1
|
Gehlot P, Pathak R, Kumar S, Choudhary NK, Vyas VK. A review on synthetic inhibitors of dual-specific tyrosine phosphorylation-regulated kinase 1A (DYRK1A) for the treatment of Alzheimer's disease (AD). Bioorg Med Chem 2024; 113:117925. [PMID: 39357433 DOI: 10.1016/j.bmc.2024.117925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
Alzheimer's disease (AD) is a complex disorder that is influenced by a number of variables, such as age, gender, environmental factors, disease, lifestyle, infections, and many more. The main characteristic of AD is the formation of amyloid plaque and neurofibrillary tangles (NFT), which are caused by various reasons such as inflammation, impairment of neurotransmitters, hyperphosphorylation of tau protein, generation of toxic amyloid beta (Aβ) 40/42, oxidative stress, etc. Protein kinases located in chromosome 21, namely dual-specific tyrosine phosphorylation-regulated kinase 1A (DYRK1A), play an essential role in the pathogenesis of AD. DYRK1A stimulates the Aβ peptide aggregation and phosphorylation of tau protein to generate the NFT formation that causes neurodegeneration. Thus, DYRK1A is associated with AD, and inhibition of DYRK1A has the potential to treat AD. In this review, we discussed the pathophysiology of AD, various factors responsible for AD, and the role of DYRK1A in AD. We have also discussed the latest therapeutic potential of DYRK1A inhibitors for neurogenerative disease, along with their structure-activity relationship (SAR) studies. This article provides valuable information for guiding the future discovery of novel and target-specific DYRK1A inhibitors over other kinases and their structural optimization to treat AD.
Collapse
Affiliation(s)
- Pinky Gehlot
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Rekha Pathak
- B R Nahata College of Pharmacy, Mandsaur University, Mandsaur 458001, Madhya Pradesh, India; Gyan Ganga Institute of Technology and Sciences, Jabalpur 482003, Madhya Pradesh, India
| | - Sunil Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Naveen Kumar Choudhary
- B R Nahata College of Pharmacy, Mandsaur University, Mandsaur 458001, Madhya Pradesh, India
| | - Vivek Kumar Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India.
| |
Collapse
|
2
|
Faouzi A, Arnaud A, Hallé F, Roussel J, Aymard M, Denavit V, Do CV, Mularoni A, Salah M, ElHady A, Pham TN, Bancet A, Le Borgne M, Terreux R, Barret R, Engel M, Lomberget T. Design, synthesis, and structure-activity relationship studies of 6 H-benzo[ b]indeno[1,2- d]thiophen-6-one derivatives as DYRK1A/CLK1/CLK4/haspin inhibitors. RSC Med Chem 2024:d4md00537f. [PMID: 39430953 PMCID: PMC11487425 DOI: 10.1039/d4md00537f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/06/2024] [Indexed: 10/22/2024] Open
Abstract
A series of sulfur-containing tetracycles was designed and evaluated for their ability to inhibit protein kinase DYRK1A, a target known to have several potential therapeutic applications including cancers, Down syndrome or Alzheimer's disease. Our medicinal chemistry strategy relied on the design of new compounds using ring contraction/isosteric replacement and constrained analogy of known DYRK1A inhibitors, thus resulting in their DYRK1A inhibitory activity enhancement. Whereas a good inhibitory effect of targeted DYRK1A protein was observed for 5-hydroxy compounds 4i-k (IC50 = 35-116 nM) and the 5-methoxy derivative 4e (IC50 = 52 nM), a fairly good selectivity towards its known DYRK1B off-target was observed for 4k. In addition, the most active compound 4k, having an ATP-competitive mechanism of action, proved to be also a potent inhibitor of CLK1/CLK4 (IC50 = 20 and 26 nM) and, to a lesser extent, of haspin (IC50 = 76 nM) kinases. In silico docking studies within the DYRK1A, CLK1/CLK4 and haspin ATP binding sites were carried out to understand the interactions of our tetracyclic derivatives 4 with these targets. Antiproliferative activities on U87/U373 glioblastoma cell lines of the most potent compound 4k showed a moderate effect (IC50 values between 33 and 46 μM). Microsomal stabilities of the designed compounds 4a-m were also investigated, showing great disparities, depending on benzo[b]thiophene ring 5-substitution.
