1
|
Sibiya A, Jeyavani J, Ramesh D, Bhavaniramya S, Vaseeharan B. Ecotoxicological Research on the Toxic Impact of Zinc Oxide and Silver Nanoparticles on Oreochromis mossambicus. ENVIRONMENTAL TOXICOLOGY 2024; 39:4946-4959. [PMID: 38982579 DOI: 10.1002/tox.24365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/10/2023] [Accepted: 05/27/2024] [Indexed: 07/11/2024]
Abstract
Silver nanoparticles (AgNPs) and Zinc oxide nanoparticles (ZnONPs) have been widely used and are eventually been discharged into the natural aquatic ecosystem. The current study examined and correlated the toxicity of AgNPs and ZnONPs on the Mozambique tilapia, Oreochromis mossambicus. Lethal concentration (LC50) was determined with four different concentrations (0.05, 0.10, 0.15, and 0.20 mg/L) of AgNPs and ZnONPs; subsequently, the fishes were exposed to sublethal concentrations for a period of 21 days, and the oxidative stress and antioxidant and nonantioxidant parameters were studied. Results revealed oxidative stress evinced by increased lipid peroxidation (LPO) protein carbonyl activity (PCA), glutathione-S-transferase (GST), glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT) activity, metallothionein (MT) activity, and reduced glutathione in chronic exposure compared with acute exposure. Nonspecific immunological characteristics such as lysozyme (LYZ), myeloperoxidase (MPO), and respiratory burst activity (RBA) were also noticed in the serum. Furthermore, severe histological damages including damages in telangiectasia and epithelial cell hyperplasia were found in the combined treated group with Ag and ZnONPs than in individual treatments. When Ag and ZnONPs were combined, a reduction in the accumulation of Ag was observed in the liver, which increased drastically in individual exposure. The current findings highlight the importance of taking into account the combined exposure and correlation of NPs, their bioavailability, and toxicity in the aquatic ecosystem.
Collapse
Affiliation(s)
- Ashokkumar Sibiya
- Nano Biosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus, Alagappa University, Karaikudi, India
| | - Jeyaraj Jeyavani
- Nano Biosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus, Alagappa University, Karaikudi, India
| | - Dharmaraj Ramesh
- Nano Biosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus, Alagappa University, Karaikudi, India
| | - Sundaresan Bhavaniramya
- Nano Biosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus, Alagappa University, Karaikudi, India
| | - Baskaralingam Vaseeharan
- Nano Biosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus, Alagappa University, Karaikudi, India
| |
Collapse
|
2
|
Rezaei B, Harun A, Wu X, Iyer PR, Mostufa S, Ciannella S, Karampelas IH, Chalmers J, Srivastava I, Gómez-Pastora J, Wu K. Effect of Polymer and Cell Membrane Coatings on Theranostic Applications of Nanoparticles: A Review. Adv Healthc Mater 2024; 13:e2401213. [PMID: 38856313 DOI: 10.1002/adhm.202401213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The recent decade has witnessed a remarkable surge in the field of nanoparticles, from their synthesis, characterization, and functionalization to diverse applications. At the nanoscale, these particles exhibit distinct physicochemical properties compared to their bulk counterparts, enabling a multitude of applications spanning energy, catalysis, environmental remediation, biomedicine, and beyond. This review focuses on specific nanoparticle categories, including magnetic, gold, silver, and quantum dots (QDs), as well as hybrid variants, specifically tailored for biomedical applications. A comprehensive review and comparison of prevalent chemical, physical, and biological synthesis methods are presented. To enhance biocompatibility and colloidal stability, and facilitate surface modification and cargo/agent loading, nanoparticle surfaces are coated with different synthetic polymers and very recently, cell membrane coatings. The utilization of polymer- or cell membrane-coated nanoparticles opens a wide variety of biomedical applications such as magnetic resonance imaging (MRI), hyperthermia, photothermia, sample enrichment, bioassays, drug delivery, etc. With this review, the goal is to provide a comprehensive toolbox of insights into polymer or cell membrane-coated nanoparticles and their biomedical applications, while also addressing the challenges involved in translating such nanoparticles from laboratory benchtops to in vitro and in vivo applications. Furthermore, perspectives on future trends and developments in this rapidly evolving domain are provided.
Collapse
Affiliation(s)
- Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Asma Harun
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas, 79106, United States
| | - Xian Wu
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Poornima Ramesh Iyer
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Stefano Ciannella
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | | | - Jeffrey Chalmers
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Indrajit Srivastava
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas, 79106, United States
| | - Jenifer Gómez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| |
Collapse
|
3
|
Yayintas OT, Demir N, Canbolat F, Ayna TK, Pehlivan M. Characterization, biological activity, and anticancer effect of green-synthesized gold nanoparticles using Nasturtium officinale L. BMC Complement Med Ther 2024; 24:346. [PMID: 39354554 PMCID: PMC11445868 DOI: 10.1186/s12906-024-04635-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/06/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Nanostructured materials used have unique properties and many uses in nanotechnology. The most striking of these is using herbal compounds for the green synthesis of nanoparticles. Among the nanoparticle types used for green synthesis, gold nanoparticles (AuNPs) are used for cancer therapy due to their stable structure and non-cytotoxic. Lung cancer is the most common and most dangerous cancer worldwide in terms of survival and prognosis. In this study, Nasturtium officinale (L.) extract (NO), which contains biomolecules with antioxidant and anticancer effects, was used to biosynthesize AuNPs, and after their characterization, the effect of the green-synthesized AuNPs against lung cancer was evaluated in vitro. METHODS Ultraviolet‒visible (UV‒Vis) spectrophotometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), multiple analysis platform (MAP), and Fourier transform infrared (FT-IR) spectroscopy analyses were performed to characterize the AuNPs prepared from the N. officinale plant extract. Moreover, the antioxidant activity, total phenolic and flavonoid contents and DNA interactions were examined. Additionally, A549 lung cancer cells were treated with 2-48 µg/mL Nasturtium officinale gold nanoparticles (NOAuNPs) for 24 and 48 h to determine the effects on cell viability. The toxicity of the synthesized NOAuNPs to lung cancer cells was determined by the 3-(4,5-dimethylthiazol-2-il)-2,5-diphenyltetrazolium bromide (MTT) assay, and the anticancer effect of the NOAuNPs was evaluated by apoptosis and cell cycle analyses using flow cytometry. RESULTS The average size of the NPs was 56.4 nm. The intensities of the Au peaks from EDS analysis indicated that the AuNPs were synthesized successfully. Moreover, the in vitro antioxidant activities of the NO and NOAuNPs were evaluated; these materials gave values of 31.78 ± 1.71% and 31.62 ± 0.46%, respectively, in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay at 200 g/mL and values of 25.89 ± 1.90% and 33.81 ± 0.62%, respectively, in the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay. The NO and NOAuNPs gave values of 0.389 ± 0.027 and 0.308 ± 0.005, respectively, in the ferrous ion reducing antioxidant capacity (FRAP) assay and values of 0.078 ± 0.009 and 0.172 ± 0.027, respectively, in the copper ion reducing antioxidant capacity (CUPRAC) assay. When the DNA cleavage activities of NO and the NOAuNPs were evaluated via hydrolysis, both samples cleaved DNA starting at a concentration of 25 g/mL in the cell culture analysis, while the nanoformulation of the NO components gave greater therapeutic and anticancer effects. We determined that the Au nanoparticles were not toxic to A549 cells. Moreover, after treatment with the half-maximal inhibitory concentration (IC50), determined by the MTT assay with A549 cells, we found that at 24 and 48 h, while the necrosis rates were high in cells treated with NO, the rates of apoptosis were greater in cells treated with NOAuNPs. Notably, for anticancer treatment, activating apoptotic pathways that do not cause inflammation is preferred. We believe that these results will pave the way for the use of NOAuNPs in in vitro studies of other types of cancer. CONCLUSION In this study, AuNPs were successfully synthesized from N. officinale extract. The biosynthesized AuNPs exhibited toxicity to and apoptotic effects on A549 lung cancer cells. Based on these findings, we suggest that green-synthesized AuNPs are promising new therapeutic agents for lung cancer treatment. However, since this was an in vitro study, further research should be performed in in vivo lung cancer models to support our findings and to explain the mechanism of action at the molecular level.
Collapse
Affiliation(s)
| | - Neslihan Demir
- Department of Biology, Çanakkale Onsekiz Mart University Faculty of Science, Çanakkale, Turkey
| | - Fadime Canbolat
- Department of Pharmacy Services, Çanakkale Onsekiz Mart University, Vocational School of Health Services, Çanakkale, Turkey
| | - Tülay Kiliçaslan Ayna
- Faculty of Medicine, Medical Biology Department, İzmir Katip Çelebi University, İzmir, Turkey
| | - Melek Pehlivan
- İzmir Katip Çelebi University, Vocational School of Health Services, İzmir, Turkey
| |
Collapse
|
4
|
Mamata, Kumar C, Tiwari V, Ţălu Ş, Awasthi K, Dutta A. Biofabrication of GO-Ag nanocomposite using Cucumis callosus (kachri) fruits: Enhanced antibacterial properties and green synthesis approach. Microsc Res Tech 2024. [PMID: 39318246 DOI: 10.1002/jemt.24689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/03/2024] [Accepted: 08/18/2024] [Indexed: 09/26/2024]
Abstract
This study presents a novel, environmentally sustainable method for the synthesis of graphene oxide (GO) sheets decorated uniformly with silver nanoparticles (Ag NPs) ranging in size from 4 to 34 nm. The reduction of AgNO3 is achieved using an extract derived from Cucumis callosus fruit, which serves as a dual-function stabilizing and reducing agent. Cucumis callosus, belonging to the Cucurbitaceae family and native to regions such as India, South America, Thailand, Africa, and Egypt, is recognized for its substantial nutritional and medicinal value, encompassing antioxidant, antidiabetic, anticancer, and anti-inflammatory properties. In this study, we explore the utilization of Cucumis callosus extract for the first time in synthesizing Ag NPs, employing a green synthesis approach to produce GO-Ag nanocomposites. Comprehensive characterization techniques confirm the structural integrity and quality of the synthesized nanocomposites. The antibacterial efficacy of the green-synthesized Ag-decorated GO nanocomposites was evaluated using the disk diffusion method against Bacillus subtilis (Gram-positive) and Escherichia coli (Gram-negative) bacteria at varying dosages. The nanocomposites demonstrated dose-dependent antibacterial activity against both bacterial strains, with a notably heightened effect observed against Gram-negative bacteria. These findings underscore the potential of Cucumis callosus as a promising candidate for the sustainable preparation of GO-Ag nanocomposites with enhanced antibacterial properties, suitable for various biomedical and environmental applications. RESEARCH HIGHLIGHTS: This work presents a simple, environmentally free, and cost-effective green synthesis method to decorate uniformly small (4-34 nm) spherical Ag NPs on the GO sheets. Ag NPs were produced by reducing AgNO3 using Cucumis callosus fruit extract as a stabilizing and reducing agent. The nanocomposites show dosage-dependent antibacterial activities against both Gram-positive and Gram-negative bacteria, but the antibacterial effect is higher against the Gram-negative bacteria. Synthesis of these nanocomposites via the green route using an herbal plant/fruit like Cucumis callosus will benefit the medical industry.
Collapse
Affiliation(s)
- Mamata
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur, India
| | - Chandra Kumar
- Escuela de Ingeniería, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Ştefan Ţălu
- The Directorate of Research, Development and Innovation Management (DMCDI), Technical University of Cluj-Napoca, Cluj-Napoca, Romania
| | - Kamlendra Awasthi
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur, India
| | - Anirban Dutta
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur, India
| |
Collapse
|
5
|
Shahalaei M, Azad AK, Sulaiman WMAW, Derakhshani A, Mofakham EB, Mallandrich M, Kumarasamy V, Subramaniyan V. A review of metallic nanoparticles: present issues and prospects focused on the preparation methods, characterization techniques, and their theranostic applications. Front Chem 2024; 12:1398979. [PMID: 39206442 PMCID: PMC11351095 DOI: 10.3389/fchem.2024.1398979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024] Open
Abstract
Metallic nanoparticles (MNPs) have garnered significant attention due to their ability to improve the therapeutic index of medications by reducing multidrug resistance and effectively delivering therapeutic agents through active targeting. In addition to drug delivery, MNPs have several medical applications, including in vitro and in vivo diagnostics, and they improve the biocompatibility of materials and nutraceuticals. MNPs have several advantages in drug delivery systems and genetic manipulation, such as improved stability and half-life in circulation, passive or active targeting into the desired target selective tissue, and gene manipulation by delivering genetic materials. The main goal of this review is to provide current information on the present issues and prospects of MNPs in drug and gene delivery systems. The current study focused on MNP preparation methods and their characterization by different techniques, their applications to targeted delivery, non-viral vectors in genetic manipulation, and challenges in clinical trial translation.
Collapse
Affiliation(s)
- Mona Shahalaei
- Biomaterial Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj, Iran
| | - Abul Kalam Azad
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University College of MAIWP International (UCMI), Kuala Lumpur, Malaysia
| | - Wan Mohd Azizi Wan Sulaiman
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University College of MAIWP International (UCMI), Kuala Lumpur, Malaysia
| | - Atefeh Derakhshani
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Banaee Mofakham
- Biomaterial Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj, Iran
| | - Mireia Mallandrich
- Department of Pharmacy, Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
| |
Collapse
|
6
|
Afreen A, Hameed H, Tariq M, Sharif MS, Ahmed R, Waheed A, Kousar MB, Akram Z. Shining insights: Deciphering the biogenic synthesis of Ajuga bracteosa-mediated gold nanoparticles with advanced microscopy techniques. Microsc Res Tech 2024; 87:1984-1996. [PMID: 38619301 DOI: 10.1002/jemt.24571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/16/2024]
Abstract
In this study, gold nanoparticles (AuNPs) were bioreduced from Ajuga bracteosa, a medicinal herb known for its therapeutic properties against various diseases. Different fractions of the plant extract were used, including the methanolic fraction (ABMF), the n-hexane fraction (ABHF), the chloroform fraction (ABCF), and the aqueous extract for AuNPs synthesis. The characterization of AuNPs was performed using UV-Vis spectrophotometry, FT-IR, XRD, EDX, and TEM. UV-Vis spectroscopy confirmed the formation of AuNPs, with peaks observed at 555 nm. FT-IR analysis indicated strong capping of phytochemicals on the surface of AuNPs, which was supported by higher total phenolic contents (TPC) and total flavonoid contents (TFC) in AuNPs. XRD results showed high crystallinity and a smaller size distribution of AuNPs. TEM analysis revealed the spherical shape of AuNPs, with an average size of 29 ± 10 nm. The biologically synthesized AuNPs exhibited superior antibacterial, antioxidant, and cytotoxic activities compared to the plant extract fractions. The presence of active biomolecules in A. bracteosa, such as neoclerodan flavonol glycosides, diterpenoids, phytoecdysone, and iridoid glycosides, contributed to the enhanced biological activities of AuNPs. Overall, this research highlights the potential of A. bracteosa-derived AuNPs for various biomedical applications due to their remarkable therapeutic properties and effective capping by phytochemicals. RESEARCH HIGHLIGHTS: This research underscores the growing significance of herbal medicine in contemporary healthcare by exploring the therapeutic potential of Ajuga bracteosa and gold nanoparticles (AuNPs). The study highlights the notable efficacy of A. bracteosa leaf extracts and AuNPs in treating bacterial infections, demonstrating their bactericidal effects on a range of strains. The anti-inflammatory properties of plant extracts and nanoparticles are evidenced through paw edema method suggesting their applicability in managing inflammatory conditions. These findings position A. bracteosa and AuNPs as potential candidates for alternative and effective approaches to modern medication.
