1
|
Wang C, Shahriar SMS, Su Y, Xie J. Versatile nanomaterials used in combatting biofilm infections. Nanomedicine (Lond) 2025; 20:501-518. [PMID: 39887017 PMCID: PMC11875486 DOI: 10.1080/17435889.2025.2459049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/23/2025] [Indexed: 02/01/2025] Open
Abstract
Microbial infections are a pressing global health issue, exacerbated by the rise of antibiotic-resistant bacteria due to widespread antibiotic overuse. This resistance diminishes the effectiveness of current treatments, intensifying the need for new antimicrobial agents and innovative drug delivery strategies. Nanotechnology presents promising solutions, leveraging the unique properties of nanomaterials such as tunable optical and electronic characteristics, nanoscale size, and high surface-to-volume ratios. These features enhance their effectiveness as innovative antimicrobial agents and versatile drug delivery systems. This minireview classifies antimicrobial nanomaterials into four categories based on their mechanisms of action: thermal generation, reactive oxygen species generation, gas generation, and nanocarrier systems such as liposomes, polymersomes, and metal-organic frameworks. Uniquely, this review integrates a comparative analysis of these mechanisms, highlighting their relative advantages, limitations, and applications across diverse microbial targets. Additionally, it identifies emerging trends in the field, providing a forward-looking perspective on how recent advancements in nanotechnology can be leveraged to address unmet clinical needs. Finally, this article discusses future directions and emerging opportunities in antimicrobial nanotechnology.
Collapse
Affiliation(s)
- Chenlong Wang
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - S. M. Shatil Shahriar
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yajuan Su
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Mechanical and Materials Engineering, University of Nebraska Lincoln, Lincoln, NE, USA
| |
Collapse
|
2
|
Gheorghe-Barbu I, Czobor Barbu I, Dragomir RI, Marinaș IC, Stan MS, Pericleanu R, Dumbravă AȘ, Rotaru LI, Paraschiv S, Bănică LM, Pecete I, Oțelea D, Cristea VC, Popa MI, Țânțu MM, Surleac M. Emerging Resistance and Virulence Patterns in Salmonella enterica: Insights into Silver Nanoparticles as an Antimicrobial Strategy. Antibiotics (Basel) 2025; 14:46. [PMID: 39858332 PMCID: PMC11762817 DOI: 10.3390/antibiotics14010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/20/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES This study aims to characterize antibiotic resistance (AR) and virulence markers in Salmonella spp. isolated from Romanian outpatients' stool samples. METHODS In 2019, community-acquired Salmonella strains were collected and identified using MALDI-TOF mass spectrometry, antibiotic susceptibility profiles have been determined with the MicroScan system, and soluble virulence factors were evaluated using specific culture media, while biofilm formation was quantified in 96-well plates. Molecular analysis targeted resistance genes for β-lactams (e.g., blaTEM and blaSHV); tetracyclines (e.g., tet(A)); sulphonamides; and quinolones, as well as virulence genes (e.g., invA, spvC, pldA, and held). Whole-genome sequencing (WGS) was performed on 19 selected isolates. A silver nanoparticles (AgNPsol) alternative to conventional antibiotics was tested for effectiveness against multidrug-resistant (MDR) isolates. RESULTS From the total of 309 Salmonella isolates (65.05% from children under 4 years of age) belonging to four subtypes and four serovars, 27.86% showed resistance to at least one antibiotic, most frequently to tetracycline, ampicillin, and piperacillin. The strains frequently expressed haemolysin (67%), aesculinase (65%), and gelatinase (62%). Resistance to trimethoprim-sulfamethoxazole was encoded by the sul1 gene in 44.83% of the strains and to tetracyclines by the tet(A) gene (59.52%). The ESBL genes blaTEM, blaSHV, and blaCTX-M were detected by PCR in 16.18%, 2.91%, and 0.65% of the strains, respectively. Additionally, 98.63% of the strains carried the invA marker, with notable positive associations between blaSHV, qnrB, and sul1 with spvC. CONCLUSIONS The present findings revealed significant patterns in Salmonella isolates, subtypes, serovars, AR, and virulence, emphasising the need for continuous surveillance of Salmonella infections. Additionally, the potential of AgNPs as an alternative treatment option was demonstrated, particularly for paediatric S. enterica infections.
Collapse
Affiliation(s)
- Irina Gheorghe-Barbu
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania; (I.G.-B.); (R.-I.D.); (R.P.); (A.Ș.D.); (L.-I.R.)
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
| | - Ilda Czobor Barbu
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania; (I.G.-B.); (R.-I.D.); (R.P.); (A.Ș.D.); (L.-I.R.)
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
| | - Rareș-Ionuț Dragomir
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania; (I.G.-B.); (R.-I.D.); (R.P.); (A.Ș.D.); (L.-I.R.)
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
| | - Ioana Cristina Marinaș
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
| | - Miruna Silvia Stan
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Radu Pericleanu
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania; (I.G.-B.); (R.-I.D.); (R.P.); (A.Ș.D.); (L.-I.R.)
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
| | - Andreea Ștefania Dumbravă
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania; (I.G.-B.); (R.-I.D.); (R.P.); (A.Ș.D.); (L.-I.R.)
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
| | - Liviu-Iulian Rotaru
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania; (I.G.-B.); (R.-I.D.); (R.P.); (A.Ș.D.); (L.-I.R.)
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, 021105 Bucharest, Romania; (S.P.); (L.M.B.); (D.O.)
| | - Simona Paraschiv
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, 021105 Bucharest, Romania; (S.P.); (L.M.B.); (D.O.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.C.C.); (M.I.P.)
| | - Leontina Mirela Bănică
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, 021105 Bucharest, Romania; (S.P.); (L.M.B.); (D.O.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.C.C.); (M.I.P.)
| | - Ionuț Pecete
- Synevo Central Lab Romania, 021408 Bucharest, Romania;
| | - Dan Oțelea
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, 021105 Bucharest, Romania; (S.P.); (L.M.B.); (D.O.)
| | - Violeta Corina Cristea
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.C.C.); (M.I.P.)
| | - Mircea Ioan Popa
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.C.C.); (M.I.P.)
- Cantacuzino National Medical Military Institute for Research and Development, 050096 Bucharest, Romania
| | - Marilena Monica Țânțu
- National University of Science and Technology Politechnica of Bucharest, 060042 Bucharest, Romania;
- Department of Medical Assistance and Physiotherapy, Faculty of Sciences, Physical Education and Informatics, University of Pitești, 110040 Pitesti, Romania
| | - Marius Surleac
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, 021105 Bucharest, Romania; (S.P.); (L.M.B.); (D.O.)
| |
Collapse
|
3
|
Amábile-Cuevas CF, Lund-Zaina S. Non-Canonical Aspects of Antibiotics and Antibiotic Resistance. Antibiotics (Basel) 2024; 13:565. [PMID: 38927231 PMCID: PMC11200725 DOI: 10.3390/antibiotics13060565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
The understanding of antibiotic resistance, one of the major health threats of our time, is mostly based on dated and incomplete notions, especially in clinical contexts. The "canonical" mechanisms of action and pharmacodynamics of antibiotics, as well as the methods used to assess their activity upon bacteria, have not changed in decades; the same applies to the definition, acquisition, selective pressures, and drivers of resistance. As a consequence, the strategies to improve antibiotic usage and overcome resistance have ultimately failed. This review gathers most of the "non-canonical" notions on antibiotics and resistance: from the alternative mechanisms of action of antibiotics and the limitations of susceptibility testing to the wide variety of selective pressures, lateral gene transfer mechanisms, ubiquity, and societal factors maintaining resistance. Only by having a "big picture" view of the problem can adequate strategies to harness resistance be devised. These strategies must be global, addressing the many aspects that drive the increasing prevalence of resistant bacteria aside from the clinical use of antibiotics.
Collapse
Affiliation(s)
| | - Sofia Lund-Zaina
- Department of Public Health, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
4
|
Wang Y, Song Y, Yan S, Hiramine R, Ohnishi Y, Yokoi Y, Nakamura K, Kikukawa T, Ayabe T, Aizawa T. Antimicrobial Properties and Mode of Action of Cryptdin-4, a Mouse α-Defensin Regulated by Peptide Redox Structures and Bacterial Cultivation Conditions. Antibiotics (Basel) 2023; 12:1047. [PMID: 37370366 DOI: 10.3390/antibiotics12061047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Cryptdin-4 (crp4) is an enteric α-defensin derived from mice, and is a main mediator of immunity to oral infections and a determinant of the composition of the intestinal microbiota. Structurally, crp4 exists in two states: the oxidized form (crp4oxi), constrained by three invariant disulfide bonds, and the reduced form (crp4red) with six free thiol groups, both of which exist in the intestinal tract. In this study, the antibacterial mechanisms of crp4 in both forms under aerobic and anaerobic conditions were investigated using Escherichia coli (E. coli), an anaerobic facultative bacterium, as a model. Fluorescent dye studies revealed that both crp4oxi and crp4red exhibited antimicrobial activity against cells cultured under aerobic conditions via rapid membrane depolarization. Furthermore, the antioxidant treatment experiments suggested that only crp4oxi exhibited antimicrobial activity by the induction and accumulation of reactive oxygen species (ROS). However, under anaerobic culture conditions, the ability of both forms to disrupt the function of bacterial membranes decreased and activity was greatly reduced, but crp4red maintained some antimicrobial activity. This activity may be due to the inhibition of intracellular functions by DNA binding. Altogether, these data indicate that, according to its redox structure and the environmental redox conditions, crp4 could perform different antimicrobial activities via different mechanisms.