Collapse
Affiliation(s)
- Abdelfattah Faouzi
- Universite Claude Bernard Lyon 1, EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie, ISPB, Univ Lyon F-69373 Lyon Cedex 08 France
| | - Alexandre Arnaud
- Universite Claude Bernard Lyon 1, EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie, ISPB, Univ Lyon F-69373 Lyon Cedex 08 France
| | - François Hallé
- Universite Claude Bernard Lyon 1, CNRS UMR 5246, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), COSSBA Team, Faculté de Pharmacie, ISPB 8, avenue Rockefeller F-69373 Lyon Cedex 08 France
| | - Jean Roussel
- Universite Claude Bernard Lyon 1, CNRS UMR 5246, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), COSSBA Team, Faculté de Pharmacie, ISPB 8, avenue Rockefeller F-69373 Lyon Cedex 08 France
| | - Mandy Aymard
- Universite Claude Bernard Lyon 1, CNRS UMR 5246, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), COSSBA Team, Faculté de Pharmacie, ISPB 8, avenue Rockefeller F-69373 Lyon Cedex 08 France
| | - Vincent Denavit
- Universite Claude Bernard Lyon 1, CNRS UMR 5246, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), COSSBA Team, Faculté de Pharmacie, ISPB 8, avenue Rockefeller F-69373 Lyon Cedex 08 France
| | - Cong Viet Do
- Universite Claude Bernard Lyon 1, EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie, ISPB, Univ Lyon F-69373 Lyon Cedex 08 France
- University of Science and Technology of HanoÏ USTH 18 Hoang Quoc Viet Hanoi 100000 Vietnam
| | - Angélique Mularoni
- Universite Claude Bernard Lyon 1, EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie, ISPB, Univ Lyon F-69373 Lyon Cedex 08 France
| | - Mohamed Salah
- Pharmaceutical and Medicinal Chemistry, Saarland University Campus C2.3 D-66123 Saarbrücken Germany
- Department of Pharmaceutical Chemistry, School of Pharmacy, Newgiza University (NGU) Newgiza, km 22 Cairo-Alexandria Desert Road 12577 Cairo Egypt
| | - Ahmed ElHady
- Pharmaceutical and Medicinal Chemistry, Saarland University Campus C2.3 D-66123 Saarbrücken Germany
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation New Administrative Capital Cairo 11865 Egypt
| | - Thanh-Nhat Pham
- Universite Claude Bernard Lyon 1, EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie, ISPB, Univ Lyon F-69373 Lyon Cedex 08 France
| | - Alexandre Bancet
- Universite Claude Bernard Lyon 1, EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie, ISPB, Univ Lyon F-69373 Lyon Cedex 08 France
| | - Marc Le Borgne
- Universite Claude Bernard Lyon 1, EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie, ISPB, Univ Lyon F-69373 Lyon Cedex 08 France
| | - Raphaël Terreux
- Universite Claude Bernard Lyon 1, CNRS UMR 5305, LBTI, ECMO Team, Institut de Biologie et Chimie des Protéines 7 Passage du Vercors 69367 Lyon Cedex 07 France
| | - Roland Barret
- Universite Claude Bernard Lyon 1, EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie, ISPB, Univ Lyon F-69373 Lyon Cedex 08 France
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University Campus C2.3 D-66123 Saarbrücken Germany
| | - Thierry Lomberget
- Universite Claude Bernard Lyon 1, CNRS UMR 5246, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), COSSBA Team, Faculté de Pharmacie, ISPB 8, avenue Rockefeller F-69373 Lyon Cedex 08 France
- Universite Claude Bernard Lyon 1, EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie, ISPB, Univ Lyon F-69373 Lyon Cedex 08 France
| |
Collapse
|
3
|