Collapse
Affiliation(s)
- Afshan Afreen
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur, Pakistan
| | - Hajra Hameed
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Muhammad Tariq
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur, Pakistan
| | - Muhammad Shakeeb Sharif
- Department of Clinical and Translational Oncology, Scuola Superiore Meridionale Via Mezzocannone, Naples, Italy
| | - Rashid Ahmed
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur, Pakistan
| | - Abdul Waheed
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Momina Bint Kousar
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur, Pakistan
| | - Zeeshan Akram
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur, Pakistan
| |
Collapse
|
7
|
Catalano A, Ceramella J, Iacopetta D, Marra M, Conforti F, Lupi FR, Gabriele D, Borges F, Sinicropi MS. Aloe vera-An Extensive Review Focused on Recent Studies. Foods 2024; 13:2155. [PMID: 38998660 PMCID: PMC11241682 DOI: 10.3390/foods13132155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
Since ancient times, Aloe vera L. (AV) has attracted scientific interest because of its multiple cosmetic and medicinal properties, attributable to compounds present in leaves and other parts of the plant. The collected literature data show that AV and its products have a beneficial influence on human health, both by topical and oral use, as juice or an extract. Several scientific studies demonstrated the numerous biological activities of AV, including, for instance, antiviral, antimicrobial, antitumor, and antifungal. Moreover, its important antidepressant activity in relation to several diseases, including skin disorders (psoriasis, acne, and so on) and prediabetes, is a growing field of research. This comprehensive review intends to present the most significant and recent studies regarding the plethora of AV's biological activities and an in-depth analysis exploring the component/s responsible for them. Moreover, its morphology and chemical composition are described, along with some studies regarding the single components of AV available in commerce. Finally, valorization studies and a discussion about the metabolism and toxicological aspects of this "Wonder Plant" are reported.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Maria Marra
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesca R Lupi
- Department of Information, Modeling, Electronics and System Engineering, (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, CS, 87036 Rende, Italy
| | - Domenico Gabriele
- Department of Information, Modeling, Electronics and System Engineering, (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, CS, 87036 Rende, Italy
| | - Fernanda Borges
- CIQUP-IMS-Centro de Investigação em Química da Universidade do Porto, Institute of Molecular Sciences, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
8
|
Chowardhara B, Saha B, Awasthi JP, Deori BB, Nath R, Roy S, Sarkar S, Santra SC, Hossain A, Moulick D. An assessment of nanotechnology-based interventions for cleaning up toxic heavy metal/metalloid-contaminated agroecosystems: Potentials and issues. CHEMOSPHERE 2024; 359:142178. [PMID: 38704049 DOI: 10.1016/j.chemosphere.2024.142178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/22/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Heavy metals (HMs) are among the most dangerous environmental variables for a variety of life forms, including crops. Accumulation of HMs in consumables and their subsequent transmission to the food web are serious concerns for scientific communities and policy makers. The function of essential plant cellular macromolecules is substantially hampered by HMs, which eventually have a detrimental effect on agricultural yield. Among these HMs, three were considered, i.e., arsenic, cadmium, and chromium, in this review, from agro-ecosystem perspective. Compared with conventional plant growth regulators, the use of nanoparticles (NPs) is a relatively recent, successful, and promising method among the many methods employed to address or alleviate the toxicity of HMs. The ability of NPs to reduce HM mobility in soil, reduce HM availability, enhance the ability of the apoplastic barrier to prevent HM translocation inside the plant, strengthen the plant's antioxidant system by significantly enhancing the activities of many enzymatic and nonenzymatic antioxidants, and increase the generation of specialized metabolites together support the effectiveness of NPs as stress relievers. In this review article, to assess the efficacy of various NP types in ameliorating HM toxicity in plants, we adopted a 'fusion approach', in which a machine learning-based analysis was used to systematically highlight current research trends based on which an extensive literature survey is planned. A holistic assessment of HMs and NMs was subsequently carried out to highlight the future course of action(s).
Collapse
Affiliation(s)
- Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies, Namsai, Arunachal Pradesh-792103, India.
| | - Bedabrata Saha
- Plant Pathology and Weed Research Department, Newe Ya'ar Research Centre, Agricultural Research Organization, Ramat Yishay-3009500, Israel.
| | - Jay Prakash Awasthi
- Department of Botany, Government College Lamta, Balaghat, Madhya Pradesh 481551, India.
| | - Biswajit Bikom Deori
- Department of Environmental Science, Faculty of Science and Technology, Arunachal University of Studies, Namsai, Arunachal Pradesh 792103, India.
| | - Ratul Nath
- Department of Life-Science, Dibrugarh University, Dibrugarh, Assam-786004, India.
| | - Swarnendu Roy
- Department of Botany, University of North Bengal, P.O.- NBU, Dist- Darjeeling, West Bengal, 734013, India.
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur Campus, Kolkata, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| |
Collapse
|
9
|
Granja Alvear A, Pineda-Aguilar N, Lozano P, Lárez-Velázquez C, Suppan G, Galeas S, Debut A, Vizuete K, De Lima L, Saucedo-Vázquez JP, Alexis F, López F. Synergistic Antibacterial Properties of Silver Nanoparticles and Its Reducing Agent from Cinnamon Bark Extract. Bioengineering (Basel) 2024; 11:517. [PMID: 38790383 PMCID: PMC11117492 DOI: 10.3390/bioengineering11050517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Synthesis of silver nanoparticles with antibacterial properties using a one-pot green approach that harnesses the natural reducing and capping properties of cinnamon (Cinnamomum verum) bark extract is presented in this work. Silver nitrate was the sole chemical reagent employed in this process, acting as the precursor salt. Gas Chromatography-Mass Spectroscopy (GC-MS), High-Performance Liquid Chromatography (HPLC) analysis, and some phytochemical tests demonstrated that cinnamaldehyde is the main component in the cinnamon bark extract. The resulting bio-reduced silver nanoparticles underwent comprehensive characterization by Ultraviolet-Vis (UV-Vis) and Fourier Transform InfraRed spectrophotometry (FTIR), Dynamic Light Scattering (DLS), Transmission Electron Microscopy, and Scanning Electron Microscopy suggesting that cinnamaldehyde was chemically oxidated to produce silver nanoparticles. These cinnamon-extract-based silver nanoparticles (AgNPs-cinnamon) displayed diverse morphologies ranging from spherical to prismatic shapes, with sizes spanning between 2.94 and 65.1 nm. Subsequently, the antibacterial efficacy of these nanoparticles was investigated against Klebsiella, E. Coli, Pseudomonas, Staphylococcus aureus, and Acinetobacter strains. The results suggest the promising potential of silver nanoparticles obtained (AgNPs-cinnamon) as antimicrobial agents, offering a new avenue in the fight against bacterial infections.
Collapse
Affiliation(s)
- Araceli Granja Alvear
- CATS Research Group, School of Chemical Sciences Engineering, Yachay Tech University, Urcuquí 100119, Ecuador; (A.G.A.); (G.S.); (L.D.L.); (J.P.S.-V.)
| | - Nayely Pineda-Aguilar
- Centro de Investigación de Materiales Avanzados CIMAV-Monterrey, Monterrey 64630, Mexico;
| | - Patricia Lozano
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Cristóbal Lárez-Velázquez
- Laboratorio de Polímeros, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela;
| | - Gottfried Suppan
- CATS Research Group, School of Chemical Sciences Engineering, Yachay Tech University, Urcuquí 100119, Ecuador; (A.G.A.); (G.S.); (L.D.L.); (J.P.S.-V.)
| | - Salomé Galeas
- Laboratorio de Nuevos Materiales (LANUM), Escuela Politécnica Nacional, Quito 170143, Ecuador;
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolqui 171523, Ecuador; (A.D.); (K.V.)
| | - Karla Vizuete
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolqui 171523, Ecuador; (A.D.); (K.V.)
| | - Lola De Lima
- CATS Research Group, School of Chemical Sciences Engineering, Yachay Tech University, Urcuquí 100119, Ecuador; (A.G.A.); (G.S.); (L.D.L.); (J.P.S.-V.)
| | - Juan Pablo Saucedo-Vázquez
- CATS Research Group, School of Chemical Sciences Engineering, Yachay Tech University, Urcuquí 100119, Ecuador; (A.G.A.); (G.S.); (L.D.L.); (J.P.S.-V.)
| | - Frank Alexis
- Departamento de Ingeniería Química, Colegio de Ciencias e Ingeniería, Instituto de Energía y Materiales, Instituto de Microbiología, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
| | - Floralba López
- CATS Research Group, School of Chemical Sciences Engineering, Yachay Tech University, Urcuquí 100119, Ecuador; (A.G.A.); (G.S.); (L.D.L.); (J.P.S.-V.)
| |
Collapse
|
10
|
Morgan RN, Aboshanab KM. Green biologically synthesized metal nanoparticles: biological applications, optimizations and future prospects. Future Sci OA 2024; 10:FSO935. [PMID: 38817383 PMCID: PMC11137799 DOI: 10.2144/fsoa-2023-0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/06/2023] [Indexed: 06/01/2024] Open
Abstract
In green biological synthesis, metal nanoparticles are produced by plants or microorganisms. Since it is ecologically friendly, economically viable and sustainable, this method is preferable to other traditional ones. For their continuous groundbreaking advancements and myriad physiochemical and biological benefits, nanotechnologies have influenced various aspects of scientific fields. Metal nanoparticles (MNPs) are the field anchor for their outstanding optical, electrical and chemical capabilities that outperform their regular-sized counterparts. This review discusses the most current biosynthesized metal nanoparticles synthesized by various organisms and their biological applications along with the key elements involved in MNP green synthesis. The review is displayed in a manner that will impart assertiveness, help the researchers to open questions, and highlight many points for conducting future research.
Collapse
Affiliation(s)
- Radwa N Morgan
- National Centre for Radiation Research & Technology (NCRRT), Drug Radiation Research Department, Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt
| | - Khaled M Aboshanab
- Microbiology & Immunology Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| |
Collapse
|
11
|
Hajfathalian M, Mossburg KJ, Radaic A, Woo KE, Jonnalagadda P, Kapila Y, Bollyky PL, Cormode DP. A review of recent advances in the use of complex metal nanostructures for biomedical applications from diagnosis to treatment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1959. [PMID: 38711134 PMCID: PMC11114100 DOI: 10.1002/wnan.1959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 05/08/2024]
Abstract
Complex metal nanostructures represent an exceptional category of materials characterized by distinct morphologies and physicochemical properties. Nanostructures with shape anisotropies, such as nanorods, nanostars, nanocages, and nanoprisms, are particularly appealing due to their tunable surface plasmon resonances, controllable surface chemistries, and effective targeting capabilities. These complex nanostructures can absorb light in the near-infrared, enabling noteworthy applications in nanomedicine, molecular imaging, and biology. The engineering of targeting abilities through surface modifications involving ligands, antibodies, peptides, and other agents potentiates their effects. Recent years have witnessed the development of innovative structures with diverse compositions, expanding their applications in biomedicine. These applications encompass targeted imaging, surface-enhanced Raman spectroscopy, near-infrared II imaging, catalytic therapy, photothermal therapy, and cancer treatment. This review seeks to provide the nanomedicine community with a thorough and informative overview of the evolving landscape of complex metal nanoparticle research, with a specific emphasis on their roles in imaging, cancer therapy, infectious diseases, and biofilm treatment. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Diagnostic Tools > Diagnostic Nanodevices.
Collapse
Affiliation(s)
- Maryam Hajfathalian
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA 94305
| | - Katherine J. Mossburg
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
| | - Allan Radaic
- School of Dentistry, University of California Los Angeles
| | - Katherine E. Woo
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA 94305
| | - Pallavi Jonnalagadda
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yvonne Kapila
- School of Dentistry, University of California Los Angeles
| | - Paul L. Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University
| | - David P. Cormode
- Department of Radiology, Department of Bioengineering, University of Pennsylvania
| |
Collapse
|
12
|
Rahman S, Sadaf S, Hoque ME, Mishra A, Mubarak NM, Malafaia G, Singh J. Unleashing the promise of emerging nanomaterials as a sustainable platform to mitigate antimicrobial resistance. RSC Adv 2024; 14:13862-13899. [PMID: 38694553 PMCID: PMC11062400 DOI: 10.1039/d3ra05816f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
The emergence and spread of antibiotic-resistant (AR) bacterial strains and biofilm-associated diseases have heightened concerns about exploring alternative bactericidal methods. The WHO estimates that at least 700 000 deaths yearly are attributable to antimicrobial resistance, and that number could increase to 10 million annual deaths by 2050 if appropriate measures are not taken. Therefore, the increasing threat of AR bacteria and biofilm-related infections has created an urgent demand for scientific research to identify novel antimicrobial therapies. Nanomaterials (NMs) have emerged as a promising alternative due to their unique physicochemical properties, and ongoing research holds great promise for developing effective NMs-based treatments for bacterial and viral infections. This review aims to provide an in-depth analysis of NMs based mechanisms combat bacterial infections, particularly those caused by acquired antibiotic resistance. Furthermore, this review examines NMs design features and attributes that can be optimized to enhance their efficacy as antimicrobial agents. In addition, plant-based NMs have emerged as promising alternatives to traditional antibiotics for treating multidrug-resistant bacterial infections due to their reduced toxicity compared to other NMs. The potential of plant mediated NMs for preventing AR is also discussed. Overall, this review emphasizes the importance of understanding the properties and mechanisms of NMs for the development of effective strategies against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Sazedur Rahman
- Department of Mechanical and Production Engineering, Ahsanullah University of Science and Technology Dhaka Bangladesh
| | - Somya Sadaf
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra Ranchi 835215 Jharkhand India
| | - Md Enamul Hoque
- Department of Biomedical Engineering, Military Institute of Science and Technology Dhaka Bangladesh
| | - Akash Mishra
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra Ranchi 835215 Jharkhand India
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei Bandar Seri Begawan BE1410 Brunei Darussalam
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University Jalandhar Punjab India
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute Urutaí GO Brazil
| | - Jagpreet Singh
- Department of Chemistry, University Centre for Research and Development, Chandigarh University Mohali-140413 India
| |
Collapse
|
13
|
Niżnik Ł, Noga M, Kobylarz D, Frydrych A, Krośniak A, Kapka-Skrzypczak L, Jurowski K. Gold Nanoparticles (AuNPs)-Toxicity, Safety and Green Synthesis: A Critical Review. Int J Mol Sci 2024; 25:4057. [PMID: 38612865 PMCID: PMC11012566 DOI: 10.3390/ijms25074057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
In recent years, the extensive exploration of Gold Nanoparticles (AuNPs) has captivated the scientific community due to their versatile applications across various industries. With sizes typically ranging from 1 to 100 nm, AuNPs have emerged as promising entities for innovative technologies. This article comprehensively reviews recent advancements in AuNPs research, encompassing synthesis methodologies, diverse applications, and crucial insights into their toxicological profiles. Synthesis techniques for AuNPs span physical, chemical, and biological routes, focusing on eco-friendly "green synthesis" approaches. A critical examination of physical and chemical methods reveals their limitations, including high costs and the potential toxicity associated with using chemicals. Moreover, this article investigates the biosafety implications of AuNPs, shedding light on their potential toxic effects on cellular, tissue, and organ levels. By synthesizing key findings, this review underscores the pressing need for a thorough understanding of AuNPs toxicities, providing essential insights for safety assessment and advancing green toxicology principles.
