1
|
Sanati M, Manavi MA, Noruzi M, Behmadi H, Akbari T, Jalali S, Sharifzadeh M, Khoobi M. Carbohydrates and neurotrophic factors: A promising partnership for spinal cord injury rehabilitation. BIOMATERIALS ADVANCES 2025; 166:214054. [PMID: 39332344 DOI: 10.1016/j.bioadv.2024.214054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
Spinal cord injury (SCI) leaves a temporary or enduring motor, sensory, and autonomic function loss, significantly impacting the patient's quality of life. Given their biocompatibility, bioactivity, and tunable attributes, three-dimensional scaffolds frequently employ carbohydrates to facilitate spinal cord regeneration. These scaffolds have also been engineered to be novel local delivery platforms that present distinct advantages in the targeted transportation of drug candidates to the damaged spinal cord, ensuring the right dosage and duration of administration. Neurotrophic factors have emerged as promising therapeutic candidates, preserved neuron survival and encouraged severed axons repair, although their local and continuous delivery is believed to produce considerable spinal cord rehabilitation. This study aims to discuss breakthroughs in scaffold engineering, exploiting carbohydrates as an essential part of their structure, and highlight their impact on spinal cord regeneration and sustained neurotrophic factors delivery to treat SCI.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Amin Manavi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Noruzi
- School of Pharmacy, Semnan University of Medical Sciences, Semnan, Iran
| | - Homayoon Behmadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Akbari
- Department of Microbiology, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Sara Jalali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mehdi Khoobi
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417614411 Tehran, Iran.
| |
Collapse
|
2
|
Wang C, Wang C, Wang M, Wang M, Ni Q, Sun J, Sun B, Wang Y. Minimally Invasive Real-Time Monitoring for Rapid and Sensitive Diagnosis of Spinal Cord Injury. ACS Sens 2024; 9:5058-5068. [PMID: 39401952 DOI: 10.1021/acssensors.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Spinal cord injury (SCI) is a serious neurological injury that is currently extremely difficult to cure clinically. SCI involves numerous pathophysiological processes, and microRNAs (miRNAs) play an important role in these processes. Meanwhile, miRNAs have received a lot of attention for their role in other diseases as well. Therefore, the detection of disease-related miRNAs is important for the study of disease development, treatment, and prognosis. With the rapid development of molecular biology, the traditional detection methods of miRNA can no longer meet the needs of experiments. Electrochemical detection methods are widely used because of their excellent detection performance. Here, we designed an electrochemical sensor prepared using borosilicate glass microneedle electrodes for real-time monitoring of miR-21-5p expression in vivo after SCI. The sensor showed a good linear relationship between the oxidation peak current value and the concentration of miR-21-5p in the concentration range 0-2 fM (Y = 12.025X + 90.396, R2 = 0.98). The limit of detection (LOD) of the sensor was 0.3667 fM. The experimental results showed that the borosilicate glass microneedle electrochemical sensor achieved fast, accurate, highly sensitive, highly specific, highly stable, and reproducible monitoring of miR-21-5p. More importantly, the electrochemical sensor has a better clinical translation prospect, which is important for the research of clinical diseases.
Collapse
Affiliation(s)
- Chengcheng Wang
- The Second Affiliated Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Cai Wang
- Binhai County People's Hospital, Yancheng, Jiangsu 224500, China
| | - Minyue Wang
- The Second Affiliated Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Mengyue Wang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Qingbin Ni
- Postdoctoral Workstation, Taian Central Hospital, Taian, Shandong 271000, China
| | - Jingyi Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Baoliang Sun
- The Second Affiliated Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Ying Wang
- The Second Affiliated Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| |
Collapse
|
3
|
Zhang N, Hu J, Liu W, Cai W, Xu Y, Wang X, Li S, Ru B. Advances in Novel Biomaterial-Based Strategies for Spinal Cord Injury Treatment. Mol Pharm 2024; 21:4764-4785. [PMID: 39235393 DOI: 10.1021/acs.molpharmaceut.3c01104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Spinal cord injury (SCI) is a highly disabling neurological disorder. Its pathological process comprises an initial acute injury phase (primary injury) and a secondary injury phase (subsequent chronic injury). Although surgical, drug, and cell therapies have made some progress in treating SCI, there is no exact therapeutic strategy for treating SCI and promoting nerve regeneration due to the complexity of the pathological SCI process. The development of novel drug delivery systems to treat SCI is expected to significantly impact the individualized treatment of SCI due to its unique and excellent properties, such as active targeting and controlled release. In this review, we first describe the pathological progression of the SCI response, including primary and secondary injuries. Next, we provide a concise overview of newly developed nanoplatforms and their potential application in regulating and treating different pathological processes of SCI. Then, we introduce the existing potential problems and future clinical application perspectives of biomedical engineering-based therapies for SCI.
Collapse
Affiliation(s)
- Nannan Zhang
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 330004, China
| | - Jiaqi Hu
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 330004, China
| | - Wenlong Liu
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 330004, China
| | - Wenjun Cai
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 330004, China
| | - Yun Xu
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 330004, China
| | - Xiaojuan Wang
- Department of Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Shun Li
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 330004, China
| | - Bin Ru
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 330004, China
| |
Collapse
|
4
|
Li N, He J. Hydrogel-based therapeutic strategies for spinal cord injury repair: Recent advances and future prospects. Int J Biol Macromol 2024; 277:134591. [PMID: 39127289 DOI: 10.1016/j.ijbiomac.2024.134591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Spinal cord injury (SCI) is a debilitating condition that can result in significant functional impairment and loss of quality of life. There is a growing interest in developing new therapies for SCI, and hydrogel-based multimodal therapeutic strategies have emerged as a promising approach. They offer several advantages for SCI repair, including biocompatibility, tunable mechanical properties, low immunogenicity, and the ability to deliver therapeutic agents. This article provides an overview of the recent advances in hydrogel-based therapy strategies for SCI repair, particularly within the past three years. We summarize the SCI hydrogels with varied characteristics such as phase-change hydrogels, self-healing hydrogel, oriented fibers hydrogel, and self-assembled microspheres hydrogel, as well as different functional hydrogels such as conductive hydrogels, stimuli-responsive hydrogels, adhesive hydrogel, antioxidant hydrogel, sustained-release hydrogel, etc. The composition, preparation, and therapeutic effect of these hydrogels are briefly discussed and comprehensively evaluated. In the end, the future development of hydrogels in SCI repair is prospected to inspire more researchers to invest in this promising field.
Collapse
Affiliation(s)
- Na Li
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Jintao He
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
| |
Collapse
|
5
|
Richterová V, Pekař M. Effect of Silk Fibroin on the Mechanical and Transport Properties of Agarose Hydrogels. Gels 2024; 10:611. [PMID: 39451265 PMCID: PMC11508024 DOI: 10.3390/gels10100611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/11/2024] [Accepted: 09/22/2024] [Indexed: 10/26/2024] Open
Abstract
In this work, the effect of incorporating silk fibroin, a fibrous biocompatible protein, into physically cross-linked agarose hydrogels was investigated as a simple model study to examine how supramolecular fibrous structures influence the properties of the hydrogels. The rheological and transport properties were studied. Fibroin did not change the general viscoelastic properties of the investigated hydrogels but changed the viscoelastic moduli values and also the mesh size, as calculated from rheometry data. Fibroin influenced the mechanical properties depending on its concentration: at lower concentrations, it increased the mesh size, while at higher concentrations, it acted as a filler, decreasing the mesh size. Similarly, the storage and loss moduli were affected, either increasing or decreasing based on the fibroin concentration. The fibroin effect on the diffusion of two dyes differing in their charge was the result of a combination of structural effects, responsible also for changes in the rheological properties, and a result of electrostatic interactions between the charged groups. For positively charged methylene blue, low fibroin concentrations accelerated diffusion, while higher concentrations slowed it by filling network vacancies. In contrast, for negatively charged eosin-B, fibroin strongly impeded diffusion at all concentrations due to electrostatic repulsion, leading to its accumulation at the hydrogel interface. The findings of this work may contribute to an understanding of the behavior of the extracellular matrix or soft tissues as well as to the development of the tailored design of hydrogel materials.
Collapse
Affiliation(s)
- Veronika Richterová
- Institute of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, Purkynova 464/118, 612 00 Brno, Czech Republic;
| | | |
Collapse
|
6
|
Jin C, Yu JM, Li R, Ye XJ. Regional biomechanical characterization of the spinal cord tissue: dynamic mechanical response. Front Bioeng Biotechnol 2024; 12:1439323. [PMID: 39219623 PMCID: PMC11361947 DOI: 10.3389/fbioe.2024.1439323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Characterizing the dynamic mechanical properties of spinal cord tissue is deemed important for developing a comprehensive knowledge of the mechanisms underlying spinal cord injury. However, complex viscoelastic properties are vastly underexplored due to the spinal cord shows heterogeneous properties. To investigate regional differences in the biomechanical properties of spinal cord, we provide a mechanical characterization method (i.e., dynamic mechanical analysis) that facilitates robust measurement of spinal cord ex vivo, at small deformations, in the dynamic regimes. Load-unload cycles were applied to the tissue surface at sinusoidal frequencies of 0.05, 0.10, 0.50 and 1.00 Hz ex vivo within 2 h post mortem. We report the main response features (e.g., nonlinearities, rate dependencies, hysteresis and conditioning) of spinal cord tissue dependent on anatomical origin, and quantify the viscoelastic properties through the measurement of peak force, moduli, and hysteresis and energy loss. For all three anatomical areas (cervical, thoracic, and lumbar spinal cord tissues), the compound, storage, and loss moduli responded similarly to increasing strain rates. Notably, the complex modulus values of ex vivo spinal cord tissue rose nonlinearly with rising test frequency. Additionally, at every strain rate, it was shown that the tissue in the thoracic spinal cord was significantly more rigid than the tissue in the cervical or lumbar spinal cord, with compound modulus values roughly 1.5-times that of the lumbar region. At strain rates between 0.05 and 0.50 Hz, tan δ values for thoracic (that is, 0.26, 0.25, 0.06, respectively) and lumbar (that is, 0.27, 0.25, 0.07, respectively) spinal cord regions were similar, respectively, which were higher than cervical (that is, 0.21, 0.21, 0.04, respectively) region. The conditioning effects tend to be greater at relative higher deformation rates. Interestingly, no marked difference of conditioning ratios is observed among all three anatomical regions, regardless of loading rate. These findings lay a foundation for further comparison between healthy and diseased spinal cord to the future development of spinal cord scaffold and helps to advance our knowledge of neuroscience.