Si X, Qian C, Qiu N, Wang Y, Yao M, Wang H, Zhang X, Xia J. Discovery of a novel DYRK1A inhibitor with neuroprotective activity by virtual screening and in vitro biological evaluation. Mol Divers 2024:10.1007/s11030-024-10856-2. [PMID: 38833123 DOI: 10.1007/s11030-024-10856-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/21/2024] [Indexed: 06/06/2024]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is implicated in accumulation of amyloid β-protein (Aβ) and phosphorylation of Tau proteins, and thus represents an important therapeutic target for neurodegenerative diseases. Though many DYRK1A inhibitors have been discovered, there is still no marketed drug targeting DYRK1A. This is partly due to the lack of effective and safe chemotypes. Therefore, it is still necessary to identify new classes of DYRK1A inhibitors. By performing virtual screening with the workflow mainly composed of pharmacophore modeling and molecular docking as well as the following DYRK1A inhibition assay, we identified compound L9, ((Z)-1-(((5-phenyl-1H-pyrazol-4-yl)methylene)-amino)-1H-tetrazol-5-amine), as a moderately active DYRK1A inhibitor (IC50: 1.67 μM). This compound was structurally different from the known DYRK1A inhibitors, showed a unique binding mode to DYRK1A. Furthermore, compound L9 showed neuroprotective activity against okadaic acid (OA)-induced injury in the human neuroblastoma cell line SH-SY5Y by regulating the expression of Aβ and phosphorylation of Tau protein. This compound was neither toxic to the SH-SY5Y cells nor to the human normal liver cell line HL-7702 (IC50: >100 μM). In conclusion, we have identified a novel DYRK1A inhibitor with neuroprotective activity through virtual screening and in vitro biological evaluation, which holds the promise for further study.
Collapse
Affiliation(s)
- Xinxin Si
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
| | - Chenliang Qian
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 2 Nanwei Road, Beijing, 100050, China
| | - Nianzhuang Qiu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Yaling Wang
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 2 Nanwei Road, Beijing, 100050, China
| | - Mingli Yao
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 2 Nanwei Road, Beijing, 100050, China
| | - Hao Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
| | - Xuehui Zhang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
| | - Jie Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 2 Nanwei Road, Beijing, 100050, China.
| |
Collapse
|
4
|
Chu D, Lei L, Gu S, Liu F, Wu F. Dual-specificity tyrosine phosphorylation-regulated kinase 1A promotes the inclusion of amyloid precursor protein exon 7. Biochem Pharmacol 2024; 224:116233. [PMID: 38663682 DOI: 10.1016/j.bcp.2024.116233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Extracellular amyloid plaques made of Amyloid-β (Aβ) derived from amyloid precursor protein (APP) is one of the major neuropathological hallmarks of Alzheimer's disease (AD). There are three major isoforms of APP, APP770, APP751, and APP695 generated by alternative splicing of exons 7 and 8. Exon 7 encodes the Kunitz protease inhibitor (KPI) domain. Its inclusion generates APP isoforms containing KPI, APPKPI+, which is elevated in AD and Down syndrome (DS) brains and associated with increased Aβ deposition. Dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A) phosphorylates many splicing factors and regulates the alternative splicing of pre-mRNA. It is upregulated in DS and AD brain. However, it is not yet clear whether Dyrk1A could regulate APP alternative splicing. In the present study, we overexpressed or knocked down Dyrk1A in cultured cells and observed that Dyrk1A promoted the inclusion of both APP exons 7 and 8. Moreover, a significant increase in APP exon7 inclusion was also detected in the forebrain and hippocampus of human Dyrk1A transgenic mice - Tg/Dyrk1A. Screening for splicing factors regulated by Dyrk1A revealed that serine/arginine-rich protein 9G8 inhibited APP exon7 inclusion and interacted with APP pre-mRNA. In vitro, expression of exon 7 facilitated APP cleavage. In human Dyrk1A transgenic mice, we also found an increase in Aβ production. These findings suggest that Dyrk1A inhibits the splicing factor 9G8 and promotes APP exon 7 inclusion, leading to more APPKPI+ expression and APP cleavage and potentially contributing to Aβ production in vivo.