Collapse
Affiliation(s)
- Łukasz Niżnik
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Maciej Noga
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Damian Kobylarz
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Adrian Frydrych
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| | - Alicja Krośniak
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090 Lublin, Poland
- World Institute for Family Health, Calisia University, 62-800 Kalisz, Poland
| | - Kamil Jurowski
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| |
Collapse
|
14
|
Irshad K, Akash MSH, Rehman K, Nadeem A, Shahzad A. Biosynthesis and Multifaceted Characterization of Breynia nivosa-Derived Silver Nanoparticles: An Eco-Friendly Approach for Biomedical Applications. ACS OMEGA 2024; 9:15383-15400. [PMID: 38585127 PMCID: PMC10993374 DOI: 10.1021/acsomega.3c10119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/28/2024] [Accepted: 03/08/2024] [Indexed: 04/09/2024]
Abstract
This study presents an environmentally friendly synthesis of stable silver nanoparticles (Ag-NPs) using the methanolic extract of Breynia nivosa. Initial phytochemical analysis of the extract revealed the presence of alkaloids, flavonoids, glycosides, saponins, and tannins. Further characterization through high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) analyses identified a diverse array of bioactive compounds, including hydroquinone, stearic acid, neophytadiene, 9,12-octadecadienoic acid (Z,Z), methyl ester, and others. The addition of B. nivosa methanolic extract to an AgNO3 solution resulted in a color change, confirming the green synthesis of Ag-NPs through the reduction of AgNO3, as made evident by ultraviolet-visible (UV-vis) spectroscopy. X-ray diffraction (XRD) analysis provided valuable insights into the crystal structure, and scanning electron microscopy (SEM) analysis visualized the predominantly spherical shape of the Ag-NPs. However, the zeta (ζ)-potential and dynamic light scattering (DLS) analyses confirmed the stability and nanoscale dimensions of the synthesized Ag-NPs. Meanwhile, Fourier transform infrared (FT-IR) spectra exhibited peaks indicative of various functional groups, including carboxylic acids, phenols, alkanes, and isocyanates. These functional groups played a crucial role in both the reduction and capping processes of the Ag-NPs. The study further explored the antioxidant activity, cytotoxicity, acetylcholinesterase inhibition, and α-amylase inhibition activities of the Ag-NPs of the B. nivosa extract, demonstrating their potential for biomedical and therapeutic applications. In conclusion, this environmentally sustainable synthesis of Ag-NPs from the B. nivosa extract, enriched with bioactive secondary metabolites detected through HPLC and GC-MS analysis, holds promise for diverse applications in the burgeoning field of green nanotechnology.
Collapse
Affiliation(s)
- Kanwal Irshad
- Department
of Pharmaceutical Chemistry, Government
College University, Faisalabad 38000, Pakistan
| | | | - Kanwal Rehman
- Department
of Pharmacy, The Women University, Multan 60000, Pakistan
| | - Ahmed Nadeem
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Asif Shahzad
- Department
of Biochemistry and Molecular Biology, Kunming
Medical University, Yunnan 650031, China
| |
Collapse
|
15
|
Pan C, Tong Y, Qian H, Krasavin AV, Li J, Zhu J, Zhang Y, Cui B, Li Z, Wu C, Liu L, Li L, Guo X, Zayats AV, Tong L, Wang P. Large area single crystal gold of single nanometer thickness for nanophotonics. Nat Commun 2024; 15:2840. [PMID: 38565552 PMCID: PMC10987654 DOI: 10.1038/s41467-024-47133-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Two-dimensional single crystal metals, in which the behavior of highly confined optical modes is intertwined with quantum phenomena, are highly sought after for next-generation technologies. Here, we report large area (>104 μm2), single crystal two-dimensional gold flakes (2DGFs) with thicknesses down to a single nanometer level, employing an atomic-level precision chemical etching approach. The decrease of the thickness down to such scales leads to the quantization of the electronic states, endowing 2DGFs with quantum-confinement-augmented optical nonlinearity, particularly leading to more than two orders of magnitude enhancement in harmonic generation compared with their thick polycrystalline counterparts. The nanometer-scale thickness and single crystal quality makes 2DGFs a promising platform for realizing plasmonic nanostructures with nanoscale optical confinement. This is demonstrated by patterning 2DGFs into nanoribbon arrays, exhibiting strongly confined near infrared plasmonic resonances with high quality factors. The developed 2DGFs provide an emerging platform for nanophotonic research and open up opportunities for applications in ultrathin plasmonic, optoelectronic and quantum devices.
Collapse
Affiliation(s)
- Chenxinyu Pan
- Interdisciplinary Center for Quantum Information, New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuanbiao Tong
- Interdisciplinary Center for Quantum Information, New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haoliang Qian
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Alexey V Krasavin
- Department of Physics and London Centre for Nanotechnology, King's College London, Strand, London, WC2R 2LS, UK
| | - Jialin Li
- Interdisciplinary Center for Quantum Information, New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiajie Zhu
- Interdisciplinary Center for Quantum Information, New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yiyun Zhang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Bowen Cui
- Interdisciplinary Center for Quantum Information, New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhiyong Li
- Interdisciplinary Center for Quantum Information, New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing, 314000, China
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute Zhejiang University, Jiaxing, 314000, China
| | - Chenming Wu
- Interdisciplinary Center for Quantum Information, New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lufang Liu
- Interdisciplinary Center for Quantum Information, New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Linjun Li
- Interdisciplinary Center for Quantum Information, New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing, 314000, China
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute Zhejiang University, Jiaxing, 314000, China
| | - Xin Guo
- Interdisciplinary Center for Quantum Information, New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing, 314000, China
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute Zhejiang University, Jiaxing, 314000, China
| | - Anatoly V Zayats
- Department of Physics and London Centre for Nanotechnology, King's College London, Strand, London, WC2R 2LS, UK.
| | - Limin Tong
- Interdisciplinary Center for Quantum Information, New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China.
| | - Pan Wang
- Interdisciplinary Center for Quantum Information, New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
- Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing, 314000, China.
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute Zhejiang University, Jiaxing, 314000, China.
| |
Collapse
|
16
|
Kambhu A, Satapanajaru T, Somsamak P, Pengthamkeerati P, Chokejaroenrat C, Muangkaew K, Nonthamit K. Green cleanup of styrene-contaminated soil by carbon-based nanoscale zero-valent iron and phytoremediation: Sunn hemp ( Crotalaria juncea), zinnia ( Zinnia violacea Cav.), and marigold ( Tagetes erecta L. ). Heliyon 2024; 10:e27499. [PMID: 38496887 PMCID: PMC10944241 DOI: 10.1016/j.heliyon.2024.e27499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
Accidental chemical spills can result in styrene-contaminated soil. Styrene negatively affects human health and the environment. The objective of this study was to remediate styrene-contaminated soil using a combination of activated carbon-based nanoscale zero-valent iron (nZVI-AC) and phytoremediation by sunn hemp (Crotalaria juncea), zinnia (Zinnia violacea Cav.) and marigolds (Tagetes erecta L.). The results showed that all three plant types could potentially increase the removal efficiency of styrene-contaminated soil. At 28 days, all three plants showed complete removal of styrene from the soil with 1 g/kg of nZVI-AC, activated carbon-based nZVI synthesized by tea leaves (Camellia sinensis) (T-nZVI-AC), or activated carbon-based nZVI synthesized by red Thai holy basil (Ocimum tenuiflorum L.) (B-nZVI-AC). However, styrene removal efficiencies of sunn hemp, zinnia, and marigold without carbon-based nZVI were 30%, 67%, and 56%, respectively. Statistical analysis (ANOVA) revealed that the removal efficiencies differed significantly from those of phytoremediation alone. With the same removal efficiency (100%), the biomass of sunn hemp in nano-phytoremediation treatments differed by approximately 55%, whereas the biomass of zinnia differed by >67%, compared with that of the control experiment. For marigold, the difference in biomass was only 30%. Styrene was adsorbed on surface of soil and AC and then further oxidized under air-water-nZVI environment, while phytovolatilization played an important role in transporting the remaining styrene from the contaminated soil to the air. Marigold was used as an alternative plant for the nano-phytoremediation of styrene-contaminated soil because of its sturdy nature, high biomass, tolerance to toxic effects, and ease of cultivation. Remediation of one cubic meter of styrene-contaminated soil by a combination of carbon-based nanoscale zero-valent iron and phytoremediation by marigolds emitted 0.0027 kgCO2/m3.
Collapse
Affiliation(s)
- Ann Kambhu
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok, 10900 Thailand
| | - Tunlawit Satapanajaru
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok, 10900 Thailand
| | - Piyapawn Somsamak
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok, 10900 Thailand
| | - Patthra Pengthamkeerati
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok, 10900 Thailand
| | - Chanat Chokejaroenrat
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok, 10900 Thailand
| | - Kanitchanok Muangkaew
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok, 10900 Thailand
| | - Kanthika Nonthamit
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok, 10900 Thailand
| |
Collapse
|
17
|
Lupuliasa AI, Baroi AM, Avramescu SM, Vasile BS, Prisada RM, Fierascu RC, Fierascu I, Sărdărescu (Toma) DI, Ripszky Totan A, Voicu-Bălășea B, Pițuru SM, Popa L, Ghica MV, Dinu-Pîrvu CE. Application of Common Culinary Herbs for the Development of Bioactive Materials. PLANTS (BASEL, SWITZERLAND) 2024; 13:997. [PMID: 38611526 PMCID: PMC11013859 DOI: 10.3390/plants13070997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
Hyssop (Hyssopus officinalis L.) and oregano (Origanum vulgare L.), traditionally used for their antimicrobial properties, can be considered viable candidates for nanotechnology applications, in particular for the phytosynthesis of metal nanoparticles. The present work aims to evaluate the potential application of hyssop and oregano for the phytosynthesis of silver nanoparticles, as well as to evaluate the biological activities of their extracts and obtained nanoparticles (antioxidant potential, as well as cell viability, inflammation level and cytotoxicity in human fibroblasts HFIB-G cell line studies). In order to obtain natural extracts, two extraction methods were applied (classical temperature extraction and microwave-assisted extraction), with the extraction method having a major influence on their composition, as demonstrated by both the total phenolic compounds (significantly higher for the microwave-assisted extraction; the oregano extracts had consistently higher TPC values, compared with the hyssop extracts) and in terms of individual components identified via HPLC. The obtained nanoparticles ware characterized via X-ray diffraction (XRD) and transmission electron microscopy (TEM), with the lowest dimension nanoparticles being recorded for the nanoparticles obtained using the oregano microwave extract (crystallite size 2.94 nm through XRD, average diameter 10 nm via TEM). The extract composition and particle size also influenced the antioxidant properties (over 60% DPPH inhibition being recorded for the NPs obtained using the oregano microwave extract). Cell viability was not affected at the lowest tested concentrations, which can be correlated with the nitric oxide level. Cell membrane integrity was not affected after exposure to classic temperature hyssop extract-NPs, while the other samples led to a significant LDH increase.
Collapse
Affiliation(s)
- Alina Ioana Lupuliasa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (A.I.L.); (L.P.); (M.V.G.); (C.-E.D.-P.)
| | - Anda-Maria Baroi
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM Bucharest, 202 Splaiul Independenței, 060021 Bucharest, Romania; (A.-M.B.); (I.F.)
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Mărăști Blvd., 011464 Bucharest, Romania
| | - Sorin Marius Avramescu
- Department of Inorganic Chemistry, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 030018 Bucharest, Romania;
- Research Centre for Environmental Protection and Waste Management (PROTMED), University of Bucharest, Splaiul Independenței 91-95, Sect. 5, 050107 Bucharest, Romania
| | - Bogdan Stefan Vasile
- Research Center for Advanced Materials, Products and Processes, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independenţei, 060042 Bucharest, Romania;
- National Research Center for Micro and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independenţei, 060042 Bucharest, Romania
| | - Răzvan Mihai Prisada
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (A.I.L.); (L.P.); (M.V.G.); (C.-E.D.-P.)
| | - Radu Claudiu Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM Bucharest, 202 Splaiul Independenței, 060021 Bucharest, Romania; (A.-M.B.); (I.F.)
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gheorghe Polizu St., 011061 Bucharest, Romania;
| | - Irina Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM Bucharest, 202 Splaiul Independenței, 060021 Bucharest, Romania; (A.-M.B.); (I.F.)
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Mărăști Blvd., 011464 Bucharest, Romania
| | - Daniela Ionela Sărdărescu (Toma)
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gheorghe Polizu St., 011061 Bucharest, Romania;
- National Research and Development Institute for Biotechnology in Horticulture, 37 Bucureti-Pitesti Str., 117715 Ștefănești, Romania
| | - Alexandra Ripszky Totan
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
- Interdisciplinary Center for Dental Research and Development, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (B.V.-B.); (S.-M.P.)
| | - Bianca Voicu-Bălășea
- Interdisciplinary Center for Dental Research and Development, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (B.V.-B.); (S.-M.P.)
| | - Silviu-Mirel Pițuru
- Interdisciplinary Center for Dental Research and Development, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (B.V.-B.); (S.-M.P.)
- Department of Organization, Professional Legislation and Management of the Dental Office, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (A.I.L.); (L.P.); (M.V.G.); (C.-E.D.-P.)
- Innovative Therapeutic Structures R&D Center (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (A.I.L.); (L.P.); (M.V.G.); (C.-E.D.-P.)
- Innovative Therapeutic Structures R&D Center (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (A.I.L.); (L.P.); (M.V.G.); (C.-E.D.-P.)