Collapse
Affiliation(s)
- Yi Wang
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yuchi Song
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shaonan Yan
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Rina Hiramine
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yuki Ohnishi
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yuki Yokoi
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan
| | - Kiminori Nakamura
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan
| | - Takashi Kikukawa
- Laboratory of Biological Information Analysis Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan
| | - Tokiyoshi Ayabe
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan
| | - Tomoyasu Aizawa
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
5
|
Putra NE, Leeflang MA, Ducret V, Patrulea V, Fratila-Apachitei LE, Perron K, Ye H, Zhou J, Apachitei I, Zadpoor AA. Preventing Antibiotic-Resistant Infections: Additively Manufactured Porous Ti6Al4V Biofunctionalized with Ag and Fe Nanoparticles. Int J Mol Sci 2022; 23:13239. [PMID: 36362029 PMCID: PMC9654018 DOI: 10.3390/ijms232113239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 08/20/2024] Open
Abstract
Implant-associated infections are highly challenging to treat, particularly with the emergence of multidrug-resistant microbials. Effective preventive action is desired to be at the implant site. Surface biofunctionalization of implants through Ag-doping has demonstrated potent antibacterial results. However, it may adversely affect bone regeneration at high doses. Benefiting from the potential synergistic effects, combining Ag with other antibacterial agents can substantially decrease the required Ag concentration. To date, no study has been performed on immobilizing both Ag and Fe nanoparticles (NPs) on the surface of additively manufactured porous titanium. We additively manufactured porous titanium and biofunctionalized its surface with plasma electrolytic oxidation using a Ca/P-based electrolyte containing Fe NPs, Ag NPs, and the combinations. The specimen's surface morphology featured porous TiO2 bearing Ag and Fe NPs. During immersion, Ag and Fe ions were released for up to 28 days. Antibacterial assays against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa showed that the specimens containing Ag NPs and Ag/Fe NPs exhibit bactericidal activity. The Ag and Fe NPs worked synergistically, even when Ag was reduced by up to three times. The biofunctionalized scaffold reduced Ag and Fe NPs, improving preosteoblasts proliferation and Ca-sensing receptor activation. In conclusion, surface biofunctionalization of porous titanium with Ag and Fe NPs is a promising strategy to prevent implant-associated infections and allow bone regeneration and, therefore, should be developed for clinical application.
Collapse
Affiliation(s)
- Niko E. Putra
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Marius A. Leeflang
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Verena Ducret
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Viorica Patrulea
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| | - Lidy E. Fratila-Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Karl Perron
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
- Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| | - Jie Zhou
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Iulian Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Amir A. Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| |
Collapse
|
6
|
Rodak K, Kokot I, Kryla A, Kratz EM. The Examination of the Influence of Caffeinated Coffee Consumption on the Concentrations of Serum Prolactin and Selected Parameters of the Oxidative-Antioxidant Balance in Young Adults: A Preliminary Report. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1735204. [PMID: 35923861 PMCID: PMC9343215 DOI: 10.1155/2022/1735204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/15/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022]
Abstract
We verified whether caffeinated coffee consumption influenced the concentrations of prolactin (PRL) and oxidative stress parameters: total antioxidant status (TAS), ferric reducing antioxidant power (FRAP), total oxidant status (TOS), oxidative stress index (OSI), advanced oxidation protein products (AOPP), uric acid (UA), total bilirubin (T-Bil), albumin (ALB), iron (Fe), calcium (Ca), magnesium (Mg), and inflammatory marker C-reactive protein (CRP)-in blood sera obtained at 15, 60, and 120 minutes after caffeinated coffee intake, in relation to the fasting point. The study participants were 33 young, healthy, nonsmoking volunteers (15 men, 18 women) aged 19-29 years. PRL concentrations significantly decreased (p < 0.05) after consumption, except at time point 15' in men (p > 0.05). In women, FRAP levels significantly increased over time, and significant changes were also observed for UA at 120' and ALB at 15'. In men, significant changes were found for levels of AOPP at 15', T-Bil and ALB at 15', iron at 60' and 120', and calcium at 120'. There were no significant differences in the levels of other examined parameters between the defined time points. In conclusion, the substances contained in caffeinated coffee decrease the level of prolactin and may also have an impact on selected parameters of oxidative stress, which could be the basis of future research focused on the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Kamil Rodak
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wroclaw, Poland
| | - Izabela Kokot
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wroclaw, Poland
| | - Aleksandra Kryla
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wroclaw, Poland
| | - Ewa Maria Kratz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
7
|
A Competitive O-Acetylserine Sulfhydrylase Inhibitor Modulates the Formation of Cysteine Synthase Complex. Catalysts 2021. [DOI: 10.3390/catal11060700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cysteine is the main precursor of sulfur-containing biological molecules in bacteria and contributes to the control of the cell redox state. Hence, this amino acid plays an essential role in microbial survival and pathogenicity and the reductive sulfate assimilation pathway is considered a promising target for the development of new antibacterials. Serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS-A), the enzymes catalyzing the last two steps of cysteine biosynthesis, engage in the formation of the cysteine synthase (CS) complex. The interaction between SAT and OASS-A finely tunes cysteine homeostasis, and the development of inhibitors targeting either protein–protein interaction or the single enzymes represents an attractive strategy to undermine bacterial viability. Given the peculiar mode of interaction between SAT and OASS-A, which exploits the insertion of SAT C-terminal sequence into OASS-A active site, we tested whether a recently developed competitive inhibitor of OASS-A exhibited any effect on the CS stability. Through surface plasmon resonance spectroscopy, we (i) determined the equilibrium constant for the Salmonella Typhimurium CS complex formation and (ii) demonstrated that the inhibitor targeting OASS-A active site affects CS complex formation. For comparison, the Escherichia coli CS complex was also investigated, with the aim of testing the potential broad-spectrum activity of the candidate antimicrobial compound.
Collapse
|
8
|
Catalase Protects Biofilm of Staphylococcus aureus against Daptomycin Activity. Antibiotics (Basel) 2021; 10:antibiotics10050511. [PMID: 33946290 PMCID: PMC8146090 DOI: 10.3390/antibiotics10050511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/21/2022] Open
Abstract
Daptomycin is recommended for the treatment of Staphylococcus aureus infections due to its bactericidal activity. However, its mechanism of action is poorly understood. The involvement of reactive oxygen species (ROS) in the bactericidal activity of daptomycin has been proved against planktonic S. aureus, but not against the biofilm of S. aureus. Therefore, we evaluated if ROS contributes to the effect of daptomycin against biofilm of S. aureus. Biofilms of wild type, catalase deficient and daptomycin-resistant S. aureus strains were grown in microtiter-plates. After three days, the biofilms were exposed to daptomycin with or without thiourea in the presence of a ROS indicator. After overnight incubation, the amount of ROS and the percentage of surviving bacteria were determined. The bacterial survival was higher and the amount of ROS was lower in the wild type than in the catalase deficient biofilm, demonstrating a protective effect of catalase against daptomycin. The induction of cytotoxic ROS formation by daptomycin was verified by the addition of thiourea, which reduced the amount of ROS and protected the wild type biofilm against high concentrations of daptomycin. Accordingly, only the highest concentration of daptomycin reduced the bacterial survival and increased the ROS formation in the resistant biofilm. In conclusion, daptomycin induced the production of cytotoxic levels of endogenous ROS in S. aureus biofilm and the presence of catalase protected the biofilm against the lethality of the induced ROS.
