular Chemistry AS CR, Heyrovský square 2, 162 06 Prague 6, Czech Republic
| | - Jiří Pánek
- Institute
of Macromolecular Chemistry AS CR, Heyrovský square 2, 162 06 Prague 6, Czech Republic
| | - Martin Hrubý
- Institute
of Macromolecular Chemistry AS CR, Heyrovský square 2, 162 06 Prague 6, Czech Republic
| | - Miroslav Štěpánek
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 40, Czech Republic
| | - Peter Košovan
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 40, Czech Republic
| |
Collapse
|
6
|
Shadman H, Ziebarth JD, Gallops CE, Luo R, Li Z, Chen HF, Wang Y. Map conformational landscapes of intrinsically disordered proteins with polymer physics quantities. Biophys J 2024; 123:1253-1263. [PMID: 38615193 PMCID: PMC11140466 DOI: 10.1016/j.bpj.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/20/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024] Open
Abstract
Disordered proteins are conformationally flexible proteins that are biologically important and have been implicated in devastating diseases such as Alzheimer's disease and cancer. Unlike stably folded structured proteins, disordered proteins sample a range of different conformations that needs to be accounted for. Here, we treat disordered proteins as polymer chains, and compute a dimensionless quantity called instantaneous shape ratio (Rs), as Rs = Ree2/Rg2, where Ree is end-to-end distance and Rg is radius of gyration. Extended protein conformations tend to have high Ree compared with Rg, and thus have high Rs values, whereas compact conformations have smaller Rs values. We use a scatter plot of Rs (representing shape) against Rg (representing size) as a simple map of conformational landscapes. We first examine the conformational landscape of simple polymer models such as Random Walk, Self-Avoiding Walk, and Gaussian Walk (GW), and we notice that all protein/polymer maps lie within the boundaries of the GW map. We thus use the GW map as a reference and, to assess conformational diversity, we compute the fraction of the GW conformations (fC) covered by each protein/polymer. Disordered proteins all have high fC scores, consistent with their disordered nature. Each disordered protein accesses a different region of the reference map, revealing differences in their conformational ensembles. We additionally examine the conformational maps of the nonviral gene delivery vector polyethyleneimine at various protonation states, and find that they resemble disordered proteins, with coverage of the reference map decreasing with increasing protonation state, indicating decreasing conformational diversity. We propose that our method of combining Rs and Rg in a scatter plot generates a simple, meaningful map of the conformational landscape of a disordered protein, which in turn can be used to assess conformational diversity of disordered proteins.
Collapse
Affiliation(s)
- Hossain Shadman
- Department of Chemistry, The University of Memphis, Memphis, Tennessee
| | - Jesse D Ziebarth
- Department of Chemistry, The University of Memphis, Memphis, Tennessee
| | - Caleb E Gallops
- Department of Chemistry, The University of Memphis, Memphis, Tennessee
| | - Ray Luo
- Chemical and Materials Physics Graduate Program, Departments of Molecular Biology and Biochemistry, Chemical and Biomolecular Engineering, Materials Science and Engineering, and Biomedical Engineering, University of California, Irvine, Irvine, California
| | - Zhengxin Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yongmei Wang
- Department of Chemistry, The University of Memphis, Memphis, Tennessee.
| |
Collapse
|
7
|
Binder J, Winkeljann J, Steinegger K, Trnovec L, Orekhova D, Zähringer J, Hörner A, Fell V, Tinnefeld P, Winkeljann B, Frieß W, Merkel OM. Closing the Gap between Experiment and Simulation─A Holistic Study on the Complexation of Small Interfering RNAs with Polyethylenimine. Mol Pharm 2024; 21:2163-2175. [PMID: 38373164 PMCID: PMC7616749 DOI: 10.1021/acs.molpharmaceut.3c00747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Rational design is pivotal in the modern development of nucleic acid nanocarrier systems. With the rising prominence of polymeric materials as alternatives to lipid-based carriers, understanding their structure-function relationships becomes paramount. Here, we introduce a newly developed coarse-grained model of polyethylenimine (PEI) based on the Martini 3 force field. This model facilitates molecular dynamics simulations of true-sized PEI molecules, exemplified by molecules with molecular weights of 1.3, 5, 10, and 25 kDa, with degrees of branching between 50.0 and 61.5%. We employed this model to investigate the thermodynamics of small interfering RNA (siRNA) complexation with PEI. Our simulations underscore the pivotal role of electrostatic interactions in the complexation process. Thermodynamic analyses revealed a stronger binding affinity with increased protonation, notably in acidic (endosomal) pH, compared to neutral conditions. Furthermore, the molecular weight of PEI was found to be a critical determinant of binding dynamics: smaller PEI molecules closely enveloped the siRNA, whereas larger ones extended outward, facilitating the formation of complexes with multiple RNA molecules. Experimental validations, encompassing isothermal titration calorimetry and single-molecule fluorescence spectroscopy, aligned well with our computational predictions. Our findings not only validate the fidelity of our PEI model but also accentuate the importance of in silico data in the rational design of polymeric drug carriers. The synergy between computational predictions and experimental validations, as showcased here, signals a refined and precise approach to drug carrier design.
Collapse
Affiliation(s)
- Jonas Binder
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
| | - Joshua Winkeljann
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80799 München, Germany
- Chair of Experimental Physics I, University of Augsburg, Universitätsstraße 1, 86519 Augsburg, Germany
| | - Katharina Steinegger
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
| | - Lara Trnovec
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
| | - Daria Orekhova
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80799 München, Germany
| | - Jonas Zähringer
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80799 München, Germany
| | - Andreas Hörner
- Chair of Experimental Physics I, University of Augsburg, Universitätsstraße 1, 86519 Augsburg, Germany
| | - Valentin Fell
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
| | - Philip Tinnefeld
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80799 München, Germany
| | - Benjamin Winkeljann
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80799 München, Germany
| | - Wolfgang Frieß
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
| | - Olivia M Merkel
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80799 München, Germany
| |
Collapse
|
8
|
Opsomer L, Jana S, Mertens I, Cui X, Hoogenboom R, Sanders NN. Efficient in vitro and in vivo transfection of self-amplifying mRNA with linear poly(propylenimine) and poly(ethylenimine-propylenimine) random copolymers as non-viral carriers. J Mater Chem B 2024; 12:3927-3946. [PMID: 38563779 DOI: 10.1039/d3tb03003b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Messenger RNA (mRNA) based vaccines have been introduced worldwide to combat the Covid-19 pandemic. These vaccines consist of non-amplifying mRNA formulated in lipid nanoparticles (LNPs). Consequently, LNPs are considered benchmark non-viral carriers for nucleic acid delivery. However, the formulation and manufacturing of these mRNA-LNP nanoparticles are expensive and time-consuming. Therefore, we used self-amplifying mRNA (saRNA) and synthesized novel polymers as alternative non-viral carrier platform to LNPs, which enable a simple, rapid, one-pot formulation of saRNA-polyplexes. Our novel polymer-based carrier platform consists of randomly concatenated ethylenimine and propylenimine comonomers, resulting in linear, poly(ethylenimine-ran-propylenimine) (L-PEIx-ran-PPIy) copolymers with controllable degrees of polymerization. Here we demonstrate in multiple cell lines, that our saRNA-polyplexes show comparable to higher in vitro saRNA transfection efficiencies and higher cell viabilities compared to formulations with Lipofectamine MessengerMAX™ (LFMM), a commercial, lipid-based carrier considered to be the in vitro gold standard carrier. This is especially true for our in vitro best performing saRNA-polyplexes with N/P 5, which are characterised with a size below 100 nm, a positive zeta potential, a near 100% encapsulation efficiency, a high retention capacity and the ability to protect the saRNA from degradation mediated by RNase A. Furthermore, an ex vivo hemolysis assay with pig red blood cells demonstrated that the saRNA-polyplexes exhibit negligible hemolytic activity. Finally, a bioluminescence-based in vivo study was performed over a 35-day period, and showed that the polymers result in a higher and prolonged bioluminescent signal compared to naked saRNA and L-PEI based polyplexes. Moreover, the polymers show different expression profiles compared to those of LNPs, with one of our new polymers (L-PPI250) demonstrating a higher sustained expression for at least 35 days after injection.
Collapse
Affiliation(s)
- Lisa Opsomer
- Laboratory of Gene Therapy, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium.
| | - Somdeb Jana
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium.
| | - Ine Mertens
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium.
| | - Xiaole Cui
- Laboratory of Gene Therapy, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium.
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium.
| | - Niek N Sanders
- Laboratory of Gene Therapy, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium.
- Cancer Research Institute (CRIG), Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
9
|
Wang Y, Feric TG, Tang J, Fang C, Hamilton ST, Halat DM, Wu B, Celik H, Rim G, DuBridge T, Oshiro J, Wang R, Park AHA, Reimer JA. Carbon capture in polymer-based electrolytes. SCIENCE ADVANCES 2024; 10:eadk2350. [PMID: 38640239 PMCID: PMC11029803 DOI: 10.1126/sciadv.adk2350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/19/2024] [Indexed: 04/21/2024]
Abstract
Nanoparticle organic hybrid materials (NOHMs) have been proposed as excellent electrolytes for combined CO2 capture and electrochemical conversion due to their conductive nature and chemical tunability. However, CO2 capture behavior and transport properties of these electrolytes after CO2 capture have not yet been studied. Here, we use a variety of nuclear magnetic resonance (NMR) techniques to explore the carbon speciation and transport properties of branched polyethylenimine (PEI) and PEI-grafted silica nanoparticles (denoted as NOHM-I-PEI) after CO2 capture. Quantitative 13C NMR spectra collected at variable temperatures reveal that absorbed CO2 exists as carbamates (RHNCOO- or RR'NCOO-) and carbonate/bicarbonate (CO32-/HCO3-). The transport properties of PEI and NOHM-I-PEI studied using 1H pulsed-field-gradient NMR, combined with molecular dynamics simulations, demonstrate that coulombic interactions between negatively and positively charged chains dominate in PEI, while the self-diffusion in NOHM-I-PEI is dominated by silica nanoparticles. These results provide strategies for selecting adsorbed forms of carbon for electrochemical reduction.