- Innovative Therapeutic Structures R&D Center (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| |
Collapse
|
18
|
Bulla M, Kumar V, Devi R, Kumar S, Sisodiya AK, Dahiya R, Mishra AK. Natural resource-derived NiO nanoparticles via aloe vera for high-performance symmetric supercapacitor. Sci Rep 2024; 14:7389. [PMID: 38548838 PMCID: PMC10978893 DOI: 10.1038/s41598-024-57606-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 03/20/2024] [Indexed: 04/01/2024] Open
Abstract
This investigation reported a one-step green synthesis of nickel oxide nanoparticles (NiO NPs) using aloe vera leaves extract solution for their application in a supercapacitor. This method used aloe vera leaves as a reducing agent, which is very simple and cost-effective. The synthesized NPs were thoroughly characterized using various techniques. The X-ray diffraction analysis unequivocally confirmed the crystalline nature; field emission scanning electron microscopy and transmission electron microscopy images showed different shapes and forms of an agglomerated cluster of synthesized NPs. The absorption spectra were recorded from UV visible spectroscopy, while Fourier transform infrared spectroscopy provided insights into the functional groups present. Electrochemical assessments were carried out via cyclic voltammetry, galvanostatic charging-discharging and electrochemical impedance spectroscopy. These experiments were performed using a 2 M KOH electrolyte within a 1.0 V potential window. Impressively, the single electrode displayed a remarkable specific capacitance of 462 F g-1 at a scan rate of 1 mV s-1 and 336 F g-1 at a current density of 0.76 A g-1. Further, a symmetric two-electrode device (NiO||NiO) has been successfully fabricated by employing a separator between the electrodes. The device exhibited an exceptional specific capacitance of approximately 239 F g-1, along with an energy density of 47.8 Wh kg-1 and a power density of 545 W kg-1 at 1 A g-1 current density within a 1.2 V potential window. The fabricated device also shows a retention capacity of 89% at 10 A g-1 after 2000 cycles with 114% of columbic efficiency. The present study underscores the effectiveness of the green synthesis approach in producing NiO NPs and establishes their potential as highly promising candidates for supercapacitor applications, showcasing both excellent electrochemical performance in a three-electrode system and remarkable stability in a practical two-electrode device. The results collectively highlight the efficacy of the green approach in producing NiO NPs, establishing its potential as a highly promising candidate for supercapacitor application.
Collapse
Affiliation(s)
- Mamta Bulla
- Department of Physics, COBS&H, CCS Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Vinay Kumar
- Department of Physics, COBS&H, CCS Haryana Agricultural University, Hisar, Haryana, 125004, India.
| | - Raman Devi
- Department of Physics, COBS&H, CCS Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Sunil Kumar
- Department of Physics, COBS&H, CCS Haryana Agricultural University, Hisar, Haryana, 125004, India
| | | | - Rita Dahiya
- Department of Physics, COBS&H, CCS Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Ajay Kumar Mishra
- Department of Chemistry, Durban University of Technology, Steve Biko Road, Durban, 4001, South Africa.
| |
Collapse
|
19
|
El-Naggar NEA, El-Sawah AA, Elmansy MF, Elmessiry OT, El-Saidy ME, El-Sherbeny MK, Sarhan MT, Elhefnawy AA, Dalal SR. Process optimization for gold nanoparticles biosynthesis by Streptomyces albogriseolus using artificial neural network, characterization and antitumor activities. Sci Rep 2024; 14:4581. [PMID: 38403677 PMCID: PMC10894868 DOI: 10.1038/s41598-024-54698-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/15/2024] [Indexed: 02/27/2024] Open
Abstract
Gold nanoparticles (GNPs) are highly promising in cancer therapy, wound healing, drug delivery, biosensing, and biomedical imaging. Furthermore, GNPs have anti-inflammatory, anti-angiogenic, antioxidants, anti-proliferative and anti-diabetic effects. The present study presents an eco-friendly approach for GNPs biosynthesis using the cell-free supernatant of Streptomyces albogriseolus as a reducing and stabilizing agent. The biosynthesized GNPs have a maximum absorption peak at 540 nm. The TEM images showed that GNPs ranged in size from 5.42 to 13.34 nm and had a spherical shape. GNPs have a negatively charged surface with a Zeta potential of - 24.8 mV. FTIR analysis identified several functional groups including C-H, -OH, C-N, amines and amide groups. The crystalline structure of GNPs was verified by X-ray diffraction and the well-defined and distinct diffraction rings observed by the selected area electron diffraction analysis. To optimize the biosynthesis of GNPs using the cell-free supernatant of S. albogriseolus, 30 experimental runs were conducted using central composite design (CCD). The artificial neural network (ANN) was employed to analyze, validate, and predict GNPs biosynthesis compared to CCD. The maximum experimental yield of GNPs (778.74 μg/mL) was obtained with a cell-free supernatant concentration of 70%, a HAuCl4 concentration of 800 μg/mL, an initial pH of 7, and a 96-h incubation time. The theoretically predicted yields of GNPs by CCD and ANN were 809.89 and 777.32 μg/mL, respectively, which indicates that ANN has stronger prediction potential compared to the CCD. The anticancer activity of GNPs was compared to that of doxorubicin (Dox) in vitro against the HeP-G2 human cancer cell line. The IC50 values of Dox and GNPs-based treatments were 7.26 ± 0.4 and 22.13 ± 1.3 µg/mL, respectively. Interestingly, treatments combining Dox and GNPs together showed an IC50 value of 3.52 ± 0.1 µg/mL, indicating that they targeted cancer cells more efficiently.
Collapse
Affiliation(s)
- Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El- Arab City, Alexandria, 21934, Egypt.
| | - Asmaa A El-Sawah
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed F Elmansy
- Biotechnology and its Application Program, Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Omar T Elmessiry
- Biotechnology and its Application Program, Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mohanad E El-Saidy
- Biotechnology and its Application Program, Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mostafa K El-Sherbeny
- Biotechnology and its Application Program, Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed T Sarhan
- Biotechnology and its Application Program, Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Aya Amin Elhefnawy
- Biotechnology and its Application Program, Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Shimaa R Dalal
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
20
|
Kashyap AS, Manzar N, Vishwakarma SK, Mahajan C, Dey U. Tiny but mighty: metal nanoparticles as effective antimicrobial agents for plant pathogen control. World J Microbiol Biotechnol 2024; 40:104. [PMID: 38372816 DOI: 10.1007/s11274-024-03911-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/29/2024] [Indexed: 02/20/2024]
Abstract
Metal nanoparticles (MNPs) have gained significant attention in recent years for their potential use as effective antimicrobial agents for controlling plant pathogens. This review article summarizes the recent advances in the role of MNPs in the control of plant pathogens, focusing on their mechanisms of action, applications, and limitations. MNPs can act as a broad-spectrum antimicrobial agent against various plant pathogens, including bacteria, fungi, and viruses. Different types of MNPs, such as silver, copper, zinc, iron, and gold, have been studied for their antimicrobial properties. The unique physicochemical properties of MNPs, such as their small size, large surface area, and high reactivity, allow them to interact with plant pathogens at the molecular level, leading to disruption of the cell membrane, inhibition of cellular respiration, and generation of reactive oxygen species. The use of MNPs in plant pathogen control has several advantages, including their low toxicity, selectivity, and biodegradability. However, their effectiveness can be influenced by several factors, including the type of MNP, concentration, and mode of application. This review highlights the current state of knowledge on the use of MNPs in plant pathogen control and discusses the future prospects and challenges in the field. Overall, the review provides insight into the potential of MNPs as a promising alternative to conventional chemical agents for controlling plant pathogens.
Collapse
Affiliation(s)
- Abhijeet Shankar Kashyap
- Plant Pathology Lab, ICAR-National Bureau of Agriculturally Important Microorganism, Mau, Uttar Pradesh, India.
| | - Nazia Manzar
- Plant Pathology Lab, ICAR-National Bureau of Agriculturally Important Microorganism, Mau, Uttar Pradesh, India.
| | - Shailesh Kumar Vishwakarma
- Plant Pathology Lab, ICAR-National Bureau of Agriculturally Important Microorganism, Mau, Uttar Pradesh, India
| | - Chetna Mahajan
- Department of Plant Pathology, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, HP, 176062, India
| | - Utpal Dey
- Krishi Vigyan Kendra (KVK)-Sepahijala, Central Agricultural University (Imphal), Sepahijala, Tripura, India
| |
Collapse
|
21
|
Singh A, Ansari VA, Mahmood T, Ahsan F, Wasim R, Maheshwari S, Shariq M, Parveen S, Shamim A. Emerging Nanotechnology for the Treatment of Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:687-696. [PMID: 37138478 DOI: 10.2174/1871527322666230501232815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/05/2022] [Accepted: 12/29/2022] [Indexed: 05/05/2023]
Abstract
Nanotechnology is a great choice for medical research, and the green synthesis approach is a novel and better way to synthesize nanoparticles. Biological sources are cost-effective, environmentally friendly, and allow large-scale production of nanoparticles. Naturally obtained 3 β-hydroxy-urs- 12-en-28-oic acids reported for neuroprotective and dendritic structure are reported as solubility enhancers. Plants are free from toxic substances and act as natural capping agents. In this review, the pharmacological properties of ursolic acid (UA) and the structural properties of the dendritic structure are discussed. UA acid appears to have negligible toxicity and immunogenicity, as well as favorable biodistribution, according to the current study, and the dendritic structure improves drug solubility, prevents drug degradation, increases circulation time, and potentially targets by using different pathways with different routes of administration. Nanotechnology is a field in which materials are synthesized at the nanoscale. Nanotechnology could be the next frontier of humankind's technological advancement. Richard Feynman first used the term 'Nanotechnology' in his lecture, "There is Plenty of Room at the Bottom", on 29th December, 1959, and since then, interest has increased in the research on nanoparticles. Nanotechnology is capable of helping humanity by solving major challenges, particularly in neurological disorders like Alzheimer's disease (AD), the most prevalent type, which may account for 60-70% of cases. Other significant forms of dementia include vascular dementia, dementia with Lewy bodies (abnormal protein aggregates that form inside nerve cells), and a number of illnesses that exacerbate frontotemporal dementia. Dementia is an acquired loss of cognition in several cognitive domains that are severe enough to interfere with social or professional functioning. However, dementia frequently co-occurs with other neuropathologies, typically AD with cerebrovascular dysfunction. Clinical presentations show that neurodegenerative diseases are often incurable because patients permanently lose some neurons. A growing body of research suggests that they also advance our knowledge of the processes that are probably crucial for maintaining the health and functionality of the brain. Serious neurological impairment and neuronal death are the main features of neurodegenerative illnesses, which are also extremely crippling ailments. The most prevalent neurodegenerative disorders cause cognitive impairment and dementia, and as average life expectancy rises globally, their effects become more noticeable.
Collapse
Affiliation(s)
- Aditya Singh
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow, UP-226026, India
| | - Vaseem Ahamad Ansari
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow, UP-226026, India
| | - Tarique Mahmood
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow, UP-226026, India
| | - Farogh Ahsan
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow, UP-226026, India
| | - Rufaida Wasim
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow, UP-226026, India
| | - Shubhrat Maheshwari
- Faculty of Pharmaceutical Sciences Rama University Mandhana, Bithoor Road, Kanpur, Uttar Pradesh-209217, India
| | - Mohammad Shariq
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow, UP-226026, India
| | - Saba Parveen
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow, UP-226026, India
| | - Arshiya Shamim
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow, UP-226026, India
| |
Collapse
|
22
|
Mohanta YK, Mishra AK, Panda J, Chakrabartty I, Sarma B, Panda SK, Chopra H, Zengin G, Moloney MG, Sharifi-Rad M. Promising applications of phyto-fabricated silver nanoparticles: Recent trends in biomedicine. Biochem Biophys Res Commun 2023; 688:149126. [PMID: 37951153 DOI: 10.1016/j.bbrc.2023.149126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 11/13/2023]
Abstract
The prospective contribution of phyto-nanotechnology to the synthesis of silver nanomaterials for biomedical purposes is attracting increasing interest across the world. Green synthesis of silver nanoparticles (Ag-NPs) through plants has been extensively examined recently, and it is now seen to be a green and efficient path for future exploitation and development of practical nano-factories. Fabrication of Ag-NPs is the process involves use of plant extracts/phyto-compounds (e.g.alkaloids, terpenoids, flavonoids, and phenolic compounds) to synthesise nanoparticles in more economical and feasible. Several findings concluded that in the field of medicine, Ag-NPs play a major role in pharmacotherapy (infection and cancer). Indeed, they exhibits novel properties but the reason is unclear (except some theoretical interpretation e.g. size, shape and morphology). But recent technological advancements help to address these questions by predicting the unique properties (composition and origin) by characterizing physical, chemical and biological properties. Due to increased list of publications and their application in the field of agriculture, industries and pharmaceuticals, issues relating to toxicity are unavoidable and question of debate. The present reviews aim to find out the role of plant extracts to synthesise Ag-NPs. It provides an overview of various phytocompounds and their role in the field of biomedicine (antibacterial, antioxidant, anticancer, anti-inflammatory etc.). In addition, this review also especially focused on various applications such as role in infection, oxidative stress, application in medical engineering, diagnosis and therapy, medical devices, orthopedics, wound healing and dressings. Additionally, the toxic effects of Ag-NPs in cell culture, tissue of different model organism, type of toxic reactions and regulation implemented to reduce associated risk are discussed critically. Addressing all above explanations, this review focus on the detailed properties of plant mediated Ag-NPs, its impact on biology, medicine and their commercial properties as well as toxicity.
Collapse
Affiliation(s)
- Yugal Kishore Mohanta
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), 9th Mile, Techno City, Baridua, Ri-Bhoi, Meghalaya, 793101, India; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea.
| | - Jibanjyoti Panda
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), 9th Mile, Techno City, Baridua, Ri-Bhoi, Meghalaya, 793101, India.
| | - Ishani Chakrabartty
- Learning and Development Solutions, Indegene Pvt. Ltd., Manyata Tech Park, Nagarwara, Bangalore, 560045, Karnataka, India.
| | - Bhaskar Sarma
- Department of Botany, Dhemaji College, Dhemaji, 787057, Assam, India.
| | - Sujogya Kumar Panda
- Centre of Environment Climate Change and Public Health, RUSA 2.0, Deapartment of Zoology, Utkal University, Vani Vihar, Bhubaneswar, 751004, Odisha, India.
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and TechnicalSciences, Chennai, 602105, Tamil Nadu, India.
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130, Konya, Turkey.
| | - Mark G Moloney
- The Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Majid Sharifi-Rad
- Department of Range and Watershed Management, Faculty of Water and Soil, University of Zabol, Zabol, 98613-35856, Iran.
| |
Collapse
|
23
|
Irfan M, Bagherpour S, Munir H, Perez-Garcia L, Fedatto Abelha T, Afroz A, Zeeshan N, Rashid U. GC-MS metabolomics profile of methanol extract of Acacia modesta gum and gum-assisted fabrication and characterization of gold nanoparticles through green synthesis approach. Int J Biol Macromol 2023; 252:126215. [PMID: 37572806 DOI: 10.1016/j.ijbiomac.2023.126215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/05/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023]
Abstract
Hereunder, for the first time, we reported phytocompounds in the methanolic extract of Acacia modesta (AM) gum through Gas chromatography-mass spectrometry (GS-MS). Further, the AM gum aqueous solution was used for gold nanoparticles (AuNPs) synthesis through a simple, swift, eco-friendly, and less costly green synthesis approach. A total of 108 phytocompounds (63 with nonpolar, 45 with polar column) were identified in the gum extract, which includes fatty acids, alcohols, sterols, aldehyde/ketones, furans, aromatic compounds, esters, phenols, terpenes, sugar derivatives, alkaloids, and flavones. From three used concentrations (5, 10, and 15 mg/mL) of the AM gum aqueous solution, the 15 mg/mL gum solution resulted in more successful AuNP synthesis with a smaller size, which was visualized by a rusty red color appearance. UV-Visible absorption spectroscopy revealed the characteristic surface plasmon resonance (SPR) of AuNPs in aqueous solution at 540 nm. Dynamic light scattering (DLS) measurement of NPs solution revealed a hydrodynamic diameter of 162 ± 02 nm with the highest gum concentration where core AuNPs diameter was 22 ± 03 nm, recorded by Transmission electron microscopy. Zeta potential revealed fair stability of AuNPs that was not decreased with time. Catalytic activity experiments revealed that AM gum-based AuNPs can increase the rate of the reduction of methylene blue 10 times in comparison with AM gum extract alone. Results from this study showed that a diverse array of phytocompounds in AM gum can successfully reduce gold ions into gold nanoparticles, which can be used further in different pharmaceutical and industrial applications.