Collapse
|
9
|
Characterizing the Mechanism of Action of an Ancient Antimicrobial, Manuka Honey, against Pseudomonas aeruginosa Using Modern Transcriptomics. mSystems 2020; 5:5/3/e00106-20. [PMID: 32606022 PMCID: PMC7329319 DOI: 10.1128/msystems.00106-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Manuka honey has broad-spectrum antimicrobial activity, and unlike traditional antibiotics, resistance to its killing effects has not been reported. However, its mechanism of action remains unclear. Here, we investigated the mechanism of action of manuka honey and its key antibacterial components using a transcriptomic approach in a model organism, Pseudomonas aeruginosa We show that no single component of honey can account for its total antimicrobial action, and that honey affects the expression of genes in the SOS response, oxidative damage, and quorum sensing. Manuka honey uniquely affects genes involved in the explosive cell lysis process and in maintaining the electron transport chain, causing protons to leak across membranes and collapsing the proton motive force, and it induces membrane depolarization and permeabilization in P. aeruginosa These data indicate that the activity of manuka honey comes from multiple mechanisms of action that do not engender bacterial resistance.IMPORTANCE The threat of antimicrobial resistance to human health has prompted interest in complex, natural products with antimicrobial activity. Honey has been an effective topical wound treatment throughout history, predominantly due to its broad-spectrum antimicrobial activity. Unlike traditional antibiotics, honey-resistant bacteria have not been reported; however, honey remains underutilized in the clinic in part due to a lack of understanding of its mechanism of action. Here, we demonstrate that honey affects multiple processes in bacteria, and this is not explained by its major antibacterial components. Honey also uniquely affects bacterial membranes, and this can be exploited for combination therapy with antibiotics that are otherwise ineffective on their own. We argue that honey should be included as part of the current array of wound treatments due to its effective antibacterial activity that does not promote resistance in bacteria.
Collapse
|
10
|
Reverón I, Plaza-Vinuesa L, Santamaría L, Oliveros JC, de las Rivas B, Muñoz R, López de Felipe F. Transcriptomic Evidence of Molecular Mechanisms Underlying the Response of Lactobacillus Plantarum WCFS1 to Hydroxytyrosol. Antioxidants (Basel) 2020; 9:antiox9050442. [PMID: 32443873 PMCID: PMC7278804 DOI: 10.3390/antiox9050442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 01/21/2023] Open
Abstract
This study was aimed to gain new insights into the molecular mechanisms used by Lactobacillus plantarum WCFS1 to respond to hydroxytyrosol (HXT), one of the main and health-relevant plant phenolics present in olive oil. To this goal, whole genome transcriptomic profiling was used to better understand the contribution of differential gene expression in the adaptation to HXT by this microorganism. The transcriptomic profile reveals an HXT-triggered antioxidant response involving genes from the ROS (reactive oxygen species) resistome of L. plantarum, genes coding for H2S-producing enzymes and genes involved in the response to thiol-specific oxidative stress. The expression of a set of genes involved in cell wall biogenesis was also upregulated, indicating that this subcellular compartment was a target of HXT. The expression of several MFS (major facilitator superfamily) efflux systems and ABC-transporters was differentially affected by HXT, probably to control its transport across the membrane. L. plantarum transcriptionally reprogrammed nitrogen metabolism and involved the stringent response (SR) to adapt to HXT, as indicated by the reduced expression of genes involved in cell proliferation or related to the metabolism of (p)ppGpp, the molecule that triggers the SR. Our data have identified, at genome scale, the antimicrobial mechanisms of HXT action as well as molecular mechanisms that potentially enable L. plantarum to cope with the effects of this phenolic compound.
Collapse
Affiliation(s)
- Inés Reverón
- Laboratorio de Biotecnología Bacteriana. Instituto de Ciencia y Tecnología de los Alimentos y Nutrición (ICTAN-CSIC), 28040 Madrid, Spain; (I.R.); (L.P.-V.); (L.S.); (B.d.l.R.); (R.M.)
| | - Laura Plaza-Vinuesa
- Laboratorio de Biotecnología Bacteriana. Instituto de Ciencia y Tecnología de los Alimentos y Nutrición (ICTAN-CSIC), 28040 Madrid, Spain; (I.R.); (L.P.-V.); (L.S.); (B.d.l.R.); (R.M.)
| | - Laura Santamaría
- Laboratorio de Biotecnología Bacteriana. Instituto de Ciencia y Tecnología de los Alimentos y Nutrición (ICTAN-CSIC), 28040 Madrid, Spain; (I.R.); (L.P.-V.); (L.S.); (B.d.l.R.); (R.M.)
| | | | - Blanca de las Rivas
- Laboratorio de Biotecnología Bacteriana. Instituto de Ciencia y Tecnología de los Alimentos y Nutrición (ICTAN-CSIC), 28040 Madrid, Spain; (I.R.); (L.P.-V.); (L.S.); (B.d.l.R.); (R.M.)
| | - Rosario Muñoz
- Laboratorio de Biotecnología Bacteriana. Instituto de Ciencia y Tecnología de los Alimentos y Nutrición (ICTAN-CSIC), 28040 Madrid, Spain; (I.R.); (L.P.-V.); (L.S.); (B.d.l.R.); (R.M.)
| | - Félix López de Felipe
- Laboratorio de Biotecnología Bacteriana. Instituto de Ciencia y Tecnología de los Alimentos y Nutrición (ICTAN-CSIC), 28040 Madrid, Spain; (I.R.); (L.P.-V.); (L.S.); (B.d.l.R.); (R.M.)
- Correspondence: ; Fax: +34-91-549-36-27
| |
Collapse
|
11
|
Himpsl SD, Shea AE, Zora J, Stocki JA, Foreman D, Alteri CJ, Mobley HLT. The oxidative fumarase FumC is a key contributor for E. coli fitness under iron-limitation and during UTI. PLoS Pathog 2020; 16:e1008382. [PMID: 32106241 PMCID: PMC7064253 DOI: 10.1371/journal.ppat.1008382] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/10/2020] [Accepted: 02/05/2020] [Indexed: 01/17/2023] Open
Abstract
The energy required for a bacterium to grow and colonize the host is generated by metabolic and respiratory functions of the cell. Proton motive force, produced by these processes, drives cellular mechanisms including redox balance, membrane potential, motility, acid resistance, and the import and export of substrates. Previously, disruption of succinate dehydrogenase (sdhB) and fumarate reductase (frdA) within the oxidative and reductive tricarboxylic acid (TCA) pathways in uropathogenic E. coli (UPEC) CFT073 indicated that the oxidative, but not the reductive TCA pathway, is required for fitness in the urinary tract. Those findings led to the hypothesis that fumA and fumC encoding fumarase enzymes of the oxidative TCA cycle would be required for UPEC colonization, while fumB of the reductive TCA pathway would be dispensable. However, only UPEC strains lacking fumC had a fitness defect during experimental urinary tract infection (UTI). To further characterize the role of respiration in UPEC during UTI, additional mutants disrupting both the oxidative and reductive TCA pathways were constructed. We found that knock-out of frdA in the sdhB mutant strain background ameliorated the fitness defect observed in the bladder and kidneys for the sdhB mutant strain and results in a fitness advantage in the bladder during experimental UTI. The fitness defect was restored in the sdhBfrdA double mutant by complementation with frdABCD. Taken together, we demonstrate that it is not the oxidative or reductive pathway that is important for UPEC fitness per se, but rather only the oxidative TCA enzyme FumC. This fumarase lacks an iron-sulfur cluster and is required for UPEC fitness during UTI, most likely acting as a counter measure against exogenous stressors, especially in the iron-limited bladder niche.
Collapse
Affiliation(s)
- Stephanie D. Himpsl
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Allyson E. Shea
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jonathan Zora
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jolie A. Stocki
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Dannielle Foreman
- Department of Natural Sciences, University of Michigan Dearborn, Dearborn, Michigan, United States of America
| | - Christopher J. Alteri
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Natural Sciences, University of Michigan Dearborn, Dearborn, Michigan, United States of America
- * E-mail:
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
12
|
Veskoukis AS. Redox signaling and antioxidant defense in pathogenic microorganisms: a link to disease and putative therapy. Pathology 2020. [DOI: 10.1016/b978-0-12-815972-9.00008-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Lack of the Major Multifunctional Catalase KatA in Pseudomonas aeruginosa Accelerates Evolution of Antibiotic Resistance in Ciprofloxacin-Treated Biofilms. Antimicrob Agents Chemother 2019; 63:AAC.00766-19. [PMID: 31307984 DOI: 10.1128/aac.00766-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/30/2019] [Indexed: 01/20/2023] Open
Abstract
During chronic biofilm infections, Pseudomonas aeruginosa bacteria are exposed to increased oxidative stress as a result of the inflammatory response. As reactive oxygen species (ROS) are mutagenic, the evolution of resistance to ciprofloxacin (CIP) in biofilms under oxidative stress conditions was investigated. We experimentally evolved six replicate populations of P. aeruginosa lacking the major catalase KatA in colony biofilms and stationary-phase cultures for seven passages in the presence of subinhibitory levels (0.1 mg/liter) of CIP or without CIP (eight replicate lineages for controls) under aerobic conditions. In CIP-evolved biofilms, a larger CIP-resistant subpopulation was isolated in the ΔkatA strain than in the wild-type (WT) PAO1 population, suggesting oxidative stress as a promoter of the development of antibiotic resistance. A higher number of mutations identified by population sequencing were observed in evolved ΔkatA biofilm populations (CIP and control) than in WT PAO1 populations evolved under the same conditions. Genes involved in iron assimilation were found to be exclusively mutated in CIP-evolved ΔkatA biofilm populations, probably as a defense mechanism against ROS formation resulting from Fenton reactions. Furthermore, a hypermutable lineage due to mutL inactivation developed in one CIP-evolved ΔkatA biofilm lineage. In CIP-evolved biofilms of both the ΔkatA strain and WT PAO1, mutations in nfxB, the negative regulator of the MexCD-OprJ efflux pump, were observed while in CIP-evolved planktonic cultures of both the ΔkatA strain and WT PAO1, mutations in mexR and nalD, regulators of the MexAB-OprM efflux pump, were repeatedly found. In conclusion, these results emphasize the role of oxidative stress as an environmental factor that might increase the development of antibiotic resistance in in vivo biofilms.