Collapse
Affiliation(s)
- Yang Wang
- Department of Chemical and Biomolecular Engineering, College of Chemistry, UC Berkeley, Berkeley, CA 94720, USA
| | - Tony G. Feric
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
- Lenfest Center for Sustainable Energy, Columbia University, New York, NY 10027, USA
| | - Jing Tang
- Department of Chemical and Biomolecular Engineering, College of Chemistry, UC Berkeley, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Chao Fang
- Department of Chemical and Biomolecular Engineering, College of Chemistry, UC Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sara T. Hamilton
- Lenfest Center for Sustainable Energy, Columbia University, New York, NY 10027, USA
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
| | - David M. Halat
- Department of Chemical and Biomolecular Engineering, College of Chemistry, UC Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Bing Wu
- Department of Chemical and Biomolecular Engineering, College of Chemistry, UC Berkeley, Berkeley, CA 94720, USA
| | - Hasan Celik
- College of Chemistry Nuclear Magnetic Resonance Facility (CoC-NMR), University of California, Berkeley, CA 94720, USA
| | - Guanhe Rim
- Lenfest Center for Sustainable Energy, Columbia University, New York, NY 10027, USA
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
| | - Tara DuBridge
- Department of Chemical and Biomolecular Engineering, College of Chemistry, UC Berkeley, Berkeley, CA 94720, USA
| | - Julianne Oshiro
- Department of Chemical and Biomolecular Engineering, College of Chemistry, UC Berkeley, Berkeley, CA 94720, USA
| | - Rui Wang
- Department of Chemical and Biomolecular Engineering, College of Chemistry, UC Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ah-Hyung Alissa Park
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
- Lenfest Center for Sustainable Energy, Columbia University, New York, NY 10027, USA
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
| | - Jeffrey A. Reimer
- Department of Chemical and Biomolecular Engineering, College of Chemistry, UC Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
10
|
Cui Y, Liu Y, Gu D, Zhu H, Wang M, Dong M, Guo Y, Sun H, Hao J, Hao X. Three-Dimensional Cross-Linking Network Coating for the Flame Retardant of Bio-Based Polyamide 56 Fabric by Weak Bonds. Polymers (Basel) 2024; 16:1044. [PMID: 38674963 PMCID: PMC11054862 DOI: 10.3390/polym16081044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Weak bonds usually make macromolecules stronger; therefore, they are often used to enhance the mechanical strength of polymers. Not enough studies have been reported on the use of weak bonds in flame retardants. A water-soluble polyelectrolyte complex composed of polyethyleneimine (PEI), sodium tripolyphosphate (STPP) and melamine (MEL) was designed and utilized to treat bio-based polyamide 56 (PA56) by a simple three-step process. It was found that weak bonds cross-linked the three compounds to a 3D network structure with MEL on the surface of the coating under mild conditions. The thermal stability and flame retardancy of PA56 fabrics were improved by the controlled coating without losing their mechanical properties. After washing 50 times, PA56 still kept good flame retardancy. The cross-linking network structure of the flame retardant enhanced both the thermal stability and durability of the fabric. STPP acted as a catalyst for the breakage of the PA56 molecular chain, PEI facilitated the char formation and MEL released non-combustible gases. The synergistic effect of all compounds was exploited by using weak bonds. This simple method of developing structures with 3D cross-linking using weak bonds provides a new strategy for the preparation of low-cost and environmentally friendly flame retardants.
Collapse
Affiliation(s)
- Yunlong Cui
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China; (Y.C.); (D.G.); (H.Z.); (J.H.)
| | - Yu Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China; (Y.C.); (D.G.); (H.Z.); (J.H.)
| | - Dongxu Gu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China; (Y.C.); (D.G.); (H.Z.); (J.H.)
| | - Hongyu Zhu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China; (Y.C.); (D.G.); (H.Z.); (J.H.)
| | - Meihui Wang
- Systems Engineering Institute, Academy of Military Sciences, Chinese People’s Liberation Army, Beijing 100010, China; (M.W.); (M.D.); (Y.G.)
| | - Mengjie Dong
- Systems Engineering Institute, Academy of Military Sciences, Chinese People’s Liberation Army, Beijing 100010, China; (M.W.); (M.D.); (Y.G.)
| | - Yafei Guo
- Systems Engineering Institute, Academy of Military Sciences, Chinese People’s Liberation Army, Beijing 100010, China; (M.W.); (M.D.); (Y.G.)
| | - Hongyu Sun
- Binzhou Huafang Engineering Technology Research Institute, Binzhou 256617, China;
| | - Jianyuan Hao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China; (Y.C.); (D.G.); (H.Z.); (J.H.)
| | - Xinmin Hao
- Systems Engineering Institute, Academy of Military Sciences, Chinese People’s Liberation Army, Beijing 100010, China; (M.W.); (M.D.); (Y.G.)
| |
Collapse
|
11
|
Mehta MJ, Kim HJ, Lim SB, Naito M, Miyata K. Recent Progress in the Endosomal Escape Mechanism and Chemical Structures of Polycations for Nucleic Acid Delivery. Macromol Biosci 2024; 24:e2300366. [PMID: 38226723 DOI: 10.1002/mabi.202300366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/22/2023] [Indexed: 01/17/2024]
Abstract
Nucleic acid-based therapies are seeing a spiralling surge. Stimuli-responsive polymers, especially pH-responsive ones, are gaining widespread attention because of their ability to efficiently deliver nucleic acids. These polymers can be synthesized and modified according to target requirements, such as delivery sites and the nature of nucleic acids. In this regard, the endosomal escape mechanism of polymer-nucleic acid complexes (polyplexes) remains a topic of considerable interest owing to various plausible escape mechanisms. This review describes current progress in the endosomal escape mechanism of polyplexes and state-of-the-art chemical designs for pH-responsive polymers. The importance is also discussed of the acid dissociation constant (i.e., pKa) in designing the new generation of pH-responsive polymers, along with assays to monitor and quantify the endosomal escape behavior. Further, the use of machine learning is addressed in pKa prediction and polymer design to find novel chemical structures for pH responsiveness. This review will facilitate the design of new pH-responsive polymers for advanced and efficient nucleic acid delivery.
Collapse
Affiliation(s)
- Mohit J Mehta
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Hyun Jin Kim
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
- Department of Biological Engineering, College of Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Sung Been Lim
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Mitsuru Naito
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
12
|
Kreofsky NW, Roy P, Brown ME, Perez U, Leighton RE, Frontiera RR, Reineke TM. Cinchona Alkaloid Polymers Demonstrate Highly Efficient Gene Delivery Dependent on Stereochemistry, Methoxy Substitution, and Length. Biomacromolecules 2024; 25:486-501. [PMID: 38150323 DOI: 10.1021/acs.biomac.3c01099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Nucleic acid delivery with cationic polymers is a promising alternative to expensive viral-based methods; however, it often suffers from a lower performance. Herein, we present a highly efficient delivery system based on cinchona alkaloid natural products copolymerized with 2-hydroxyethyl acrylate. Cinchona alkaloids are an attractive monomer class for gene delivery applications, given their ability to bind to DNA via both electrostatics and intercalation. To uncover the structure-activity profile of the system, four structurally similar cinchona alkaloids were incorporated into polymers: quinine, quinidine, cinchonine, and cinchonidine. These polymers differed in the chain length, the presence or absence of a pendant methoxy group, and stereochemistry, all of which were found to alter gene delivery performance and the ways in which the polymers overcome biological barriers to transfection. Longer polymers that contained the methoxy-bearing cinchona alkaloids (i.e., quinine and quinidine) were found to have the best performance. These polymers exhibited the tightest DNA binding, largest and most abundant DNA-polymer complexes, and best endosomal escape thanks to their increased buffering capacity and closest nuclear proximity of the payload. Overall, this work highlights the remarkable efficiency of polymer systems that incorporate cinchona alkaloid natural products while demonstrating the profound impact that small structural changes can have on overcoming biological hurdles associated with gene delivery.
