1
|
Tian Y, Wang Z, Wang L. Hollow fibers: from fabrication to applications. Chem Commun (Camb) 2021; 57:9166-9177. [PMID: 34519322 DOI: 10.1039/d1cc02991f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hollow fibers have attracted more and more attention due to their broad range of applications in numerous fields. We review the latest advance and summarize the fabrication methods, types and applications of hollow fibers. We mainly introduce the fabrication methods of hollow fibers, including co-extrusion/co-axial spinning methods, template methods, 3D printing methods, electrospinning methods, self-crimping methods and gas foaming process. Meanwhile, we summarize four types of hollow fibers: one-layered hollow fibers, multi-layered hollow fibers, multi-hollow fibers and branched hollow fibers. Next, we focus on the main applications of hollow fibers, such as gas separation, cell culture, microfluidic channels, artificial tubular tissues, etc. Finally, we present the prospects of the future trend of development. The review would promote the further development of hollow fibers and benefit their advance in sensing, bioreactors, electrochemical catalysis, energy conversion, microfluidics, gas separation, air purification, drug delivery, functional materials, cell culture and tissue engineering. This review has great significance for the design of new functional materials and development of devices and systems in the related fields.
Collapse
Affiliation(s)
- Ye Tian
- College of Medicine and Biological Information Engineering, Northeastern University, 110169 Shenyang, China.,Foshan Graduate School of Northeastern University, Foshan, 528300, China.,Department of Mechanical Engineering, the University of Hong Kong, Hong Kong, China.
| | - Zhaoyang Wang
- College of Medicine and Biological Information Engineering, Northeastern University, 110169 Shenyang, China.,Foshan Graduate School of Northeastern University, Foshan, 528300, China
| | - Liqiu Wang
- Department of Mechanical Engineering, the University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Application of Microbial Cleaning Technology for Removal of Surface Contamination. DEVELOPMENTS IN SURFACE CONTAMINATION AND CLEANING: APPLICATIONS OF CLEANING TECHNIQUES 2019. [PMCID: PMC7149890 DOI: 10.1016/b978-0-12-815577-6.00015-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microbial cleaning takes advantage of naturally-occurring microbes to remove a wide variety of contaminants from various surfaces. The method is based on the affinity of microbes for hydrocarbons that are digested, producing harmless carbon dioxide, water, and soluble fatty acids. The microbes are nonpathogenic and are safe to handle and dispose. The process is environmentally-friendly and is less expensive than solvent cleaning, but it is not applicable to high precision cleaning applications. Typical applications include parts washing; oil and grease removal from concrete and other floor surfaces, and from drains and grease traps; cleaning and disinfection in healthcare facilities; cleaning of historical artworks and structures; and household and institutional cleaning applications.
Collapse
|
3
|
Diep P, Mahadevan R, Yakunin AF. Heavy Metal Removal by Bioaccumulation Using Genetically Engineered Microorganisms. Front Bioeng Biotechnol 2018; 6:157. [PMID: 30420950 PMCID: PMC6215804 DOI: 10.3389/fbioe.2018.00157] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/09/2018] [Indexed: 11/25/2022] Open
Abstract
Wastewater effluents from mines and metal refineries are often contaminated with heavy metal ions, so they pose hazards to human and environmental health. Conventional technologies to remove heavy metal ions are well-established, but the most popular methods have drawbacks: chemical precipitation generates sludge waste, and activated carbon and ion exchange resins are made from unsustainable non-renewable resources. Using microbial biomass as the platform for heavy metal ion removal is an alternative method. Specifically, bioaccumulation is a natural biological phenomenon where microorganisms use proteins to uptake and sequester metal ions in the intracellular space to utilize in cellular processes (e.g., enzyme catalysis, signaling, stabilizing charges on biomolecules). Recombinant expression of these import-storage systems in genetically engineered microorganisms allows for enhanced uptake and sequestration of heavy metal ions. This has been studied for over two decades for bioremediative applications, but successful translation to industrial-scale processes is virtually non-existent. Meanwhile, demands for metal resources are increasing while discovery rates to supply primary grade ores are not. This review re-thinks how bioaccumulation can be used and proposes that it can be developed for bioextractive applications-the removal and recovery of heavy metal ions for downstream purification and refining, rather than disposal. This review consolidates previously tested import-storage systems into a biochemical framework and highlights efforts to overcome obstacles that limit industrial feasibility, thereby identifying gaps in knowledge and potential avenues of research in bioaccumulation.