Collapse
Affiliation(s)
- Muhammad Irfan
- Department of Biochemistry and Biotechnology, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan.
| | - Saman Bagherpour
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona, 08028, Spain; Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, Barcelona 08028, Spain
| | - Hira Munir
- Department of Biochemistry, Government College Women University Faisalabad, Faisalabad, Pakistan.
| | - Lluisa Perez-Garcia
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona, 08028, Spain; Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, Barcelona 08028, Spain.
| | - Thais Fedatto Abelha
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona, 08028, Spain; Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, Barcelona 08028, Spain
| | - Amber Afroz
- Department of Biochemistry and Biotechnology, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan
| | - Nadia Zeeshan
- Department of Biochemistry and Biotechnology, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan
| | - Umer Rashid
- Department of Biochemistry and Biotechnology, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan
| |
Collapse
|
24
|
Shahi F, Kamali F, Sharifzaheh B, Shirini F. Ag/g-C 3N 4 nanocomposite: Green fabrication and its application as a catalyst in the synthesis of new series of depsipeptides as biologically active compounds and investigation on their anti-breast cancer activity. Bioorg Chem 2023; 141:106804. [PMID: 37806049 DOI: 10.1016/j.bioorg.2023.106804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 10/10/2023]
Abstract
In this study, we bring forward a green and novel eco-friendly strategy for the fabrication of Ag/g-C3N4 nanocomposite via a fast in-situ generation method using Ferula Gummosa extracts as both stabilizer and reducing agent. Ag/g-C3N4 nanocomposite was analyzed by Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX-MAP), and transmission electron microscopy (TEM). After procurement and characterization, the catalytic activity of the prepared reagent was surveyed in the synthesis of a new series of depsipeptides using aspirin/ketoprofen, cyclohexyl isocyanide, and aryl aldehydes at ambient temperature in EtOH/H2O as a green media. Taking into account the economic and environmental facets, the method bestows some advantages such as using plant extracts as green media for the preparation of Ag nanoparticles, simple work-up procedure, mild reaction conditions, short reaction times, and high yields of the products. Additionally, the Ag/g-C3N4 nanocomposite catalyst can be recycled effectually and reused several times without a substantial loss in reactivity.
Collapse
Affiliation(s)
- Fatemeh Shahi
- Department of Chemistry, College of Science, University of Guilan, Rasht Zip Code 41335, I.R., Iran
| | - Fatemeh Kamali
- Department of Chemistry, College of Science, University of Guilan, Rasht Zip Code 41335, I.R., Iran
| | - Bahman Sharifzaheh
- Department of Engineering Science, Faculty of Technology and Engineering, East of Guilan, University of Guilan, Rudsar-Vajargah, 44891-63157, Iran
| | - Farhad Shirini
- Department of Chemistry, College of Science, University of Guilan, Rasht Zip Code 41335, I.R., Iran.
| |
Collapse
|
25
|
Singh KR, Natarajan A, Pandey SS. Bioinspired Multifunctional Silver Nanoparticles for Optical Sensing Applications: A Sustainable Approach. ACS APPLIED BIO MATERIALS 2023; 6:4549-4571. [PMID: 37852204 DOI: 10.1021/acsabm.3c00669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Silver nanoparticles developed via biosynthesis are the most fascinating nanosized particles and encompassed with excellent physicochemical properties. The bioinspired nanoparticles with different shapes and sizes have attracted huge attention due to their stability, low cost, environmental friendliness, and use of less hazardous chemicals. This is an ideal method for synthesizing a range of nanosized metal particles from plants and biomolecules. Optical biosensors are progressively being fabricated for the attainment of sustainability by using opportunities offered by nanotechnology. This review focuses mainly on tuning the optical properties of the metal nanoparticles for optical sensing to explore the importance and applications of bioinspired silver nanoparticles. Further, this review deliberates the role of bioinspired silver nanoparticles (Ag NPs) in biomedical, agricultural, environmental, and energy applications. Profound insight into the antimicrobial properties of these nanoparticles is also appreciated. Tailor-made bioinspired nanoparticles with effectuating characteristics can unsurprisingly target tumor cells and distribute enwrapped payloads intensively. Existing challenges and prospects of bioinspired Ag NPs are also summarized. This review is expected to deliver perceptions about the progress of the next generation of bioinspired Ag NPs and their outstanding performances in various fields by promoting sustainable practices for fabricating optical sensing devices.
Collapse
Affiliation(s)
- Kshitij Rb Singh
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan
| | - Arunadevi Natarajan
- Department of Chemistry, PSGR Krishnammal College for Women, Coimbatore, Tamil Nadu 641004, India
| | - Shyam S Pandey
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan
| |
Collapse
|
26
|
Zúñiga-Miranda J, Guerra J, Mueller A, Mayorga-Ramos A, Carrera-Pacheco SE, Barba-Ostria C, Heredia-Moya J, Guamán LP. Iron Oxide Nanoparticles: Green Synthesis and Their Antimicrobial Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2919. [PMID: 37999273 PMCID: PMC10674528 DOI: 10.3390/nano13222919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
The rise of antimicrobial resistance caused by inappropriate use of these agents in various settings has become a global health threat. Nanotechnology offers the potential for the synthesis of nanoparticles (NPs) with antimicrobial activity, such as iron oxide nanoparticles (IONPs). The use of IONPs is a promising way to overcome antimicrobial resistance or pathogenicity because of their ability to interact with several biological molecules and to inhibit microbial growth. In this review, we outline the pivotal findings over the past decade concerning methods for the green synthesis of IONPs using bacteria, fungi, plants, and organic waste. Subsequently, we delve into the primary challenges encountered in green synthesis utilizing diverse organisms and organic materials. Furthermore, we compile the most common methods employed for the characterization of these IONPs. To conclude, we highlight the applications of these IONPs as promising antibacterial, antifungal, antiparasitic, and antiviral agents.
Collapse
Affiliation(s)
- Johana Zúñiga-Miranda
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Julio Guerra
- Facultad de Ingeniería en Ciencias Aplicadas, Universidad Técnica del Norte, Ibarra 100107, Ecuador;
| | - Alexander Mueller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA;
| | - Arianna Mayorga-Ramos
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Carlos Barba-Ostria
- Escuela de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador;
- Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| | - Jorge Heredia-Moya
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Linda P. Guamán
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| |
Collapse
|
27
|
He MQ, Ai Y, Hu W, Guan L, Ding M, Liang Q. Recent Advances of Seed-Mediated Growth of Metal Nanoparticles: from Growth to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211915. [PMID: 36920232 DOI: 10.1002/adma.202211915] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Unprecedented advances in metal nanoparticle synthesis have paved the way for broad applications in sensing, imaging, catalysis, diagnosis, and therapy by tuning the optical properties, enhancing catalytic performance, and improving chemical and biological properties of metal nanoparticles. The central guiding concept for regulating the size and morphology of metal nanoparticles is identified as the precise manipulation of nucleation and subsequent growth, often known as seed-mediated growth methods. However, since the growth process is sensitive not only to the metal seeds but also to capping agents, metal precursors, growth solution, growth/incubation time, reductants, and other influencing factors, the precise control of metal nanoparticle morphology is multifactorial. Further, multiple reaction parameters are entangled with each other, so it is necessary to clarify the mechanism by which each factor precisely regulates the morphology of metal nanoparticles. In this review, to exploit the generality and extendibility of metal nanoparticle synthesis, the mechanisms of growth influencing factors in seed-mediated growth methods are systematically summarized. Second, a variety of critical properties and applications enabled by grown metal nanoparticles are focused upon. Finally, the current progress and offer insights on the challenges, opportunities, and future directions for the growth and applications of grown metal nanoparticles are reviewed.
Collapse
Affiliation(s)
- Meng-Qi He
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Yongjian Ai
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Wanting Hu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Liandi Guan
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Mingyu Ding
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
28
|
Chaudhari RK, Shah PA, Shrivastav PS. Green synthesis of silver nanoparticles using Adhatoda vasica leaf extract and its application in photocatalytic degradation of dyes. DISCOVER NANO 2023; 18:135. [PMID: 37903994 PMCID: PMC10616034 DOI: 10.1186/s11671-023-03914-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/25/2023] [Indexed: 11/01/2023]
Abstract
The paper describes biogenic synthesis of silver nanoparticles (AgNPs) using Adhatoda vasica leaf extracts at room temperature. The prepared AgNPs were characterized by UV-visible spectroscopy, Fourier-transform infrared spectroscopy, powder X-ray diffraction, Energy dispersive X-ray (EDX), High Resolution Transmission Electron Microscope, Scanning Electron Microscopy and Thermogravimetric analyser. The bio reduction method is devoid of any toxic chemicals, organic solvents, and external reducing, capping and stabilizing agent. The synthesized AgNPs had spherical shape with particle size ranging between 3.88 and 23.97 nm and had face centered cubic structure. UV-visible spectral analysis confirmed the formation of AgNPs with a characteristic surface plasmon resonance band at 419 nm. The EDX pattern revealed the presence of elemental Ag in AgNPs. The prepared AgNPs were used for degradation of Amaranth, Allura red and Fast green in aqueous medium, with ≥ 92.6% efficiency within 15 min using 5 mg of AgNPs. The optical bandgap, Eg value of 2.26 eV for AgNPs was found to be effective for rapid photocatalytic degradation of all the three dyes. The degradation process was observed to follow pseudo first order kinetics.
Collapse
Affiliation(s)
- Ronak Kumar Chaudhari
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Priyanka A Shah
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
- Department of Forensic Sciences, National Forensic Sciences University, Dharwad, Karnataka, 580011, India
| | - Pranav S Shrivastav
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
29
|
Khan HA, Ghufran M, Shams S, Jamal A, Khan A, Abdullah, Awan ZA, Khan MI. Green synthesis of silver nanoparticles from plant Fagonia cretica and evaluating its anti-diabetic activity through indepth in-vitro and in-vivo analysis. Front Pharmacol 2023; 14:1194809. [PMID: 37936909 PMCID: PMC10625996 DOI: 10.3389/fphar.2023.1194809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023] Open
Abstract
One of the most widespread metabolic diseases, Type-2 Diabetes Mellitus (T2DM) is defined by high blood sugar levels brought on by decreased insulin secretion, reduced insulin action, or both. Due to its cost-effectiveness and eco-friendliness, plant-mediated green synthesis of nanomaterials has become more and more popular. The aim of the study is to synthesize AgNPs, their characterizations and further in-vitro and in-vivo studies. Several methods were used to morphologically characterise the AgNPs. The AgNPs were crystalline, spherical, and clustered, with sizes ranging from 20 to 50 nm. AgNPs were found to contain various functional groups using Fourier transform infrared spectroscopy. This study focuses on the green-synthesis of AgNPs from Fagonia cretica (F. cretica) leaves extract to evaluate their synthesized AgNPs for in-vitro and in-vivo anti-diabetic function. For the in-vivo tests, 20 male Balb/C albino-mice were split up into four different groups. Anti-diabetic in-vivo studies showed significant weight gain and a decrease in all biochemical markers (pancreas panel, liver function panel, renal function panel, and lipid profile) in Streptozotocin (STZ)-induced diabetic mice. In vitro anti-diabetic investigations were also conducted on AgNPs, comprising α-amylase, α-glucosidase inhibitions, and antioxidant assays. AgNPs showed antioxidant activity in both the DPPH and ABTS assays. The research showed that the isolated nanoparticles have powerful antioxidant and enzyme inhibitory properties, especially against the main enzymes involved in T2DM.
Collapse
Affiliation(s)
- Haider Ali Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Mehreen Ghufran
- Department of Pathology, Medical Teaching Institution Bacha Khan Medical College (BKMC) Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Sulaiman Shams
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Alam Jamal
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abbas Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Abdullah
- Department of Environmental Science, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Zuhier A. Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
30
|
Balusamy SR, Joshi AS, Perumalsamy H, Mijakovic I, Singh P. Advancing sustainable agriculture: a critical review of smart and eco-friendly nanomaterial applications. J Nanobiotechnology 2023; 21:372. [PMID: 37821961 PMCID: PMC10568898 DOI: 10.1186/s12951-023-02135-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
Undoubtedly, nanoparticles are one of the ideal choices for achieving challenges related to bio sensing, drug delivery, and biotechnological tools. After gaining success in biomedical research, scientists are exploring various types of nanoparticles for achieving sustainable agriculture. The active nanoparticles can be used as a direct source of micronutrients or as a delivery platform for delivering the bioactive agrochemicals to improve crop growth, crop yield, and crop quality. Till date, several reports have been published showing applications of nanotechnology in agriculture. For instance, several methods have been employed for application of nanoparticles; especially metal nanoparticles to improve agriculture. The physicochemical properties of nanoparticles such as core metal used to synthesize the nanoparticles, their size, shape, surface chemistry, and surface coatings affect crops, soil health, and crop-associated ecosystem. Therefore, selecting nanoparticles with appropriate physicochemical properties and applying them to agriculture via suitable method stands as smart option to achieve sustainable agriculture and improved plant performance. In presented review, we have compared various methods of nanoparticle application in plants and critically interpreted the significant differences to find out relatively safe and specific method for sustainable agricultural practice. Further, we have critically analyzed and discussed the different physicochemical properties of nanoparticles that have direct influence on plants in terms of nano safety and nanotoxicity. From literature review, we would like to point out that the implementation of smaller sized metal nanoparticles in low concentration via seed priming and foliar spray methods could be safer method for minimizing nanotoxicity, and for exhibiting better plant performance during stress and non-stressed conditions. Moreover, using nanomaterials for delivery of bioactive agrochemicals could pose as a smart alternative for conventional chemical fertilizers for achieving the safer and cleaner technology in sustainable agriculture. While reviewing all the available literature, we came across some serious drawbacks such as the lack of proper regulatory bodies to control the usage of nanomaterials and poor knowledge of the long-term impact on the ecosystem which need to be addressed in near future for comprehensive knowledge of applicability of green nanotechnology in agriculture.