Collapse
Affiliation(s)
- Dandan Chu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China; Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Leyi Lei
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Shu Gu
- Nantong No.1 High School of Jiangsu Province, Nantong 226300, China
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.
| | - Feng Wu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China; Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.
| |
Collapse
|
5
|
Mostafa N, Chen PJ, Darwish SS, Su YC, Shiao MH, Piazza GA, Abadi AH, Engel M, Abdel-Halim M. N-Benzylated 5-Hydroxybenzothiophene-2-carboxamides as Multi-Targeted Clk/Dyrk Inhibitors and Potential Anticancer Agents. Cancers (Basel) 2024; 16:2033. [PMID: 38893153 PMCID: PMC11171218 DOI: 10.3390/cancers16112033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Numerous studies have reported that Dyrk1A, Dyrk1B, and Clk1 are overexpressed in multiple cancers, suggesting a role in malignant disease. Here, we introduce a novel class of group-selective kinase inhibitors targeting Dyrk1A, Dyrk1B, and Clk1. This was achieved by modifying our earlier selective Clk1 inhibitors, which were based on the 5-methoxybenzothiophene-2-carboxamide scaffold. By incorporating a 5-hydroxy group, we increased the potential for additional hydrogen bond interactions that broadened the inhibitory effect to include Dyrk1A and Dyrk1B kinases. Within this series, compounds 12 and 17 emerged as the most potent multi-kinase inhibitors against Dyrk1A, Dyrk1B, and Clk1. Furthermore, when assessed against the most closely related kinases also implicated in cancer, the frontrunner compounds revealed additional inhibitory activity against Haspin and Clk2. Compounds 12 and 17 displayed high potency across various cancer cell lines with minimal effect on non-tumor cells. By examining the effect of these inhibitors on cell cycle distribution, compound 17 retained cells in the G2/M phase and induced apoptosis. Compounds 12 and 17 could also increase levels of cleaved caspase-3 and Bax, while decreasing the expression of the antiapoptotic Bcl-2 protein. These findings support the further study and development of these compounds as novel anticancer therapeutics.
Collapse
Affiliation(s)
- Noha Mostafa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; (N.M.); (S.S.D.); (A.H.A.)
- Department of Pharmaceutical Chemistry, School of Pharmacy, Newgiza University, Cairo 12256, Egypt
| | - Po-Jen Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan;
- Graduate Institute of Medicine, College of Medicine, I-Shou University, Kaohsiung 824410, Taiwan;
| | - Sarah S. Darwish
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; (N.M.); (S.S.D.); (A.H.A.)
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo 11578, Egypt
| | - Yu-Chieh Su
- Graduate Institute of Medicine, College of Medicine, I-Shou University, Kaohsiung 824410, Taiwan;
- Division of Hematology-Oncology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 824410, Taiwan
| | - Ming-Hua Shiao
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu 300092, Taiwan;
| | - Gary A. Piazza
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36832, USA;
| | - Ashraf H. Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; (N.M.); (S.S.D.); (A.H.A.)
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; (N.M.); (S.S.D.); (A.H.A.)
| |
Collapse
|
6
|
Henderson SH, Sorrell FJ, Bennett JM, Fedorov O, Hanley MT, Godoi PH, Ruela de Sousa R, Robinson S, Navratilova IH, Elkins JM, Ward SE. Imidazo[1,2-b]pyridazines as inhibitors of DYRK kinases. Eur J Med Chem 2024; 269:116292. [PMID: 38479168 DOI: 10.1016/j.ejmech.2024.116292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/07/2024]
Abstract
Selective inhibitors of DYRK1A are of interest for the treatment of cancer, Type 2 diabetes and neurological disorders. Optimization of imidazo [1,2-b]pyridazine fragment 1 through structure-activity relationship exploration and in silico drug design efforts led to the discovery of compound 17 as a potent cellular inhibitor of DYRK1A with selectivity over much of the kinome. The binding mode of compound 17 was elucidated with X-ray crystallography, facilitating the rational design of compound 29, an imidazo [1,2-b]pyridazine with improved kinase selectivity with respect to closely related CLK kinases.