Collapse
Affiliation(s)
| | | | - Alexander F. Yakunin
- BioZone - Centre for Applied Biosciences and Bioengineering, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Şcoban AG, Maria G. Model-based optimization of the feeding policy of a fluidized bed bioreactor for mercury uptake by immobilized Pseudomonas putidacells. ASIA-PAC J CHEM ENG 2016. [DOI: 10.1002/apj.2003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Andreea Georgiana Şcoban
- Department of Chemical and Biochemical Engineering; University Politehnica of Bucharest; Bucharest Romania
| | - Gheorghe Maria
- Department of Chemical and Biochemical Engineering; University Politehnica of Bucharest; Bucharest Romania
| |
Collapse
|
5
|
Acharya C, Blindauer CA. Unexpected Interactions of the Cyanobacterial Metallothionein SmtA with Uranium. Inorg Chem 2016; 55:1505-15. [DOI: 10.1021/acs.inorgchem.5b02327] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Celin Acharya
- Molecular
Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | | |
Collapse
|
6
|
Ruiz ON, Alvarez D, Gonzalez-Ruiz G, Torres C. Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase. BMC Biotechnol 2011; 11:82. [PMID: 21838857 PMCID: PMC3180271 DOI: 10.1186/1472-6750-11-82] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 08/12/2011] [Indexed: 11/17/2022] Open
Abstract
Background The use of transgenic bacteria has been proposed as a suitable alternative for mercury remediation. Ideally, mercury would be sequestered by metal-scavenging agents inside transgenic bacteria for subsequent retrieval. So far, this approach has produced limited protection and accumulation. We report here the development of a transgenic system that effectively expresses metallothionein (mt-1) and polyphosphate kinase (ppk) genes in bacteria in order to provide high mercury resistance and accumulation. Results In this study, bacterial transformation with transcriptional and translational enhanced vectors designed for the expression of metallothionein and polyphosphate kinase provided high transgene transcript levels independent of the gene being expressed. Expression of polyphosphate kinase and metallothionein in transgenic bacteria provided high resistance to mercury, up to 80 μM and 120 μM, respectively. Here we show for the first time that metallothionein can be efficiently expressed in bacteria without being fused to a carrier protein to enhance mercury bioremediation. Cold vapor atomic absorption spectrometry analyzes revealed that the mt-1 transgenic bacteria accumulated up to 100.2 ± 17.6 μM of mercury from media containing 120 μM Hg. The extent of mercury remediation was such that the contaminated media remediated by the mt-1 transgenic bacteria supported the growth of untransformed bacteria. Cell aggregation, precipitation and color changes were visually observed in mt-1 and ppk transgenic bacteria when these cells were grown in high mercury concentrations. Conclusion The transgenic bacterial system described in this study presents a viable technology for mercury bioremediation from liquid matrices because it provides high mercury resistance and accumulation while inhibiting elemental mercury volatilization. This is the first report that shows that metallothionein expression provides mercury resistance and accumulation in recombinant bacteria. The high accumulation of mercury in the transgenic cells could present the possibility of retrieving the accumulated mercury for further industrial applications.
Collapse
Affiliation(s)
- Oscar N Ruiz
- Inter American University of Puerto Rico, Department of Natural Sciences and Mathematics, 500 Dr. John Will Harris, Bayamon, Puerto Rico.
| | | | | | | |
Collapse
|
7
|
He M, Wang WX. Factors affecting the bioaccessibility of methylmercury in several marine fish species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:7155-7162. [PMID: 21650469 DOI: 10.1021/jf201424g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Bioaccessibility refers to the maximum bioavailability of pollutant ingested with food, and its measurements can lead to a more accurate risk assessment as compared to the measurements of total concentrations of pollutant in food. This study examined the factors affecting the bioaccessibility of methylmercury (MeHg) in nine species of marine fish with an aim to identify ways of reducing MeHg bioaccessibility. MeHg bioaccessibility without any treatment in the nine species of marine fish ranged from 16.0 to 67.7%. Steaming, grilling, and frying reduced MeHg bioaccessibility by 29.4-77.4% for rabbitfish and 74.6-95.8% for grouper. Co-consumption of phytochemical-rich foods such as green tea decreased the bioaccessibility of MeHg by 72.2% for rabbitfish and 74.0% for grouper, whereas meso-2,3-dimercaptosuccinic acid increased it by 39.2-108% for rabbitfish and 45.3-75.7% for grouper. The bioaccessibilities of both MeHg and inorganic mercury were independent of the total Hg concentration and the exposure route (dietary vs dissolved). In eight of the nine species studied, bioaccessibility was negatively correlated with the extent to which MeHg was partitioned into the metal-rich granule fraction and the trophically available fraction. It was positively correlated with partitioning into the cellular debris fraction. This study demonstrated the important control of subcellular distribution in MeHg bioaccessibility.