Collapse
Affiliation(s)
- Sri Renukadevi Balusamy
- Department of Food Science and Biotechnology, Sejong University, Gwangjin-Gu, Seoul, 05006 Republic of Korea
| | - Abhayraj S. Joshi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Haribalan Perumalsamy
- Institute for Next Generation Material Design, Hanyang University, Seoul, Republic of Korea
- Center for Creative Convergence Education, Hanyang University, Seoul, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Priyanka Singh
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
31
|
Abdulazeem L, Alasmari AF, Alharbi M, Alshammari A, Muhseen ZT. Utilization of aqueous broccoli florets extract for green synthesis and characterization of silver nanoparticles, with potential biological applications. Heliyon 2023; 9:e19723. [PMID: 37809957 PMCID: PMC10559003 DOI: 10.1016/j.heliyon.2023.e19723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/20/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
The process of creating nanoparticles using chemicals is not eco-friendly. However, a more environmentally conscious approach known as green chemistry, which involves using vegetable-mediated nanoparticle production, combines nanotechnology with biotechnology. In this study, the researchers aimed to assess the effectiveness of the green chemistry technique in producing silver nanoparticles using an liquid extract from broccoli florets (Brassica oleracea) under ideal environment. The successful production of silver nanoparticles was achieved through silver nitrate (AgNO₃) biological reduction with the help of an aqueous broccoli florets extract at a slightly acidic pH of 6-7. The silver nanoparticles occurrence was shown by a change of color that moved from colorless to reddish-brown. To characterize the green-produced nanoparticles, various analytical techniques such as Ultraviolet-Visible Spectroscopy (UV-VIS), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy-Dispersive X-ray Spectroscopy (EDAX) were employed. The antioxidant properties of the formed silver nanoparticles (AgNPs) were examined in vitro using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Ferric Reducing Antioxidant Power (FRAP) tests. Additionally, the antibacterial properties of AgNPs against various pathogenic bacteria was evaluated. The reduction procedure was easy and simple manageable, with UV-Vis spectroscopy indicating the surface plasmon resonance (SPR) presence at 425 nm. FTIR was utilized to identify active chemical groups in the biomass before and after reduction. SEM and X-ray diffraction analyses indicated that the silver nanoparticles had an average the size of individual particles of 33 nm and exhibited a face-centered cubic (FCC) structure. EDAX analysis confirmed the occurrence of elemental silver in the nanoparticles. The study demonstrated that the biosynthesis of AgNPs led to significant variations in antioxidant activity, which was dose-dependent and showed a similar pattern to the testing of the scarfing action of the ascorbic acid against free radicals using DPPH and FRAP. The AgNPs also dispalyed firm deep-spectrum antibacterial action observed against the tested pathogenic bacteria, outperforming certain medications. Interestingly, the silver nanoparticles remained stable at ambient temperature for 25 days without precipitation, retaining their antioxidant and antibacterial properties. In conclusion, the research findings suggest that an aqueous extract of fresh broccoli florets can serve as a viable and environmentally friendly method for producing stable silver nanoparticles with beneficial antioxidant and antibacterial characteristics.
Collapse
Affiliation(s)
- Lubna Abdulazeem
- DNA Research Center, University of Babylon, Hillah, Babylon 51001, Iraq
| | - Abdullah F. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ziyad Tariq Muhseen
- Department of Pharmacy, Al-Mustaqbal University College, Hillah, Babylon 51001, Iraq
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| |
Collapse
|
32
|
Singh H, Desimone MF, Pandya S, Jasani S, George N, Adnan M, Aldarhami A, Bazaid AS, Alderhami SA. Revisiting the Green Synthesis of Nanoparticles: Uncovering Influences of Plant Extracts as Reducing Agents for Enhanced Synthesis Efficiency and Its Biomedical Applications. Int J Nanomedicine 2023; 18:4727-4750. [PMID: 37621852 PMCID: PMC10444627 DOI: 10.2147/ijn.s419369] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Background Conventional nanoparticle synthesis methods involve harsh conditions, high costs, and environmental pollution. In this context, researchers are actively searching for sustainable, eco-friendly alternatives to conventional chemical synthesis methods. This has led to the development of green synthesis procedures among which the exploration of the plant-mediated synthesis of nanoparticles experienced a great development. Especially, because plant extracts can work as reducing and stabilizing agents. This opens up new possibilities for cost-effective, environmentally-friendly nanoparticle synthesis with enhanced size uniformity and stability. Moreover, bio-inspired nanoparticles derived from plants exhibit intriguing pharmacological properties, making them highly promising for use in medical applications due to their biocompatibility and nano-dimension. Objective This study investigates the role of specific phytochemicals, such as phenolic compounds, terpenoids, and proteins, in plant-mediated nanoparticle synthesis together with their influence on particle size, stability, and properties. Additionally, we highlight the potential applications of these bio-derived nanoparticles, particularly with regard to drug delivery, disease management, agriculture, bioremediation, and application in other industries. Methodology Extensive research on scientific databases identified green synthesis methods, specifically plant-mediated synthesis, with a focus on understanding the contributions of phytochemicals like phenolic compounds, terpenoids, and proteins. The database search covered the field's development over the past 15 years. Results Insights gained from this exploration highlight plant-mediated green synthesis for cost-effective nanoparticle production with significant pharmacological properties. Utilizing renewable biological resources and controlling nanoparticle characteristics through biomolecule interactions offer promising avenues for future research and applications. Conclusion This review delves into the scientific intricacies of plant-mediated synthesis of nanoparticles, highlighting the advantages of this approach over the traditional chemical synthesis methods. The study showcases the immense potential of green synthesis for medical and other applications, aiming to inspire further research in this exciting area and promote a more sustainable future.
Collapse
Affiliation(s)
- Harjeet Singh
- Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India
| | - Martin F Desimone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Shivani Pandya
- Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India
- Department of Forensic Science, PIAS, Parul University, Vadodara, Gujarat, 391760, India
| | - Srushti Jasani
- Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India
| | - Noble George
- Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India
- Department of Forensic Science, PIAS, Parul University, Vadodara, Gujarat, 391760, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Abdu Aldarhami
- Department of Medical Microbiology, Qunfudah Faculty of Medicine, Umm Al-Qura University, Al-Qunfudah, 28814, Saudi Arabia
| | - Abdulrahman S Bazaid
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Hail, Hail, 55476, Saudi Arabia
| | - Suliman A Alderhami
- Chemistry Department, Faculty of Science and Arts in Almakhwah, Al-Baha University, Al-Baha, Saudi Arabia
| |
Collapse
|
33
|
El-Naggar NEA, Eltarahony M, Hafez EE, Bashir SI. Green fabrication of chitosan nanoparticles using Lavendula angustifolia, optimization, characterization and in‑vitro antibiofilm activity. Sci Rep 2023; 13:11127. [PMID: 37429892 DOI: 10.1038/s41598-023-37660-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/25/2023] [Indexed: 07/12/2023] Open
Abstract
Chitosan nanoparticles (CNPs) are promising polymeric nanoparticles with exceptional physicochemical, antimicrobial and biological characteristics. The CNPs are preferred for a wide range of applications in the food industry, cosmetics, agriculture, medical, and pharmaceutical fields due to their biocompatibility, biodegradability, eco-friendliness, and non-toxicity. In the current study, a biologically based approach was used to biofabricate CNPs using an aqueous extract of Lavendula angustifolia leaves as a reducing agent. The TEM images show that the CNPs were spherical in shape and ranged in size from 7.24 to 9.77 nm. FTIR analysis revealed the presence of several functional groups, including C-H, C-O, CONH2, NH2, C-OH and C-O-C. The crystalline nature of CNPs is demonstrated by X-ray diffraction. The thermogravimetric analysis revealed that CNPs are thermally stable. The CNPs' surface is positively charged and has a Zeta potential of 10 mV. For optimising CNPs biofabrication, a face-centered central composite design (FCCCD) with 50 experiments was used. The artificial intelligence-based approach was used to analyse, validate, and predict CNPs biofabrication. The optimal conditions for maximum CNPs biofabrication were theoretically determined using the desirability function and experimentally verified. The optimal conditions that maximize CNPs biofabrication (10.11 mg/mL) were determined to be chitosan concentration 0.5%, leaves extract 75%, and initial pH 4.24. The antibiofilm activity of CNPs was evaluated in‑vitro. The results show that 1500 μg/mL of CNPs suppressed P. aeruginosa, S. aureus and C. albicans biofilm formation by 91.83 ± 1.71%, 55.47 ± 2.12% and 66.4 ± 1.76%; respectively. The promising results of the current study in biofilm inhibition by necrotizing biofilm architecture, reducing its significant constituents and inhibiting microbial cell proliferation encourage their use as natural biosafe and biocompatible anti-adherent coating in antibiofouling membranes, medical bandage/tissues and food packaging materials.
Collapse
Affiliation(s)
- Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt.
| | - Marwa Eltarahony
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Elsayed E Hafez
- Department of Plant Protection and Biomolecular Diagnosis, Arid Land Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El‑Arab City, Alexandria, 21934, Egypt
| | - Shimaa I Bashir
- Department of Plant Protection and Biomolecular Diagnosis, Arid Land Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El‑Arab City, Alexandria, 21934, Egypt
| |
Collapse
|
34
|
Alhammad BA, Abdel-Aziz HMM, Seleiman MF, Tourky SMN. How Can Biological and Chemical Silver Nanoparticles Positively Impact Physio-Chemical and Chloroplast Ultrastructural Characteristics of Vicia faba Seedlings? PLANTS (BASEL, SWITZERLAND) 2023; 12:2509. [PMID: 37447073 DOI: 10.3390/plants12132509] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Through interactions with plant cells, silver nanoparticles (AgNPs) with both biological and chemical origins can stimulate physiological and metabolic processes in plants. To ensure their safe application in the food chain, it is necessary to investigate their effects on plant systems. Therefore, the effects of chemical AgNPs (chem-AgNPs) and biologically synthesized AgNPs (bio-AgNPs) at different levels (i.e., 0, 10, and 50 ppm) on physiological and biochemical traits {i.e., root and shoot growth traits, photosynthetic pigments (Chl a, Chl b, carotenoids, and total pigments), soluble sugars, total carbohydrates, starch, H2O2, and antioxidant enzyme activities} of Vicia faba L. seedlings were investigated. AgNPs were biosynthesized from silver nitrate (AgNO3) by a green synthesis approach using Jatropha curcas seed extract. The synthesized AgNPs were characterized by UV-vis spectroscopy, transmission electron microscopy (TEM), zeta potential, Fourier-transform infrared spectra (FT-IR), and X-ray diffraction (XRD). The results showed that bio-AgNPs at 10 ppm resulted in the highest growth, physiological, and biological traits of faba bean seedlings in comparison with those obtained from both AgNO3 and chem-AgNPs treatments. On the other hand, all AgNPs treatments adversely affected the chloroplast ultrastructure, however, fewer negative effects were obtained with the application of 10 ppm bio-AgNPs. In addition, the roots and shoots of seedlings contained the lowest Ag content under different treatments at 10 ppm AgNPs in comparison to the highest level of AgNPs (50 ppm), which indicates that additional studies should be incorporated to ensure safe use of lower concentrations of bio-AgNPs in seed priming. In conclusion, the application of biogenic nanoparticles at 10 ppm can be recommended to enhance plant growth and the productivity of strategic crops.
Collapse
Affiliation(s)
- Bushra Ahmed Alhammad
- Biology Department, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, Al Kharj Box 292, Riyadh 11942, Saudi Arabia
| | - Heba M M Abdel-Aziz
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Mahmoud F Seleiman
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Department of Crop Sciences, Faculty of Agriculture, Menoufia University, Shibin El-Kom 32514, Egypt
| | - Shaimaa M N Tourky
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
35
|
Kumar DG, Achar RR, Kumar JR, Amala G, Gopalakrishnan VK, Pradeep S, Shati AA, Alfaifi MY, Elbehairi SEI, Silina E, Stupin V, Manturova N, Shivamallu C, Kollur SP. Assessment of antimicrobial and anthelmintic activity of silver nanoparticles bio-synthesized from Viscum orientale leaf extract. BMC Complement Med Ther 2023; 23:167. [PMID: 37217985 DOI: 10.1186/s12906-023-03982-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Viscum orientale is a largely used parasitic plant with traditional medicinal properties. They are considered to possess the medicinal properties of host tree which they grow on. It's a least explored plant with ethanopharmacological importance. As a result, the current work aimed to investigate the biological effects of Viscum orientale extract and silver nanoparticles (AgNPs) generated from it. METHODS AgNPs synthesized using Viscum orientale plant extract and analysed on time dependent series and was characterized using Ultra Violet UV-visible spectra, Fourier Transform Infrared Spectroscopy FTIR, X-ray diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDX), Scanning Electron Microscopy (SEM). Further using disc method anti-microbial assay was performed following antioxidation screening using 1,1-diphenyl-2-picryl-hydrazyl (DPPH), reducing power and nitric oxide content and heamgglutination with human blood. RESULTS On green synthesis using silver, the phyto contituents of plant Viscum orientale effectively reduced silver ions at 3-4 h of continuous stirring to form AgNPs. UV-vis spectra showed a typical peak of AgNPs at 480 nm. The FTIR analysis confirmed the covering of silver layers to bio-compounds of the extract. SEM analysis represented AgNPs as spherical morphologies ranging from 119-222 nm. AgNPs exhibited impressive zone of inhibition against Escherichia coli (8.1 ± 0.3 mm), Staphylococcus aureus (10.3 ± 0.3 mm), Bacillus subtilis (7.3 ± 0.3 mm), Bacillus cereus (8.2 ± 0.3 mm), Salmonella typhi (7.1 ± 0.2 mm). AgNps exhibited efficiency against DPPH at EC50 value of 57.60 µg/ml. and reducing power at EC50 of 53.42 µg/ml and nitric oxide scavenging of EC50 of 56.01 µg/ml concentration. Further, anthelmintic activity results showed synthesized nanoparticles significant reduction in the paralysis time to 5.4 ± 0.3 min and death time to 6.5 ± 0.6 min in contrast to the individual factors. On hemagglutination using AgNPs, above 80 µg/ml of concentration showed very significant effect on comparison with water extract. CONCLUSION Synthesized AgNPs using Viscum orientale water extract displayed versatile biological activity than individual extract. This study has forecasted a new path to explore more on this AgNPs for further research.
Collapse
Affiliation(s)
- Dugganaboyana Guru Kumar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research (Deemed to Be University), Sri Shivarathreeshwara Nagara, Mysuru, 570015, Karnataka, India.
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research (Deemed to Be University), Sri Shivarathreeshwara Nagara, Mysuru, 570015, Karnataka, India.
| | - Jajur Ramanna Kumar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research (Deemed to Be University), Sri Shivarathreeshwara Nagara, Mysuru, 570015, Karnataka, India
| | - Ganamaedi Amala
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research (Deemed to Be University), Sri Shivarathreeshwara Nagara, Mysuru, 570015, Karnataka, India
| | | | - Sushma Pradeep
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education, Mysore, India
| | - Ali A Shati
- Biology Department, Faculty of Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y Alfaifi
- Biology Department, Faculty of Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Ekaterina Silina
- Department of Hospital Surgery, N.I. Pirogov Russian National Research Medical University (RNRMU), Moscow, 117 997, Russia
| | - Victor Stupin
- Department of Hospital Surgery, N.I. Pirogov Russian National Research Medical University (RNRMU), Moscow, 117 997, Russia
| | - Natalia Manturova
- Department of Hospital Surgery, N.I. Pirogov Russian National Research Medical University (RNRMU), Moscow, 117 997, Russia
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education, Mysore, India.