Collapse
|
14
|
Abstract
A growing body of research suggests bacterial metabolism and membrane bioenergetics affect the lethality of a broad spectrum of antibiotics. Electrochemical gradients spanning energy-transducing membranes are the foundation of the chemiosmotic hypothesis and are essential for life; accordingly, their dysfunction appears to be a critical factor in bacterial death. Proton flux across energy-transducing membranes is central for cellular homeostasis as vectorial proton translocation generates a proton motive force used for ATP synthesis, pH homeostasis, and maintenance of solute gradients. Our recent investigations indicate that maintenance of pH homeostasis is a critical factor in antibiotic killing and suggest an imbalance in proton flux initiates disruptions in chemiosmotic gradients that lead to cell death. The complex and interconnected relationships between electron transport systems, central carbon metabolism, oxidative stress generation, pH homeostasis, and electrochemical gradients provide challenging obstacles to deciphering the roles for each of these processes in antibiotic lethality. In this chapter, we will present evidence for the pH homeostasis hypothesis of antibiotic lethality that bactericidal activity flows from disruption of cellular energetics and loss of chemiosmotic homeostasis. A holistic understanding of the interconnection of energetic processes and antibiotic activity may direct future research toward the development of more effective therapeutic interventions.
Collapse
|
15
|
Wang G, Ma F, Zeng L, Bai Y, Wang H, Xu X, Zhou G. Modified atmosphere packaging decreased Pseudomonas fragi cell metabolism and extracellular proteolytic activities on meat. Food Microbiol 2018; 76:443-449. [PMID: 30166172 DOI: 10.1016/j.fm.2018.07.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 10/28/2022]
Abstract
Modified atmosphere packaging (MAP) is considered an effective method for extending the shelf life of meat. The use of optimal mixture of gases (CO2 and N2) in food packaging containers has been proved to effectively inhibit the growth of microorganisms in poultry meat. In general, a minimum CO2 concentration range of 20%-30% is required for the inhibitory effect. The aim of this study was to investigate the mechanism by which MAP (CO2/N2 30%/70%) inhibits Pseudomonas fragi, a dominant spoilage microorganism in aerobically stored chilled meat. The cell physiological changes were determined by measuring membrane integrity, membrane potential, ATP level, and extracellular proteolytic activity. The results showed that samples stored under MA retained cell membrane integrity, but lost significant membrane potential and ATP synthesis activity. Furthermore, the peptides issued from 2 structural proteins (myosin and actin) were mainly identified in air samples, indicating that these fragments result from bacterial proteolytic activity while MAP inhibited this activity. Overall, the study found that cell metabolism and extracellular protease activity decreased under MAP conditions. This study showed that MAP is an effective food preservation strategy and revealed mechanisms by which MAP inhibits spoilage.
Collapse
Affiliation(s)
- Guangyu Wang
- Key Laboratory of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Fang Ma
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, PR China
| | - Leyin Zeng
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, PR China
| | - Yun Bai
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, PR China
| | - Huhu Wang
- Key Laboratory of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - Xinglian Xu
- Key Laboratory of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| |
Collapse
|
16
|
Hyperbaric Oxygen Sensitizes Anoxic Pseudomonas aeruginosa Biofilm to Ciprofloxacin. Antimicrob Agents Chemother 2017; 61:AAC.01024-17. [PMID: 28874373 PMCID: PMC5655102 DOI: 10.1128/aac.01024-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/22/2017] [Indexed: 01/08/2023] Open
Abstract
Chronic Pseudomonas aeruginosa lung infection is characterized by the presence of endobronchial antibiotic-tolerant biofilm, which is subject to strong oxygen (O2) depletion due to the activity of surrounding polymorphonuclear leukocytes. The exact mechanisms affecting the antibiotic susceptibility of biofilms remain unclear, but accumulating evidence suggests that the efficacy of several bactericidal antibiotics is enhanced by stimulation of aerobic respiration of pathogens, while lack of O2 increases their tolerance. In fact, the bactericidal effect of several antibiotics depends on active aerobic metabolism activity and the endogenous formation of reactive O2 radicals (ROS). In this study, we aimed to apply hyperbaric oxygen treatment (HBOT) to sensitize anoxic P. aeruginosa agarose biofilms established to mimic situations with intense O2 consumption by the host response in the cystic fibrosis (CF) lung. Application of HBOT resulted in enhanced bactericidal activity of ciprofloxacin at clinically relevant durations and was accompanied by indications of restored aerobic respiration, involvement of endogenous lethal oxidative stress, and increased bacterial growth. The findings highlight that oxygenation by HBOT improves the bactericidal activity of ciprofloxacin on P. aeruginosa biofilm and suggest that bacterial biofilms are sensitized to antibiotics by supplying hyperbaric O2.
Collapse
|
17
|
Silver Nanoparticles Against Salmonella enterica Serotype Typhimurium: Role of Inner Membrane Dysfunction. Curr Microbiol 2017; 74:661-670. [PMID: 28321528 DOI: 10.1007/s00284-017-1235-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/14/2017] [Indexed: 10/19/2022]
Abstract
The evolution of antibiotics-resistant bacteria is considered a major concern. To explore promising antibacterial materials and clarify their unknown mechanisms, the mode of action of silver nanoparticles (AgNPs) against Salmonella enterica serotype typhimurium was investigated. We investigated the effect of AgNPs on the bacterial membrane. The N-phenyl-1-naphthylamine assay showed that the permeability of the outer membrane was not changed by treatment with AgNPs. The O-nitrophenyl-β-D-galactopyranoside assay showed that the inner membrane permeability increased as AgNPs concentration increased. Our results showed that AgNPs affected the inner membrane without outer membrane damage. Generally, antibiotic-induced reactive oxygen species (ROS) and changes in the Ca2+ gradient are known to contribute to bacterial cell death. Likewise, we detected that AgNPs induced the accumulation of ROS and intracellular Ca2+ depending on its concentration, using 2',7'-dichlorodihydrofluorescein and Fura-2AM, respectively. At higher concentrations, no relationship between oxidative stress and bactericidal effects of AgNPs was confirmed through a cell viability assay and intracellular Ca2+ assay with antioxidant N-acetylcysteine. In this study, the inner membrane disruption followed by membrane dysfunction played a key role in the antibacterial activity of AgNPs against S. typhimurium. Contrary to the expected results, ROS do not influence growth inhibition of AgNPs.
Collapse
|
18
|
Frávega J, Álvarez R, Díaz F, Inostroza O, Tejías C, Rodas PI, Paredes-Sabja D, Fuentes JA, Calderón IL, Gil F. SalmonellaTyphimurium exhibits fluoroquinolone resistance mediated by the accumulation of the antioxidant molecule H2S in a CysK-dependent manner. J Antimicrob Chemother 2016; 71:3409-3415. [DOI: 10.1093/jac/dkw311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/23/2016] [Accepted: 07/05/2016] [Indexed: 01/06/2023] Open
|
19
|
Liu X, Marrakchi M, Jahne M, Rogers S, Andreescu S. Real-time investigation of antibiotics-induced oxidative stress and superoxide release in bacteria using an electrochemical biosensor. Free Radic Biol Med 2016; 91:25-33. [PMID: 26655038 DOI: 10.1016/j.freeradbiomed.2015.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/16/2015] [Accepted: 12/01/2015] [Indexed: 12/22/2022]
Abstract
The involvement of oxidative stress in the mechanism of antibiotics-meditated cell death is unclear and subject to debate. The kinetic profile and a quantitative relationship between the release of reactive oxygen species (ROS), bacteria and antibiotic type remain elusive. Here we report direct measurements and analytical quantification of the release of superoxide radicals (O2(·-)), a major contributor to ROS, in antibiotics-treated bacterial cultures using a cytochrome c electrochemical biosensor. The specificity of electrochemical measurements was established by the addition of superoxide dismutase (SOD) which decreased the O2(·-) signal. Measurements using a general ROS-specific fluorescence dye and colony forming units (CFU) assays were performed side-by-side to determine the total ROS and establish the relationship between ROS and the degree of lethality. Exposure of Escherichia coli and Listeria monocytogenes cultures to antibiotics increased the release of O2(·-) radicals in a dose-dependent manner, suggesting that the transmembrane generation of ROS may occur as part of the antibiotic action. The study provides a quantitative methodology and fundamental knowledge to further explore the role of oxidative stress in antibiotics-meditated bacterial death and to assess physiological changes associated with the complex metabolic events related to oxidative stress and bacterial resistance.