Collapse
Affiliation(s)
- Chen Jin
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, China
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang-ming Yu
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, China
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Li
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiao-jian Ye
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, China
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Guo WY, Wang WH, Xu PY, Kankala RK, Chen AZ. Decellularised extracellular matrix-based injectable hydrogels for tissue engineering applications. BIOMATERIALS TRANSLATIONAL 2024; 5:114-128. [PMID: 39351160 PMCID: PMC11438603 DOI: 10.12336/biomatertransl.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 10/04/2024]
Abstract
Decellularised extracellular matrix (dECM) is a biomaterial derived from natural tissues that has attracted considerable attention from tissue engineering researchers due to its exceptional biocompatibility and malleability attributes. These advantageous properties often facilitate natural cell infiltration and tissue reconstruction for regenerative medicine. Due to their excellent fluidity, the injectable hydrogels can be administered in a liquid state and subsequently formed into a gel state in vivo, stabilising the target area and serving in a variety of ways, such as support, repair, and drug release functions. Thus, dECM-based injectable hydrogels have broad prospects for application in complex organ structures and various tissue injury models. This review focuses on exploring research advances in dECM-based injectable hydrogels, primarily focusing on the applications and prospects of dECM hydrogels in tissue engineering. Initially, the recent developments of the dECM-based injectable hydrogels are explained, summarising the different preparation methods with the evaluation of injectable hydrogel properties. Furthermore, some specific examples of the applicability of dECM-based injectable hydrogels are presented. Finally, we summarise the article with interesting prospects and challenges of dECM-based injectable hydrogels, providing insights into the development of these composites in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Wan-Ying Guo
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian Province, China
| | - Wei-Huang Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian Province, China
| | - Pei-Yao Xu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian Province, China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian Province, China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian Province, China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian Province, China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian Province, China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian Province, China
| |
Collapse
|
8
|
Rybachuk O, Nesterenko Y, Zhovannyk V. Modern advances in spinal cord regeneration: hydrogel combined with neural stem cells. Front Pharmacol 2024; 15:1419797. [PMID: 38994202 PMCID: PMC11236698 DOI: 10.3389/fphar.2024.1419797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Severe spinal cord injuries (SCI) lead to loss of functional activity of the body below the injury site, affect a person's ability to self-care and have a direct impact on performance. Due to the structural features and functional role of the spinal cord in the body, the consequences of SCI cannot be completely overcome at the expense of endogenous regenerative potential and, developing over time, lead to severe complications years after injury. Thus, the primary task of this type of injury treatment is to create artificial conditions for the regenerative growth of damaged nerve fibers through the area of the SCI. Solving this problem is possible using tissue neuroengineering involving the technology of replacing the natural tissue environment with synthetic matrices (for example, hydrogels) in combination with stem cells, in particular, neural/progenitor stem cells (NSPCs). This approach can provide maximum stimulation and support for the regenerative growth of axons of damaged neurons and their myelination. In this review, we consider the currently available options for improving the condition after SCI (use of NSC transplantation or/and replacement of the damaged area of the SCI with a matrix, specifically a hydrogel). We emphasise the expediency and effectiveness of the hydrogel matrix + NSCs complex system used for the reconstruction of spinal cord tissue after injury. Since such a complex approach (a combination of tissue engineering and cell therapy), in our opinion, allows not only to creation of conditions for supporting endogenous regeneration or mechanical reconstruction of the spinal cord, but also to strengthen endogenous regeneration, prevent the spread of the inflammatory process, and promote the restoration of lost reflex, motor and sensory functions of the injured area of spinal cord.
Collapse
Affiliation(s)
- Oksana Rybachuk
- Bogomoletz Institute of Physiology NAS of Ukraine, Kyiv, Ukraine
- Institute of Genetic and Regenerative Medicine, M. D. Strazhesko National Scientific Center of Cardiology, Clinical and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | | | | |
Collapse
|
9
|
Jiu J, Liu H, Li D, Li J, Liu L, Yang W, Yan L, Li S, Zhang J, Li X, Li JJ, Wang B. 3D bioprinting approaches for spinal cord injury repair. Biofabrication 2024; 16:032003. [PMID: 38569491 DOI: 10.1088/1758-5090/ad3a13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
Regenerative healing of spinal cord injury (SCI) poses an ongoing medical challenge by causing persistent neurological impairment and a significant socioeconomic burden. The complexity of spinal cord tissue presents hurdles to successful regeneration following injury, due to the difficulty of forming a biomimetic structure that faithfully replicates native tissue using conventional tissue engineering scaffolds. 3D bioprinting is a rapidly evolving technology with unmatched potential to create 3D biological tissues with complicated and hierarchical structure and composition. With the addition of biological additives such as cells and biomolecules, 3D bioprinting can fabricate preclinical implants, tissue or organ-like constructs, andin vitromodels through precise control over the deposition of biomaterials and other building blocks. This review highlights the characteristics and advantages of 3D bioprinting for scaffold fabrication to enable SCI repair, including bottom-up manufacturing, mechanical customization, and spatial heterogeneity. This review also critically discusses the impact of various fabrication parameters on the efficacy of spinal cord repair using 3D bioprinted scaffolds, including the choice of printing method, scaffold shape, biomaterials, and biological supplements such as cells and growth factors. High-quality preclinical studies are required to accelerate the translation of 3D bioprinting into clinical practice for spinal cord repair. Meanwhile, other technological advances will continue to improve the regenerative capability of bioprinted scaffolds, such as the incorporation of nanoscale biological particles and the development of 4D printing.
Collapse
Affiliation(s)
- Jingwei Jiu
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, People's Republic of China
| | - Haifeng Liu
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, People's Republic of China
| | - Dijun Li
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, People's Republic of China
| | - Jiarong Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Lu Liu
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Wenjie Yang
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Lei Yan
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, People's Republic of China
| | - Songyan Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jing Zhang
- Department of Emergency Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, People's Republic of China
| | - Xiaoke Li
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, People's Republic of China
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Bin Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
10
|
El-Husseiny HM, Mady EA, Doghish AS, Zewail MB, Abdelfatah AM, Noshy M, Mohammed OA, El-Dakroury WA. Smart/stimuli-responsive chitosan/gelatin and other polymeric macromolecules natural hydrogels vs. synthetic hydrogels systems for brain tissue engineering: A state-of-the-art review. Int J Biol Macromol 2024; 260:129323. [PMID: 38242393 DOI: 10.1016/j.ijbiomac.2024.129323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024]
Abstract
Currently, there are no viable curative treatments that can enhance the central nervous system's (CNS) recovery from trauma or illness. Bioengineered injectable smart/stimuli-responsive hydrogels (SSRHs) that mirror the intricacy of the CNS milieu and architecture have been suggested as a way to get around these restrictions in combination with medication and cell therapy. Additionally, the right biophysical and pharmacological stimuli are required to boost meaningful CNS regeneration. Recent research has focused heavily on developing SSRHs as cutting-edge delivery systems that can direct the regeneration of brain tissue. In the present article, we have discussed the pathology of brain injuries, and the applicable strategies employed to regenerate the brain tissues. Moreover, the most promising SSRHs for neural tissue engineering (TE) including alginate (Alg.), hyaluronic acid (HA), chitosan (CH), gelatin, and collagen are used in natural polymer-based hydrogels and thoroughly discussed in this review. The ability of these hydrogels to distribute bioactive substances or cells in response to internal and external stimuli is highlighted with particular attention. In addition, this article provides a summary of the most cutting-edge techniques for CNS recovery employing SSRHs for several neurodegenerative diseases.
Collapse
Affiliation(s)
- Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt.
| | - Eman A Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Department of Biochemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Moataz B Zewail
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Amr M Abdelfatah
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mina Noshy
- Clinical Pharmacy Department, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Ras Sudr 46612, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| |
Collapse
|
11
|
Giorgi Z, Veneruso V, Petillo E, Veglianese P, Perale G, Rossi F. Biomaterials and Cell Therapy Combination in Central Nervous System Treatments. ACS APPLIED BIO MATERIALS 2024; 7:80-98. [PMID: 38158393 PMCID: PMC10792669 DOI: 10.1021/acsabm.3c01058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Current pharmacological and surgical therapies for the central nervous system (CNS) show a limited capacity to reduce the damage progression; that together with the intrinsic limited capability of the CNS to regenerate greatly reduces the hopes of recovery. Among all the therapies proposed, the tissue engineering strategies supplemented with therapeutic stem cells remain the most promising. Neural tissue engineering strategies are based on the development of devices presenting optimal physical, chemical, and mechanical properties which, once inserted in the injured site, can support therapeutic cells, limiting the effect of a hostile environment and supporting regenerative processes. Thus, this review focuses on the employment of hydrogel and nanofibrous scaffolds supplemented with stem cells as promising therapeutic tools for the central and peripheral nervous systems in preclinical and clinical applications.
Collapse
Affiliation(s)
- Zoe Giorgi
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Valeria Veneruso
- Istituto
di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
- Faculty
of Biomedical Sciences, University of Southern
Switzerland (USI), Via
Buffi 13, 6900 Lugano, Switzerland
| | - Emilia Petillo
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133, Milan, Italy
- Istituto
di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Pietro Veglianese
- Istituto
di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
- Faculty
of Biomedical Sciences, University of Southern
Switzerland (USI), Via
Buffi 13, 6900 Lugano, Switzerland
| | - Giuseppe Perale
- Faculty
of Biomedical Sciences, University of Southern
Switzerland (USI), Via
Buffi 13, 6900 Lugano, Switzerland
- Ludwig
Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstrasse 13, 1200 Vienna, Austria
| | - Filippo Rossi
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133, Milan, Italy
- Faculty
of Biomedical Sciences, University of Southern
Switzerland (USI), Via
Buffi 13, 6900 Lugano, Switzerland
| |
Collapse
|
12
|
Nazerian Y, Nazerian A, Mohamadi-Jahani F, Sodeifi P, Jafarian M, Javadi SAH. Hydrogel-encapsulated extracellular vesicles for the regeneration of spinal cord injury. Front Neurosci 2023; 17:1309172. [PMID: 38156267 PMCID: PMC10752990 DOI: 10.3389/fnins.2023.1309172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Spinal cord injury (SCI) is a critical neurological condition that may impair motor, sensory, and autonomous functions. At the cellular level, inflammation, impairment of axonal regeneration, and neuronal death are responsible for SCI-related complications. Regarding the high mortality and morbidity rates associated with SCI, there is a need for effective treatment. Despite advances in SCI repair, an optimal treatment for complete recovery after SCI has not been found so far. Therefore, an effective strategy is needed to promote neuronal regeneration and repair after SCI. In recent years, regenerative treatments have become a potential option for achieving improved functional recovery after SCI by promoting the growth of new neurons, protecting surviving neurons, and preventing additional damage to the spinal cord. Transplantation of cells and cells-derived extracellular vesicles (EVs) can be effective for SCI recovery. However, there are some limitations and challenges related to cell-based strategies. Ethical concerns and limited efficacy due to the low survival rate, immune rejection, and tumor formation are limitations of cell-based therapies. Using EVs is a helpful strategy to overcome these limitations. It should be considered that short half-life, poor accumulation, rapid clearance, and difficulty in targeting specific tissues are limitations of EVs-based therapies. Hydrogel-encapsulated exosomes have overcome these limitations by enhancing the efficacy of exosomes through maintaining their bioactivity, protecting EVs from rapid clearance, and facilitating the sustained release of EVs at the target site. These hydrogel-encapsulated EVs can promote neuroregeneration through improving functional recovery, reducing inflammation, and enhancing neuronal regeneration after SCI. This review aims to provide an overview of the current research status, challenges, and future clinical opportunities of hydrogel-encapsulated EVs in the treatment of SCI.