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, 570 026, Karnataka, India.
| |
Collapse
|
36
|
Malik AQ, Mir TUG, Kumar D, Mir IA, Rashid A, Ayoub M, Shukla S. A review on the green synthesis of nanoparticles, their biological applications, and photocatalytic efficiency against environmental toxins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27437-9. [PMID: 37171732 DOI: 10.1007/s11356-023-27437-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
Green synthesis of nanoparticles (NPs) using plant materials and microorganisms has evolved as a sustainable alternative to conventional techniques that rely on toxic chemicals. Recently, green-synthesized eco-friendly NPs have attracted interest for their potential use in various biological applications. Several studies have demonstrated that green-synthesized NPs are beneficial in multiple medicinal applications, including cancer treatment, targeted drug delivery, and wound healing. Additionally, due to their photodegradation activity, green-synthesized NPs are a promising tool in environmental remediation. Photodegradation is a process that uses light and a photocatalyst to turn a pollutant into a harmless product. Green NPs have been found efficient in degrading pollutants such as dyes, herbicides, and heavy metals. The use of microbes and flora in green synthesis technology for nanoparticle synthesis is biologically safe, cost-effective, and eco-friendly. Plants and microbes can now use and accumulate inorganic metallic ions in the environment. Various NPs have been synthesized via the bio-reduction of biological entities or their extracts. There are several biological and environmental uses for biologically synthesized metallic NPs, such as photocatalysis, adsorption, and water purification. Since the last decade, the green synthesis of NPs has gained significant interest in the scientific community. Therefore, there is a need for a review that serves as a one-stop resource that points to relevant and recent studies on the green synthesis of NPs and their biological and photocatalytic efficiency. This review focuses on the green fabrication of NPs utilizing diverse biological systems and their applications in biological and photodegradation processes.
Collapse
Affiliation(s)
- Azad Qayoom Malik
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411.
| | - Tahir Ul Gani Mir
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Deepak Kumar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Irtiqa Ashraf Mir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Adfar Rashid
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Mehnaz Ayoub
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Saurabh Shukla
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| |
Collapse
|
37
|
Al-Fahdawi MQ, Aldoghachi AF, Alhassan FH, Al-Doghachi FA, Alshwyeh HA, Rasedee A, Alnasser SM, Al-Qubaisi MS, Ibrahim WN. Physicochemical characterization and cancer cell antiproliferative effect of silver-doped magnesia nanoparticles. Heliyon 2023; 9:e15560. [PMID: 37159701 PMCID: PMC10163622 DOI: 10.1016/j.heliyon.2023.e15560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 05/11/2023] Open
Abstract
Silver-doped magnesia nanoparticles (Ag/MgO) were synthesized using the precipitation method and characterized by various techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA), Brunner-Emmett-Teller (BET) surface area measurements, and dispersive X-ray spectroscopy (EDX). The morphology of Ag/MgO nanoparticles was determined by transmission and scanning electron microscopy, which revealed cuboidal shaped nanoparticles with sizes ranging from 31 to 68 nm and an average size of 43.5 ± 10.6 nm. The anticancer effects of Ag/MgO nanoparticles were evaluated on human colorectal (HT29) and lung adenocarcinoma (A549) cell lines, and their caspase-3, -8, and -9 activities, as well as Bcl-2, Bax, p53, cytochrome C protein expressions were estimated. Ag/MgO nanoparticles showed selective toxicity towards HT29 and A549 cells while remaining relatively innocuous towards the normal human colorectal, CCD-18Co, and lung, MRC-5 cells. The IC50 values of Ag/MgO nanoparticles on the HT29 and A549 cells were found to be 90.2 ± 2.6 and 85.0 ± 3.5 μg/mL, respectively. The Ag/MgO nanoparticles upregulated caspase-3 and -9 activities, downregulated Bcl-2, upregulated Bax and p53 protein expressions in the cancer cells. The morphology of the Ag/MgO nanoparticle treated HT29 and A549 cells was typical of apoptosis, with cell detachment, shrinkage, and membrane blebbing. The results suggest that Ag/MgO nanoparticles induce apoptosis in cancer cells and exhibit potential as a promising anticancer agent.
Collapse
Affiliation(s)
| | - Ahmed Faris Aldoghachi
- Faculty of Medicine and Health Sciences, University Putra Malaysia, UPM, Serdang, 43300, Malaysia
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, 43000, Malaysia
| | - Fatah H. Alhassan
- Department of Applied Chemistry and Technology, College of Science and Arts, Alkamel University of Jeddah, Jeddah, 21589, Saudi Arabia
- Department of Nanoscience and Nanotechnology, Africa City of Technology, Khartoum Bahari, Khartoum, Sudan
| | | | - Hussah Abdullah Alshwyeh
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
- Basic & Applied Scientific Research Center, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Abdullah Rasedee
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Corresponding author.Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | | | | | - Wisam Nabeel Ibrahim
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
- Corresponding author. Department of Biomedical sciences, College of Health sciences, QU Health, Qatar University, Qatar.
| |
Collapse
|
38
|
Gomez-Villalba LS, Salcines C, Fort R. Application of Inorganic Nanomaterials in Cultural Heritage Conservation, Risk of Toxicity, and Preventive Measures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1454. [PMID: 37176999 PMCID: PMC10180185 DOI: 10.3390/nano13091454] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
Nanotechnology has allowed for significant progress in architectural, artistic, archaeological, or museum heritage conservation for repairing and preventing damages produced by deterioration agents (weathering, contaminants, or biological actions). This review analyzes the current treatments using nanomaterials, including consolidants, biocides, hydrophobic protectives, mechanical resistance improvers, flame-retardants, and multifunctional nanocomposites. Unfortunately, nanomaterials can affect human and animal health, altering the environment. Right now, it is a priority to stop to analyze its advantages and disadvantages. Therefore, the aims are to raise awareness about the nanotoxicity risks during handling and the subsequent environmental exposure to all those directly or indirectly involved in conservation processes. It reports the human-body interaction mechanisms and provides guidelines for preventing or controlling its toxicity, mentioning the current toxicity research of main compounds and emphasizing the need to provide more information about morphological, structural, and specific features that ultimately contribute to understanding their toxicity. It provides information about the current documents of international organizations (European Commission, NIOSH, OECD, Countries Normative) about worker protection, isolation, laboratory ventilation control, and debris management. Furthermore, it reports the qualitative risk assessment methods, management strategies, dose control, and focus/receptor relationship, besides the latest trends of using nanomaterials in masks and gas emissions control devices, discussing their risk of toxicity.
Collapse
Affiliation(s)
- Luz Stella Gomez-Villalba
- Institute of Geosciences, Spanish National Research Council, Complutense University of Madrid (CSIC, UCM), Calle Dr. Severo Ochoa 7, Planta 4, 28040 Madrid, Spain
| | - Ciro Salcines
- Infrastructures Service, Health and Safety Unit, University of Cantabria, Pabellón de Gobierno, Avenida de los Castros 54, 39005 Santander, Spain
| | - Rafael Fort
- Institute of Geosciences, Spanish National Research Council, Complutense University of Madrid (CSIC, UCM), Calle Dr. Severo Ochoa 7, Planta 4, 28040 Madrid, Spain
| |
Collapse
|
39
|
Alabdallah NM, Kotb E. Antimicrobial Activity of Green Synthesized Silver Nanoparticles Using Waste Leaves of Hyphaene thebaica (Doum Palm). Microorganisms 2023; 11:microorganisms11030807. [PMID: 36985380 PMCID: PMC10054916 DOI: 10.3390/microorganisms11030807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Silver nanoparticles (AgNPs) were biosynthesized for the first time from waste leaves extract of local doum palms in Tabuk, Saudi Arabia. The transmission electron microscope (TEM) revealed a spherical shape with a particle size from 18 to 33 nm. The d-spacing is about 2.6 Å, which confirms a face-centered cubic crystalline building. The biosynthesized AgNPs were evaluated as an antimicrobial agent against several pathogenic bacteria, including Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 29213, and Pseudomonas aeruginosa ATCC 27853. The highest action was exerted against S. aureus ATCC 29213 (MIC = 1.5 µg/mL). Interestingly, AgNPs also showed anticandidal activity against the pathogenic yeasts Candida albicans ATCC 14053 (MIC = 24 µg/mL) and Candida tropicalis ATCC 13803 (MIC = 96 µg/mL). Scanning electron microscope (SEM) revealed deep morphological changes in Candida spp. due to the treatment of the AgNPs. Scarce pseudohyphae, perforation, exterior roughness, irregularly shaped cells, and production of protective exopolysaccharide (EPS) were the main features. In conclusion, the process of biosynthesis of AgNPs from the aqueous leaf extract of Hyphaene thebaica is environmentally compatible and induces the biosynthesis of tiny AgNPs that could be a promising candidate in biomedical applications, including antimicrobials against some pathogenic bacteria and yeasts.
Collapse
Affiliation(s)
- Nadiyah M Alabdallah
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Essam Kotb
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
40
|
El-Naggar NEA, Dalal SR, Zweil AM, Eltarahony M. Artificial intelligence-based optimization for chitosan nanoparticles biosynthesis, characterization and in‑vitro assessment of its anti-biofilm potentiality. Sci Rep 2023; 13:4401. [PMID: 36928367 PMCID: PMC10019797 DOI: 10.1038/s41598-023-30911-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Chitosan nanoparticles (CNPs) are promising biopolymeric nanoparticles with excellent physicochemical, antimicrobial, and biological properties. CNPs have a wide range of applications due to their unique characteristics, including plant growth promotion and protection, drug delivery, antimicrobials, and encapsulation. The current study describes an alternative, biologically-based strategy for CNPs biosynthesis using Olea europaea leaves extract. Face centered central composite design (FCCCD), with 50 experiments was used for optimization of CNPs biosynthesis. The artificial neural network (ANN) was employed for analyzing, validating, and predicting CNPs biosynthesis using Olea europaea leaves extract. Using the desirability function, the optimum conditions for maximum CNPs biosynthesis were determined theoretically and verified experimentally. The highest experimental yield of CNPs (21.15 mg CNPs/mL) was obtained using chitosan solution of 1%, leaves extract solution of 100%, initial pH 4.47, and incubation time of 60 min at 53.83°C. The SEM and TEM images revealed that CNPs had a spherical form and varied in size between 6.91 and 11.14 nm. X-ray diffraction demonstrates the crystalline nature of CNPs. The surface of the CNPs is positively charged, having a Zeta potential of 33.1 mV. FTIR analysis revealed various functional groups including C-H, C-O, CONH2, NH2, C-OH and C-O-C. The thermogravimetric investigation indicated that CNPs are thermally stable. The CNPs were able to suppress biofilm formation by P. aeruginosa, S. aureus and C. albicans at concentrations ranging from 10 to 1500 µg/mL in a dose-dependent manner. Inhibition of biofilm formation was associated with suppression of metabolic activity, protein/exopolysaccharide moieties, and hydrophobicity of biofilm encased cells (r ˃ 0.9, P = 0.00). Due to their small size, in the range of 6.91 to 11.14 nm, CNPs produced using Olea europaea leaves extract are promising for applications in the medical and pharmaceutical industries, in addition to their potential application in controlling multidrug-resistant microorganisms, especially those associated with post COVID-19 pneumonia in immunosuppressed patients.
Collapse
Affiliation(s)
- Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt.
| | - Shimaa R Dalal
- Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Amal M Zweil
- Plant Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Marwa Eltarahony
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt
| |
Collapse
|
41
|
Sedeveria pink ruby Extract-Mediated Synthesis of Gold and Silver Nanoparticles and Their Bioactivity against Livestock Pathogens and in Different Cell Lines. Antibiotics (Basel) 2023; 12:antibiotics12030507. [PMID: 36978374 PMCID: PMC10044096 DOI: 10.3390/antibiotics12030507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Biological synthesis of metal nanoparticles has a significant impact in developing sustainable technologies for human, animal, and environmental safety. In this study, we synthesized gold and silver nanoparticles (NPs) using Sedeveria pink ruby (SP) extract and characterized them using UV–visible spectrophotometry, FESEM-EDX, HR-TEM, XRD, and FT-IR spectroscopy. Furthermore, antimicrobial and antioxidant activities and cytotoxicity of the synthesized NPs were evaluated. UV–visible absorption spectra showed λmax at 531 and 410 nm, corresponding to the presence of SP gold NPs (SP-AuNPs) and SP silver NPs (SP-AgNPs). Most NPs were spherical and a few were triangular rods, measuring 5–30 and 10–40 nm, respectively. EDX elemental composition analysis revealed that SP-AuNPs and SP-AgNPs accounted for >60% and 30% of NPs, respectively. Additionally, some organic moieties were present, likely derived from various metabolites in the natural plant extract, which acted as stabilizing and reducing agents. Next, the antimicrobial activity of the NPs against pathogenic microbes was tested. SP-AgNPs showed potent antibacterial activity against Escherichia coli and Yersinia pseudotuberculosis. Moreover, at moderate and low concentrations, both NPs exhibited weak cytotoxicity in chicken fibroblasts (DF-1) and macrophages (HD11) as well as human intestinal cancer cells (HT-29). Meanwhile, at high concentrations, the NPs exhibited strong cytotoxicity in both chicken and human cell lines. Therefore, the synthesized SP-AuNPs and SP-AgNPs may act as promising materials to treat poultry diseases.
Collapse
|
42
|
Biosensing and anti-inflammatory effects of silver, copper and iron nanoparticles from the leaf extract of Catharanthus roseus. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2023. [DOI: 10.1186/s43088-023-00358-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Abstract
Background
In this study, we present a low-cost, environmentally friendly method for producing silver, copper, and iron nanoparticles using fresh Catharanthus roseus leaf extract. The biomolecules found in the plant extract play a crucial role as stabilizing and reducing agents. The spectral profile of the UV–visible spectrophotometer was measured to confirm and identify the biosynthesized nanoparticles. The synthesized nanoparticles were tested for biosensing activities and anti-inflammatory effects.
Result
UV–visible spectra showed a prominent surface resonance peak of 415 nm, 300 nm, and 400 nm, corresponding to the formation of silver, copper, and iron nanoparticles, respectively. The in vitro anti-inflammatory properties of the synthesized AgNPs, CuNPs, and FeNPs showed the maximum inhibition of protein denaturation at 58%, 54.15%, and 44.26% at a concentration of 400 µg/ml, respectively. Furthermore, at a 400 µg/ml concentration, Diclofenac, utilized as a control, showed a maximal inhibition of 93.37%. According to the biosensing activity, these nanoparticles are also a good source for biosensing hazardous heavy salts. So, this article provides the first description of the silver, copper, and iron nanoparticles from Catharanthus roseus leave biosensing capabilities and anti-inflammatory characteristics.