Collapse
Affiliation(s)
- Xiaobo Liu
- Department of Chemistry & Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810, USA
| | - Mouna Marrakchi
- Department of Chemistry & Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810, USA; University of Carthage, Laboratoire d'Ecologie et Technologie Microbienne (LETMi), Institut National des Sciences Appliquées et de Technologie (INSAT), 1080 Tunis, Tunisia; Tunis El Manar University, Higher Institute of Applied Biological Science of Tunis (ISSBAT), 1006 Tunis, Tunisia
| | - Michael Jahne
- Department of Civil and Environmental Engineering, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5710, USA
| | - Shane Rogers
- Department of Civil and Environmental Engineering, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5710, USA
| | - Silvana Andreescu
- Department of Chemistry & Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810, USA.
| |
Collapse
|
20
|
Involvement of oxidative stress in bactericidal activity of 2-(2-nitrovinyl) furan against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Microb Pathog 2016; 91:107-14. [DOI: 10.1016/j.micpath.2015.11.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 11/11/2015] [Accepted: 11/19/2015] [Indexed: 12/21/2022]
|
21
|
Free radical formation by Lactobacillus acidophilus NCFM is enhanced by antioxidants and decreased by catalase. Food Res Int 2016. [DOI: 10.1016/j.foodres.2015.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
22
|
Cheng G, Li B, Wang C, Zhang H, Liang G, Weng Z, Hao H, Wang X, Liu Z, Dai M, Wang Y, Yuan Z. Systematic and Molecular Basis of the Antibacterial Action of Quinoxaline 1,4-Di-N-Oxides against Escherichia coli. PLoS One 2015; 10:e0136450. [PMID: 26296207 PMCID: PMC4546592 DOI: 10.1371/journal.pone.0136450] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/03/2015] [Indexed: 01/28/2023] Open
Abstract
Quinoxaline 1,4-di-N-oxides (QdNOs) are widely known as potent antibacterial agents, but their antibacterial mechanisms are incompletely understood. In this study, the transcriptomic and proteomic profiles of Escherichia coli exposed to QdNOs were integratively investigated, and the results demonstrated that QdNOs mainly induced an SOS response and oxidative stress. Moreover, genes and proteins involved in the bacterial metabolism, cellular structure maintenance, resistance and virulence were also found to be changed, conferring bacterial survival strategies. Biochemical assays showed that reactive oxygen species were induced in the QdNO-treated bacteria and that free radical scavengers attenuated the antibacterial action of QdNOs and DNA damage, suggesting an oxidative-DNA-damage action of QdNOs. The QdNO radical intermediates, likely carbon-centered and aryl-type radicals, as identified by electron paramagnetic resonance, were the major radicals induced by QdNOs, and xanthine oxidase was one of the QdNO-activating enzymes. This study provides new insights into the action of QdNOs in a systematic manner and increases the current knowledge of bacterial physiology under antibiotic stresses, which may be of great value in the development of new antibiotic-potentiating strategies.
Collapse
Affiliation(s)
- Guyue Cheng
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Bei Li
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Chenxi Wang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Hongfei Zhang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Guixia Liang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhifei Weng
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Haihong Hao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xu Wang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhenli Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Menghong Dai
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- * E-mail: (MD); (YW); (ZY)
| | - Yulian Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- * E-mail: (MD); (YW); (ZY)
| | - Zonghui Yuan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- * E-mail: (MD); (YW); (ZY)
| |
Collapse
|
23
|
Generation of reactive oxygen species by lethal attacks from competing microbes. Proc Natl Acad Sci U S A 2015; 112:2181-6. [PMID: 25646446 DOI: 10.1073/pnas.1425007112] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Whether antibiotics induce the production of reactive oxygen species (ROS) that contribute to cell death is an important yet controversial topic. Here, we report that lethal attacks from bacterial and viral species also result in ROS production in target cells. Using soxS as an ROS reporter, we found soxS was highly induced in Escherichia coli exposed to various forms of attacks mediated by the type VI secretion system (T6SS), P1vir phage, and polymyxin B. Using a fluorescence ROS probe, we found enhanced ROS levels correlate with induced soxS in E. coli expressing a toxic T6SS antibacterial effector and in E. coli treated with P1vir phage or polymyxin B. We conclude that both contact-dependent and contact-independent interactions with aggressive competing bacterial species and viruses can induce production of ROS in E. coli target cells.
Collapse
|
24
|
Sub-inhibitory fosmidomycin exposures elicits oxidative stress in Salmonella enterica serovar Typhimurium LT2. PLoS One 2014; 9:e95271. [PMID: 24751777 PMCID: PMC3994034 DOI: 10.1371/journal.pone.0095271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 03/26/2014] [Indexed: 01/16/2023] Open
Abstract
Fosmidomycin is a time-dependent nanomolar inhibitor of methylerythritol phosphate (MEP) synthase, which is the enzyme that catalyzes the first committed step in the MEP pathway to isoprenoids. Importantly, fosmidomycin is one of only a few MEP pathway-specific inhibitors that exhibits antimicrobial activity. Most inhibitors identified to date only exhibit activity against isolated pathway enzymes. The MEP pathway is the sole route to isoprenoids in many bacteria, yet has no human homologs. The development of inhibitors of this pathway holds promise as novel antimicrobial agents. Similarly, analyses of the bacterial response toward MEP pathway inhibitors provides valuable information toward the understanding of how emergent resistance may ultimately develop to this class of antibiotics. We have examined the transcriptional response of Salmonella enterica serovar typhimurium LT2 to sub-inhibitory concentrations of fosmidomycin via cDNA microarray and RT-PCR. Within the regulated genes identified by microarray were a number of genes encoding enzymes associated with the mediation of reactive oxygen species (ROS). Regulation of a panel of genes implicated in the response of cells to oxidative stress (including genes for catalases, superoxide dismutases, and alkylhydrogen peroxide reductases) was investigated and mild upregulation in some members was observed as a function of fosmidomycin exposure over time. The extent of regulation of these genes was similar to that observed for comparable exposures to kanamycin, but differed significantly from tetracycline. Furthermore, S. typhimurium exposed to sub-inhibitory concentrations of fosmidomycin displayed an increased sensitivity to exogenous H2O2 relative to either untreated controls or kanamycin-treated cells. Our results suggest that endogenous oxidative stress is one consequence of exposures to fosmidomycin, likely through the temporal depletion of intracellular isoprenoids themselves, rather than other mechanisms that have been proposed to facilitate ROS accumulation in bacteria (e.g. cell death processes or the ability of the antibiotic to redox cycle).
Collapse
|
25
|
Hemmerlin A, Tritsch D, Hammann P, Rohmer M, Bach TJ. Profiling of defense responses in Escherichia coli treated with fosmidomycin. Biochimie 2013; 99:54-62. [PMID: 24262605 DOI: 10.1016/j.biochi.2013.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 11/08/2013] [Indexed: 10/26/2022]
Abstract
The mevalonate-independent isoprenoid biosynthesis pathway has been recognized as a promising target for designing new antibiotics. But pathogens treated with compounds such as fosmidomycin, a slow binding inhibitor of 1-deoxy-D-xylulose 5-phosphate reducto-isomerase, the second enzyme in this pathway, develop rapid drug resistance. In Escherichia coli, acquired resistance results mostly from inactivating the cAMP-dependent glpT transporter, thereby preventing import of the inhibitor. Such mutant strains are characterized by cross-resistance to fosfomycin, by susceptibility to efflux pump inhibitors, by disability to use glycerol 3-phosphate as a carbon source or by increased activity of the promoter controlling the expression of the glpABC regulon when grown in presence of fosmidomycin. The quite challenging task consists in conceiving new and efficient inhibitors avoiding resistance acquisition. They should be efficient in blocking the target enzyme, but should also be durably taken up by the organism. To address this issue, it is essential to characterize the mechanisms the pathogen exploits to defeat the antibiotic before resistance is acquired. Having this in mind, a 2-D Fluorescence Difference Gel Electrophoresis proteomic approach has been applied to identify defense responses in E. coli cells being shortly exposed to fosmidomycin (3 h). It seems that combined strategies are promptly induced. The major one consists in preventing toxic effects of the compound either by adapting metabolism and/or by getting rid of the molecule. The strategy adopted by the bacteria is to eliminate the drug from the cell or to increase the tolerance to oxidative stress. The design of new, but still efficient drugs, needs consideration of such rapid modulations required to adapt cell growth in contact of the inhibitor.