Collapse
Affiliation(s)
- Mei He
- College of Oceanography and Environmental Science, Xiamen University, Xiamen 361005, China
| | | |
Collapse
|
8
|
Choi CH, Yi H, Hwang S, Weitz DA, Lee CS. Microfluidic fabrication of complex-shaped microfibers by liquid template-aided multiphase microflow. LAB ON A CHIP 2011; 11:1477-83. [PMID: 21390381 DOI: 10.1039/c0lc00711k] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This study presents a simple microfluidic approach to the rapid fabrication of complex-shaped microfibers (e.g., single hollow, double hollow, and microbelt), with highly uniform structures, based on a combination of the spontaneous formation of polymeric jet streams and in situ photopolymerization. Two laminar flows of a photocurable fluid and a liquid template (nonpolymerizing fluid) spontaneously form jet streams in equilibrium states in microfluidic channels because of the minimization of the interfacial energy between the two fluids. The formation of the jet streams strongly depends on the spreading coefficients and the evolution time along the downstream of the microfluidic system. Thus, the simple control of the spreading coefficients can guide microfibers into various shapes. The sizes of the core and shell of the hollow fibers can also be readily manipulated by the flow rates of the polymerizing fluid and the liquid template phase. Asymmetric hollow fibers can also be produced in different evolutionary states in the microfluidic system. The microfluidic approach shown here represents a significant step toward the easy fabrication of microfibers with readily controllable structures and geometries. We anticipate that this novel fabrication approach and the prediction method based on spreading coefficients presented in this work can be applied to produce a wide variety of functional microfibrous materials.
Collapse
Affiliation(s)
- Chang-Hyung Choi
- Department of Chemical Engineering, Chungnam National University, Yuseong-gu, Deajeon, South Korea
| | | | | | | | | |
Collapse
|
9
|
Use of fluorescent microorganisms to perform in vivo and in situ local characterization of microbial deposits. J Memb Sci 2011. [DOI: 10.1016/j.memsci.2010.11.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Kao WC, Huang CC, Chang JS. Biosorption of nickel, chromium and zinc by MerP-expressing recombinant Escherichia coli. JOURNAL OF HAZARDOUS MATERIALS 2008; 158:100-6. [PMID: 18313216 DOI: 10.1016/j.jhazmat.2008.01.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 01/09/2008] [Accepted: 01/14/2008] [Indexed: 05/17/2023]
Abstract
Escherichia coli hosts able to over-express metal-binding proteins (MerP) originating from Gram-positive (Bacillus cereus RC607) and Gram-negative (Pseudomonas sp. K-62) bacterial strains were used to adsorb Ni(2+), Zn(2+) and Cr(3+) in aqueous solutions. The initial adsorption rate and adsorption capacity were determined to evaluate the performance of the biosorbents. With the expression of MerP protein, the metal adsorption capacity of the recombinant strains for Ni(2+), Zn(2+) and Cr(3+) significantly improved. The cells carrying Gram-positive merP gene (GB) adsorbed Zn(2+) and Cr(3+) at a capacity of 22.3 and 0.98 mmol/g biomass, which is 121% and 72% higher, respectively, over that of the MerP-free host cells. Adsorption capacity of the cells carrying Gram-negative merP gene (GP) also increased 144% and 126% for Zn(2+) and Cr(3+), respectively. Both recombinant strains also exhibited 24% and 5% enhancement in adsorption of Ni(2+) for GB and GP, respectively. The initial adsorption rate of the recombinant biosorbents was also higher than that of the MerP-free host, suggesting an increased metal-binding affinity with MerP expression. Severe cell damage on GB biosorbent was observed after Cr(3+) adsorption, probably due to the metal toxicity effect on the cells.