Collapse
Affiliation(s)
- Nicholas W Kreofsky
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Punarbasu Roy
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mary E Brown
- University Imaging Centers, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ulises Perez
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ryan E Leighton
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Renee R Frontiera
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
13
|
Zhou H, Chen DS, Hu CJ, Hong X, Shi J, Xiao Y. Stimuli-Responsive Nanotechnology for RNA Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303597. [PMID: 37915127 PMCID: PMC10754096 DOI: 10.1002/advs.202303597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/30/2023] [Indexed: 11/03/2023]
Abstract
Ribonucleic acid (RNA) drugs have shown promising therapeutic effects for various diseases in clinical and preclinical studies, owing to their capability to regulate the expression of genes of interest or control protein synthesis. Different strategies, such as chemical modification, ligand conjugation, and nanotechnology, have contributed to the successful clinical translation of RNA medicine, including small interfering RNA (siRNA) for gene silencing and messenger RNA (mRNA) for vaccine development. Among these, nanotechnology can protect RNAs from enzymatic degradation, increase cellular uptake and cytosolic transportation, prolong systemic circulation, and improve tissue/cell targeting. Here, a focused overview of stimuli-responsive nanotechnologies for RNA delivery, which have shown unique benefits in promoting RNA bioactivity and cell/organ selectivity, is provided. Many tissue/cell-specific microenvironmental features, such as pH, enzyme, hypoxia, and redox, are utilized in designing internal stimuli-responsive RNA nanoparticles (NPs). In addition, external stimuli, such as light, magnetic field, and ultrasound, have also been used for controlling RNA release and transportation. This review summarizes a wide range of stimuli-responsive NP systems for RNA delivery, which may facilitate the development of next-generation RNA medicines.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Cardiology, Clinical Trial CenterZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan University430071WuhanChina
- Center for Nanomedicine and Department of AnesthesiologyPerioperative and Pain MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & Telecommunications210023NanjingChina
| | - Dean Shuailin Chen
- Center for Nanomedicine and Department of AnesthesiologyPerioperative and Pain MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Caleb J. Hu
- Center for Nanomedicine and Department of AnesthesiologyPerioperative and Pain MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Xuechuan Hong
- Department of Cardiology, Clinical Trial CenterZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan University430071WuhanChina
| | - Jinjun Shi
- Center for Nanomedicine and Department of AnesthesiologyPerioperative and Pain MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Yuling Xiao
- Center for Nanomedicine and Department of AnesthesiologyPerioperative and Pain MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| |
Collapse
|
14
|
Mahajan S, Tang T. Automated Parameterization of Coarse-Grained Polyethylenimine under a Martini Framework. J Chem Inf Model 2023; 63:4328-4341. [PMID: 37424081 DOI: 10.1021/acs.jcim.3c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
As a versatile polymer in many applications, synthesized polyethylenimine (PEI) is polydisperse with diverse branched structures that attain pH-dependent protonation states. Understanding the structure-function relationship of PEI is necessary for enhancing its efficacy in various applications. Coarse-grained (CG) simulations can be performed at length and time scales directly comparable with experimental data while maintaining the molecular perspective. However, manually developing CG forcefields for complex PEI structures is time-consuming and prone to human errors. This article presents a fully automated algorithm that can coarse-grain any branched architecture of PEI from its all-atom (AA) simulation trajectories and topology. The algorithm is demonstrated by coarse-graining a branched 2 kDa PEI, which can replicate the AA diffusion coefficient, radius of gyration, and end-to-end distance of the longest linear chain. Commercially available 25 and 2 kDa Millipore-Sigma PEIs are used for experimental validation. Specifically, branched PEI architectures are proposed, coarse-grained using the automated algorithm, and then simulated at different mass concentrations. The CG PEIs can reproduce existing experimental data on PEI's diffusion coefficient and Stokes-Einstein radius at infinite dilution as well as its intrinsic viscosity. This suggests a strategy where probable chemical structures of synthetic PEIs can be inferred computationally using the developed algorithm. The coarse-graining methodology presented here can also be extended to other polymers.
Collapse
Affiliation(s)
- Subhamoy Mahajan
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Tian Tang
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
15
|
Cai X, Dou R, Guo C, Tang J, Li X, Chen J, Zhang J. Cationic Polymers as Transfection Reagents for Nucleic Acid Delivery. Pharmaceutics 2023; 15:pharmaceutics15051502. [PMID: 37242744 DOI: 10.3390/pharmaceutics15051502] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Nucleic acid therapy can achieve lasting and even curative effects through gene augmentation, gene suppression, and genome editing. However, it is difficult for naked nucleic acid molecules to enter cells. As a result, the key to nucleic acid therapy is the introduction of nucleic acid molecules into cells. Cationic polymers are non-viral nucleic acid delivery systems with positively charged groups on their molecules that concentrate nucleic acid molecules to form nanoparticles, which help nucleic acids cross barriers to express proteins in cells or inhibit target gene expression. Cationic polymers are easy to synthesize, modify, and structurally control, making them a promising class of nucleic acid delivery systems. In this manuscript, we describe several representative cationic polymers, especially biodegradable cationic polymers, and provide an outlook on cationic polymers as nucleic acid delivery vehicles.
Collapse
Affiliation(s)
- Xiaomeng Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-Disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Rui Dou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-Disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Chen Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-Disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Jiaruo Tang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-Disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Xiajuan Li
- Beijing Institute of Genomics, Chinese Academy of Sciences (CAS), China National Center for Bioinformation, Beijing 100101, China
| | - Jun Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-Disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Jiayu Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-Disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, China
| |
Collapse
|
16
|
Leng Q, Imtiyaz Z, Woodle MC, Mixson AJ. Delivery of Chemotherapy Agents and Nucleic Acids with pH-Dependent Nanoparticles. Pharmaceutics 2023; 15:1482. [PMID: 37242725 PMCID: PMC10222096 DOI: 10.3390/pharmaceutics15051482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
With less than one percent of systemically injected nanoparticles accumulating in tumors, several novel approaches have been spurred to direct and release the therapy in or near tumors. One such approach depends on the acidic pH of the extracellular matrix and endosomes of the tumor. With an average pH of 6.8, the extracellular tumor matrix provides a gradient for pH-responsive particles to accumulate, enabling greater specificity. Upon uptake by tumor cells, nanoparticles are further exposed to lower pHs, reaching a pH of 5 in late endosomes. Based on these two acidic environments in the tumor, various pH-dependent targeting strategies have been employed to release chemotherapy or the combination of chemotherapy and nucleic acids from macromolecules such as the keratin protein or polymeric nanoparticles. We will review these release strategies, including pH-sensitive linkages between the carrier and hydrophobic chemotherapy agent, the protonation and disruption of polymeric nanoparticles, an amalgam of these first two approaches, and the release of polymers shielding drug-loaded nanoparticles. While several pH-sensitive strategies have demonstrated marked antitumor efficacy in preclinical trials, many studies are early in their development with several obstacles that may limit their clinical use.
Collapse
Affiliation(s)
- Qixin Leng
- Department of Pathology, University Maryland School of Medicine, University of Maryland, 10 S. Pine St., Baltimore, MD 21201, USA (Z.I.)
| | - Zuha Imtiyaz
- Department of Pathology, University Maryland School of Medicine, University of Maryland, 10 S. Pine St., Baltimore, MD 21201, USA (Z.I.)
| | | | - A. James Mixson
- Department of Pathology, University Maryland School of Medicine, University of Maryland, 10 S. Pine St., Baltimore, MD 21201, USA (Z.I.)
| |
Collapse
|
17
|
Escudero-Curiel S, Pazos M, Sanromán A. Facile one-step synthesis of a versatile nitrogen-doped hydrochar from olive oil production waste, "alperujo", for removing pharmaceuticals from wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121751. [PMID: 37150343 DOI: 10.1016/j.envpol.2023.121751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/01/2023] [Accepted: 04/28/2023] [Indexed: 05/09/2023]
Abstract
In line with the principles of zero waste and recycling, alperujo (AL) was used in this study to produce a value-added product: hydrochar (HC) with high adsorption capacity. An optimization of the hydrothermal carbonization (HTC) conditions, such as temperature, residence time, and water/solid ratio, was carried out to maximize the adsorption capacity. Eight HCs were obtained, and an in-depth comparative characterization, as well as adsorption tests of two pharmaceuticals with very different physicochemical properties (fluoxetine (FLX) and cefazolin (CFZ)), were performed. This first step allowed for elucidation of the best candidates to carry out nitrogen grafting on their surface, resulting in the HC obtained at a higher water/solid ratio and temperature, and longer residence time: 3-220ºC-2.5 h with a maximum uptake of 4.6 and 0.4 mg/g for FLX and CFZ, respectively. After that, a facile one-step, one-pot synthesis of nitrogen-doped hydrochars (N-HC) was developed to prepare a versatile bio-adsorbent with enhanced adsorption capacity. Two N-HCs were prepared using urea (U-HC) and polyethyleneimine (PEI-HC) and were intensively characterized to shed light on the adsorption mechanism. In both cases, amide groups were formed, which favored the adsorption process. PEI-HC acquired an outstanding maximum adsorption capacity of 983.84 mg/g for CFZ, and 29.31 mg/g for FLX, and the process was well described by the Freundlich isotherm and pseudo-second-order kinetic model. A co-adsorption test was performed using PEI-HC for both pharmaceuticals, finding that the adsorption process occurs in different active sites because there was no interference between the pollutants. This fact corroborates the versatility of the new bio-adsorbent synthesized.