Collapse
Affiliation(s)
- Yasaman Nazerian
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fereshteh Mohamadi-Jahani
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parastoo Sodeifi
- School of Medicine, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Maryam Jafarian
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Hossein Javadi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neurosurgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Forouharshad M, Raspa A, Marchini A, Ciulla MG, Magnoni A, Gelain F. Biomimetic Electrospun Self-Assembling Peptide Scaffolds for Neural Stem Cell Transplantation in Neural Tissue Engineering. Pharmaceutics 2023; 15:2261. [PMID: 37765230 PMCID: PMC10536048 DOI: 10.3390/pharmaceutics15092261] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Spinal cord regeneration using stem cell transplantation is a promising strategy for regenerative therapy. Stem cells transplanted onto scaffolds that can mimic natural extracellular matrix (ECM) have the potential to significantly improve outcomes. In this study, we strived to develop a cell carrier by culturing neural stem cells (NSCs) onto electrospun 2D and 3D constructs made up of specific crosslinked functionalized self-assembling peptides (SAPs) featuring enhanced biomimetic and biomechanical properties. Morphology, architecture, and secondary structures of electrospun scaffolds in the solid-state and electrospinning solution were studied step by step. Morphological studies showed the benefit of mixed peptides and surfactants as additives to form thinner, uniform, and defect-free fibers. It has been observed that β-sheet conformation as evidence of self-assembling has been predominant throughout the process except for the electrospinning solution. In vitro NSCs seeded on electrospun SAP scaffolds in 2D and 3D conditions displayed desirable proliferation, viability, and differentiation in comparison to the gold standard. In vivo biocompatibility assay confirmed the permissibility of implanted fibrous channels by foreign body reaction. The results of this study demonstrated that fibrous 2D/3D electrospun SAP scaffolds, when shaped as micro-channels, can be suitable to support NSC transplantation for regeneration following spinal cord injury.
Collapse
Affiliation(s)
- Mahdi Forouharshad
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Andrea Raspa
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Amanda Marchini
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Maria Gessica Ciulla
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Alice Magnoni
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, 20125 Milan, Italy
| | - Fabrizio Gelain
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| |
Collapse
|
14
|
Roh EJ, Kim DS, Kim JH, Lim CS, Choi H, Kwon SY, Park SY, Kim JY, Kim HM, Hwang DY, Han DK, Han I. Multimodal therapy strategy based on a bioactive hydrogel for repair of spinal cord injury. Biomaterials 2023; 299:122160. [PMID: 37209541 DOI: 10.1016/j.biomaterials.2023.122160] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/13/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
Traumatic spinal cord injury results in permanent and serious neurological impairment, but there is no effective treatment yet. Tissue engineering approaches offer great potential for the treatment of SCI, but spinal cord complexity poses great challenges. In this study, the composite scaffold consists of a hyaluronic acid-based hydrogel, decellularized brain matrix (DBM), and bioactive compounds such as polydeoxyribonucleotide (PDRN), tumor necrosis factor-α/interferon-γ primed mesenchymal stem cell-derived extracellular vesicles (TI-EVs), and human embryonic stem cell-derived neural progenitor cells (NPC). The composite scaffold showed significant effects on regenerative prosses including angiogenesis, anti-inflammation, anti-apoptosis, and neural differentiation. In addition, the composite scaffold (DBM/PDRN/TI-EV/NPC@Gel) induced an effective spinal cord regeneration in a rat spinal cord transection model. Therefore, this multimodal approach using an integrated bioactive scaffold coupled with biochemical cues from PDRN and TI-EVs could be used as an advanced tissue engineering platform for spinal cord regeneration.
Collapse
Affiliation(s)
- Eun Ji Roh
- Department of Neurosurgery CHA University School of Medicine, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea; Department of Biomedical Science CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Da-Seul Kim
- Department of Biomedical Science CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea; School of Integrative Engineering Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Jun Hyuk Kim
- Department of Biomedical Science CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Chang Su Lim
- Department of Neurosurgery CHA University School of Medicine, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Hyemin Choi
- Department of Neurosurgery CHA University School of Medicine, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Su Yeon Kwon
- Department of Neurosurgery CHA University School of Medicine, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - So-Yeon Park
- Department of Biomedical Science CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea; Division of Biotechnology College of Life Sciences and Biotechnology Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jun Yong Kim
- Department of Biomedical Science CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Hyun-Mun Kim
- Department of Biomedical Science CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Dong-Youn Hwang
- Department of Biomedical Science CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea.
| | - Inbo Han
- Department of Neurosurgery CHA University School of Medicine, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea.
| |
Collapse
|
15
|
Zidarič T, Skok K, Orthaber K, Pristovnik M, Gradišnik L, Maver T, Maver U. Multilayer Methacrylate-Based Wound Dressing as a Therapeutic Tool for Targeted Pain Relief. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2361. [PMID: 36984241 PMCID: PMC10053588 DOI: 10.3390/ma16062361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
This study presents an innovative wound dressing system that offers a highly effective therapeutic solution for treating painful wounds. By incorporating the widely used non-steroidal anti-inflammatory drug diclofenac, we have created an active wound dressing that can provide targeted pain relief with ease. The drug was embedded within a biocompatible matrix composed of polyhydroxyethyl methacrylate and polyhydroxypropyl methacrylate. The multilayer structure of the dressing, which allows for sustained drug release and an exact application, was achieved through the layer-by-layer coating technique and the inclusion of superparamagnetic iron platinum nanoparticles. The multilayered dressings' physicochemical, structural, and morphological properties were characterised using various methods. The synergistic effect of the incorporated drug molecules and superparamagnetic nanoparticles on the surface roughness and release kinetics resulted in controlled drug release. In addition, the proposed multilayer wound dressings were found to be biocompatible with human skin fibroblasts. Our findings suggest that the developed wound dressing system can contribute to tailored therapeutic strategies for local pain relief.
Collapse
Affiliation(s)
- Tanja Zidarič
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Kristijan Skok
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Department of Pathology, Hospital Graz II, Location West, Göstinger Straße 22, 8020 Graz, Austria
| | - Kristjan Orthaber
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Matevž Pristovnik
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Lidija Gradišnik
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Tina Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Uroš Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
16
|
Xiang W, Cao H, Tao H, Jin L, Luo Y, Tao F, Jiang T. Applications of chitosan-based biomaterials: From preparation to spinal cord injury neuroprosthetic treatment. Int J Biol Macromol 2023; 230:123447. [PMID: 36708903 DOI: 10.1016/j.ijbiomac.2023.123447] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/04/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Spinal cord injury (SCI)-related disabilities are a serious problem in the modern society. Further, the treatment of SCI is highly challenging and is urgently required in clinical practice. Research on nerve tissue engineering is an emerging approach for improving the treatment outcomes of SCI. Chitosan (CS) is a cationic polysaccharide derived from natural biomaterials. Chitosan has been found to exhibit excellent biological properties, such as nontoxicity, biocompatibility, biodegradation, and antibacterial activity. Recently, chitosan-based biomaterials have attracted significant attention for SCI repair in nerve tissue engineering applications. These studies revealed that chitosan-based biomaterials have various functions and mechanisms to promote SCI repair, such as promoting neural cell growth, guiding nerve tissue regeneration, delivering nerve growth factors, and as a vector for gene therapy. Chitosan-based biomaterials have proven to have excellent potential for the treatment of SCI. This review aims to introduce the recent advances in chitosan-based biomaterials for SCI treatment and to highlight the prospects for further application.
Collapse
Affiliation(s)
- Wei Xiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Hui Cao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Hai Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Lin Jin
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Yue Luo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Fenghua Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China.
| | - Ting Jiang
- Department of Neurological Rehabilitation, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
17
|
Oligo (Poly (Ethylene Glycol) Fumarate)-Based Multicomponent Cryogels for Neural Tissue Replacement. Gels 2023; 9:gels9020105. [PMID: 36826275 PMCID: PMC9957547 DOI: 10.3390/gels9020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Synthetic hydrogels provide a promising platform to produce neural tissue analogs with improved control over structural, physical, and chemical properties. In this study, oligo (poly (ethylene glycol) fumarate) (OPF)-based macroporous cryogels were developed as a potential next-generation alternative to a non-porous OPF hydrogel previously proposed as an advanced biodegradable scaffold for spinal cord repair. A series of OPF cryogel conduits in combination with PEG diacrylate and 2-(methacryloyloxy) ethyl-trimethylammonium chloride (MAETAC) cationic monomers were synthesized and characterized. The contribution of each component to viscoelastic and hydration behaviors and porous structure was identified, and concentration relationships for these properties were revealed. The rheological properties of the materials corresponded to those of neural tissues and scaffolds, according to the reviewed data. A comparative assessment of adhesion, migration, and proliferation of neuronal cells in multicomponent cryogels was carried out to optimize cell-supporting characteristics. The results show that OPF-based cryogels can be used as a tunable synthetic scaffold for neural tissue repair with advantages over their hydrogel counterparts.
Collapse
|
18
|
Alavi SE, Panah N, Page F, Gholami M, Dastfal A, Sharma LA, Ebrahimi Shahmabadi H. Hydrogel-based therapeutic coatings for dental implants. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Li S, Ke Z, Peng X, Fan P, Chao J, Wu P, Xiao P, Zhou Y. Injectable and fast gelling hyaluronate hydrogels with rapid self-healing ability for spinal cord injury repair. Carbohydr Polym 2022; 298:120081. [DOI: 10.1016/j.carbpol.2022.120081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 12/30/2022]
|
20
|
Poloxam Thermosensitive Hydrogels Loaded with hFGF2-Linked Camelina Lipid Droplets Accelerate Skin Regeneration in Deep Second-Degree Burns. Int J Mol Sci 2022; 23:ijms232112716. [PMID: 36361508 PMCID: PMC9657430 DOI: 10.3390/ijms232112716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 01/25/2023] Open
Abstract
Burn injuries are difficult to manage due to the defect of large skin tissues, leading to major disability or even death. Human fibroblast growth factor 2 (hFGF2) is known to promote burn wound healing. However, direct administration of hFGF2 to the wound area would affect the bioactivity. To provide a supportive environment for hFGF2 and control its release in a steady fashion, in this research, we developed novel thermosensitive poloxam hydrogels delivered with hFGF2-linked Camelina lipid droplets (CLD-hFGF2 hydrogels). Cryopreserved scanning electron microscopy (SEM) results indicated that the incorporation of CLD-hFGF2 does not significantly affect the inner structure of hydrogels. The rheological properties showed that CLD-hFGF2 hydrogels gelated in response to temperature, thus optimizing the delivery method. In vitro, CLD-hFGF2 could be released from hydrogels for 3 days after drug delivery (the release rate was 72%), and the release solution could still promote the proliferation and migration of NIH3T3 cells. In vivo, compared with hydrogels alone or with direct CLD-hFGF2 administration, CLD-hFGF2 hydrogels had the most obvious effect on deep second-degree burn wound healing. This work indicates that CLD-hFGF2 hydrogels have potential application value in burn wound healing.