Collapse
Affiliation(s)
- Andréa Hemmerlin
- CNRS UPR 2357, Institut de Biologie Moléculaire des Plantes, Conventionné avec l'Université de Strasbourg, 28 rue Goethe, F-67083 Strasbourg Cedex, France.
| | - Denis Tritsch
- Université de Strasbourg/CNRS, Institut de Chimie UMR 7177, 4 rue Blaise Pascal, F-67070 Strasbourg Cedex, France
| | - Philippe Hammann
- CNRS, FRC 1589, Plateforme Protéomique Esplanade, 15 Rue René Descartes, F-67084 Strasbourg Cedex, France
| | - Michel Rohmer
- Université de Strasbourg/CNRS, Institut de Chimie UMR 7177, 4 rue Blaise Pascal, F-67070 Strasbourg Cedex, France
| | - Thomas J Bach
- CNRS UPR 2357, Institut de Biologie Moléculaire des Plantes, Conventionné avec l'Université de Strasbourg, 28 rue Goethe, F-67083 Strasbourg Cedex, France
| |
Collapse
|
26
|
|
27
|
Role of autofluorescence in flow cytometric analysis of Escherichia coli treated with bactericidal antibiotics. J Bacteriol 2013; 195:4067-73. [PMID: 23836867 DOI: 10.1128/jb.00393-13] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bactericidal antibiotics kill by different mechanisms as a result of a specific interaction with their cellular targets. Over the past few years, alternative explanations for cidality have been proposed based on a postulated common pathway, depending on the intracellular production of reactive oxygen species. Detection of hydroxyl radicals relies on staining with specific fluorescent dyes that can penetrate the cell and are detected using flow cytometry. Flow cytometry has become an important tool in microbiology to study characteristics of individual cells within large heterogeneous cellular populations. We show here that Escherichia coli treated with different bactericidal antibiotics exhibits increased autofluorescence when analyzed by flow cytometry. We present evidence suggesting that this change in autofluorescence is caused by altered cell morphology upon antibiotic treatment. Consistent with this view, mutant cells that fail to elongate upon norfloxacin treatment show no increased auto-fluorescence response. Finally, we present data demonstrating that changes in autofluorescence can impact the results with fluorescent probes when using flow cytometry and confound the findings obtained with specific dyes. In summary, recent findings that correlate the exposure to cidal antibiotics with the production of reactive oxygen species need to be reconsidered in light of such changes in autofluorescence. Conclusive evidence for an increase of hydroxyl radicals after treatment with such drugs is still missing.
Collapse
|
28
|
|
29
|
Bernier SP, Surette MG. Concentration-dependent activity of antibiotics in natural environments. Front Microbiol 2013; 4:20. [PMID: 23422936 PMCID: PMC3574975 DOI: 10.3389/fmicb.2013.00020] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 01/28/2013] [Indexed: 11/26/2022] Open
Abstract
Bacterial responses to antibiotics are concentration-dependent. At high concentrations, antibiotics exhibit antimicrobial activities on susceptible cells, while subinhibitory concentrations induce diverse biological responses in bacteria. At non-lethal concentrations, bacteria may sense antibiotics as extracellular chemicals to trigger different cellular responses, which may include an altered antibiotic resistance/tolerance profile. In natural settings, microbes are typically in polymicrobial communities and antibiotic-mediated interactions between species may play a significant role in bacterial community structure and function. However, these aspects have not yet fully been explored at the community level. Here we discuss the different types of interactions mediated by antibiotics and non-antibiotic metabolites as a function of their concentrations and speculate on how these may amplify the overall antibiotic resistance/tolerance and the spread of antibiotic resistance determinants in a context of polymicrobial community.
Collapse
Affiliation(s)
- Steve P Bernier
- Farncombe Family Digestive Health Research Institute, Department of Medicine, Faculty of Health Sciences, McMaster University Hamilton, ON, Canada
| | | |
Collapse
|
30
|
Seghezzi N, Virolle MJ, Amar P. Novel insights regarding the sigmoidal pattern of resistance to neomycin conferred by the aphII gene, in Streptomyces lividans. AMB Express 2013; 3:13. [PMID: 23394184 PMCID: PMC3606403 DOI: 10.1186/2191-0855-3-13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 02/04/2013] [Indexed: 12/02/2022] Open
Abstract
A library of synthetic promoters of various strengths, specifically constructed for Streptomyces species, was cloned in the promoter-probe plasmid pIJ487, upstream of the promoter-less aphII gene that confers resistance to neomycin. The survival rates conferred by promoters were assessed in the presence of 100 μg.ml−1 neomycin. The correlation between the transcriptional activity of the aphII gene (estimated by RT-PCR) and the resistance to neomycin (expressed as survival rate) indicated a sigmoid rather than a linear correlation. In this issue, we propose a tentative explanation for this sigmoidal pattern of resistance in relation with the level of aphII gene expression. Beyond this specific example, our model might constitute a sound explanation for the generally observed but never explained sigmoidal shape of classical inhibition curves obtained in the presence of linearly increasing antibiotic concentrations.
Collapse
|
31
|
Dhar R, Sägesser R, Weikert C, Wagner A. Yeast Adapts to a Changing Stressful Environment by Evolving Cross-Protection and Anticipatory Gene Regulation. Mol Biol Evol 2012; 30:573-88. [DOI: 10.1093/molbev/mss253] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
32
|
Grant SS, Kaufmann BB, Chand NS, Haseley N, Hung DT. Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals. Proc Natl Acad Sci U S A 2012; 109:12147-52. [PMID: 22778419 PMCID: PMC3409745 DOI: 10.1073/pnas.1203735109] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During Mycobacterium tuberculosis infection, a population of bacteria likely becomes refractory to antibiotic killing in the absence of genotypic resistance, making treatment challenging. We describe an in vitro model capable of yielding a phenotypically antibiotic-tolerant subpopulation of cells, often called persisters, within populations of Mycobacterium smegmatis and M. tuberculosis. We find that persisters are distinct from the larger antibiotic-susceptible population, as a small drop in dissolved oxygen (DO) saturation (20%) allows for their survival in the face of bactericidal antibiotics. In contrast, if high levels of DO are maintained, all cells succumb, sterilizing the culture. With increasing evidence that bactericidal antibiotics induce cell death through the production of reactive oxygen species (ROS), we hypothesized that the drop in DO decreases the concentration of ROS, thereby facilitating persister survival, and maintenance of high DO yields sufficient ROS to kill persisters. Consistent with this hypothesis, the hydroxyl-radical scavenger thiourea, when added to M. smegmatis cultures maintained at high DO levels, rescues the persister population. Conversely, the antibiotic clofazimine, which increases ROS via an NADH-dependent redox cycling pathway, successfully eradicates the persister population. Recent work suggests that environmentally induced antibiotic tolerance of bulk populations may result from enhanced antioxidant capabilities. We now show that the small persister subpopulation within a larger antibiotic-susceptible population also shows differential susceptibility to antibiotic-induced hydroxyl radicals. Furthermore, we show that stimulating ROS production can eradicate persisters, thus providing a potential strategy to managing persistent infections.
Collapse
Affiliation(s)
- Sarah Schmidt Grant
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02114
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Benjamin B. Kaufmann
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Nikhilesh S. Chand
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138; and
| | - Nathan Haseley
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
- Harvard–MIT Division of Health Sciences and Technology, Cambridge, MA 02139
| | - Deborah T. Hung
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02114
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
33
|
Bengtson P, Bastviken D, Oberg G. Possible roles of reactive chlorine II: assessing biotic chlorination as a way for organisms to handle oxygen stress. Environ Microbiol 2012; 15:991-1000. [PMID: 22712445 DOI: 10.1111/j.1462-2920.2012.02807.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Natural formation of organically bound chlorine is extensive in many environments. The enzymes associated with the formation of chlorinated organic matter are produced by a large variety of organisms. Little is known about the ecological role of the process, the key question being: why do microorganisms promote chlorination of organic matter? In a recent paper we discuss whether organic matter chlorination may be a result of antagonistic interactions among microorganisms. In the present paper we evaluate whether extracellular microbial formation of reactive chlorine may be used as a defence against oxygen stress, and we discuss whether this process is likely to contribute to the formation of chlorinated organic matter. Our analysis suggests that periodic exposure to elevated concentrations of reactive oxygen species is a common denominator among the multitude of organisms that are able to enzymatically catalyse formation of reactive chlorine. There is also some evidence suggesting that the production of such enzymes in algae and bacteria is induced by oxygen stress. The relative contribution from this process to the extensive formation of chlorinated organic matter in natural environments remains to be empirically assessed.