Collapse
Affiliation(s)
- S Escudero-Curiel
- CINTECX. Universidade de Vigo, Department of Chemical Engineering. Campus As Lagoas-Marcosende, 36310, Vigo, Spain.
| | - M Pazos
- CINTECX. Universidade de Vigo, Department of Chemical Engineering. Campus As Lagoas-Marcosende, 36310, Vigo, Spain
| | - A Sanromán
- CINTECX. Universidade de Vigo, Department of Chemical Engineering. Campus As Lagoas-Marcosende, 36310, Vigo, Spain
| |
Collapse
|
18
|
Lin Z, Fan D, Li G, He L, Qin X, Zhao B, Wang Q, Liang W. Antibacterial, Adhesive, and Conductive Hydrogel for Diabetic Wound Healing. Macromol Biosci 2023; 23:e2200349. [PMID: 36333912 DOI: 10.1002/mabi.202200349] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Diabetic mellitus is one of the leading causes of chronic wounds and remains a challenging issue to be resolved. Herein, a hydrogel with conformal tissue adhesivity, skin-like conductivity, robust mechanical characteristics, as well as active antibacterial function is developed. In this hydrogel, silver nanoparticles decorated polypyrrole nanotubes (AgPPy) and cobalt ions (Co2+ ) are introduced into an in situ polymerized poly(acrylic acid) (PAA) and branched poly(ethylenimine) (PEI) network (PPCA hydrogel). The PPCA hydrogel provides active antibacterial function through synergic effects from protonated PEI and AgPPy nanotubes, with a tissue-like mechanical property (≈16.8 ± 4.5 kPa) and skin-like electrical conductivity (≈0.048 S m-1 ). The tensile and shear adhesive strength (≈15.88 and ≈12.76 kPa, respectively) of the PPCA hydrogel is about two- to threefold better than that of fibrin glue. In vitro studies show the PPCA hydrogel is highly effective against both gram-positive and gram-negative bacteria. In vivo results demonstrate that the PPCA hydrogel promotes diabetic wounds with accelerated healing, with notable inflammatory reduction and prominent angiogenesis regeneration. These results suggest the PPCA hydrogel provide a promising approach to promote diabetic wound healing.
Collapse
Affiliation(s)
- Zhicong Lin
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Donghao Fan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Guojiao Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Liming He
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xianyan Qin
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Bin Zhao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Qin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Wenlang Liang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
19
|
Hausig-Punke F, Dekevic G, Sobotta FH, Solomun JI, Richter F, Salzig D, Traeger A, Brendel JC. Efficient Transfection via an Unexpected Mechanism by Near Neutral Polypiperazines with Tailored Response to Endosomal pH. Macromol Biosci 2023; 23:e2200517. [PMID: 36655803 DOI: 10.1002/mabi.202200517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 01/20/2023]
Abstract
Cationic pH-responsive polymers promise to overcome critical challenges in cellular delivery. Ideally, the polymers become selectively charged along the endosomal pathway disturbing only the local membrane and avoiding unintended interactions or cytotoxic side effects at physiological conditions. Polypiperazines represent a novel, hydrophilic class of pH-responsive polymers whose response can be tuned within the relevant pH range (5-7.4). The authors discovered that the polypiperazines are effectively binding plasmid DNA (pDNA) and demonstrate high efficiency in transfection. By design of experiments (DoE), a wide parameter space (pDNA and polymer concentration) is screened to identify the range of effective concentrations for transfection. An isopropyl modified polypiperazine is highly efficient over a wide range of concentrations outperforming linear polyethylenimine (l-PEI, 25 kDa) in regions of low N*/P ratios. A quantitative polymerase chain reaction (qPCR) surprisingly revealed that the pDNA within the piperazine-based polyplexes can be amplified in contrast to polyplexes based on l-PEI. The pDNA must therefore be more accessible and bound differently than for other known transfection polymers. Considering the various opportunities to further optimize their structure, polypiperazines represent a promising platform for designing effective soluble polymeric vectors, which are charge-neutral at physiological conditions.
Collapse
Affiliation(s)
- Franziska Hausig-Punke
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Gregor Dekevic
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390, Giessen, Germany
| | - Fabian H Sobotta
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Jana I Solomun
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Friederike Richter
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Denise Salzig
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390, Giessen, Germany
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Johannes C Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| |
Collapse
|
20
|
Efiana NA, Kali G, Fürst A, Dizdarević A, Bernkop-Schnürch A. Betaine-modified hydroxyethyl cellulose (HEC): A biodegradable mucoadhesive polysaccharide exhibiting quaternary ammonium substructures. Eur J Pharm Sci 2023; 180:106313. [PMID: 36307016 DOI: 10.1016/j.ejps.2022.106313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
The aim of this study was to improve the mucoadhesive properties of hydroxyethyl cellulose (HEC) via the covalent attachment of betaine. Synthesis was carried out through esterification of HEC utilizing N-chlorobetainyl chloride. Betaine-modified HEC was characterized via FTIR and NMR analyses, ester quantification and zeta potential measurements. Enzymatic degradation and cell viability were also investigated. Moreover, rheological and mucoadhesive properties were evaluated. FTIR and NMR analyses confirmed the covalent attachment of betaine to HEC. Betaine-modified HEC contained 228.45±11.63 µmol/g ester bonds and its zeta potential was 0.37±0.19 mV. Enzymatic degradation studies showed the ability of lipase to cleave off betaine from HEC. Cytotoxicity studies demonstrated that betaine-modified HEC is up to a concentration of 0.3% not toxic. In comparison to unmodified HEC, betaine-modified HEC showed with mucus a 2.3- and 4-fold higher viscosity within 3 h and 6 h, respectively. Furthermore, betaine-modified HEC exhibited 23.5-fold higher mucoadhesive properties on porcine intestinal mucosa compared to unmodified HEC. In conclusion, betaine-modified HEC might be a useful biodegradable mucoadhesive polymer.
Collapse
Affiliation(s)
- Nuri Ari Efiana
- Department of Pharmaceutical Technology, Center for Chemistry and Biomedicine, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 4th floor, Innsbruck A-6020, Austria; Department of Pharmaceutical Technology, Faculty of Pharmacy, Universitas Ahmad Dahlan, Jl. Prof. Dr. Soepomo, S.H., Janturan, Warungboto, Umbulharjo, Yogyakarta 55164, Indonesia
| | - Gergely Kali
- Department of Pharmaceutical Technology, Center for Chemistry and Biomedicine, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 4th floor, Innsbruck A-6020, Austria
| | - Andrea Fürst
- Department of Pharmaceutical Technology, Center for Chemistry and Biomedicine, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 4th floor, Innsbruck A-6020, Austria
| | - Aida Dizdarević
- Department of Pharmaceutical Technology, Center for Chemistry and Biomedicine, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 4th floor, Innsbruck A-6020, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Center for Chemistry and Biomedicine, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 4th floor, Innsbruck A-6020, Austria.
| |
Collapse
|
21
|
Preparation and characterization of magnetic PEG-PEI-PLA-PEI-PEG/FeO4-PCL/DNA micelles for gene delivery into MCF-7 cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Mahajan S, Tang T. Polyethylenimine-DNA Nanoparticles under Endosomal Acidification and Implication to Gene Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8382-8397. [PMID: 35759612 DOI: 10.1021/acs.langmuir.2c00952] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Non-viral gene delivery using polyethylenimine (PEI) has shown tremendous promise as a therapeutic technique. Through the formation of nanoparticles (NPs), PEIs protect genetic material such as DNA from degradation. Escape of the NPs from endosomes and lysosomes is facilitated by PEI's buffering capacity over a wide range of pH. However, little is known about the effects of endosomal acidification on the morphology of the NPs. In this work, large-scale coarse-grained simulations performed to mimic endosomal acidification reveal that NPs undergo a resizing process that is highly dependent on the N/P ratio (ratio of PEI nitrogen to DNA phosphate) at which they are prepared. With a low N/P ratio, NPs further aggregate after endosomal acidification, whereas with a high N/P ratio they dissociate. The mechanisms behind such NP resizing and its consequences on endosomal escape and nuclear trafficking are discussed. Based on the findings, suggestions are made on the PEI architecture that may enhance NP dissociation driven by endosomal acidification.
Collapse
Affiliation(s)
- Subhamoy Mahajan
- Department of Mechanical Engineering, University of Alberta, Edmonton T6G 2R3, Alberta, Canada
| | - Tian Tang
- Department of Mechanical Engineering, University of Alberta, Edmonton T6G 2R3, Alberta, Canada
| |
Collapse
|
23
|
Guo Z, Wang H, Wang L, Zhao B, Qian Y, Zhang H. Polyamide thin-film nanocomposite membrane containing star-shaped ZIF-8 with enhanced water permeance and PPCPs removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120886] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Mella M, Tagliabue A. Impact of Chemically Specific Interactions between Anions and Weak Polyacids on Chain Ionization, Conformations, and Solution Energetics. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Massimo Mella
- Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell’Insubria, via Valleggio 11, 22100 Como (I), Italy
| | - Andrea Tagliabue
- Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell’Insubria, via Valleggio 11, 22100 Como (I), Italy
| |
Collapse
|
25
|
Elzes MR, Mertens I, Sedlacek O, Verbraeken B, Doensen ACA, Mees MA, Glassner M, Jana S, Paulusse JMJ, Hoogenboom R. Linear Poly(ethylenimine-propylenimine) Random Copolymers for Gene Delivery: From Polymer Synthesis to Efficient Transfection with High Serum Tolerance. Biomacromolecules 2022; 23:2459-2470. [PMID: 35499242 DOI: 10.1021/acs.biomac.2c00210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Naturally occurring oligoamines, such as spermine, spermidine, and putrescine, are well-known regulators of gene expression. These oligoamines frequently have short alkyl spacers with varying lengths between the amines. Linear polyethylenimine (PEI) is a polyamine that has been widely applied as a gene vector, with various formulations currently in clinical trials. In order to emulate natural oligoamine gene regulators, linear random copolymers containing both PEI and polypropylenimine (PPI) repeat units were designed as novel gene delivery agents. In general, statistical copolymerization of 2-oxazolines and 2-oxazines leads to the formation of gradient copolymers. In this study, however, we describe for the first time the synthesis of near-ideal random 2-oxazoline/2-oxazine copolymers through careful tuning of the monomer structures and reactivity as well as polymerization conditions. These copolymers were then transformed into near-random PEI-PPI copolymers by controlled side-chain hydrolysis. The prepared PEI-PPI copolymers formed stable polyplexes with GFP-encoding plasmid DNA, as validated by dynamic light scattering. Furthermore, the cytotoxicity and transfection efficiency of polyplexes were evaluated in C2C12 mouse myoblasts. While the polymer chain length did not significantly increase the toxicity, a higher PPI content was associated with increased toxicity and also lowered the amount of polymers needed to achieve efficient transfection. The transfection efficiency was significantly influenced by the degree of polymerization of PEI-PPI, whereby longer polymers resulted in more transfected cells. Copolymers with 60% or lower PPI content exhibited a good balance between high plasmid-DNA transfection efficiency and low toxicity. Interestingly, these novel PEI-PPI copolymers revealed exceptional serum tolerance, whereby transfection efficiencies of up to 53% of transfected cells were achieved even under 50% serum conditions. These copolymers, especially PEI-PPI with DP500 and a 1:1 PEI/PPI ratio, were identified as promising transfection agents for plasmid DNA.