Collapse
|
21
|
Liu T, Zhu W, Zhang X, He C, Liu X, Xin Q, Chen K, Wang H. Recent Advances in Cell and Functional Biomaterial Treatment for Spinal Cord Injury. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5079153. [PMID: 35978649 PMCID: PMC9377911 DOI: 10.1155/2022/5079153] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/17/2022] [Accepted: 07/25/2022] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) is a devastating central nervous system disease caused by accidental events, resulting in loss of sensory and motor function. Considering the multiple effects of primary and secondary injuries after spinal cord injury, including oxidative stress, tissue apoptosis, inflammatory response, and neuronal autophagy, it is crucial to understand the underlying pathophysiological mechanisms, local microenvironment changes, and neural tissue functional recovery for preparing novel treatment strategies. Treatment based on cell transplantation has become the forefront of spinal cord injury therapy. The transplanted cells provide physical and nutritional support for the damaged tissue. At the same time, the implantation of biomaterials with specific biological functions at the site of the SCI has also been proved to improve the local inhibitory microenvironment and promote axonal regeneration, etc. The combined transplantation of cells and functional biomaterials for SCI treatment can result in greater neuroprotective and regenerative effects by regulating cell differentiation, enhancing cell survival, and providing physical and directional support for axon regeneration and neural circuit remodeling. This article reviews the pathophysiology of the spinal cord, changes in the microenvironment after injury, and the mechanisms and strategies for spinal cord regeneration and repair. The article will focus on summarizing and discussing the latest intervention models based on cell and functional biomaterial transplantation and the latest progress in combinational therapies in SCI repair. Finally, we propose the future prospects and challenges of current treatment regimens for SCI repair, to provide references for scientists and clinicians to seek better SCI repair strategies in the future.
Collapse
Affiliation(s)
- Tianyi Liu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Wenhao Zhu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Xiaoyu Zhang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Chuan He
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Xiaolong Liu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Qiang Xin
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Kexin Chen
- Institute of Translational Medicine, First Hospital of Jilin University, Changchun 130021, China
| | - Haifeng Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
22
|
Pinelli F, Pizzetti F, Veneruso V, Petillo E, Raghunath M, Perale G, Veglianese P, Rossi F. Biomaterial-Mediated Factor Delivery for Spinal Cord Injury Treatment. Biomedicines 2022; 10:biomedicines10071673. [PMID: 35884981 PMCID: PMC9313204 DOI: 10.3390/biomedicines10071673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 07/05/2022] [Indexed: 11/19/2022] Open
Abstract
Spinal cord injury (SCI) is an injurious process that begins with immediate physical damage to the spinal cord and associated tissues during an acute traumatic event. However, the tissue damage expands in both intensity and volume in the subsequent subacute phase. At this stage, numerous events exacerbate the pathological condition, and therein lies the main cause of post-traumatic neural degeneration, which then ends with the chronic phase. In recent years, therapeutic interventions addressing different neurodegenerative mechanisms have been proposed, but have met with limited success when translated into clinical settings. The underlying reasons for this are that the pathogenesis of SCI is a continued multifactorial disease, and the treatment of only one factor is not sufficient to curb neural degeneration and resulting paralysis. Recent advances have led to the development of biomaterials aiming to promote in situ combinatorial strategies using drugs/biomolecules to achieve a maximized multitarget approach. This review provides an overview of single and combinatorial regenerative-factor-based treatments as well as potential delivery options to treat SCIs.
Collapse
Affiliation(s)
- Filippo Pinelli
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy; (F.P.); (F.P.); (E.P.)
| | - Fabio Pizzetti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy; (F.P.); (F.P.); (E.P.)
| | - Valeria Veneruso
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy;
| | - Emilia Petillo
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy; (F.P.); (F.P.); (E.P.)
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy;
| | - Michael Raghunath
- Center for Cell Biology and Tissue Engineering, Institute for Chemistry and Biotechnology (ICBT), Zurich University of Applied Sciences (ZHAW), 8820 Wädenswil, Switzerland;
| | - Giuseppe Perale
- Faculty of Biomedical Sciences, University of Southern Switzerland (USI), Via Buffi 13, 6900 Lugano, Switzerland;
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstrasse 13, 1200 Vienna, Austria
| | - Pietro Veglianese
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy;
- Correspondence: (P.V.); (F.R.); Tel.: +39-02-3901-4205 (P.V.); +39-02-2399-3145 (F.R.)
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy; (F.P.); (F.P.); (E.P.)
- Correspondence: (P.V.); (F.R.); Tel.: +39-02-3901-4205 (P.V.); +39-02-2399-3145 (F.R.)
| |
Collapse
|
23
|
Jarrah R, Sammak SE, Onyedimma C, Ghaith AK, Moinuddin F, Bhandarkar AR, Siddiqui A, Madigan N, Bydon M. The Role of Alginate Hydrogels as a Potential Treatment Modality for Spinal Cord Injury: A Comprehensive Review of the Literature. Neurospine 2022; 19:272-280. [PMID: 35793929 PMCID: PMC9260541 DOI: 10.14245/ns.2244186.093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/23/2022] [Indexed: 12/14/2022] Open
Abstract
Objective To comprehensively characterize the utilization of alginate hydrogels as an alternative treatment modality for spinal cord injury (SCI).
Methods An extensive review of the published literature on studies using alginate hydrogels to treat SCI was performed. The review of the literature was performed using electronic databases such as PubMed, EMBASE, and OVID MEDLINE electronic databases. The keywords used were “alginate,” “spinal cord injury,” “biomaterial,” and “hydrogel.”
Results In the literature, we identified a total of 555 rat models that were treated with alginate scaffolds for regenerative biomarkers. Alginate hydrogels were found to be efficient and promising substrates for tissue engineering, drug delivery, neural regeneration, and cellbased therapies for SCI repair. With its ability to act as a pro-regenerative and antidegenerative agent, the alginate hydrogel has the potential to improve clinical outcomes.
Conclusion The emerging developments of alginate hydrogels as treatment modalities may support current and future tissue regenerative strategies for SCI.
Collapse
Affiliation(s)
- Ryan Jarrah
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Neuro-informatics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Sally El Sammak
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Neuro-informatics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Chiduziem Onyedimma
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Neuro-informatics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Abdul Karim Ghaith
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Neuro-informatics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - F.M. Moinuddin
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Neuro-informatics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Archis R. Bhandarkar
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Neuro-informatics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Ahad Siddiqui
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Mohamad Bydon
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Neuro-informatics Laboratory, Mayo Clinic, Rochester, MN, USA
- Corresponding Author Mohamad Bydon Department of Neurosurgery, Mayo Clinic, 200 First Street SW, Rochester, Minnesota, USA
| |
Collapse
|
24
|
Lv Z, Dong C, Zhang T, Zhang S. Hydrogels in Spinal Cord Injury Repair: A Review. Front Bioeng Biotechnol 2022; 10:931800. [PMID: 35800332 PMCID: PMC9253563 DOI: 10.3389/fbioe.2022.931800] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/26/2022] [Indexed: 12/18/2022] Open
Abstract
Traffic accidents and falling objects are responsible for most spinal cord injuries (SCIs). SCI is characterized by high disability and tends to occur among the young, seriously affecting patients' lives and quality of life. The key aims of repairing SCI include preventing secondary nerve injury, inhibiting glial scarring and inflammatory response, and promoting nerve regeneration. Hydrogels have good biocompatibility and degradability, low immunogenicity, and easy-to-adjust mechanical properties. While providing structural scaffolds for tissues, hydrogels can also be used as slow-release carriers in neural tissue engineering to promote cell proliferation, migration, and differentiation, as well as accelerate the repair of damaged tissue. This review discusses the characteristics of hydrogels and their advantages as delivery vehicles, as well as expounds on the progress made in hydrogel therapy (alone or combined with cells and molecules) to repair SCI. In addition, we discuss the prospects of hydrogels in clinical research and provide new ideas for the treatment of SCI.
Collapse
Affiliation(s)
- Zhenshan Lv
- The Department of Spinal Surgery, 1st Hospital, Jilin University, Jilin Engineering Research Center for Spine and Spine Cord Injury, Changchun, China
| | - Chao Dong
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Tianjiao Zhang
- Medical Insurance Management Department, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shaokun Zhang
- The Department of Spinal Surgery, 1st Hospital, Jilin University, Jilin Engineering Research Center for Spine and Spine Cord Injury, Changchun, China
| |
Collapse
|
25
|
Lacroce E, Rossi F. Polymer-based thermoresponsive hydrogels for controlled drug delivery. Expert Opin Drug Deliv 2022; 19:1203-1215. [PMID: 35575265 DOI: 10.1080/17425247.2022.2078806] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION controlled drug delivery through hydrogels is generally limited by the poor barrier that polymeric network can create to diffusion mechanism. Stimuli responsive polymers can help in this way guaranteeing that delivery can be sustained and finely controlled using an external stimulus. AREA COVERED this review provides an overview of recent studies about the use of temperature as an external stimulus able to work as an efficient new route of drug's administration. Thermoresponsive hydrogels are discussed and compared in terms of physical properties and mechanism of drug release considering their classification in intrinsically (formed by thermosensitive polymers) and non-intrinsically (polymers with thermosensitive moieties) hydrogels. EXPERT OPINION thermoresponsive hydrogels can be developed by using different polymers added or not with micro/nanoparticles of organic or inorganic origin. In both cases the final system represents an innovative way for the local and sustained drug delivery in a specific site of the body. In particular, it is possible to obtain an on-demand release of drug by applying a local increase of temperature to the system.
Collapse
Affiliation(s)
- Elisa Lacroce
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy
| |
Collapse
|
26
|
Xu GY, Xu S, Zhang YX, Yu ZY, Zou F, Ma XS, Xia XL, Zhang WJ, Jiang JY, Song J. Cell-Free Extracts from Human Fat Tissue with a Hyaluronan-Based Hydrogel Attenuate Inflammation in a Spinal Cord Injury Model through M2 Microglia/Microphage Polarization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107838. [PMID: 35333441 DOI: 10.1002/smll.202107838] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Treatment for spinal cord injuries (SCIs) is often ineffective because SCIs result in a loss of nerve tissue, glial scar formation, local ischemia and secondary inflammation. The current promising strategy for SCI is the combination of bioactive materials and cytokines. Bioactive materials support the injured spinal cord, stabilize the morphology, and avoid excessive inflammatory responses. Fat extract (FE) is a cell-free liquid component containing a variety of cytokines extracted from human fat tissue using mechanical methods. In this research, a biocompatible HAMC (hyaluronan and methylcellulose) loaded with FE is used to treat a model of spinal cord contusion in mice. The composite not only inhibits death of neuro- and vascular cells and leads to the preservation of neural and vascular structure, but also modulates the inflammatory phenotype of macrophages in the locally injured region. Specifically, FE promotes the polarization of macrophages from an inflammatory M1 phenotype to an anti-inflammatory M2 phenotype. During the screening of the involved pathways, it is corroborated that activation of the STAT6/Arg-1 signaling pathway is involved in macrophage M2 polarization. In summary, FE is a promising treatment for SCI, as it is easy to obtain, nonimmunogenic, and effective.