Collapse
Affiliation(s)
- Wei-Chen Kao
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | | | | |
Collapse
|
11
|
Deng X, Hu ZL, Yi XE. Continuous treatment process of mercury removal from aqueous solution by growing recombinant E. coli cells and modeling study. JOURNAL OF HAZARDOUS MATERIALS 2008; 153:487-492. [PMID: 17920767 DOI: 10.1016/j.jhazmat.2007.08.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 08/29/2007] [Accepted: 08/29/2007] [Indexed: 05/25/2023]
Abstract
A continuous treatment process was developed to investigate the capability of genetically engineered E. coli to simultaneously accumulate mercuric ions and reproduce itself in a continuous stirred tank reactor (CSTR) system. The influence of dilution rate and initial Hg(2+) concentration on continuous process was evaluated. Results indicated that the recombinant E. coli could effectively accumulate Hg(2+) from aqueous solution with Hg(2+) removal ratio up to about 90%, and propagate its cells at the same time in the continuous treatment system under suitable operational conditions. A kinetic model based on mass balance of Hg(2+) was proposed to simulate the continuous process. The modeling results were in good agreement with the experimental data.
Collapse
Affiliation(s)
- X Deng
- Institute of Ecology and Environment, College of Life Science, Shenzhen University, Shenzhen, PR China.
| | | | | |
Collapse
|
12
|
Stream microcosm for investigating GEM impact on the indigenous bacterial community in river water and sediment. Process Biochem 2006. [DOI: 10.1016/j.procbio.2006.06.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Qin J, Song L, Brim H, Daly MJ, Summers AO. Hg(II) sequestration and protection by the MerR metal-binding domain (MBD). MICROBIOLOGY-SGM 2006; 152:709-719. [PMID: 16514151 DOI: 10.1099/mic.0.28474-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
MerR, the metalloregulator of the bacterial mercury resistance (mer) operon, binds Hg(II) with high affinity. To study the mechanism of metal-induced activation, a small protein was previously engineered embodying in a single polypeptide the metal-binding domain (MBD) ordinarily formed between two monomers of MerR. Here the physiological and biochemical properties of MBD expressed on the cell surface or in the cytosol were examined, to better understand the environments in which specific metal binding can occur with this small derivative. Over 20 000 surface copies of MBD were expressed per Escherichia coli cell, with metal stoichiometries of approximately 1.0 Hg(II) per MBD monomer. Cells expressing MBD on their surface in rich medium bound 6.1-fold more Hg(II) than those not expressing MBD. Although in nature cells use the entire mer operon to detoxify mercury, it was interesting to note that cells expressing only MBD survived Hg(II) challenge and recovered more quickly than cells without MBD. Cell-surface-expressed MBD bound Hg(II) preferentially even in the presence of a 22-fold molar excess of Zn(II) and when exposed to equimolar Cd(II) in addition. MBD expressed in the cystosol also afforded improved survival from Hg(II) exposure for E. coli and for the completely unrelated bacterium Deinococcus radiodurans.
Collapse
Affiliation(s)
- Jie Qin
- Department of Microbiology and the Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602-2605, USA
| | - Lingyun Song
- Department of Microbiology and the Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602-2605, USA
| | - Hassan Brim
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, USA
| | - Michael J Daly
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, USA
| | - Anne O Summers
- Department of Microbiology and the Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602-2605, USA
| |
Collapse
|
14
|
Kim SK, Lee BS, Wilson DB, Kim EK. Selective cadmium accumulation using recombinant Escherichia coli. J Biosci Bioeng 2005; 99:109-14. [PMID: 16233765 DOI: 10.1263/jbb.99.109] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Accepted: 11/08/2004] [Indexed: 11/17/2022]
Abstract
Recombinant Escherichia coli JM109 (pZH3-5/pMT), harboring a manganese transport gene (mntA) and a metal-sequestering protein (metallothionein [MT]) gene, was cultivated to accumulate cadmium (Cd) in an aqueous phase. Isopropyl beta-D-thiogalactoside (IPTG)-induced cells showed rapid Cd(2+) ion accumulation (90% of maximum accumulation in 15 min) and had an accumulation six times higher than that of the control. Under optimum conditions, i.e., pH 7, 37 degrees C and 0.5 (OD600), 1.5 mM IPTG induction resulted in the accumulation of 21.5 micromol Cd/g dry cell. Storage at 37 degrees C for 24 h had no effect on the accumulation. Significantly, Cd was selectively accumulated in a solution containing an equal concentration of three other metals, resulting in more than 90% of the total accumulated metals being Cd. The accumulation of Cd was reduced by the presence of Mn2+ ion whereas no significant effect was observed with Cu2+, Zn2+ and Pb2+ ions. A chelator, EDTA, had no effect on the accumulation up to 100 mM. The bioaccumulation rate followed Michaelis-Menten kinetics (Vm=2.7 micromol Cd2+/min.g dry cell, Km=0.67 microM). The equilibrium isotherm showed a Langmuir isotherm. In the membrane reactor experiment, 1 mg/l Cd in an inlet solution decreased to 0.2 mg/l in the effluent, removing 80% of Cd, continuously. These results indicated the potentials of a genetically modified microorganism for the highly selective accumulation of Cd at a low concentration and the future application to the removal and recovery of Cd.