Collapse
Affiliation(s)
- M Rachèl Elzes
- Department of Biomolecular Nanotechnology, MESA + Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands
| | - Ine Mertens
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, 9000 Ghent, Belgium
| | - Ondrej Sedlacek
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, 9000 Ghent, Belgium.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Bart Verbraeken
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, 9000 Ghent, Belgium
| | - Aniek C A Doensen
- Department of Biomolecular Nanotechnology, MESA + Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands.,Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, 9000 Ghent, Belgium
| | - Maarten A Mees
- Department of Biomolecular Nanotechnology, MESA + Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands
| | - Mathias Glassner
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, 9000 Ghent, Belgium
| | - Somdeb Jana
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, 9000 Ghent, Belgium
| | - Jos M J Paulusse
- Department of Biomolecular Nanotechnology, MESA + Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, 9000 Ghent, Belgium
| |
Collapse
|
26
|
PAMAM versus PEI complexation for siRNA delivery: interaction with model lipid membranes and cellular uptake. Pharm Res 2022; 39:1151-1163. [PMID: 35318566 PMCID: PMC9197904 DOI: 10.1007/s11095-022-03229-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/08/2022] [Indexed: 11/06/2022]
Abstract
Purpose Cationic polymers have many advantages as vectors for mediated cellular entry and delivery of siRNA. However, toxicity related to their cationic charge has compromised clinical use. It is hypothesized that the siRNA-vector complex composition and properties can be controlled to optimize therapeutic performance. Here we investigate siRNA complexes with branched polyethylenimine (bPEI) versus generation 4 polyamidoamine dendrimers (PAMAM) on interactions with immobilized lipid membranes, and cellular uptake and toxicity. Methods A model siRNA was complexed with either PAMAM or bPEI, and their size and zeta-potential characterized. Interaction of the complexes and parent polymers with lipid bilayers was investigated using atomic force microscopy and correlated with the uptake and toxicity in HeLa cells. Results PAMAM and its siRNA complexes formed circular shaped micron-sized holes in lipid bilayers, while bPEI formed nanoscale holes. Flow cytometry and fluorescence microscopy demonstrated PAMAM-siRNA complexes to have a higher cellular uptake than bPEI-siRNA complexes. bPEI-siRNA complexes did not impact on viability, however PAMAM-siRNA complexes demonstrated increasing cell toxicity as N/P ratio increased. PAMAM-siRNA complexes accumulated around the cell nucleus, while PEI-siRNA complexes were located closer to the cell wall. Conclusion Complexation of PAMAM dendrimer or bPEI with siRNA modified physicochemical properties of the parent polymer, however it did not impact on the mechanism of interaction with model lipid bilayers or how the polymer/siRNA complex interacted and was internalized by HeLa cells. Interaction of siRNA polymer complexes with cells is related to the action of the parent polymer. Graphical abstract ![]()
Collapse
|
27
|
Jackson CT, Wang JW, González-Grandío E, Goh NS, Mun J, Krishnan S, Geyer FL, Keller H, Ebert S, Molawi K, Kaiser N, Landry MP. Polymer-Conjugated Carbon Nanotubes for Biomolecule Loading. ACS NANO 2022; 16:1802-1812. [PMID: 34935350 DOI: 10.1101/2021.07.22.453422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nanomaterials have emerged as an invaluable tool for the delivery of biomolecules such as DNA and RNA, with various applications in genetic engineering and post-transcriptional genetic manipulation. Alongside this development, there has been an increasing use of polymer-based techniques, such as polyethylenimine (PEI), to electrostatically load polynucleotide cargoes onto nanomaterial carriers. However, there remains a need to assess nanomaterial properties, conjugation conditions, and biocompatibility of these nanomaterial-polymer constructs, particularly for use in plant systems. In this work, we develop mechanisms to optimize DNA loading on single-walled carbon nanotubes (SWNTs) with a library of polymer-SWNT constructs and assess DNA loading ability, polydispersity, and both chemical and colloidal stability. Counterintuitively, we demonstrate that polymer hydrolysis from nanomaterial surfaces can occur depending on polymer properties and attachment chemistries, and we describe mitigation strategies against construct degradation. Given the growing interest in delivery applications in plant systems, we also assess the stress response of plants to polymer-based nanomaterials and provide recommendations for future design of nanomaterial-based polynucleotide delivery strategies.
Collapse
Affiliation(s)
- Christopher T Jackson
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jeffrey W Wang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Eduardo González-Grandío
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Natalie S Goh
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jaewan Mun
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Sejal Krishnan
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | | | - Harald Keller
- BASF, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Sophia Ebert
- BASF, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Kian Molawi
- BASF, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Nadine Kaiser
- BASF, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Innovative Genomics Institute (IGI), Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, Berkeley, California 94720, United States
- Chan-Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
28
|
Jackson CT, Wang JW, González-Grandío E, Goh NS, Mun J, Krishnan S, Geyer FL, Keller H, Ebert S, Molawi K, Kaiser N, Landry MP. Polymer-Conjugated Carbon Nanotubes for Biomolecule Loading. ACS NANO 2022; 16:1802-1812. [PMID: 34935350 PMCID: PMC10461756 DOI: 10.1021/acsnano.1c06343] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanomaterials have emerged as an invaluable tool for the delivery of biomolecules such as DNA and RNA, with various applications in genetic engineering and post-transcriptional genetic manipulation. Alongside this development, there has been an increasing use of polymer-based techniques, such as polyethylenimine (PEI), to electrostatically load polynucleotide cargoes onto nanomaterial carriers. However, there remains a need to assess nanomaterial properties, conjugation conditions, and biocompatibility of these nanomaterial-polymer constructs, particularly for use in plant systems. In this work, we develop mechanisms to optimize DNA loading on single-walled carbon nanotubes (SWNTs) with a library of polymer-SWNT constructs and assess DNA loading ability, polydispersity, and both chemical and colloidal stability. Counterintuitively, we demonstrate that polymer hydrolysis from nanomaterial surfaces can occur depending on polymer properties and attachment chemistries, and we describe mitigation strategies against construct degradation. Given the growing interest in delivery applications in plant systems, we also assess the stress response of plants to polymer-based nanomaterials and provide recommendations for future design of nanomaterial-based polynucleotide delivery strategies.
Collapse
Affiliation(s)
- Christopher T Jackson
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jeffrey W Wang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Eduardo González-Grandío
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Natalie S Goh
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jaewan Mun
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Sejal Krishnan
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | | | - Harald Keller
- BASF, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Sophia Ebert
- BASF, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Kian Molawi
- BASF, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Nadine Kaiser
- BASF, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Innovative Genomics Institute (IGI), Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, Berkeley, California 94720, United States
- Chan-Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
29
|
Jiang-Long DU, Meng-Yao FU, Ying-Hua YAN, Chuan-Fan DING. A complementary bimetal synergized with polyethyleneimine functionalized affinity chromatography nanosphere for enrichment of global phosphopeptides. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2021.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Mella M, Tagliabue A, Mollica L, Vaghi S, Izzo L. Inducing pH control over the critical micelle concentration of zwitterionic surfactants via polyacids adsorption: Effect of chain length and structure. J Colloid Interface Sci 2022; 606:1636-1651. [PMID: 34500165 DOI: 10.1016/j.jcis.2021.07.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
HYPOTHESIS The critical concentration above which micelles form from zwitterionic surfactant solutions and their thermodynamic stability is affected by the interaction with weak Brønsted polyacid chains (An) via the formation of charged hydrogen bonds between the latter and anionic moieties. EXPERIMENTS The interaction between zwitterionic micelles and polyacids capable of forming hydrogen bonds, and its dependence on the environmental pH and polymer structure, has been studied with constant-pH simulations and a restricted primitive model for all electrolytes. FINDINGS At low pH, the formation of polyacid/micelle complexes is witnessed independently of the polymer size or structure, so that the concentration above which micelles form is substantially decreased compared to polyacid-free cases. Upon rising pH, polymer desorption takes place within a narrow range of pH values, its location markedly depending on the size and structure of polyacids, and on the relative disposition between headgroup charged moieties. Thus, the desorption onset for long linear polyacids (A60) interacting with sulphobetainic headgroups is roughly two pH units higher than for six decameric chains (6A10) adsorbed onto micelles bearing phosphorylcholinic headgroups. This effect, together with the preferential desorption of chain ends at intermediate pH, may be exploited for drug delivery purposes or building advanced metamaterials.