Collapse
Affiliation(s)
- Per Bengtson
- Department of Biology - Microbial Ecology, Lund University, The Ecology Building, Lund SE-223 62, Sweden
| | | | | |
Collapse
|
34
|
Darbon E, Martel C, Nowacka A, Pegot S, Moreau PL, Virolle MJ. Transcriptional and preliminary functional analysis of the six genes located in divergence of phoR/phoP in Streptomyces lividans. Appl Microbiol Biotechnol 2012; 95:1553-66. [DOI: 10.1007/s00253-012-3995-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 01/14/2023]
|
35
|
Tkachenko AG, Akhova AV, Shumkov MS, Nesterova LY. Polyamines reduce oxidative stress in Escherichia coli cells exposed to bactericidal antibiotics. Res Microbiol 2012; 163:83-91. [DOI: 10.1016/j.resmic.2011.10.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 10/11/2011] [Indexed: 11/17/2022]
|
36
|
Liu Z, Cai Y, Young AW, Totsingan F, Jiwrajka N, Shi Z, Kallenbach NR. OH radical production stimulated by (RW)4D, a synthetic antimicrobial agent and indolicidin. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20272g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Curiel JA, Rodríguez H, de las Rivas B, Anglade P, Baraige F, Zagorec M, Champomier-Vergès M, Muñoz R, de Felipe FL. Response of a Lactobacillus plantarum
human isolate to tannic acid challenge assessed by proteomic analyses. Mol Nutr Food Res 2011; 55:1454-65. [DOI: 10.1002/mnfr.201000621] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 03/15/2011] [Accepted: 03/24/2011] [Indexed: 12/27/2022]
|
38
|
Spindler EC, Hale JDF, Giddings TH, Hancock REW, Gill RT. Deciphering the mode of action of the synthetic antimicrobial peptide Bac8c. Antimicrob Agents Chemother 2011; 55:1706-16. [PMID: 21282431 PMCID: PMC3067151 DOI: 10.1128/aac.01053-10] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/19/2010] [Accepted: 01/21/2011] [Indexed: 11/20/2022] Open
Abstract
Bac8c (RIWVIWRR-NH(2)) is an 8-amino-acid peptide derived from Bac2A (RLARIVVIRVAR-NH(2)), a C3A/C11A variant of the naturally occurring bovine peptide, bactenecin (also known as bovine dodecapeptide), the smallest peptide with activity against a range of pathogenic Gram-positive and Gram-negative bacteria, as well as yeast. The effects of Bac8c on Escherichia coli were examined by studying its bacteriostatic and bactericidal properties, demonstrating its effects on proton motive force generation, and visually analyzing (via transmission electron microscopy) its effects on cells at different concentrations, in order to probe the complexities of the mechanism of action of Bac8c. Results were consistent with a two-stage model for the Bac8c mode of action. At sublethal concentrations (3 μg/ml), Bac8c addition resulted in transient membrane destabilization and metabolic imbalances, which appeared to be linked to inhibition of respiratory function. Although sublethal concentrations resulted in deleterious downstream events, such as methylglyoxal formation and free radical generation, native E. coli defense systems were sufficient for full recovery within 2 h. In contrast, at the minimal bactericidal concentration (6 μg/ml), Bac8c substantially but incompletely depolarized the cytoplasmic membrane within 5 min and disrupted electron transport, which in turn resulted in partial membrane permeabilization and cell death.
Collapse
Affiliation(s)
- E. C. Spindler
- Department of Biological and Chemical Engineering, University of Colorado—Boulder, ECCH 111, Boulder, Colorado 80309, Centre for Microbial Diseases and Immunity Research, 2259 Lower Mall, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - J. D. F. Hale
- Department of Biological and Chemical Engineering, University of Colorado—Boulder, ECCH 111, Boulder, Colorado 80309, Centre for Microbial Diseases and Immunity Research, 2259 Lower Mall, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - T. H. Giddings
- Department of Biological and Chemical Engineering, University of Colorado—Boulder, ECCH 111, Boulder, Colorado 80309, Centre for Microbial Diseases and Immunity Research, 2259 Lower Mall, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - R. E. W. Hancock
- Department of Biological and Chemical Engineering, University of Colorado—Boulder, ECCH 111, Boulder, Colorado 80309, Centre for Microbial Diseases and Immunity Research, 2259 Lower Mall, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - R. T. Gill
- Department of Biological and Chemical Engineering, University of Colorado—Boulder, ECCH 111, Boulder, Colorado 80309, Centre for Microbial Diseases and Immunity Research, 2259 Lower Mall, University of British Columbia, Vancouver V6T 1Z4, Canada
| |
Collapse
|
39
|
Yeom J, Imlay JA, Park W. Iron homeostasis affects antibiotic-mediated cell death in Pseudomonas species. J Biol Chem 2010; 285:22689-95. [PMID: 20479007 DOI: 10.1074/jbc.m110.127456] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Antibiotics can induce cell death via a variety of action modes, including the inhibition of transcription, ribosomal function, and cell wall biosynthesis. In this study, we demonstrated directly that iron availability is important to the action of antibiotics, and the ferric reductases of Pseudomonas putida and Pseudomonas aeruginosa could accelerate antibiotic-mediated cell death by promoting the Fenton reaction. The modulation of reduced nicotinamide-adenine dinucleotide (NADH) levels and iron chelation affected the actions of antibiotics. Interestingly, the deletion of the ferric reductase gene confers more antibiotic resistance upon cells, and its overexpression accelerates antibiotic-mediated cell death. The results of transcriptome analysis showed that both Pseudomonas species induce many oxidative stress genes under antibiotic conditions, which could not be observed in ferric reductase mutants. Our results indicate that iron homeostasis is crucial for bacterial cell survival under antibiotics and should constitute a significant target for boosting the action of antibiotics.
Collapse
Affiliation(s)
- Jinki Yeom
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 136-713, South Korea
| | | | | |
Collapse
|
40
|
de Boer W, Folman LB, Klein Gunnewiek PJ, Svensson T, Bastviken D, Öberg G, del Rio JC, Boddy L. Mechanism of antibacterial activity of the white-rot fungus Hypholoma fasciculare colonizing wood. Can J Microbiol 2010; 56:380-8. [DOI: 10.1139/w10-023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In a previous study it was shown that the number of wood-inhabiting bacteria was drastically reduced after colonization of beech ( Fagus sylvatica ) wood blocks by the white-rot fungus Hypholoma fasciculare , or sulfur tuft ( Folman et al. 2008 ). Here we report on the mechanisms of this fungal-induced antibacterial activity. Hypholoma fasciculare was allowed to invade beech and pine ( Pinus sylvestris ) wood blocks that had been precolonized by microorganisms from forest soil. The changes in the number of bacteria, fungal biomass, and fungal-related wood properties were followed for 23 weeks. Colonization by the fungus resulted in a rapid and large reduction in the number of bacteria (colony-forming units), which was already apparent after 4 weeks of incubation. The reduction in the number of bacteria coincided with fungal-induced acidification in both beech and pine wood blocks. No evidence was found for the involvement of toxic secondary metabolites or reactive oxygen species in the reduction of the number of bacteria. Additional experiments showed that the dominant bacteria present in the wood blocks were not able to grow under the acidic conditions (pH 3.5) created by the fungus. Hence our research pointed at rapid acidification as the major factor causing reduction of wood-inhabiting bacteria upon colonization of wood by H. fasciculare.