Collapse
Affiliation(s)
- Scott H Henderson
- Sussex Drug Discovery Centre, University of Sussex, Brighton, BN1 9RH, UK.
| | - Fiona J Sorrell
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - James M Bennett
- Target Discovery Institute, University of Oxford, Oxford, OX3 7FZ, UK
| | - Oleg Fedorov
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Marcus T Hanley
- Medicines Discovery Institute, Cardiff University, CF10 3AT, UK
| | - Paulo H Godoi
- Structural Genomics Consortium, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Av. Dr. André Tosello, 550, Barão Geraldo, Campinas, SP, 13083-886, Brazil
| | - Roberta Ruela de Sousa
- Structural Genomics Consortium, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Av. Dr. André Tosello, 550, Barão Geraldo, Campinas, SP, 13083-886, Brazil
| | - Sean Robinson
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford, OX4 4GE, UK
| | - Iva Hopkins Navratilova
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford, OX4 4GE, UK; University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Jonathan M Elkins
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK; Structural Genomics Consortium, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Av. Dr. André Tosello, 550, Barão Geraldo, Campinas, SP, 13083-886, Brazil.
| | - Simon E Ward
- Medicines Discovery Institute, Cardiff University, CF10 3AT, UK.
| |
Collapse
|
7
|
Li Q, Qi S, Liang J, Tian Y, He S, Liao Q, Xing S, Han L, Chen X. Review of triazole scaffolds for treatment and diagnosis of Alzheimer's disease. Chem Biol Interact 2023; 382:110623. [PMID: 37451665 DOI: 10.1016/j.cbi.2023.110623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Triazole scaffolds, a series of 5-membered heterocycles, are well known for their high efficacy, low toxicity, and superior pharmacokinetics. Alzheimer's disease (AD) is the first neurodegenerative disorder with complex pathological mechanisms. Triazole, as an aromatic group with three nitrogen atoms, forms polar and non-polar interactions with diverse key residues in the receptor-ligand binding procedure, and has been widely used in the molecular design in the development of anti-AD agents. Moreover, considering the simple synthesis approaches, triazole scaffolds are commonly used to link two pharmacodynamic groups in one chemical molecule, forming multi-target directed ligands (MTDLs). Furthermore, the click reaction between azide- and cyano-modified enzyme and ligand provides feasibility for the new modulator discovery, compound tissue distribution evaluation, enzyme localization, and pharmacological mechanism study, promoting the diagnosis of AD course.
Collapse
Affiliation(s)
- Qi Li
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China.
| | - Shulei Qi
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Jinxin Liang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Yuqing Tian
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Siyu He
- Guizhou Medical University, Guiyang, 550025, Guizhou, PR China
| | - Qinghong Liao
- Shandong Junrong Technology Transfer Co., Ltd, Qingdao, 266071, Shandong, PR China
| | - Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Lingfei Han
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Xuehong Chen
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China.
| |
Collapse
|
8
|
Pucelik B, Barzowska A, Czarna A. DYRK1A inhibitors leucettines and TGF-β inhibitor additively stimulate insulin production in beta cells, organoids, and isolated mouse islets. PLoS One 2023; 18:e0285208. [PMID: 37195917 PMCID: PMC10191338 DOI: 10.1371/journal.pone.0285208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/18/2023] [Indexed: 05/19/2023] Open
Abstract
The decreased β-cell mass and impaired β-cell functionality are the primary causes of diabetes mellitus (DM). Nevertheless, the underlying molecular mechanisms by which β-cell growth and function are controlled are not fully understood. In this work, we show that leucettines, known to be DYRK1A kinase inhibitors, can improve glucose-stimulated insulin secretion (GSIS) in rodent β-cells and isolated islets, as well as in hiPSC-derived β-cells islets. We confirm that DYRK1A is expressed in murine insulinoma cells MIN6. In addition, we found that treatment with selected leucettines stimulates proliferation of β-cells and promotes MIN6 cell cycle progression to the G2/M phase. This effect is also confirmed by increased levels of cyclin D1, which is highly responsive to proliferative signals. Among other leucettines, leucettine L43 had a negligible impact on β-cell proliferation, but markedly impair GSIS. However, leucettine L41, in combination with LY364947, a, a potent and selective TGF-β type-I receptor, significantly promotes GSIS in various cellular diabetic models, including MIN6 and INS1E cells in 2D and 3D culture, iPSC-derived β-cell islets derived from iPSC, and isolated mouse islets, by increased insulin secretion and decreased glucagon level. Our findings confirm an important role of DYRK1A inhibitors as modulators of β-cells function and suggested a new potential target for antidiabetic therapy. Moreover, we show in detail that leucettine derivatives represent promising antidiabetic agents and are worth further evaluation, especially in vivo.