Collapse
Affiliation(s)
- Se-Kwon Kim
- Department of Biological Engineering, Inha University, Incheon 402-751, Korea
| | | | | | | |
Collapse
|
15
|
Wang AA, Chen W, Mulchandani A. Detoxification of organophosphate nerve agents by immobilized dual functional biocatalysts in a cellulose hollow fiber bioreactor. Biotechnol Bioeng 2005; 91:379-86. [PMID: 15892051 DOI: 10.1002/bit.20519] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A whole-cell technology for detoxification of organophosphates based on genetically engineered Escherichia coli cell expressing both cellulose-binding domain (CBD) and organophosphorus hydrolase (OPH) onto cell surface was reported recently (Wang et al., 2002). This study reports the application of these biocatalysts when immobilized in a cellulose hollow fiber bioreactor (HFB) for the biodetoxification of a model organophosphate, paraoxon, in a continuous flow mode. In 24 h, 0.79 mg wet cell/cm2 fiber surface were immobilized onto cellulose fibers specifically and strongly through the cellulose binding domain, forming a monolayer demonstrated by Scanning Electronic Micrograph, and essentially no cell was washed away by washing buffer. The immobilized biocatalyst had a high performance of detoxifying paraoxon solution of 5,220 mumol/h x L reactor or 990 mumol/h x m2 reactor. The immobilized biocatalysts maintained a stable degradation capacity for 15 uses over a period of 48 days with only 10% decline in degradation efficiency under operating and storage conditions. In addition, the bioreactor was easily regenerated by washing with 1% sodium dodecyl sulfate (SDS), with 86.7% immobilization capacity and 93.9% degradation efficiency recovery. This is the first report using the HFB in a non-traditional way, immobilizing whole-cell biocatalysts by specific adhesion thus rendering the catalysis operation the advantages of low pressure drop, low shear force, and low energy requirement. The successful application of this genetically engineered dual functional E. coli strain in a model bioreactor shows its promise in large-scale detoxification of organophosphate nerve agents in bulk liquid phase.
Collapse
Affiliation(s)
- Aijun A Wang
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| | | | | |
Collapse
|
16
|
Abstract
Bacterial resistance to inorganic and organic mercury compounds (HgR) is one of the most widely observed phenotypes in eubacteria. Loci conferring HgR in Gram-positive or Gram-negative bacteria typically have at minimum a mercuric reductase enzyme (MerA) that reduces reactive ionic Hg(II) to volatile, relatively inert, monoatomic Hg(0) vapor and a membrane-bound protein (MerT) for uptake of Hg(II) arranged in an operon under control of MerR, a novel metal-responsive regulator. Many HgR loci encode an additional enzyme, MerB, that degrades organomercurials by protonolysis, and one or more additional proteins apparently involved in transport. Genes conferring HgR occur on chromosomes, plasmids, and transposons and their operon arrangements can be quite diverse, frequently involving duplications of the above noted structural genes, several of which are modular themselves. How this very mobile and plastic suite of proteins protects host cells from this pervasive toxic metal, what roles it has in the biogeochemical cycling of Hg, and how it has been employed in ameliorating environmental contamination are the subjects of this review.