Collapse
Affiliation(s)
- Massimo Mella
- Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell'Insubria, via Valleggio 9, 22100 Como, Italy.
| | - Andrea Tagliabue
- Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell'Insubria, via Valleggio 9, 22100 Como, Italy
| | - Luca Mollica
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, via Vanvitelli 32, 20133 Milano, Italy
| | - Stefano Vaghi
- Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell'Insubria, via Valleggio 9, 22100 Como, Italy
| | - Lorella Izzo
- Dipartimento di Biotecnologie e Scienze della Vita, Universitá degli Studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| |
Collapse
|
31
|
Kamegawa R, Naito M, Uchida S, Kim HJ, Kim BS, Miyata K. Bioinspired Silicification of mRNA-Loaded Polyion Complexes for Macrophage-Targeted mRNA Delivery. ACS APPLIED BIO MATERIALS 2021; 4:7790-7799. [PMID: 35006762 DOI: 10.1021/acsabm.1c00704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In vitro transcribed messenger RNA (mRNA) delivery to macrophages is a promising therapeutic modality for inflammatory diseases because it can modulate the immunological activity of macrophages. However, efficient macrophage-targeted mRNA delivery remains challenging. Herein, we fabricated silica-coated polyion complexes (PICs), termed SilPICs, via bioinspired silicification for stable encapsulation of mRNA and scavenger receptor (SR)-mediated macrophage targeting. Silica coating was readily performed by simply mixing mRNA-loaded PICs with tetramethyl orthosilicate in aqueous media at 25 °C. The silica shell formation was verified by a slight increase in size (∼18 nm), a conversion of ζ-potential from positive (+22 mV) to negative (-23 mV), the peak appearance derived from silanol groups and siloxane bonds in the IR spectra, and elemental analyses by scanning transmission electron microscopy-energy-dispersive X-ray spectrometry (STEM-EDS). The silica shell efficiently protected the mRNA payload from enzymatic degradation in a fetal bovine serum-containing medium. Meanwhile, the reversibility of the silica shell allowed mRNA release from SilPICs after silica dissolution into silicic acids under diluted conditions. Furthermore, SilPICs elicited 20-fold higher mRNA transfection efficiency in the macrophage cell line RAW264.7 compared to noncoated PICs, presumably due to the facilitated cellular internalization by the silica shell. These enhancements were compromised in the RAW264.7 cells incubated with dextran sulfate and poly(inosinic acid) as inhibitors of SR type A1 and were not observed in cultured CT26 colon cancer cells, which are SR-negative cells. Collectively, SilPIC is a promising mRNA delivery vehicle with both mRNA protectability and macrophage targetability.
Collapse
Affiliation(s)
- Rimpei Kamegawa
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mitsuru Naito
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satoshi Uchida
- Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Beob Soo Kim
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
32
|
Chis AA, Dobrea CM, Rus LL, Frum A, Morgovan C, Butuca A, Totan M, Juncan AM, Gligor FG, Arseniu AM. Dendrimers as Non-Viral Vectors in Gene-Directed Enzyme Prodrug Therapy. Molecules 2021; 26:5976. [PMID: 34641519 PMCID: PMC8512881 DOI: 10.3390/molecules26195976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/19/2021] [Accepted: 09/29/2021] [Indexed: 01/02/2023] Open
Abstract
Gene-directed enzyme prodrug therapy (GDEPT) has been intensively studied as a promising new strategy of prodrug delivery, with its main advantages being represented by an enhanced efficacy and a reduced off-target toxicity of the active drug. In recent years, numerous therapeutic systems based on GDEPT strategy have entered clinical trials. In order to deliver the desired gene at a specific site of action, this therapeutic approach uses vectors divided in two major categories, viral vectors and non-viral vectors, with the latter being represented by chemical delivery agents. There is considerable interest in the development of non-viral vectors due to their decreased immunogenicity, higher specificity, ease of synthesis and greater flexibility for subsequent modulations. Dendrimers used as delivery vehicles offer many advantages, such as: nanoscale size, precise molecular weight, increased solubility, high load capacity, high bioavailability and low immunogenicity. The aim of the present work was to provide a comprehensive overview of the recent advances regarding the use of dendrimers as non-viral carriers in the GDEPT therapy.
Collapse
Affiliation(s)
| | | | | | - Adina Frum
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (A.A.C.); (C.M.D.); (L.-L.R.); (A.B.); (M.T.); (A.M.J.); (F.G.G.); (A.M.A.)
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (A.A.C.); (C.M.D.); (L.-L.R.); (A.B.); (M.T.); (A.M.J.); (F.G.G.); (A.M.A.)
| | | | | | | | | | | |
Collapse
|
33
|
Vasiliu T, Craciun BF, Neamtu A, Clima L, Isac DL, Maier SS, Pinteala M, Mocci F, Laaksonen A. In silico study of PEI-PEG-squalene-dsDNA polyplex formation: the delicate role of the PEG length in the binding of PEI to DNA. Biomater Sci 2021; 9:6623-6640. [PMID: 34582532 DOI: 10.1039/d1bm00973g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biocompatible hydrophilic polyethylene glycol (PEG) is widely used in biomedical applications, such as drug or gene delivery, tissue engineering or as an antifouling component in biomedical devices. Experimental studies have shown that the size of PEG can weaken polycation-polyanion interactions, like those between branched polyethyleneimine (b-PEI) and DNA in gene carriers, but details of its cause and underlying interactions on the atomic scale are still not clear. To better understand the interaction mechanisms in the formation of polyplexes between b-PEI-PEG based carriers and DNA, we have used a combination of in silico tools and experiments on three multicomponent systems differing in PEG MW. Using the PEI-PEG-squalene-dsDNA systems of the same size, both in the all-atom MD simulations and in experimental in-gel electrophoresis measurements, we found that the binding between DNA and the vectors is highly influenced by the size of PEG, with the binding efficiency increasing with a shorter PEG length. The mechanism of how PEG interferes with the binding between PEI and DNA is explained using a two-step MD simulation protocol that showed that the DNA-vector interactions are influenced by the PEG length due to the hydrogen bond formation between PEI and PEG. Although computationally demanding we find it important to study molecular systems of the same size both in silico and in a laboratory and to simulate the behaviour of the carrier prior to the addition of bioactive molecules to understand the molecular mechanisms involved in the formation of the polyplex.
Collapse
Affiliation(s)
- Tudor Vasiliu
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi 700487, Romania.
| | - Bogdan Florin Craciun
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi 700487, Romania.
| | - Andrei Neamtu
- Bioinformatics Laboratory, TRANSCEND IRO, Iaşi 700843, Romania
| | - Lilia Clima
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi 700487, Romania.
| | - Dragos Lucian Isac
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi 700487, Romania.
| | - Stelian S Maier
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi 700487, Romania. .,Polymers Research Center, "Gheorghe Asachi" Technical University of Iasi, Iasi, 700487, Romania
| | - Mariana Pinteala
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi 700487, Romania.
| | - Francesca Mocci
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi 700487, Romania. .,Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, Monserrato, 09042 Cagliari, Italy
| | - Aatto Laaksonen
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi 700487, Romania. .,Department of Materials and Environmental Chemistry, Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden.,State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, 210009 Nanjing, PR China.,Department of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden
| |
Collapse
|
34
|
Pachpinde S, Natarajan U. Conformations, inter-molecular structure and hydrogen bond dynamics of neutral and cationic poly(vinyl amine) in aqueous solution. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1968389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sushil Pachpinde
- Macromolecular Modeling and Simulation Lab, Department of Chemical Engineering, Indian Institute of Technology (IIT) Madras, Chennai, India
| | - Upendra Natarajan
- Macromolecular Modeling and Simulation Lab, Department of Chemical Engineering, Indian Institute of Technology (IIT) Madras, Chennai, India
| |
Collapse
|
35
|
Hausig F, Sobotta FH, Richter F, Harz DO, Traeger A, Brendel JC. Correlation between Protonation of Tailor-Made Polypiperazines and Endosomal Escape for Cytosolic Protein Delivery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35233-35247. [PMID: 34283557 DOI: 10.1021/acsami.1c00829] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Responsive polymers, which become protonated at decreasing pH, are considered a milestone in the development of synthetic cell entry vectors. Exact correlations between their properties and their ability to escape the endosome, however, often remain elusive due to hydrophobic interactions or limitations in the design of water-soluble materials with suitable basicity. Here, we present a series of well-defined, hydrophilic polypiperazines, where systematic variation of the amino moiety facilitates an unprecedented fine-tuning of the basicity or pKa value within the physiologically relevant range (pH 6-7.4). Coincubation of HEK 293T cells with various probes, including small fluorophores or functioning proteins, revealed a rapid increase of endosomal release for polymers with pKa values above 6.5 or 7 in serum-free or serum-containing media, respectively. Similarly, cytotoxic effects became severe at increased pKa values (>7). Although the window for effective transport appears narrow, the discovered correlations offer a principal guideline for the design of effective polymers for endosomal escape.
Collapse
Affiliation(s)
- Franziska Hausig
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Fabian H Sobotta
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Friederike Richter
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Dominic O Harz
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Johannes C Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
36
|
Zelcak A, Unal YC, Mese G, Bulmus V. A diaminoethane motif bearing low molecular weight polymer as a new nucleic acid delivery agent. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Bono N, Coloma Smith B, Moreschi F, Redaelli A, Gautieri A, Candiani G. In silico prediction of the in vitro behavior of polymeric gene delivery vectors. NANOSCALE 2021; 13:8333-8342. [PMID: 33900339 DOI: 10.1039/d0nr09052b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Non-viral gene delivery vectors have increasingly come under the spotlight, but their performaces are still far from being satisfactory. Therefore, there is an urgent need for forecasting tools and screening methods to enable the development of ever more effective transfectants. Here, coarse-grained (CG) models of gold standard transfectant poly(ethylene imine)s (PEIs) have been profitably used to investigate and highlight the effect of experimentally-relevant parameters, namely molecular weight (2 vs. 10 kDa) and topologies (linear vs. branched), protonation state, and ammine-to-phosphate ratios (N/Ps), on the complexation and the gene silencing efficiency of siRNA molecules. The results from the in vitro screening of cationic polymers and conditions were used to validate the in silico platform that we developed, such that the hits which came out of the CG models were of high practical relevance. We show that our in silico platform enables to foresee the most suitable conditions for the complexation of relevant siRNA-polycation assemblies, thereby providing a reliable predictive tool to test bench transfectants in silico, and foster the design and development of gene delivery vectors.