Collapse
Affiliation(s)
- Barbara Pucelik
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa, Krakow, Poland
| | - Agata Barzowska
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Anna Czarna
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa, Krakow, Poland
| |
Collapse
|
9
|
Grygier P, Pustelny K, Nowak J, Golik P, Popowicz GM, Plettenburg O, Dubin G, Menezes F, Czarna A. Silmitasertib (CX-4945), a Clinically Used CK2-Kinase Inhibitor with Additional Effects on GSK3β and DYRK1A Kinases: A Structural Perspective. J Med Chem 2023; 66:4009-4024. [PMID: 36883902 PMCID: PMC10041529 DOI: 10.1021/acs.jmedchem.2c01887] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
A clinical casein kinase 2 inhibitor, CX-4945 (silmitasertib), shows significant affinity toward the DYRK1A and GSK3β kinases, involved in down syndrome phenotypes, Alzheimer's disease, circadian clock regulation, and diabetes. This off-target activity offers an opportunity for studying the effect of the DYRK1A/GSK3β kinase system in disease biology and possible line extension. Motivated by the dual inhibition of these kinases, we solved and analyzed the crystal structures of DYRK1A and GSK3β with CX-4945. We built a quantum-chemistry-based model to rationalize the compound affinity for CK2α, DYRK1A, and GSK3β kinases. Our calculations identified a key element for CK2α's subnanomolar affinity to CX-4945. The methodology is expandable to other kinase selectivity modeling. We show that the inhibitor limits DYRK1A- and GSK3β-mediated cyclin D1 phosphorylation and reduces kinase-mediated NFAT signaling in the cell. Given the CX-4945's clinical and pharmacological profile, this inhibitory activity makes it an interesting candidate with potential for application in additional disease areas.
Collapse
Affiliation(s)
- Przemyslaw Grygier
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Katarzyna Pustelny
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Jakub Nowak
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | | | - Grzegorz M Popowicz
- Institute of Structural Biology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstrasse 1, Neuherberg 85764, Germany
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Lichtenbergstrasse 4, Garching 85747, Germany
| | - Oliver Plettenburg
- Institute of Medicinal Chemistry, Helmholtz Munich, Ingolstaedter Landstrasse 1, Neuherberg 85764, Germany
- Institute of Organic Chemistry, Centre of Biomolecular Drug Research (BMWZ) and Laboratory of Nano and Quantum Engineering (LNQE), Leibniz University Hannover, Schneiderberg 1b, Hannover 30167, Germany
- German Center for Diabetes Research (DZD), Ingolstaedter Landstrasse 1, Neuherberg 85764, Germany
- Institute of Lung Health (ILH), Aulweg 130, Giessen 35392, Germany
| | - Grzegorz Dubin
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Filipe Menezes
- Institute of Structural Biology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstrasse 1, Neuherberg 85764, Germany
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Lichtenbergstrasse 4, Garching 85747, Germany
| | - Anna Czarna
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| |
Collapse
|
10
|
Geng H, Chen F, Zhao Y, Guo B, Tang L, Yang YY. Protecting-Group-Free Synthesis of Meridianin A-G and Derivatives and Its Antibiofilm Evaluation. J Org Chem 2023; 88:3927-3934. [PMID: 36815756 DOI: 10.1021/acs.joc.2c02837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Herein, a protecting-group-free protocol was developed to realize a time and step economy diversification of the Meridianin alkaloid. A broad range of substituents are tolerated to deliver the products in moderate to high yields, and the first synthesis of Meridianin B was achieved. The simplicity of this protocol enables the rapid construction of a Meridianin derivative library for antibiofilm evaluation. Preliminary results reveal that Meridianin derivatives were capable of inhibiting the Acinetobacter baumannii biofilm and lowering the antibiotic MIC synergistically.