Collapse
Affiliation(s)
- Wietse de Boer
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Boterhoeksestraat 48, Heteren 6666 GA, Netherlands
- Water and Environmental Studies, Department of Thematic Studies, Linköping University, Linköping 58183, Sweden
- Institute for Resources, Environment, and Sustainability (IRES) and Soil, Water, and Environmental Laboratory (SWEL), The University of British Columbia, 429-2202 Main Mall, Vancouver, BC V6T 1Z4, Canada
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, P.O. Box 1052, Seville 41080, Spain
- Cardiff School of Biosciences, Cardiff University, Biomedical Building, Museum Avenue, Cardiff, Wales CF10 3AX, UK
| | - Larissa B. Folman
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Boterhoeksestraat 48, Heteren 6666 GA, Netherlands
- Water and Environmental Studies, Department of Thematic Studies, Linköping University, Linköping 58183, Sweden
- Institute for Resources, Environment, and Sustainability (IRES) and Soil, Water, and Environmental Laboratory (SWEL), The University of British Columbia, 429-2202 Main Mall, Vancouver, BC V6T 1Z4, Canada
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, P.O. Box 1052, Seville 41080, Spain
- Cardiff School of Biosciences, Cardiff University, Biomedical Building, Museum Avenue, Cardiff, Wales CF10 3AX, UK
| | - Paulien J.A. Klein Gunnewiek
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Boterhoeksestraat 48, Heteren 6666 GA, Netherlands
- Water and Environmental Studies, Department of Thematic Studies, Linköping University, Linköping 58183, Sweden
- Institute for Resources, Environment, and Sustainability (IRES) and Soil, Water, and Environmental Laboratory (SWEL), The University of British Columbia, 429-2202 Main Mall, Vancouver, BC V6T 1Z4, Canada
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, P.O. Box 1052, Seville 41080, Spain
- Cardiff School of Biosciences, Cardiff University, Biomedical Building, Museum Avenue, Cardiff, Wales CF10 3AX, UK
| | - Teresia Svensson
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Boterhoeksestraat 48, Heteren 6666 GA, Netherlands
- Water and Environmental Studies, Department of Thematic Studies, Linköping University, Linköping 58183, Sweden
- Institute for Resources, Environment, and Sustainability (IRES) and Soil, Water, and Environmental Laboratory (SWEL), The University of British Columbia, 429-2202 Main Mall, Vancouver, BC V6T 1Z4, Canada
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, P.O. Box 1052, Seville 41080, Spain
- Cardiff School of Biosciences, Cardiff University, Biomedical Building, Museum Avenue, Cardiff, Wales CF10 3AX, UK
| | - David Bastviken
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Boterhoeksestraat 48, Heteren 6666 GA, Netherlands
- Water and Environmental Studies, Department of Thematic Studies, Linköping University, Linköping 58183, Sweden
- Institute for Resources, Environment, and Sustainability (IRES) and Soil, Water, and Environmental Laboratory (SWEL), The University of British Columbia, 429-2202 Main Mall, Vancouver, BC V6T 1Z4, Canada
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, P.O. Box 1052, Seville 41080, Spain
- Cardiff School of Biosciences, Cardiff University, Biomedical Building, Museum Avenue, Cardiff, Wales CF10 3AX, UK
| | - Gunilla Öberg
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Boterhoeksestraat 48, Heteren 6666 GA, Netherlands
- Water and Environmental Studies, Department of Thematic Studies, Linköping University, Linköping 58183, Sweden
- Institute for Resources, Environment, and Sustainability (IRES) and Soil, Water, and Environmental Laboratory (SWEL), The University of British Columbia, 429-2202 Main Mall, Vancouver, BC V6T 1Z4, Canada
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, P.O. Box 1052, Seville 41080, Spain
- Cardiff School of Biosciences, Cardiff University, Biomedical Building, Museum Avenue, Cardiff, Wales CF10 3AX, UK
| | - José C. del Rio
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Boterhoeksestraat 48, Heteren 6666 GA, Netherlands
- Water and Environmental Studies, Department of Thematic Studies, Linköping University, Linköping 58183, Sweden
- Institute for Resources, Environment, and Sustainability (IRES) and Soil, Water, and Environmental Laboratory (SWEL), The University of British Columbia, 429-2202 Main Mall, Vancouver, BC V6T 1Z4, Canada
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, P.O. Box 1052, Seville 41080, Spain
- Cardiff School of Biosciences, Cardiff University, Biomedical Building, Museum Avenue, Cardiff, Wales CF10 3AX, UK
| | - Lynne Boddy
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Boterhoeksestraat 48, Heteren 6666 GA, Netherlands
- Water and Environmental Studies, Department of Thematic Studies, Linköping University, Linköping 58183, Sweden
- Institute for Resources, Environment, and Sustainability (IRES) and Soil, Water, and Environmental Laboratory (SWEL), The University of British Columbia, 429-2202 Main Mall, Vancouver, BC V6T 1Z4, Canada
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, P.O. Box 1052, Seville 41080, Spain
- Cardiff School of Biosciences, Cardiff University, Biomedical Building, Museum Avenue, Cardiff, Wales CF10 3AX, UK
| |
Collapse
|
41
|
Mechanisms of hop inhibition include the transmembrane redox reaction. Appl Environ Microbiol 2009; 76:142-9. [PMID: 19880646 DOI: 10.1128/aem.01693-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In this work, a novel mechanistic model of hop inhibition beyond the proton ionophore action toward (beer spoiling) bacteria was developed. Investigations were performed with model systems using cyclic voltammetry for the determination of redox processes/conditions in connection with growth challenges with hop-sensitive and -resistant Lactobacillus brevis strains in the presence of oxidants. Cyclic voltammetry identified a transmembrane redox reaction of hop compounds at low pH (common in beer) and in the presence of manganese (present in millimolar levels in lactic acid bacteria). The antibacterial action of hop compounds could be extended from the described proton ionophore activity, lowering the intracellular pH, to pronounced redox reactivity, causing cellular oxidative damage. Accordingly, a correlation between the resistance of L. brevis strains to a sole oxidant to their resistance to hop could not be expected and was not detected. However, in connection with our recent study concerning hop ionophore properties and the resistance of hop-sensitive and -tolerant L. brevis strains toward proton ionophores (J. Behr and R. F. Vogel, J. Agric. Food Chem. 57:6074-6081, 2009), we suggest that both ionophore and oxidant resistance are required for survival under hop stress conditions and confirmed this correlation according to the novel mechanistic model. In consequence, the expression of several published hop resistance mechanisms involved in manganese binding/transport and intracellular redox balance, as well as that of proteins involved in oxidative stress under "highly reducing" conditions (cf. anaerobic cultivation and "antioxidative" hop compounds in the growth medium), is now comprehensible. Accordingly, hop resistance as a multifactorial dynamic property at least implies distinct resistance levels against two different mechanisms of hop inhibition, namely, proton ionophore-induced and oxidative stress-induced mechanisms. Beyond this specific model of hop inhibition, these investigations provide general insight on the role of electrophysiology and ion homeostasis in bacterial stress responses to membrane-active drugs.
Collapse
|
42
|
Bizzini A, Zhao C, Auffray Y, Hartke A. The Enterococcus faecalis superoxide dismutase is essential for its tolerance to vancomycin and penicillin. J Antimicrob Chemother 2009; 64:1196-202. [PMID: 19828491 DOI: 10.1093/jac/dkp369] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES Enterococcus faecalis is a human commensal that has the ability to become a pathogen. Because of its ruggedness, it can persist in the hospital setting and cause serious nosocomial infections. E. faecalis can acquire multiple drug resistance determinants but is also intrinsically tolerant to a number of antibiotics, such as penicillin or vancomycin, meaning that these usually bactericidal drugs only exhibit a bacteriostatic effect. Recently, evidence has been presented that exposure to bactericidal antibiotics induced the production of reactive oxygen species in bacteria. Here, we studied the role of enzymes involved in the oxidative stress response in the survival of E. faecalis after antibiotic treatment. METHODS Mutants defective in genes encoding oxidative stress defence activities were tested by time-kill curves for their contribution to antibiotic tolerance in comparison with the E. faecalis JH2-2 wild-type (WT). RESULTS In killing assays, WT cultures lost 0.2 +/- 0.1 and 1.3 +/- 0.2 log(10) cfu/mL after 24 h of vancomycin or penicillin exposure, respectively. A deletion mutant of the superoxide dismutase gene (DeltasodA) exhibited a lack of tolerance as cultures lost 4.1 +/- 0.5 and 4.8 +/- 0.7 log(10) cfu/mL after 24 h of exposure to the same drugs. Complementation of DeltasodA re-established the tolerant phenotype. Bacterial killing was an oxygen-dependent process and a model is presented implicating the superoxide anion as the mediator of this killing. As predicted from the model, a mutant defective in peroxidase activities excreted hydrogen peroxide at an elevated rate. CONCLUSIONS SodA is central to the intrinsic ability of E. faecalis to withstand drug-induced killing, and the superoxide anion seems to be the key effector of bacterial death.
Collapse
Affiliation(s)
- Alain Bizzini
- Laboratoire de Microbiologie de l'Environnement, EA956, USC INRA 2017, Université de Caen, Caen, France
| | | | | | | |
Collapse
|
43
|
Kolodkin-Gal I, Sat B, Keshet A, Kulka HE. The communication factor EDF and the toxin-antitoxin module mazEF determine the mode of action of antibiotics. PLoS Biol 2008; 6:e319. [PMID: 19090622 PMCID: PMC2602726 DOI: 10.1371/journal.pbio.0060319] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 11/07/2008] [Indexed: 12/03/2022] Open
Abstract
It was recently reported that the production of Reactive Oxygen Species (ROS) is a common mechanism of cell death induced by bactericidal antibiotics. Here we show that triggering the Escherichia coli chromosomal toxin-antitoxin system mazEF is an additional determinant in the mode of action of some antibiotics. We treated E. coli cultures by antibiotics belonging to one of two groups: (i) Inhibitors of transcription and/or translation, and (ii) DNA damaging. We found that antibiotics of both groups caused: (i) mazEF-mediated cell death, and (ii) the production of ROS through MazF action. However, only antibiotics of the first group caused mazEF-mediated cell death that is ROS-dependent, whereas those of the second group caused mazEF-mediated cell death by an ROS-independent pathway. Furthermore, our results showed that the mode of action of antibiotics was determined by the ability of E. coli cells to communicate through the signaling molecule Extracellular Death Factor (EDF) participating in mazEF induction.
Collapse
|