Collapse
Affiliation(s)
- Guang-Yu Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shun Xu
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Yu-Xuan Zhang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zi-You Yu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Tissue Engineering, Shanghai, 200011, China
| | - Fei Zou
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiao-Sheng Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xin-Lei Xia
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wen-Jie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Tissue Engineering, Shanghai, 200011, China
| | - Jian-Yuan Jiang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jian Song
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| |
Collapse
|
27
|
Bousalis D, McCrary MW, Vaughn N, Hlavac N, Evering A, Kolli S, Song YH, Morley C, Angelini T, Schmidt CE. Decellularized peripheral nerve as an injectable delivery vehicle for neural applications. J Biomed Mater Res A 2022; 110:595-611. [PMID: 34590403 PMCID: PMC8742792 DOI: 10.1002/jbm.a.37312] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022]
Abstract
Damage to the nervous system can result in loss of sensory and motor function, paralysis, or even death. To facilitate neural regeneration and functional recovery, researchers have employed biomaterials strategies to address both peripheral and central nervous system injuries. Injectable hydrogels that recapitulate native nerve extracellular matrix are especially promising for neural tissue engineering because they offer more flexibility for minimally invasive applications and provide a growth-permissive substrate for neural cell types. Here, we explore the development of injectable hydrogels derived from decellularized rat peripheral nerves (referred to as "injectable peripheral nerve [iPN] hydrogels"), which are processed using a newly developed sodium deoxycholate and DNase (SDD) decellularization method. We assess the gelation kinetics, mechanical properties, cell bioactivity, and drug release kinetics of the iPN hydrogels. The iPN hydrogels thermally gel when exposed to 37°C in under 20 min and have mechanical properties similar to neural tissue. The hydrogels demonstrate in vitro biocompatibility through support of Schwann cell viability and metabolic activity. Additionally, iPN hydrogels promote greater astrocyte spreading compared to collagen I hydrogels. Finally, the iPN is a promising delivery vehicle of drug-loaded microparticles for a combinatorial approach to neural injury therapies.
Collapse
Affiliation(s)
- Deanna Bousalis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Michaela W. McCrary
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Natalie Vaughn
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Nora Hlavac
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Ashley Evering
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Shruti Kolli
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Young Hye Song
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL,Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR
| | - Cameron Morley
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL
| | - Thomas Angelini
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL
| | - Christine E. Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| |
Collapse
|
28
|
Regulating Endogenous Neural Stem Cell Activation to Promote Spinal Cord Injury Repair. Cells 2022; 11:cells11050846. [PMID: 35269466 PMCID: PMC8909806 DOI: 10.3390/cells11050846] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) affects millions of individuals worldwide. Currently, there is no cure, and treatment options to promote neural recovery are limited. An innovative approach to improve outcomes following SCI involves the recruitment of endogenous populations of neural stem cells (NSCs). NSCs can be isolated from the neuroaxis of the central nervous system (CNS), with brain and spinal cord populations sharing common characteristics (as well as regionally distinct phenotypes). Within the spinal cord, a number of NSC sub-populations have been identified which display unique protein expression profiles and proliferation kinetics. Collectively, the potential for NSCs to impact regenerative medicine strategies hinges on their cardinal properties, including self-renewal and multipotency (the ability to generate de novo neurons, astrocytes, and oligodendrocytes). Accordingly, endogenous NSCs could be harnessed to replace lost cells and promote structural repair following SCI. While studies exploring the efficacy of this approach continue to suggest its potential, many questions remain including those related to heterogeneity within the NSC pool, the interaction of NSCs with their environment, and the identification of factors that can enhance their response. We discuss the current state of knowledge regarding populations of endogenous spinal cord NSCs, their niche, and the factors that regulate their behavior. In an attempt to move towards the goal of enhancing neural repair, we highlight approaches that promote NSC activation following injury including the modulation of the microenvironment and parenchymal cells, pharmaceuticals, and applied electrical stimulation.
Collapse
|
29
|
Ayar Z, Hassannejad Z, Shokraneh F, Saderi N, Rahimi-Movaghar V. Efficacy of hydrogels for repair of traumatic spinal cord injuries: A systematic review and meta-analysis. J Biomed Mater Res B Appl Biomater 2021; 110:1460-1478. [PMID: 34902215 DOI: 10.1002/jbm.b.34993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/27/2021] [Accepted: 12/05/2021] [Indexed: 11/10/2022]
Abstract
Hydrogels have been used as promising biomaterials for regeneration and control of pathophysiological events after traumatic spinal cord injuries (TSCI). However, no systematic comparison was conducted to show the effect of hydrogels on pathophysiological events. This study was designed to address this issue and evaluate the regenerative potential of hydrogels after TSCI. From 2857 records found in MEDLINE and EMBASE databases (April 23, 2021), 49 articles were included based on our inclusion/exclusion criteria. All studies discussing the effect of hydrogels on at least one of the main pathophysiological events after TSCI, including inflammation, axon growth, remyelination, glial scar formation, cavity size, and locomotor functional recovery were included. For statistical analysis, we used mean difference with 95% confidence intervals for locomotor functional recovery. The results showed that both natural and synthetic hydrogels could reduce the inflammatory response, hinder glial scar formation, and promote axon growth and vascularization. Also, the meta-analysis of the BBB score showed that using the hydrogels can lead to locomotor functional recovery. It was found that hydrogels are more efficient when used in transection and hemisection injuries (SMD: 1.89; 95% CI: 1.26, 2.52; P < .00001) compared to other injury models. The pre-formed implanted hydrogels (SMD: 1.79; 95% CI: 1.24, 2.34; P < .00001) found to be more effective compared to injection (SMD: 1.58; 95% CI: 0.64, 2.52; P = 0.0009). In conclusion, based on the available evidence, it was concluded that hydrogel composition as well as implantation method are dominant factors affecting tissue regeneration after TSCI and should be chosen according to the injury model in animal studies.
Collapse
Affiliation(s)
- Zahra Ayar
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Shokraneh
- London Institute of Healthcare Engineering, King's College London, London, UK.,Cochrane Schizophrenia Group, Division of Psychiatry and Applied Psychology, School of Medicine, Institute of Mental Health, University of Nottingham, Nottingham, UK
| | - Narges Saderi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Advanced approaches to regenerate spinal cord injury: The development of cell and tissue engineering therapy and combinational treatments. Biomed Pharmacother 2021; 146:112529. [PMID: 34906773 DOI: 10.1016/j.biopha.2021.112529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) is a central nervous system (CNS) devastate event that is commonly caused by traumatic or non-traumatic events. The reinnervation of spinal cord axons is hampered through a myriad of devices counting on the damaged myelin, inflammation, glial scar, and defective inhibitory molecules. Unfortunately, an effective treatment to completely repair SCI and improve functional recovery has not been found. In this regard, strategies such as using cells, biomaterials, biomolecules, and drugs have been reported to be effective for SCI recovery. Furthermore, recent advances in combinatorial treatments, which address various aspects of SCI pathophysiology, provide optimistic outcomes for spinal cord regeneration. According to the global importance of SCI, the goal of this article review is to provide an overview of the pathophysiology of SCI, with an emphasis on the latest modes of intervention and current advanced approaches for the treatment of SCI, in conjunction with an assessment of combinatorial approaches in preclinical and clinical trials. So, this article can give scientists and clinicians' clues to help them better understand how to construct preclinical and clinical studies that could lead to a breakthrough in spinal cord regeneration.
Collapse
|
31
|
Walsh CM, Wychowaniec JK, Brougham DF, Dooley D. Functional hydrogels as therapeutic tools for spinal cord injury: New perspectives on immunopharmacological interventions. Pharmacol Ther 2021; 234:108043. [PMID: 34813862 DOI: 10.1016/j.pharmthera.2021.108043] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023]
Abstract
Spinal cord injury (SCI) is a complex medical and psychological challenge for which there is no curative therapy currently available. Despite major progress in pharmacological and surgical approaches, clinical trials for SCI patients have been uniformly disappointing thus far as there are many practical and biological issues yet to be resolved. Neuroinflammation is a critical event of the secondary injury phase after SCI, and recent research strategies have focused on modulating the immune response after injury to provide a more favorable recovery environment. Biomaterials can serve this purpose by providing physical and trophic support to the injured spinal cord after SCI. Of all potential biomaterials, functional hydrogels are emerging as a key component in novel treatment strategies for SCI, including controlled and localized delivery of immunomodulatory therapies to drive polarization of immune cells towards a pro-regenerative phenotype. Here, we extensively review recent developments in the use of functional hydrogels as immunomodulatory therapies for SCI. We briefly describe physicochemical properties of hydrogels and demonstrate how advanced fabrication methods lead to the required heterogeneity and hierarchical arrangements that increasingly mimic complex spinal cord tissue. We then summarize potential SCI therapeutic modalities including: (i) hydrogels alone; (ii) hydrogels as cellular or (iii) bioactive molecule delivery vehicles, and; (iv) combinatorial approaches. By linking the structural properties of hydrogels to their functions in treatment with particular focus on immunopharmacological stimuli, this may accelerate further development of functional hydrogels for SCI, and indeed next-generation central nervous system regenerative therapies.
Collapse
Affiliation(s)
- Ciara M Walsh
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland; UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jacek K Wychowaniec
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland; AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Dermot F Brougham
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dearbhaile Dooley
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland; UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
32
|
Mommer S, Gehlen D, Akagi T, Akashi M, Keul H, Möller M. Thiolactone-Functional Pullulan for In Situ Forming Biogels. Biomacromolecules 2021; 22:4262-4273. [PMID: 34546742 DOI: 10.1021/acs.biomac.1c00807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gelation in the presence of cells with minimum cytotoxicity is highly desirable for materials with applications in tissue engineering. Herein, the naturally occurring polysaccharide pullulan is functionalized with thiolactones that undergo ring-opening addition of amines. As a result, the modified pullulan can be cross-linked with diamines and/or amine-containing biological substrates enhancing the system's versatility (e.g., gelatin and cell-binding ligands GHK/GRGDS). Thiolactone degrees of substitution of 2.5 or 5.0 mol % are achieved, and respective hydrogels exhibit mesh sizes of 27.8 to 49.1 nm. Cell proliferation studies on chosen gels (G' ≅ 500 Pa, over 14 days) demonstrate that for normal human dermal fibroblasts (NHDFs), both gelatin and GRGDS equally support cell proliferation, while in the case of hepatocytes (HepG2), the presence of GRGDS and GHK improve cell proliferation 10-fold compared to gelatin. Cells remain viable and in one instance were successfully encapsulated by in situ gelation, altogether confirming the mild and biocompatible nature of this strategy to produce biogels using biologically active substrates as cross-linkers.