Collapse
Affiliation(s)
- Huidan Geng
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Fei Chen
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Yonglong Zhao
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Bing Guo
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, 550004 Guiyang, P. R. China
| | - Lei Tang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Yuan-Yong Yang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| |
Collapse
|
11
|
Zhu B, Parsons T, Foley C, Shaw Y, Dunckley T, Hulme C, Hodge JJL. DYRK1A antagonists rescue degeneration and behavioural deficits of in vivo models based on amyloid-β, Tau and DYRK1A neurotoxicity. Sci Rep 2022; 12:15847. [PMID: 36151233 PMCID: PMC9508268 DOI: 10.1038/s41598-022-19967-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer’s disease (AD) involves pathological processing of amyloid precursor protein (APP) into amyloid-β and microtubule associated protein Tau (MAPT) into hyperphosphorylated Tau tangles leading to neurodegeneration. Only 5% of AD cases are familial making it difficult to predict who will develop the disease thereby hindering our ability to treat the causes of the disease. A large population who almost certainly will, are those with Down syndrome (DS), who have a 90% lifetime incidence of AD. DS is caused by trisomy of chromosome 21 resulting in three copies of APP and other AD-associated genes, like dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) overexpression. This implies that DYRK1a inhibitors may have therapeutic potential for DS and AD, however It is not clear how overexpression of each of these genes contributes to the pathology of each disease as well as how effective a DYRK1A inhibitor would be at suppressing any of these. To address this knowledge gap, we used Drosophila models with human Tau, human amyloid-β or fly DYRK1A (minibrain (mnb)) neuronal overexpression resulting in photoreceptor neuron degeneration, premature death, decreased locomotion, sleep and memory loss. DYRK1A small molecule Type 1 kinase inhibitors (DYR219 and DYR533) were effective at suppressing these disease relevant phenotypes confirming their therapeutic potential.
Collapse
Affiliation(s)
- Bangfu Zhu
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Science, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Tom Parsons
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Science, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Christopher Foley
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, USA
| | - Yeng Shaw
- Division of Drug Discovery and Development, Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Travis Dunckley
- Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ, 85281, USA
| | - Christopher Hulme
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, USA.,Division of Drug Discovery and Development, Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - James J L Hodge
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Science, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
12
|
Wei C, Li S, Zhu Y, Chen W, Li C, Xu R. Network pharmacology identify intersection genes of quercetin and Alzheimer’s disease as potential therapeutic targets. Front Aging Neurosci 2022; 14:902092. [PMID: 36081896 PMCID: PMC9447902 DOI: 10.3389/fnagi.2022.902092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
Background Currently, there are no efficient therapies for Alzheimer’s disease (AD) among the elderly, although it is the most common etiology of dementia among the elderly. Quercetin, which has a variety of therapeutic properties, may pave the way for novel approaches to AD treatment. In the AD patients’ frontal cortex, current study aims to identify the potential mechanisms of quercetin’s pharmacological targets. Materials and methods The pharmacological targets of quercetin have been studied from DrugBank and SwissTarget. In order to distinguish AD-associated genes targeted by quercetin (Q-ADGs), we utilized an integrated intersection of gene expressions of the frontal cortex in combination with transcriptome analysis. To detect cortex-related Q-ADGs and immune-related Q-ADGs, a drug screening database and the immune infiltration analysis was utilized. The Q-ADGs were then linked with the AD severity scores (MMSE scores) to find severity-associated Q-ADGs. In addition, the miRNA-seq datasets were examined to identify severity-associated Q-ADG-miRNAs. Twelve genes, more frequently related to AD by previous studies among all the genes identified in the present study, were subjected to the verification of qRT-PCR in AD cell model. Results In the frontal lobe of AD, 207 Q-ADGs were discovered and found that axonogenesis, glial differentiation, and other biological processes had been enriched. There were 155 immune-related Q-ADGs (e.g., COX2, NOS2, HMGB1) and 65 cortex-related Q-ADGs (e.g., FOXO1, CXCL16, NOTCH3). Sixteen Q-ADGs (e.g., STAT3, RORA, BCL6) and 28 miRNAs (e.g., miR-142-5p, miR-17-5p) were found to be related to MMSE scores. In the qRT-PCR results, six out of twelve genes were significantly regulated by quercetin. DYRK1A, FOXO1, NOS2, NGF, NQO1, and RORA genes were novel target of quercetin in AD. DYRK1A, NOS2, and NQO1 genes targeted by quercetin have benefits in the treatment of AD. However, FOXO1, NGF, and RORA genes targeted by quercetin might have a negative impact on AD. Conclusion The role of quercetin in AD appears to be multifaceted, and it can affect patients’ frontal cortex in a variety of pathways, such as axonogenesis, immune infiltration, and glial cell differentiation. DYRK1A, NOS2, and NQO1 might be potential novel effective drug targets for quercetin in AD.