Conclusion
Overall, this study revealed that due to their biocompatibility, silver, copper, and iron nanoparticles could be appealing and environmentally acceptable options that could be used as innovative therapeutic agents for the prevention and treatment of inflammation. The primary outcome of the research will be the development of potential pharmaceutical uses for the C. roseus medicinal plant in the biomedical and nanotechnology-based industries.
Collapse
|
43
|
Malik S, Niazi M, Khan M, Rauff B, Anwar S, Amin F, Hanif R. Cytotoxicity Study of Gold Nanoparticle Synthesis Using Aloe vera, Honey, and Gymnema sylvestre Leaf Extract. ACS OMEGA 2023; 8:6325-6336. [PMID: 36844542 PMCID: PMC9947984 DOI: 10.1021/acsomega.2c06491] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Gold nanoparticles (AuNPs) have gained importance in the field of biomedical research and diagnostics due to their unique physicochemical properties. This study aimed to synthesize AuNPs using Aloe vera extract, honey, and Gymnema sylvestre leaf extract. Physicochemical parameters for the optimal synthesis of AuNPs were determined using 0.5, 1, 2, and 3 mM of gold salt at varying temperatures from 20 to 50 °C. X-ray diffraction was used to evaluate the crystal structure of AuNPs, which came out to be a face-centered cubic structure. Scanning electron microscopy and energy-dispersive X-ray spectroscopy analysis confirmed the size and shape of AuNPs between 20 and 50 nm from the Aloe vera, honey, and Gymnema sylvestre, as well as large-sized nanocubes in the case of honey, with 21-34 wt % of gold content. Furthermore, Fourier transform infrared spectroscopy confirmed the presence of a broadband of amine (N-H) and alcohol groups (O-H) on the surface of the synthesized AuNPs that prevents them from agglomeration and provides stability. Broad and weak bands of aliphatic ether (C-O), alkane (C-H), and other functional groups were also found on these AuNPs. DPPH antioxidant activity assay showed a high free radical scavenging potential. The most suited source was selected for further conjugation with three anticancer drugs including 4-hydroxy Tamoxifen, HIF1 alpha inhibitor, and the soluble Guanylyl Cyclase Inhibitor 1 H-[1,2,4] oxadiazolo [4,3-alpha]quinoxalin-1-one (ODQ). Evidence of the pegylated drug conjugation with AuNPs was reinforced by ultraviolet/visible spectroscopy. These drug-conjugated nanoparticles were further checked on MCF7 and MDA-MB-231 cells for their cytotoxicity. These AuNP-conjugated drugs can be a good candidate for breast cancer treatment that will lead toward safe, economical, biocompatible, and targeted drug delivery systems.
Collapse
Affiliation(s)
- Shiza Malik
- Atta-ur-Rahman
School of Applied Biosciences (ASAB), National
University of Sciences and Technology (NUST), Islamabad44000, Pakistan
| | - Maha Niazi
- Atta-ur-Rahman
School of Applied Biosciences (ASAB), National
University of Sciences and Technology (NUST), Islamabad44000, Pakistan
| | - Maham Khan
- Atta-ur-Rahman
School of Applied Biosciences (ASAB), National
University of Sciences and Technology (NUST), Islamabad44000, Pakistan
| | - Bisma Rauff
- Department
of Biomedical Engineering, University of
Engineering and Technology (UET), Lahore53400, Pakistan
| | - Sidra Anwar
- Atta-ur-Rahman
School of Applied Biosciences (ASAB), National
University of Sciences and Technology (NUST), Islamabad44000, Pakistan
| | - Faheem Amin
- Department
of Physics, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad46000, Pakistan
| | - Rumeza Hanif
- Atta-ur-Rahman
School of Applied Biosciences (ASAB), National
University of Sciences and Technology (NUST), Islamabad44000, Pakistan
| |
Collapse
|
44
|
Yu S, Zhang C, Yang H. Two-Dimensional Metal Nanostructures: From Theoretical Understanding to Experiment. Chem Rev 2023; 123:3443-3492. [PMID: 36802540 DOI: 10.1021/acs.chemrev.2c00469] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
This paper reviews recent studies on the preparation of two-dimensional (2D) metal nanostructures, particularly nanosheets. As metal often exists in the high-symmetry crystal phase, such as face centered cubic structures, reducing the symmetry is often needed for the formation of low-dimensional nanostructures. Recent advances in characterization and theory allow for a deeper understanding of the formation of 2D nanostructures. This Review firstly describes the relevant theoretical framework to help the experimentalists understand chemical driving forces for the synthesis of 2D metal nanostructures, followed by examples on the shape control of different metals. Recent applications of 2D metal nanostructures, including catalysis, bioimaging, plasmonics, and sensing, are discussed. We end the Review with a summary and outlook of the challenges and opportunities in the design, synthesis, and application of 2D metal nanostructures.
Collapse
Affiliation(s)
- Siying Yu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 206 Roger Adams Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Cheng Zhang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 206 Roger Adams Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hong Yang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 206 Roger Adams Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
45
|
S A, Kavitha HP. Magnesium Oxide Nanoparticles: Effective Antilarvicidal and Antibacterial Agents. ACS OMEGA 2023; 8:5225-5233. [PMID: 36816696 PMCID: PMC9933234 DOI: 10.1021/acsomega.2c01450] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 12/14/2022] [Indexed: 05/27/2023]
Abstract
People are vulnerable to mosquito-borne infections in tropical and subtropical climate countries. Due to resistive issues, vector control is an immediate concern in today's environment. The current study describes the synthesis of magnesium oxide by four different approaches including green, microwave, sol-gel, and hydrothermal methods. The synthesized magnesium oxide (MgO) nanoparticles were characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM), and energy-dispersive X-ray analysis (EDAX) techniques. The FT-IR studies reveal the presence of functional groups in the synthesized nanoparticles. The structural and morphological studies were investigated using XRD and HRSEM. EDAX reveals the presence of Mg and O in the prepared samples. The synthesized MgO NPs were screened for antibacterial studies against Gram-positive strains, Enterococcus faecalis and Staphylococcus aureus, two Gram-negative cultures, Escherichia coli and Klebsiella pneumoniae, using different concentrations. The results indicated excellent antibacterial activity against both Gram-positive and Gram-negative bacteria at 50 mg/mL hydrothermally produced MgO nanoparticles, with a maximal zone of inhibition (ZOI) of 5 mm for S. aureus, 7 mm for E. faecalis, and 6 mm for K. pneumoniae. The ZOI of E. coli was found to be the greatest at 9 mm when 50 mg/mL sol-gel-produced MgO nanoparticles were used. The synthesized MgO nanostructures were tested against fourth-instar larvae of Aedes aegypti and Aedes albopictus, and the hydrothermally synthesized MgO nanostructures exhibited better results when compared with other methods of synthesis. The reports show that A. aegypti and A. albopictus mortality rates were reported to be the lowest with green-manufactured MgO nanoparticles (7.5 g mL-1) and the highest with hydrothermally synthesized MgO nanoparticles (120 g mL-1). The research indicates that MgO nanostructures are promising drugs for antibacterial and mosquitocidal larvae control properties.
Collapse
Affiliation(s)
- Abinaya S
- SRM Institute of Science and Technology, Ramapuram, Chennai 600089, India, https://renuwit.org/contact/
| | - Helen P. Kavitha
- SRM Institute of Science and Technology, Ramapuram, Chennai 600089, India, https://renuwit.org/contact/
| |
Collapse
|
46
|
Tripathi DK, Kandhol N, Rai P, Mishra V, Pandey S, Deshmukh R, Sahi S, Sharma S, Singh VP. Ethylene Renders Silver Nanoparticles Stress Tolerance in Rice Seedlings by Regulating Endogenous Nitric Oxide Accumulation. PLANT & CELL PHYSIOLOGY 2023; 63:1954-1967. [PMID: 36377808 DOI: 10.1093/pcp/pcac159] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Developments in the field of nanotechnology over the past few years have increased the prevalence of silver nanoparticles (AgNPs) in the environment, resulting in increased exposure of plants to AgNPs. Recently, various studies have reported the effect of AgNPs on plant growth at different concentrations. However, identifying the mechanisms and signaling molecules involved in plant responses against AgNPs stress is crucial to find an effective way to deal with the phytotoxic impacts of AgNPs on plant growth and development. Therefore, this study was envisaged to investigate the participation of ethylene in mediating the activation of AgNPs stress tolerance in rice (Oryza sativa L.) through a switch that regulates endogenous nitric oxide (NO) accumulation. Treatment of AgNPs alone hampered the growth of rice seedlings due to severe oxidative stress as a result of decline in sulfur assimilation, glutathione (GSH) biosynthesis and alteration in the redox status of GSH. These results are also accompanied by the higher endogenous NO level. However, addition of ethephon (a donor of ethylene) reversed the AgNP-induced effects. Though the application of silicon nanoparticles (SiNPs) alone promoted the growth of rice seedlings but, interestingly their application in combination with AgNPs enhanced the AgNP-induced toxicity in the seedlings through the same routes as exhibited in the case of AgNPs alone treatment. Interestingly, addition of ethephon reversed the negative effects of SiNPs under AgNPs stress. These results suggest that ethylene might act as a switch to regulate the level of endogenous NO, which in turn could be associated with AgNPs stress tolerance in rice. Furthermore, the results also indicated that addition of l-NG-nitro arginine methyl ester (l-NAME) (an inhibitor of endogenous NO synthesis) also reversed the toxic effects of SiNPs together with AgNPs, further suggesting that the low level of endogenous NO was associated with AgNPs stress tolerance. Overall, the results indicate that the low level of endogenous NO triggers AgNPs stress tolerance, while high level leads to AgNPs toxicity by regulating sulfur assimilation, GSH biosynthesis, redox status of GSH and oxidative stress markers. The results revealed that ethylene might act as a switch for regulating AgNPs stress in rice seedlings by controlling endogenous NO accumulation.
Collapse
Affiliation(s)
- Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Nidhi Kandhol
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Padmaja Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, UP 211004, India
| | - Vipul Mishra
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj 211002, India
| | - Sangeeta Pandey
- Plant and Microbe Interaction Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, PB, India
| | - Shivendra Sahi
- Department of Biology, Saint Joseph's University, University City Campus, 600 S. 43rd St., Philadelphia, PA 19104, USA
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, UP 211004, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj 211002, India
| |
Collapse
|
47
|
Anti-neoplastic Effects of Gold Nanoparticles Synthesized Using Green Sources on Cervical and Melanoma Cancer Cell Lines. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-022-01056-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
48
|
Silver nanoparticles produced via a green synthesis using the rhamnolipid as a reducing agent and stabilizer. APPLIED NANOSCIENCE 2023. [DOI: 10.1007/s13204-022-02751-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
49
|
Khan H, Andleeb S, Nisar T, Latif Z, Raja SA, Awan UA, Maqbool K, Khurshid S. Interactions of Chitosan-coated Green Synthesized Silver Nanoparticles using Mentha spicata and Standard Antibiotics against Bacterial Pathogens. Curr Pharm Biotechnol 2023; 24:203-212. [PMID: 35382716 DOI: 10.2174/1389201023666220405120914] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/30/2022] [Accepted: 02/17/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Infectious diseases are caused by various multidrug-resistant pathogenic bacteria and in recent scenarios, nanoparticles have been used as innovative antimicrobial agents. AIMS This current research aimed to evaluate the bactericidal effect of chitosan-coated green synthesized silver nanoparticles using aqueous extract of Mentha spicata (MSaqu) against bacterial pathogens, i.e., Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Serratia marcescens, Staphylococcus aureus, and Streptococcus pyogenes. METHODS Synthesis and characterization of silver nanoparticles (MSAgNPs) were carried out via atomic absorption spectrometer and Fourier-transform infrared spectroscopy. Agar well and agar disc diffusion methods were used to assess the antibacterial and synergistic effect of chitosanmediated biogenic silver nanoparticles and standard antibiotics. Three types of interactions, i.e., antagonistic (↓), synergistic (↑), and additive (¥) were observed. RESULTS Synergistic effect was recorded against Pseudomonas aeruginosa (8.5±0.25 mm↑), Serratia marcescens (19.0±1.0 mm↑), and Klebsiela pneumonia (8.5±0.25 mm↑), an additive effect was exhibited by Escherichia coli (9.0±0.0 mm¥), Streptococcus pyogenes (10.0±0.0 mm¥), and Staphylococcus aureus (7.5±0.25 mm↓) and they showed antagonistic effects when chitosan-coated silver nanoparticles (CLMSAgNPs) were applied compared to chitosan, MSaqu, and MSAgNPs. Interesting antibacterial results were recorded when chitosan-coated Mentha spicata extract and silver nanoparticles were applied along with antibiotics. The synergistic effects of chitosan-coated silver nanoparticles (CLMSAgNPs) + K were recorded against E. coli (14.5±0.25 mm). The synergistic effects of chitosan-coated silver nanoparticles (CLMSAgNPs) + AML were recorded against E. coli (5.5±0.0 mm), S. pyogenes (10.0±0.0 mm), K. pneumonia (5.5±0.0 mm), and S. aureus (4.0±0.0 mm). The synergistic effects of chitosan-coated silver nanoparticles (CLMSAgNPs) + NOR were recorded against E. coli (16.0±0.0 mm), P. aeruginosa (19.0±0.0 mm), S. marcescens (19.5±0.25 mm), S. pyogenes (11.5.0±0.25 mm), K. pneumonia (23.0±0.0 mm), and S. aureus (8.5±0.25 mm). CONCLUSION Current findings concluded that chitosan-coated biogenic silver nanoparticles have potential bactericidal effects against infectious pathogens and could be used as forthcoming antibacterial agents.
Collapse
Affiliation(s)
- Habib Khan
- Microbial Biotechnology lab, Department of Zoology, University of Azad Jammu and Kashmir, King Abdullah Campus, Chattar Kalas, Muzaffarabad, 13100, Pakistan
| | - Saiqa Andleeb
- Microbial Biotechnology lab, Department of Zoology, University of Azad Jammu and Kashmir, King Abdullah Campus, Chattar Kalas, , 13100, Pakistan
| | - Tayba Nisar
- Microbial Biotechnology lab, Department of Zoology, University of Azad Jammu and Kashmir, King Abdullah Campus, Chattar Kalas, Muzaffarabad, 13100, Pakistan
| | - Zahid Latif
- Microbial Biotechnology lab, Department of Zoology, University of Azad Jammu and Kashmir, King Abdullah Campus, Chattar Kalas, Muzaffarabad, 13100, Pakistan
| | - Sadaf Azad Raja
- Department of Bioscience, COMSATS University, Park Road, Tarlai Kalan, Islamabad, 44000, Pakistan
| | - Uzma Azeem Awan
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Kiran Maqbool
- Microbial Biotechnology lab, Department of Zoology, University of Azad Jammu and Kashmir, King Abdullah Campus, Chattar Kalas, Muzaffarabad, 13100, Pakistan
| | - Sadia Khurshid
- Microbial Biotechnology lab, Department of Zoology, University of Azad Jammu and Kashmir, King Abdullah Campus, Chattar Kalas, Muzaffarabad, 13100, Pakistan
| |
Collapse
|
50
|
Ag/TiNPS nanocatalyst: biosynthesis, characterization and photocatalytic activity. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|