Collapse
Affiliation(s)
- Nina Bono
- GenT LΛB, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
38
|
Mantovani S, Khaliha S, Favaretto L, Bettini C, Bianchi A, Kovtun A, Zambianchi M, Gazzano M, Casentini B, Palermo V, Melucci M. Scalable synthesis and purification of functionalized graphene nanosheets for water remediation. Chem Commun (Camb) 2021; 57:3765-3768. [PMID: 33730139 DOI: 10.1039/d1cc00704a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Microwave (MW) accelerated synthesis combined with microfiltration (MF) on commercial hollow fiber modules enables fast and scalable preparation of highly pure modified graphene oxide nanosheets. The MW-MF procedure is demonstrated on polyethylenimine (PEI) modified GO, and the so-obtained GOPEI is used for simultaneous removal of arsenic and lead from water.
Collapse
Affiliation(s)
- Sebastiano Mantovani
- Institute of Organic Synthesis and Photoreactivity (CNR-ISOF) Via Piero Gobetti 101, 40129, Bologna, Italy.
| | - Sara Khaliha
- Institute of Organic Synthesis and Photoreactivity (CNR-ISOF) Via Piero Gobetti 101, 40129, Bologna, Italy.
| | - Laura Favaretto
- Institute of Organic Synthesis and Photoreactivity (CNR-ISOF) Via Piero Gobetti 101, 40129, Bologna, Italy.
| | - Cristian Bettini
- Institute of Organic Synthesis and Photoreactivity (CNR-ISOF) Via Piero Gobetti 101, 40129, Bologna, Italy.
| | - Antonio Bianchi
- Institute of Organic Synthesis and Photoreactivity (CNR-ISOF) Via Piero Gobetti 101, 40129, Bologna, Italy.
| | - Alessandro Kovtun
- Institute of Organic Synthesis and Photoreactivity (CNR-ISOF) Via Piero Gobetti 101, 40129, Bologna, Italy.
| | - Massimo Zambianchi
- Institute of Organic Synthesis and Photoreactivity (CNR-ISOF) Via Piero Gobetti 101, 40129, Bologna, Italy.
| | - Massimo Gazzano
- Institute of Organic Synthesis and Photoreactivity (CNR-ISOF) Via Piero Gobetti 101, 40129, Bologna, Italy.
| | - Barbara Casentini
- Consiglio Nazionale delle Ricerche-Water Research Institute (CNR-IRSA), Via Salaria Km 29,300 C. P, 10-00015, Italy
| | - Vincenzo Palermo
- Institute of Organic Synthesis and Photoreactivity (CNR-ISOF) Via Piero Gobetti 101, 40129, Bologna, Italy.
| | - Manuela Melucci
- Institute of Organic Synthesis and Photoreactivity (CNR-ISOF) Via Piero Gobetti 101, 40129, Bologna, Italy.
| |
Collapse
|
39
|
Controlled post-polymerization modification through modulation of repeating unit reactivity: Proof of concept discussed using linear polyethylenimine example. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Mella M, Tagliabue A, Izzo L. On the distribution of hydrophilic polyelectrolytes and their counterions around zwitterionic micelles: the possible impact on the charge density in solution. SOFT MATTER 2021; 17:1267-1283. [PMID: 33300543 DOI: 10.1039/d0sm01541e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Despite their charge neutrality, micelles composed of surfactants with zwitterionic headgroups selectively accumulate anions at their hydrophobic core/solution interphase due to electrostatic interactions if headgroup positive moieties are the innermost. This tendency may be markedly enhanced if polyions substitute simple ions. To investigate this possibility, solutions composed of zwitterionic micelles and hydrophilic polyanions have been investigated with Monte Carlo simulations representing the studied systems via primitive electrolyte models. Structural and energetic properties are obtained to highlight the impact of connecting simple ions into polyions on the interactions between electrolytes and micelles. Despite the latter, polyanions conserve their conformational properties. A marked increase in the concentration of charged species inside the micellar corona is, instead, found when polyions are present independently of their charge sign or the headgroup structure. Thus, polyelectrolytes act as "shuttle" for all charged species, with the potential of increasing reactions rates involving the latter due to mass effects. Besides, results for the polyions/micelles mixing free energy and Helmholtz energy profiles indicate that the critical micelle concentration is impacted minimally by hydrophilic polyelectrolytes, an outcome agreeing with experiments. This finding is entirely due to weak enthalpic effects while mixing hydrophilic polyions and micelles. A strong reduction in the screening of the micelle negative charge, acquired following the adsorption of anions in the corona and due to counterions layering just outside it (the so called "chameleon effect"), is forecasted when polyanions substitute monovalent anions.
Collapse
Affiliation(s)
- Massimo Mella
- Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell'Insubria, via Valleggio 11, 22100, Como, Italy.
| | - Andrea Tagliabue
- Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell'Insubria, via Valleggio 11, 22100, Como, Italy.
| | - Lorella Izzo
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via J. H. Dunant 3, 21100, Varese, Italy
| |
Collapse
|
41
|
Phosphate Removal Using Polyethylenimine Functionalized Silica-Based Materials. SUSTAINABILITY 2021. [DOI: 10.3390/su13031502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In water and wastewater, phosphate anions are considered critical contaminants because they cause algae blooms and eutrophication. The present work aims at studying the removal of phosphate anions from aqueous solutions using silica particles functionalized with polyethylenimine. The parameters affecting the adsorption process such as pH, initial concentration, adsorbent dose, and the presence of competitive anions, such as carbonate, nitrate, sulfate and chromate ions, were studied. Equilibrium studies were carried out to determine their sorption capacity and the rate of phosphate ions uptake. The adsorption isotherm data fitted well with the Langmuir and Sips model. The maximum sorption capacity was 41.1 mg/g at pH 5, which decreased slightly at pH 7. The efficiency of phosphate removal adsorption increased at lower pH values and by increasing the adsorbent dose. The maximum phosphate removal was 80% for pH 5 and decreased to 75% for pH 6, to 73% for pH 7 and to 70% for pH 8, for initial phosphate concentration at about 1 mg/L and for a dose of adsorbent 100 mg/L. The removal rate was increased with the increase of the adsorbent dose. For example, for initial phosphate concentration of 4 mg/L the removal rate increased from 40% to 80% by increasing the dose from 0.1 to 2.0 g/L at pH 7. The competitive anions adversely affected phosphate removal. Though they were also found to be removed to a certain extent. Their co-removal provided an adsorbent which might be very useful for treating waters with low-level multiple contaminant occurrence in natural or engineered aquatic systems.
Collapse
|
42
|
Recyclable Iron Oxide Loaded Poly (Methyl Methacrylate) Core/Polyethyleneimine Shell Nanoparticle as Antimicrobial Nanomaterial for Zoonotic Pathogen Controls. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-01990-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Jain M, Seth JR, Hegde LR, Sharma KP. Unprecedented Self-Assembly in Dilute Aqueous Solution of Polyethyleneimine: Formation of Fibrillar Network. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mehak Jain
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, 400076 Mumbai, India
| | - Jyoti R. Seth
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, 400076 Mumbai, India
| | - Lohitha R. Hegde
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, 400076 Mumbai, India
| | - Kamendra P. Sharma
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, 400076 Mumbai, India
| |
Collapse
|
44
|
Urello MA, Xiang L, Colombo R, Ma A, Joseph A, Boyd J, Peterson N, Gao C, Wu H, Christie RJ. Metabolite-Based Modification of Poly(l-lysine) for Improved Gene Delivery. Biomacromolecules 2020; 21:3596-3607. [PMID: 32786528 DOI: 10.1021/acs.biomac.0c00614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Synthetic gene delivery systems employ multiple functions to enable safe and effective transport of DNA to target cells. Here, we describe metabolite-based poly(l-lysine) (PLL) modifiers that improve transfection by imparting both pH buffering and nanoparticle stabilization functions within a single molecular unit. PLL modifiers were based on morpholine (M), morpholine and niacin (MN), or thiomorpholine (TM). PLL modification with (MN) or (TM) imparted buffering function over the pH range of 5-7 both in solution and live cells and enhanced the stability of PLL DNA nanoparticles, which exhibited higher resistance to polyanion exchange and prolonged blood circulation. These properties translated into increased transfection efficiency in vitro coupled with reduced toxicity compared to unmodified PLL and PLL(M). Furthermore, PEG-PLL(MN) DNA nanoparticles transfected muscle tissue in vivo for >45 days following intramuscular injection. These polymer modifiers demonstrate the successful design of multifunctional units that improve transfection of synthetic gene delivery systems while maintaining biocompatibility.