Collapse
Affiliation(s)
- Stefan Mommer
- DWI - Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstrasse 50, 52056 Aachen, Germany
| | - David Gehlen
- DWI - Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstrasse 50, 52056 Aachen, Germany
| | - Takami Akagi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Mitsuru Akashi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Helmut Keul
- DWI - Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstrasse 50, 52056 Aachen, Germany
| | - Martin Möller
- DWI - Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstrasse 50, 52056 Aachen, Germany
| |
Collapse
|
33
|
Matthews J, Surey S, Grover LM, Logan A, Ahmed Z. Thermosensitive collagen/fibrinogen gels loaded with decorin suppress lesion site cavitation and promote functional recovery after spinal cord injury. Sci Rep 2021; 11:18124. [PMID: 34518601 PMCID: PMC8438067 DOI: 10.1038/s41598-021-97604-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/27/2021] [Indexed: 11/10/2022] Open
Abstract
The treatment of spinal cord injury (SCI) is a complex challenge in regenerative medicine, complicated by the low intrinsic capacity of CNS neurons to regenerate their axons and the heterogeneity in size, shape and extent of human injuries. For example, some contusion injuries do not compromise the dura mater and in such cases implantation of preformed scaffolds or drug delivery systems may cause further damage. Injectable in situ thermosensitive scaffolds are therefore a less invasive alternative. In this study, we report the development of a novel, flowable, thermosensitive, injectable drug delivery system comprising bovine collagen (BC) and fibrinogen (FB) that forms a solid BC/FB gel (Gel) immediately upon exposure to physiological conditions and can be used to deliver reparative drugs, such as the naturally occurring anti-inflammatory, anti-scarring agent Decorin, into adult rat spinal cord lesion sites. In dorsal column lesions of adult rats treated with the Gel + Decorin, cavitation was completely suppressed and instead lesion sites became filled with injury-responsive cells and extracellular matrix materials, including collagen and laminin. Decorin increased the intrinsic potential of dorsal root ganglion neurons (DRGN) by increasing their expression of regeneration associated genes (RAGs), enhanced local axon regeneration/sprouting, as evidenced both histologically and by improved electrophysiological, locomotor and sensory function recovery. These results suggest that this drug formulated, injectable hydrogel has the potential to be further studied and translated into the clinic.
Collapse
Affiliation(s)
- Jacob Matthews
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Sarina Surey
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Liam M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ann Logan
- Warwick Medical School, Biomedical Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. .,Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
34
|
Ye J, Jin S, Cai W, Chen X, Zheng H, Zhang T, Lu W, Li X, Liang C, Chen Q, Wang Y, Gu X, Yu B, Chen Z, Wang X. Rationally Designed, Self-Assembling, Multifunctional Hydrogel Depot Repairs Severe Spinal Cord Injury. Adv Healthc Mater 2021; 10:e2100242. [PMID: 34029000 DOI: 10.1002/adhm.202100242] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/25/2021] [Indexed: 01/03/2023]
Abstract
Following severe spinal cord injury (SCI), dysregulated neuroinflammation causes neuronal and glial apoptosis, resulting in scar and cystic cavity formation during wound healing and ultimately the formation of an atrophic microenvironment that inhibits nerve regrowth. Because of this complex and dynamic pathophysiology, a systemic solution for scar- and cavity-free wound healing with microenvironment remodeling to promote nerve regrowth has rarely been explored. A one-step solution is proposed through a self-assembling, multifunctional hydrogel depot that punctually releases the anti-inflammatory drug methylprednisolone sodium succinate (MPSS) and growth factors (GFs) locally according to pathophysiology to repair severe SCI. Synergistically releasing the anti-inflammatory drug MPSS and GFs in the hydrogel depot throughout SCI pathophysiology protects spared tissues/axons from secondary injury, promotes scar boundary- and cavity-free wound healing, and results in permissive bridges for remarkable axonal regrowth. Behavioral and electrophysiological studies indicate that remnants of spared axons, not regenerating axons, mediate functional recovery, strongly suggesting that additional interventions are still required to render the rebuilt neuronal circuits functional. These findings pave the way for the development of a systemic solution to treat acute SCI.
Collapse
Affiliation(s)
- Jingjia Ye
- Department of Neurobiology and Department of Orthopedics 2nd Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang Province 310009 P. R.China
- NHC and CAMS Key Laboratory of Medical Neurobiology MOE Frontier Science Center for Brain Research and Brain–Machine Integration School of Brain Science and Brain Medicine Zhejiang University Hangzhou Zhejiang Province 310003 P. R. China
| | - Shuang Jin
- NHC and CAMS Key Laboratory of Medical Neurobiology MOE Frontier Science Center for Brain Research and Brain–Machine Integration School of Brain Science and Brain Medicine Zhejiang University Hangzhou Zhejiang Province 310003 P. R. China
| | - Wanxiong Cai
- NHC and CAMS Key Laboratory of Medical Neurobiology MOE Frontier Science Center for Brain Research and Brain–Machine Integration School of Brain Science and Brain Medicine Zhejiang University Hangzhou Zhejiang Province 310003 P. R. China
| | - Xiangfeng Chen
- Department of Neurobiology and Department of Orthopedics 2nd Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang Province 310009 P. R.China
- NHC and CAMS Key Laboratory of Medical Neurobiology MOE Frontier Science Center for Brain Research and Brain–Machine Integration School of Brain Science and Brain Medicine Zhejiang University Hangzhou Zhejiang Province 310003 P. R. China
| | - Hanyu Zheng
- NHC and CAMS Key Laboratory of Medical Neurobiology MOE Frontier Science Center for Brain Research and Brain–Machine Integration School of Brain Science and Brain Medicine Zhejiang University Hangzhou Zhejiang Province 310003 P. R. China
| | - Tianfang Zhang
- Department of Rehabilitation Medicine First Affiliated Hospital College of Medicine Zhejiang University Hangzhou Zhejiang Province 310003 P. R. China
| | - Wujie Lu
- Department of Rehabilitation Medicine First Affiliated Hospital College of Medicine Zhejiang University Hangzhou Zhejiang Province 310003 P. R. China
| | - Xiaojian Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior CAS Key Laboratory of Brain Connectome and Manipulation the Brain Cognition and Brain Disease Institute (BCBCI) Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research Institutions Shenzhen Guangdong Province 518055 P. R. China
| | - Chengzhen Liang
- Department of Neurobiology and Department of Orthopedics 2nd Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang Province 310009 P. R.China
| | - Qixin Chen
- Department of Neurobiology and Department of Orthopedics 2nd Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang Province 310009 P. R.China
| | - Yaxian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products Nantong University Nantong Jiangsu Province 226001 P. R. China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products Nantong University Nantong Jiangsu Province 226001 P. R. China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products Nantong University Nantong Jiangsu Province 226001 P. R. China
| | - Zuobing Chen
- Department of Rehabilitation Medicine First Affiliated Hospital College of Medicine Zhejiang University Hangzhou Zhejiang Province 310003 P. R. China
| | - Xuhua Wang
- Department of Neurobiology and Department of Orthopedics 2nd Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang Province 310009 P. R.China
- NHC and CAMS Key Laboratory of Medical Neurobiology MOE Frontier Science Center for Brain Research and Brain–Machine Integration School of Brain Science and Brain Medicine Zhejiang University Hangzhou Zhejiang Province 310003 P. R. China
- Co‐innovation Center of Neuroregeneration Nantong University Nantong Jiangsu Province 226001 P. R. China
| |
Collapse
|
35
|
Fakhri S, Abbaszadeh F, Jorjani M. On the therapeutic targets and pharmacological treatments for pain relief following spinal cord injury: A mechanistic review. Biomed Pharmacother 2021; 139:111563. [PMID: 33873146 DOI: 10.1016/j.biopha.2021.111563] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) is globally considered as one of the most debilitating disorders, which interferes with daily activities and life of the affected patients. Despite many developments in related recognizing and treating procedures, post-SCI neuropathic pain (NP) is still a clinical challenge for clinicians with no distinct treatments. Accordingly, a comprehensive search was conducted in PubMed, Medline, Scopus, Web of Science, and national database (SID and Irandoc). The relevant articles regarding signaling pathways, therapeutic targets and pharmacotherapy of post-SCI pain were also reviewed. Data were collected with no time limitation until November 2020. The present study provides the findings on molecular mechanisms and therapeutic targets, as well as developing the critical signaling pathways to introduce novel neuroprotective treatments of post-SCI pain. From the pathophysiological mechanistic point of view, post-SCI inflammation activates the innate immune system, in which the immune cells elicit secondary injuries. So, targeting the critical signaling pathways for pain management in the SCI population has significant importance in providing new treatments. Indeed, several receptors, ion channels, excitatory neurotransmitters, enzymes, and key signaling pathways could be used as therapeutic targets, with a pivotal role of n-methyl-D-aspartate, gamma-aminobutyric acid, and inflammatory mediators. The current review focuses on conventional therapies, as well as crucial signaling pathways and promising therapeutic targets for post-SCI pain to provide new insights into the clinical treatment of post-SCI pain. The need to develop innovative delivery systems to treat SCI is also considered.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Masoumeh Jorjani
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Papa S, Veneruso V, Mauri E, Cremonesi G, Mingaj X, Mariani A, De Paola M, Rossetti A, Sacchetti A, Rossi F, Forloni G, Veglianese P. Functionalized nanogel for treating activated astrocytes in spinal cord injury. J Control Release 2021; 330:218-228. [DOI: 10.1016/j.jconrel.2020.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/15/2020] [Accepted: 12/04/2020] [Indexed: 01/02/2023]
|
37
|
Cellular therapy for treatment of spinal cord injury in Zebrafish model. Mol Biol Rep 2021; 48:1787-1800. [PMID: 33459959 DOI: 10.1007/s11033-020-06126-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/24/2020] [Indexed: 02/08/2023]
Abstract
Spinal cord injury is a serious problem with a high rate of morbidity and mortality for all persons, especially young people (15-25 years old). Due to the large burden and the costs incurred on the government, finding the best therapeutic approach is necessary. In this respect, treatment strategies based on the disease mechanism can be effective. After the first trauma of spinal cord cascades, cellular events happen one after the other known as secondary trauma. The mechanism of secondary events of spinal cord injury could be helpful for target therapy as trying to stop the secondary trauma. Herein, some medical and surgical therapy has been introduced and cell therapy strategy was considered as a recent method. Actually, cell therapy is defined as the application of different cells including mesenchymal stem cells, embryonic stem cells, induced pluripotent stem cells, and some others to replace or reconstruct the damaged tissues and restore their functions. However, as a newly emerged therapeutic method, cell therapy should be used through various subclinical studies in animal models to assess the efficacy of the treatment under controlled conditions. In this review, the role of Zebrafish as a recommended model has been discussed and combinatory approach as the probably most useful treatment has been suggested.