Collapse
Affiliation(s)
- Tamar Barkay
- Department of Biochemistry and Microbiology, Cook College, Rutgers University, New Brunswick, NJ, USA.
| | | | | |
Collapse
|
17
|
von Canstein H, Li Y, Wagner-Döbler I. Long-term performance of bioreactors cleaning mercury-contaminated wastewater and their response to temperature and mercury stress and mechanical perturbation. Biotechnol Bioeng 2001; 74:212-9. [PMID: 11400094 DOI: 10.1002/bit.1110] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The long-term performance of bioreactors retaining mercury from contaminated industrial wastewater was analyzed at the laboratory scale, and its response to mechanical perturbations (gas bubbles and shaking) as well as to physical (increased temperature and hydraulic load) and chemical stresses (increased mercury concentration) likely to occur during on site operation was studied. Two packed-bed bioreactors with 80-cm(3) lava chips as biofilm carrier were inoculated with nine Hg(II)-resistant natural isolates of alpha- and gamma-proteobacteria. Chloralkali wastewater containing ionic mercury (3.0 to 9.7 mg/L Hg(2+)), amended with sucrose and yeast extract, flowed through the bioreactors at 160 mL/h. During the 16-month investigation the bioreactors showed no sign of depleted performance in terms of mercury-retaining capacity. After 16 months, both bioreactors still retained 96% of the mercury load. The performance of the bioreactors was sensitive to mechanical perturbations (e.g., sheer forces of gas bubbles). Shifts to higher Hg(2+) inflow concentrations initially decreased the mercury retention efficacy slightly. However, the bioreactors could adapt to Hg(2+) concentrations of up to 7.6 mg/L within several days. Old biofilms were less affected than the younger ones. The performance of the bioreactors was not affected by an increase in temperature up to 41 degrees C and an increased volumetric load (up to 240 mL/h). The bioreactors regained activity spontaneously after the stress had stopped. Recovery could be accelerated by increased nutrient concentration, although this may lead to blocking of the packed bed.
Collapse
Affiliation(s)
- H von Canstein
- Division of Microbiology, German Research Centre for Biotechnology (GBF), Mascheroder Weg 1, 38124 Braunschweig, Germany.
| | | | | |
Collapse
|
18
|
Barkay T, Schaefer J. Metal and radionuclide bioremediation: issues, considerations and potentials. Curr Opin Microbiol 2001; 4:318-23. [PMID: 11378486 DOI: 10.1016/s1369-5274(00)00210-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent demonstrations of the removal and immobilization of inorganic contaminants by microbial transformations, sorption and mineralization show the potential of both natural and engineered microbes as bioremedial tools. Demonstrations of microbe-mediated mineral formation in biofilms implicate this mode of microbial life in geological evolution and remediation of inorganic contaminants.
Collapse
Affiliation(s)
- T Barkay
- Department of Biochemistry and Microbiology, Cook College, Rutgers University, 76 Lipman Drive, New Brunswick, New Jersey 08901, USA.
| | | |
Collapse
|
19
|
Gadd GM. Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol 2000; 11:271-9. [PMID: 10851150 DOI: 10.1016/s0958-1669(00)00095-1] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Microorganisms play important roles in the environmental fate of toxic metals and radionuclides with a multiplicity of mechanisms effecting transformations between soluble and insoluble forms. These mechanisms are integral components of natural biogeochemical cycles and are of potential for both in situ and ex situ bioremedial treatment processes for solid and liquid wastes.
Collapse
Affiliation(s)
- G M Gadd
- Department of Biological Sciences, University of Dundee, Dundee, DD1 4HN, UK.
| |
Collapse
|
20
|
Kotrba P, Ruml T. Bioremediation of Heavy Metal Pollution Exploiting Constituents, Metabolites and Metabolic Pathways of Livings. A Review. ACTA ACUST UNITED AC 2000. [DOI: 10.1135/cccc20001205] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Removal of heavy metals from the soil and water or their remediation from the waste streams "at source" has been a long-term challenge. During the recent era of environmental protection, the use of microorganisms for the recovery of metals from waste streams as well as employment of plants for landfill applications has generated growing attention. Many studies have demonstrated that both prokaryotes and eukaryotes have the ability to remove metals from contaminated water or waste streams. They sequester metals from soils and sediments or solubilize them to aid their extraction. The proposed microbial processes for bioremediation of toxic metals and radionuclides from waste streams employ living cells and non-living biomass or biopolymers as biosorbents. Microbial biotransformation of metals or metalloids results in an alteration of their oxidation state or in their alkylation and subsequent precipitation or volatilization. Specific metabolic pathways leading to precipitation of heavy metals as metal sulfides, phosphates or carbonates possess significance for possible biotechnology application. Moreover, the possibility of altering the properties of living species used in heavy metal remediation or constructing chimeric organisms possessing desirable features using genetic engineering is now under study in many laboratories. The encouraging evidence as to the usefulness of living organisms and their constituents as well as metabolic pathways for the remediation of metal contamination is reviewed here. A review with 243 references.