Collapse
Affiliation(s)
- Morgan A Urello
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | - Lucia Xiang
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | - Raffaele Colombo
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | - Alexander Ma
- SynChem, Inc., Elk Grove Village, Illinois 60007, United States
| | | | - Jonathan Boyd
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | - Norman Peterson
- Translational Sciences, AstraZeneca Biopharmaceuticals R&D, Gaithersburg, Maryland 20878, United States
| | - Changshou Gao
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | - Herren Wu
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | - R James Christie
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, Maryland 20878, United States
| |
Collapse
|
45
|
Mintis DG, Alexiou TS, Mavrantzas VG. Effect of pH and Molecular Length on the Structure and Dynamics of Linear and Short-Chain Branched Poly(ethylene imine) in Dilute Solution: Scaling Laws from Detailed Molecular Dynamics Simulations. J Phys Chem B 2020; 124:6154-6169. [PMID: 32524817 DOI: 10.1021/acs.jpcb.0c04135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Atomistic molecular dynamics (MD) simulations are carried out to examine the effect of molecular weight Mw (= 0.6, 0.86, 1.12, and 2.15 kDa) and pH (or equivalently, degree of ionization, α+ = 0, 50, and 100%) on the structure, state of hydration, and dynamics of linear and branched poly(ethylene imine) (PEI) chains in infinitely dilute salt-free aqueous solutions. It is found that the degree of ionization is the key factor determining the type of molecular conformation adopted by PEI, regardless of molecular architecture and chain length, resulting in a stable trans conformation for fully ionized solutions and in a stable gauche+/gauche- state for neutral or alternate ionized ones; in the latter case, a strong electrolyte behavior is verified for both linear and branched PEI. Linear PEI is observed to be significantly stiffer than branched PEI of the same molecular weight at 100% degree of ionization, but the effect subsides as the degree of ionization decreases. Also, linear PEI diffuses markedly slower than branched PEI of the same Mw. From the MD results, scaling exponents are deduced and reported for the conformation, solvent-accessible surface area, and dynamics of the two different PEI structures with Mw.
Collapse
Affiliation(s)
- Dimitris G Mintis
- Department of Chemical Engineering, University of Patras & FORTH-ICE/HT, Patras, GR26504 Greece
| | - Terpsichori S Alexiou
- Department of Chemical Engineering, University of Patras & FORTH-ICE/HT, Patras, GR26504 Greece
| | - Vlasis G Mavrantzas
- Department of Chemical Engineering, University of Patras & FORTH-ICE/HT, Patras, GR26504 Greece.,Department of Mechanical and Process Engineering, Particle Technology Laboratory, ETH Zürich, CH-8092 Zürich, Switzerland
| |
Collapse
|
46
|
Bediako JK, Choi JW, Song MH, Zhao Y, Lin S, Sarkar AK, Cho CW, Yun YS. Recovery of gold via adsorption-incineration techniques using banana peel and its derivatives: Selectivity and mechanisms. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 113:225-235. [PMID: 32535374 DOI: 10.1016/j.wasman.2020.05.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/12/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
In this study, banana peel (BP) and its derivatives after sequential extraction of biochemical components were evaluated for selective recovery of gold. In-depth instrumental characterizations including XPS, FTIR, XRD and HR-TEM were performed to understand the adsorption mechanisms. The biomass after lipid extraction, BP-L, demonstrated very good affinity and selectivity towards gold. In multi-metal systems containing 100 mg/L of Pt(IV), Au(III), Pd(II), Zn(II), Co(II), Ni(II) and Li(I), the selectivity coefficient increased from 978.45 in BP to 2034.70 in BP-L. Moreover, the equilibrium gold uptake was improved and reached 475.48 ± 3.08 mg/g owing to reduction-coupled adsorption mechanisms. The BP-L also showed improved gold nanoparticle formation properties that were pH-dependent. In a strategic adsorption-combined incineration process, metallic gold reaching 99.96% in purity was obtained. The BP and its derivative, BP-L have thus shown potentials for multiple applications in the areas of precious metal recovery and nanoscience.
Collapse
Affiliation(s)
- John Kwame Bediako
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea; School of Engineering Sciences, University of Ghana, Legon, Ghana
| | - Jong-Won Choi
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Myung-Hee Song
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Yufeng Zhao
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Shuo Lin
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Amit Kumar Sarkar
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Chul-Woong Cho
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea; Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Yeoung-Sang Yun
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea.
| |
Collapse
|
47
|
Seo YM, Jang W, Gu T, Whang D. Highly Efficient n-Type Doping of Graphene by Vacuum Annealed Amine-Rich Macromolecules. MATERIALS 2020; 13:ma13092166. [PMID: 32397067 PMCID: PMC7254272 DOI: 10.3390/ma13092166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 01/11/2023]
Abstract
Flexible transparent conducting electrodes (FTCE) are an essential component of next-generation flexible optoelectronic devices. Graphene is expected to be a promising material for the FTCE, because of its high transparency, large charge carrier mobilities, and outstanding chemical and mechanical stability. However, the electrical conductivity of graphene is still not good enough to be used as the electrode of an FTCE, which hinders its practical application. In this study, graphene was heavily n-type doped while maintaining high transmittance by adsorbing amine-rich macromolecules to graphene. The n-type charge-transfer doping of graphene was maximized by increasing the density of free amine in the macromolecule through a vacuum annealing process. The graphene adsorbed with the n-type dopants was stacked twice, resulting in a graphene FTCE with a sheet resistance of 38 ohm/sq and optical transmittance of 94.1%. The figure of merit (FoM) of the graphene electrode is as high as 158, which is significantly higher than the minimum standard for commercially available transparent electrodes (FoM = 35) as well as graphene electrodes doped with previously reported chemical doping methods. Furthermore, the n-doped graphene electrodes not only show outstanding flexibility but also maintain the doping effect even in high temperature (500 K) and high vacuum (~10−6 torr) conditions. These results show that the graphene doping proposed in this study is a promising approach for graphene-based next-generation FTCEs.
Collapse
Affiliation(s)
- Young-Min Seo
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Korea; (Y.-M.S.); (W.J.); (T.G.)
| | - Wonseok Jang
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Korea; (Y.-M.S.); (W.J.); (T.G.)
| | - Taejun Gu
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Korea; (Y.-M.S.); (W.J.); (T.G.)
| | - Dongmok Whang
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Korea; (Y.-M.S.); (W.J.); (T.G.)
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
- Correspondence:
| |
Collapse
|
48
|
Tagliabue A, Izzo L, Mella M. Interface Counterion Localization Induces a Switch between Tight and Loose Configurations of Knotted Weak Polyacid Rings despite Intermonomer Coulomb Repulsions. J Phys Chem B 2020; 124:2930-2937. [PMID: 32154720 DOI: 10.1021/acs.jpcb.0c00620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Stochastic simulations have been used to investigate the conformational behavior of knotted weak polyacid rings as a function of pH. Different from the commonly expected ionization-repulsion-expansion scheme upon increasing pH, theoretical results suggest a nonmonotonic behavior of the gyration radius Rg2. Polyelectrolyte recontraction at high ionization is induced by the weakening of Coulomb repulsion due to counterions (CIs) localizing at the interphase between the polymer and solvent, and the more marked it appears, the more complex is the knot topology. Compared with strong polyelectrolytic species of identical ionization, weak polyacids present tighter knots due to their ability to localize neutral monomers inside the tangled part. Increasing the solvent Bjerrum length enhances CIs localization, lowering the pH at which polyacids start decreasing their average size. A similar effect is also obtained by increasing the amount of "localizable" cations by adding salts.
Collapse
Affiliation(s)
- Andrea Tagliabue
- Dipartimento di Scienza ed Alta Tecnologia, Universitá degli Studi dell'Insubria, via Valleggio 9, 22100 Como, Italy
| | - Lorella Izzo
- Dipartimento di Biotecnologie e Scienze della Vita, Universitá degli Studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | - Massimo Mella
- Dipartimento di Scienza ed Alta Tecnologia, Universitá degli Studi dell'Insubria, via Valleggio 9, 22100 Como, Italy
| |
Collapse
|
49
|
Staňo R, Nová L, Uhlík F, Košovan P. Multivalent counterions accumulate in star-like polyelectrolytes and collapse the polymer in spite of increasing its ionization. SOFT MATTER 2020; 16:1047-1055. [PMID: 31858097 DOI: 10.1039/c9sm02318f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We used computer simulations to explore the dissociative and conformational behaviour of branched weak polyelectrolytes with multivalent counterions. We compared simulated titration curves and chain sizes in the presence of added salt of various valencies, keeping the total charge of salt constant. We showed that multivalent counterions enhance ionization of the weak polyelectrolytes, in spite of collapsing of the chains. We provided evidence that such an effect is absent in systems with only monovalent counterions at the same ionic strength, and thus cannot be attributed to electrostatic screening. We attributed it to strong ion-ion correlations that we quantified by comparing potentials of mean force with the mean electrostatic potentials. Finally, we used the partition coefficient to quantify the ability of star-like polyelectrolytes to capture multivalent ions, that is important for water-treatment applications. Our work provides fundamental understanding of the mechanism of polyelectrolyte collapse and ionization response upon addition of multivalent ions.
Collapse
Affiliation(s)
- Roman Staňo
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Praha 2, Czech Republic.
| | - Lucie Nová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Praha 2, Czech Republic.
| | - Filip Uhlík
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Praha 2, Czech Republic.
| | - Peter Košovan
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Praha 2, Czech Republic.
| |
Collapse
|
50
|
Mauri E, Veglianese P, Papa S, Rossetti A, De Paola M, Mariani A, Posel Z, Posocco P, Sacchetti A, Rossi F. Effects of primary amine-based coatings on microglia internalization of nanogels. Colloids Surf B Biointerfaces 2020; 185:110574. [DOI: 10.1016/j.colsurfb.2019.110574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/20/2022]
|