Collapse
|
38
|
Bellotti E, Schilling AL, Little SR, Decuzzi P. Injectable thermoresponsive hydrogels as drug delivery system for the treatment of central nervous system disorders: A review. J Control Release 2021; 329:16-35. [PMID: 33259851 DOI: 10.1016/j.jconrel.2020.11.049] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022]
Abstract
The central nervous system (CNS), consisting of the brain, spinal cord, and retina, superintends to the acquisition, integration and processing of peripheral information to properly coordinate the activities of the whole body. Neurodegenerative and neurodevelopmental disorders, trauma, stroke, and brain tumors can dramatically affect CNS functions resulting in serious and life-long disabilities. Globally, the societal and economic burden associated with CNS disorders continues to grow with the ageing of the population thus demanding for more effective and definitive treatments. Despite the variety of clinically available therapeutic molecules, medical interventions on CNS disorders are mostly limited to treat symptoms rather than halting or reversing disease progression. This is attributed to the complexity of the underlying disease mechanisms as well as to the unique biological microenvironment. Given its central importance, multiple barriers, including the blood brain barrier and the blood cerebrospinal fluid barrier, protect the CNS from external agents. This limits the access of drug molecules to the CNS thus contributing to the modest therapeutic successes. Loco-regional therapies based on the deposition of thermoresponsive hydrogels loaded with therapeutic agents and cells are receiving much attention as an alternative and potentially more effective approach to manage CNS disorders. In this work, the current understanding and challenges in the design of thermoresponsive hydrogels for CNS therapy are reviewed. First, the biological barriers that hinder mass and drug transport to the CNS are described, highlighting the distinct features of each barrier. Then, the realization, characterization and biomedical application of natural and synthetic thermoresponsive hydrogels are critically presented. Advantages and limitations of each design and application are discussed with the objective of identifying general rules that could enhance the effective translation of thermoresponsive hydrogel-based therapies for the treatment of CNS disorders.
Collapse
Affiliation(s)
- Elena Bellotti
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy.
| | - Andrea L Schilling
- Department of Chemical Engineering, University of Pittsburgh, 427 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15261, USA
| | - Steven R Little
- Department of Chemical Engineering, University of Pittsburgh, 427 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15261, USA; Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15216, USA; Department of Clinical and Translational Science, University of Pittsburgh, Forbes tower, Suite 7057, Pittsburgh, PA 15213, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA, 15219, USA; Department of Immunology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA; Department of Pharmaceutical Science, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA, 15213, USA
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| |
Collapse
|
39
|
Graphene-laden hydrogels: A strategy for thermally triggered drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111353. [PMID: 33254973 DOI: 10.1016/j.msec.2020.111353] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/08/2020] [Accepted: 07/30/2020] [Indexed: 12/23/2022]
Abstract
The synthesis of graphene-based materials has attracted considerable attention in drug delivery strategies. Indeed, the conductivity and mechanical stability of graphene have been investigated for controlled and tunable drug release via electric or mechanical stimuli. However, the design of a thermo-sensitive scaffold using pristine graphene (without distortions related to the oxidation processes) has not been deeply investigated yet, although it may represent a promising approach for several therapeutic treatments. Here, few-layer graphene was used as a nanofiller in a hydrogel system with a thermally tunable drug release profile. In particular, varying the temperature (25 °C, 37 °C and 44 °C), responsive drug releases were noticed and hypothesized depending on the formation and perturbation of π-π interactions involving graphene, the polymeric matrix and the model drug (diclofenac). As a result, these hybrid hydrogels show a potential application as thermally triggered drug release systems in several healthcare scenarios.
Collapse
|
40
|
Astaneh ME, Goodarzi A, Khanmohammadi M, Shokati A, Mohandesnezhad S, Ataollahi MR, Najafipour S, Farahani MS, Ai J. Chitosan/gelatin hydrogel and endometrial stem cells with subsequent atorvastatin injection impact in regenerating spinal cord tissue. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101831] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
41
|
Prager J, Adams CF, Delaney AM, Chanoit G, Tarlton JF, Wong LF, Chari DM, Granger N. Stiffness-matched biomaterial implants for cell delivery: clinical, intraoperative ultrasound elastography provides a 'target' stiffness for hydrogel synthesis in spinal cord injury. J Tissue Eng 2020; 11:2041731420934806. [PMID: 32670538 PMCID: PMC7336822 DOI: 10.1177/2041731420934806] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/21/2020] [Indexed: 12/14/2022] Open
Abstract
Safe hydrogel delivery requires stiffness-matching with host tissues to avoid
iatrogenic damage and reduce inflammatory reactions. Hydrogel-encapsulated cell
delivery is a promising combinatorial approach to spinal cord injury therapy,
but a lack of in vivo clinical spinal cord injury stiffness
measurements is a barrier to their use in clinics. We demonstrate that
ultrasound elastography – a non-invasive, clinically established tool – can be
used to measure spinal cord stiffness intraoperatively in canines with
spontaneous spinal cord injury. In line with recent experimental reports, our
data show that injured spinal cord has lower stiffness than uninjured cord. We
show that the stiffness of hydrogels encapsulating a clinically relevant
transplant population (olfactory ensheathing cells) can also be measured by
ultrasound elastography, enabling synthesis of hydrogels with comparable
stiffness to canine spinal cord injury. We therefore demonstrate
proof-of-principle of a novel approach to stiffness-matching hydrogel-olfactory
ensheathing cell implants to ‘real-life’ spinal cord injury values; an approach
applicable to multiple biomaterial implants for regenerative therapies.
Collapse
Affiliation(s)
- Jon Prager
- Bristol Veterinary School, University of Bristol, Bristol, UK.,The Royal Veterinary College, University of London, Hatfield, UK
| | - Christopher F Adams
- Cellular and Neural Engineering Group, Institute for Science and Technology in Medicine, Keele University, Keele, UK
| | - Alexander M Delaney
- Cellular and Neural Engineering Group, Institute for Science and Technology in Medicine, Keele University, Keele, UK
| | | | - John F Tarlton
- Bristol Veterinary School, University of Bristol, Bristol, UK
| | | | - Divya M Chari
- Cellular and Neural Engineering Group, Institute for Science and Technology in Medicine, Keele University, Keele, UK
| | - Nicolas Granger
- The Royal Veterinary College, University of London, Hatfield, UK
| |
Collapse
|
42
|
Papa S, Pizzetti F, Perale G, Veglianese P, Rossi F. Regenerative medicine for spinal cord injury: focus on stem cells and biomaterials. Expert Opin Biol Ther 2020; 20:1203-1213. [PMID: 32421405 DOI: 10.1080/14712598.2020.1770725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Spinal cord injury (SCI) is a dramatic medical pathology consequence of a trauma (primary injury). However, most of the post-traumatic degeneration of the tissue is caused by the so-called secondary injury, which is known to be a multifactorial process. This, indeed, includes a wide spectrum of events: blood-brain barrier dysfunction, local inflammation, neuronal death, demyelination and disconnection of nerve pathways. AREAS COVERED Cell therapy represents a promising cure to target diseases and disorders at the cellular level, by restoring cell population or using cells as carriers of therapeutic cargo. In particular, regenerative medicine with stem cells represents the most appealing category to be used, thanks to their peculiar features. EXPERT OPINION Many preclinical research studies demonstrated that cell treatment can improve animal sensory/motor functions and so demonstrated to be very promising for clinical trials. In particular, recent advances have led to the development of biomaterials aiming to promote in situ cell delivery. This review digs into this topic discussing the possibility of cell treatment to improve medical chances in SCI repair.
Collapse
Affiliation(s)
- Simonetta Papa
- Department of Neuroscience, IRCCS Istituto Di Ricerche Farmacologiche "Mario Negri" , Milan, Italy
| | - Fabio Pizzetti
- Department of Neuroscience, IRCCS Istituto Di Ricerche Farmacologiche "Mario Negri" , Milan, Italy.,Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" , Milan, Italy
| | - Giuseppe Perale
- Faculty of Biomedical Sciences, University of Southern Switzerland (USI) , Lugano, Switzerland.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , Vienna, Austria
| | - Pietro Veglianese
- Department of Neuroscience, IRCCS Istituto Di Ricerche Farmacologiche "Mario Negri" , Milan, Italy
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" , Milan, Italy
| |
Collapse
|
43
|
Motor and sensitive recovery after injection of a physically cross-linked PNIPAAm-g-PEG hydrogel in rat hemisectioned spinal cord. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110354. [DOI: 10.1016/j.msec.2019.110354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/02/2019] [Accepted: 10/20/2019] [Indexed: 12/28/2022]
|
44
|
Vismara I, Papa S, Veneruso V, Mauri E, Mariani A, De Paola M, Affatato R, Rossetti A, Sponchioni M, Moscatelli D, Sacchetti A, Rossi F, Forloni G, Veglianese P. Selective Modulation of A1 Astrocytes by Drug-Loaded Nano-Structured Gel in Spinal Cord Injury. ACS NANO 2020; 14:360-371. [PMID: 31887011 DOI: 10.1021/acsnano.9b05579] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Astrogliosis has a very dynamic response during the progression of spinal cord injury, with beneficial or detrimental effects on recovery. It is therefore important to develop strategies to target activated astrocytes and their harmful molecular mechanisms so as to promote a protective environment to counteract the progression of the secondary injury. The challenge is to formulate an effective therapy with maximum protective effects, but reduced side effects. In this study, a functionalized nanogel-based nanovector was selectively internalized in activated mouse or human astrocytes. Rolipram, an anti-inflammatory drug, when administered by these nanovectors limited the inflammatory response in A1 astrocytes, reducing iNOS and Lcn2, which in turn reverses the toxic effect of proinflammatory astrocytes on motor neurons in vitro, showing advantages over conventionally administered anti-inflammatory therapy. When tested acutely in a spinal cord injury mouse model, it improved motor performance, but only in the early stage after injury, reducing the astrocytosis and preserving neuronal cells.