Collapse
|
21
|
von Canstein H, Li Y, Timmis KN, Deckwer WD, Wagner-Döbler I. Removal of mercury from chloralkali electrolysis wastewater by a mercury-resistant Pseudomonas putida strain. Appl Environ Microbiol 1999; 65:5279-84. [PMID: 10583977 PMCID: PMC91717 DOI: 10.1128/aem.65.12.5279-5284.1999] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A mercury-resistant bacterial strain which is able to reduce ionic mercury to metallic mercury was used to remediate in laboratory columns mercury-containing wastewater produced during electrolytic production of chlorine. Factory effluents from several chloralkali plants in Europe were analyzed, and these effluents contained total mercury concentrations between 1.6 and 7.6 mg/liter and high chloride concentrations (up to 25 g/liter) and had pH values which were either acidic (pH 2.4) or alkaline (pH 13.0). A mercury-resistant bacterial strain, Pseudomonas putida Spi3, was isolated from polluted river sediments. Biofilms of P. putida Spi3 were grown on porous carrier material in laboratory column bioreactors. The bioreactors were continuously fed with sterile synthetic model wastewater or nonsterile, neutralized, aerated chloralkali wastewater. We found that sodium chloride concentrations up to 24 g/liter did not inhibit microbial mercury retention and that mercury concentrations up to 7 mg/liter could be treated with the bacterial biofilm with no loss of activity. When wastewater samples from three different chloralkali plants in Europe were used, levels of mercury retention efficiency between 90 and 98% were obtained. Thus, microbial mercury removal is a potential biological treatment for chloralkali electrolysis wastewater.
Collapse
Affiliation(s)
- H von Canstein
- Division of Microbiology, National Research Center for Biotechnology (GBF), D-38124 Braunschweig, Germany
| | | | | | | | | |
Collapse
|
22
|
Hao Z, Reiske HR, Wilson DB. Characterization of cadmium uptake in Lactobacillus plantarum and isolation of cadmium and manganese uptake mutants. Appl Environ Microbiol 1999; 65:4741-5. [PMID: 10543780 PMCID: PMC91638 DOI: 10.1128/aem.65.11.4741-4745.1999] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two different Cd(2+) uptake systems were identified in Lactobacillus plantarum. One is a high-affinity, high-velocity Mn(2+) uptake system which also takes up Cd(2+) and is induced by Mn(2+) starvation. The calculated K(m) and V(max) are 0.26 microM and 3.6 micromol g of dry cell(-1) min(-1), respectively. Unlike Mn(2+) uptake, which is facilitated by citrate and related tricarboxylic acids, Cd(2+) uptake is weakly inhibited by citrate. Cd(2+) and Mn(2+) are competitive inhibitors of each other, and the affinity of the system for Cd(2+) is higher than that for Mn(2+). The other Cd(2+) uptake system is expressed in Mn(2+)-sufficient cells, and no K(m) can be calculated for it because uptake is nonsaturable. Mn(2+) does not compete for transport through this system, nor does any other tested cation, i.e., Zn(2+), Cu(2+), Co(2+), Mg(2+), Ca(2+), Fe(2+), or Ni(2+). Both systems require energy, since uncouplers completely inhibit their activities. Two Mn(2+)-dependent L. plantarum mutants were isolated by chemical mutagenesis and ampicillin enrichment. They required more than 5,000 times as much Mn(2+) for growth as the parental strain. Mn(2+) starvation-induced Cd(2+) uptake in both mutants was less than 5% the wild-type rate. The low level of long-term Mn(2+) or Cd(2+) accumulation by the mutant strains also shows that the mutations eliminate the high-affinity Mn(2+) and Cd(2+) uptake system.
Collapse
Affiliation(s)
- Z Hao
- Institute for Comparative and Environmental Toxicology, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|