Collapse
Affiliation(s)
- Irma Vismara
- Department of Neuroscience , Istituto di Ricerche Farmacologiche Mario Negri IRCCS , via Mario Negri 2 , 20156 Milano , Italy
| | - Simonetta Papa
- Department of Neuroscience , Istituto di Ricerche Farmacologiche Mario Negri IRCCS , via Mario Negri 2 , 20156 Milano , Italy
| | - Valeria Veneruso
- Department of Neuroscience , Istituto di Ricerche Farmacologiche Mario Negri IRCCS , via Mario Negri 2 , 20156 Milano , Italy
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" , Politecnico di Milano , via Mancinelli 7 , 20131 Milano , Italy
| | - Emanuele Mauri
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" , Politecnico di Milano , via Mancinelli 7 , 20131 Milano , Italy
| | - Alessandro Mariani
- Department of Environmental Health Sciences , Istituto di Ricerche Farmacologiche Mario Negri IRCCS , via Mario Negri 2 , 20156 Milan , Italy
| | - Massimiliano De Paola
- Department of Environmental Health Sciences , Istituto di Ricerche Farmacologiche Mario Negri IRCCS , via Mario Negri 2 , 20156 Milan , Italy
| | - Roberta Affatato
- Department of Oncology , Istituto di Ricerche Farmacologiche Mario Negri IRCCS , via Mario Negri 2 , 20156 Milan , Italy
| | - Arianna Rossetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" , Politecnico di Milano , via Mancinelli 7 , 20131 Milano , Italy
| | - Mattia Sponchioni
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" , Politecnico di Milano , via Mancinelli 7 , 20131 Milano , Italy
| | - Davide Moscatelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" , Politecnico di Milano , via Mancinelli 7 , 20131 Milano , Italy
| | - Alessandro Sacchetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" , Politecnico di Milano , via Mancinelli 7 , 20131 Milano , Italy
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" , Politecnico di Milano , via Mancinelli 7 , 20131 Milano , Italy
| | - Gianluigi Forloni
- Department of Neuroscience , Istituto di Ricerche Farmacologiche Mario Negri IRCCS , via Mario Negri 2 , 20156 Milano , Italy
| | - Pietro Veglianese
- Department of Neuroscience , Istituto di Ricerche Farmacologiche Mario Negri IRCCS , via Mario Negri 2 , 20156 Milano , Italy
| |
Collapse
|
45
|
Agrawal NK, Allen P, Song YH, Wachs RA, Du Y, Ellington AD, Schmidt CE. Oligonucleotide-functionalized hydrogels for sustained release of small molecule (aptamer) therapeutics. Acta Biomater 2020; 102:315-325. [PMID: 31760222 DOI: 10.1016/j.actbio.2019.11.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 01/10/2023]
Abstract
Natural and synthetic hydrogels have been widely investigated as biomaterial scaffolds to promote tissue repair and regeneration. Nevertheless, the scaffold alone is often insufficient to drive new tissue growth, instead requiring continuous delivery of therapeutics, such as proteins or other biomolecules that work in concert with structural support provided by the scaffold. However, because of the high-water content, hydrogels tend to be permeable and cause rapid release of the encapsulated drug, which could lead to serious complications from local overdose and may result in the significant waste of encapsulated therapeutic(s). To this end, we designed an oligonucleotide-functionalized hydrogel that can provide sustained and controlled delivery of therapeutics for up to 4 weeks. To prove this concept, we successfully achieved sustained release (for over 28 days) of model anti-Nogo receptor (anti-NgR) RNA aptamer from oligonucleotide-functionalized hyaluronic acid-based hydrogel by changing the complementarity between the short antisense sequences and the aptamer. Furthermore, the released aptamer successfully blocked neuro-inhibitory effects of myelin-derived inhibitors and promoted neurite outgrowth from rat dorsal root ganglia in vitro. Because antisense sequences can be designed to bind to proteins, peptides, and aptamer, our oligonucleotide-functionalized hydrogel offers a promising therapeutic delivery system to obtain controlled release (both bolus and sustained) of various therapeutics for the treatment of complex diseases and injury models, such as spinal cord injury. STATEMENT OF SIGNIFICANCE: Producing a therapeutic effect often requires the administration of multiple injections with high dosages. This regimen causes discomfort to the patient and raises cost of treatment. Additionally, systemic delivery of therapeutics often results in adverse effects; therefore, local delivery at the site of injury is desirable. Therefore, in this study, we designed an oligonucleotide-functionalized biomaterial platform using ssDNA oligonucleotides (immobile species) as antisense sequences to increase residence time and fine-tune the release of anti-nogo receptor aptamer (mobile species) for spinal cord injury application. Because antisense sequences can be designed to bind proteins, peptides, and aptamer, our hydrogel offers a promising delivery system to obtain controlled release of various therapeutics for the treatment of complex diseases and injury models.
Collapse
|
46
|
Grijalvo S, Nieto‐Díaz M, Maza RM, Eritja R, Díaz DD. Alginate Hydrogels as Scaffolds and Delivery Systems to Repair the Damaged Spinal Cord. Biotechnol J 2019; 14:e1900275. [DOI: 10.1002/biot.201900275] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/12/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Santiago Grijalvo
- Institute for Advanced Chemistry of Catalonia (IQAC, CSIC) Jordi Girona 18–26 E‐08034 Barcelona Spain
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN) Jordi Girona 18–26 E‐08034 Barcelona Spain
| | - Manuel Nieto‐Díaz
- Molecular Neuroprotection GroupResearch Unit, National Hospital for Paraplegics (SESCAM) E‐45071 Toledo Spain
| | - Rodrigo M. Maza
- Molecular Neuroprotection GroupResearch Unit, National Hospital for Paraplegics (SESCAM) E‐45071 Toledo Spain
| | - Ramón Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC, CSIC) Jordi Girona 18–26 E‐08034 Barcelona Spain
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN) Jordi Girona 18–26 E‐08034 Barcelona Spain
| | - David Díaz Díaz
- Institut für Organische ChemieUniversität Regensburg, Universitätsstr. 31 93053 Regensburg Germany
- Institute of Natural Products and Abrobiology of the CSIC Avda. Astrofísico Francisco Sánchez 3 E‐3826 La Laguna Tenerife Spain
| |
Collapse
|
47
|
Ashammakhi N, Kim HJ, Ehsanipour A, Bierman RD, Kaarela O, Xue C, Khademhosseini A, Seidlits SK. Regenerative Therapies for Spinal Cord Injury. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:471-491. [PMID: 31452463 DOI: 10.1089/ten.teb.2019.0182] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Spinal cord injury (SCI) is a serious problem that primarily affects younger and middle-aged adults at its onset. To date, no effective regenerative treatment has been developed. Over the last decade, researchers have made significant advances in stem cell technology, biomaterials, nanotechnology, and immune engineering, which may be applied as regenerative therapies for the spinal cord. Although the results of clinical trials using specific cell-based therapies have proven safe, their efficacy has not yet been demonstrated. The pathophysiology of SCI is multifaceted, complex and yet to be fully understood. Thus, combinatorial therapies that simultaneously leverage multiple approaches will likely be required to achieve satisfactory outcomes. Although combinations of biomaterials with pharmacologic agents or cells have been explored, few studies have combined these modalities in a systematic way. For most strategies, clinical translation will be facilitated by the use of minimally invasive therapies, which are the focus of this review. In addition, this review discusses previously explored therapies designed to promote neuroregeneration and neuroprotection after SCI, while highlighting present challenges and future directions. Impact Statement To date there are no effective treatments that can regenerate the spinal cord after injury. Although there have been significant preclinical advances in bioengineering and regenerative medicine over the last decade, these have not translated into effective clinical therapies for spinal cord injury. This review focuses on minimally invasive therapies, providing extensive background as well as updates on recent technological developments and current clinical trials. This review is a comprehensive resource for researchers working towards regenerative therapies for spinal cord injury that will help guide future innovation.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, Finland.,Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
| | - Han-Jun Kim
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
| | | | | | - Outi Kaarela
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, Finland
| | - Chengbin Xue
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, P.R. China
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California.,Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Chemical and Biological Engineering, University of California, Los Angeles, California
| | - Stephanie K Seidlits
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.,Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, California.,Brain Research Institute, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
48
|
Sharma P, Kaur H, Roy S. Designing a Tenascin-C-Inspired Short Bioactive Peptide Scaffold to Direct and Control Cellular Behavior. ACS Biomater Sci Eng 2019; 5:6497-6510. [DOI: 10.1021/acsbiomaterials.9b01115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Pooja Sharma
- Institute of Nanoscience and Technology, Habitat Centre, Sector 64, Phase 10, Mohali, Punjab 160062, India
| | - Harsimran Kaur
- Institute of Nanoscience and Technology, Habitat Centre, Sector 64, Phase 10, Mohali, Punjab 160062, India
| | - Sangita Roy
- Institute of Nanoscience and Technology, Habitat Centre, Sector 64, Phase 10, Mohali, Punjab 160062, India
| |
Collapse
|
49
|
Ong W, Pinese C, Chew SY. Scaffold-mediated sequential drug/gene delivery to promote nerve regeneration and remyelination following traumatic nerve injuries. Adv Drug Deliv Rev 2019; 149-150:19-48. [PMID: 30910595 DOI: 10.1016/j.addr.2019.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/27/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Abstract
Neural tissue regeneration following traumatic injuries is often subpar. As a result, the field of neural tissue engineering has evolved to find therapeutic interventions and has seen promising outcomes. However, robust nerve and myelin regeneration remain elusive. One possible reason may be the fact that tissue regeneration often follows a complex sequence of events in a temporally-controlled manner. Although several other fields of tissue engineering have begun to recognise the importance of delivering two or more biomolecules sequentially for more complete tissue regeneration, such serial delivery of biomolecules in neural tissue engineering remains limited. This review aims to highlight the need for sequential delivery to enhance nerve regeneration and remyelination after traumatic injuries in the central nervous system, using spinal cord injuries as an example. In addition, possible methods to attain temporally-controlled drug/gene delivery are also discussed for effective neural tissue regeneration.
Collapse
|
50
|
Perera TH, Howell SM, Smith Callahan LA. Manipulation of Extracellular Matrix Remodeling and Neurite Extension by Mouse Embryonic Stem Cells Using IKVAV and LRE Peptide Tethering in Hyaluronic Acid Matrices. Biomacromolecules 2019; 20:3009-3020. [PMID: 31306008 DOI: 10.1021/acs.biomac.9b00578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cellular remodeling of the matrix has recently emerged as a key factor in promoting neural differentiation. Most strategies to manipulate matrix remodeling focus on proteolytically cleavable cross-linkers, leading to changes in tethered biochemical signaling and matrix properties. Using peptides that are not the direct target of enzymatic degradation will likely reduce changes in the matrix and improve control of biological behavior. In this study, laminin-derived peptides, IKVAV and LRE, tethered to independent sites in hyaluronic acid matrices using Michael addition and strain-promoted azide-alkyne cycloaddition are sufficient to manipulate hyaluronic acid degradation, gelatinase expression, and protease expression, while promoting neurite extension through matrix metalloprotease-dependent mechanisms in mouse embryonic stem cells encapsulated in hyaluronic acid matrices using an oxidation-reduction reaction initiated gelation. This study provides the foundation for a new strategy to stimulate matrix remodeling that is not dependent on enzymatic cleavage targets.
Collapse
Affiliation(s)
- T Hiran Perera
- Vivian L. Smith Department of Neurosurgery , McGovern Medical School at the University of Texas Health Science Center at Houston McGovern Medical School , Houston , Texas 77030 , United States.,Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine , McGovern Medical School at the University of Texas Health Science Center at Houston , Houston , Texas 77030 , United States
| | - Skyler M Howell
- Vivian L. Smith Department of Neurosurgery , McGovern Medical School at the University of Texas Health Science Center at Houston McGovern Medical School , Houston , Texas 77030 , United States.,Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine , McGovern Medical School at the University of Texas Health Science Center at Houston , Houston , Texas 77030 , United States
| | - Laura A Smith Callahan
- Vivian L. Smith Department of Neurosurgery , McGovern Medical School at the University of Texas Health Science Center at Houston McGovern Medical School , Houston , Texas 77030 , United States.,Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine , McGovern Medical School at the University of Texas Health Science Center at Houston , Houston , Texas 77030 , United States.,Graduate School of Biomedical Sciences , MD Anderson Cancer Center UTHealth , Houston , Texas 77030 , United States
| |
Collapse
|