Collapse
Affiliation(s)
- Caihui Wei
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, China
| | - Shu Li
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, China
| | - Yu Zhu
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, China
| | - Wenzhi Chen
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, China
| | - Cheng Li
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, China
- Department of Neurology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People’s Hospital, Nanchang, China
- *Correspondence: Renshi Xu,
| |
Collapse
|
13
|
Deboever E, Fistrovich A, Hulme C, Dunckley T. The Omnipresence of DYRK1A in Human Diseases. Int J Mol Sci 2022; 23:ijms23169355. [PMID: 36012629 PMCID: PMC9408930 DOI: 10.3390/ijms23169355] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 01/13/2023] Open
Abstract
The increasing population will challenge healthcare, particularly because the worldwide population has never been older. Therapeutic solutions to age-related disease will be increasingly critical. Kinases are key regulators of human health and represent promising therapeutic targets for novel drug candidates. The dual-specificity tyrosine-regulated kinase (DYRKs) family is of particular interest and, among them, DYRK1A has been implicated ubiquitously in varied human diseases. Herein, we focus on the characteristics of DYRK1A, its regulation and functional role in different human diseases, which leads us to an overview of future research on this protein of promising therapeutic potential.
Collapse
Affiliation(s)
- Estelle Deboever
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- Correspondence: (E.D.); (T.D.)
| | - Alessandra Fistrovich
- Department of Chemistry and Biochemistry, College of Science, The University of Arizona, Tucson, AZ 85721, USA
- Division of Drug Discovery and Development, Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA
| | - Christopher Hulme
- Department of Chemistry and Biochemistry, College of Science, The University of Arizona, Tucson, AZ 85721, USA
- Division of Drug Discovery and Development, Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA
| | - Travis Dunckley
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- Correspondence: (E.D.); (T.D.)
| |
Collapse
|
14
|
Zhu B, Parsons T, Stensen W, Mjøen Svendsen JS, Fugelli A, Hodge JJL. DYRK1a Inhibitor Mediated Rescue of Drosophila Models of Alzheimer’s Disease-Down Syndrome Phenotypes. Front Pharmacol 2022; 13:881385. [PMID: 35928283 PMCID: PMC9345315 DOI: 10.3389/fphar.2022.881385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease which is becoming increasingly prevalent due to ageing populations resulting in huge social, economic, and health costs to the community. Despite the pathological processing of genes such as Amyloid Precursor Protein (APP) into Amyloid-β and Microtubule Associated Protein Tau (MAPT) gene, into hyperphosphorylated Tau tangles being known for decades, there remains no treatments to halt disease progression. One population with increased risk of AD are people with Down syndrome (DS), who have a 90% lifetime incidence of AD, due to trisomy of human chromosome 21 (HSA21) resulting in three copies of APP and other AD-associated genes, such as DYRK1A (Dual specificity tyrosine-phosphorylation-regulated kinase 1A) overexpression. This suggests that blocking DYRK1A might have therapeutic potential. However, it is still not clear to what extent DYRK1A overexpression by itself leads to AD-like phenotypes and how these compare to Tau and Amyloid-β mediated pathology. Likewise, it is still not known how effective a DYRK1A antagonist may be at preventing or improving any Tau, Amyloid-β and DYRK1a mediated phenotype. To address these outstanding questions, we characterised Drosophila models with targeted overexpression of human Tau, human Amyloid-β or the fly orthologue of DYRK1A, called minibrain (mnb). We found targeted overexpression of these AD-associated genes caused degeneration of photoreceptor neurons, shortened lifespan, as well as causing loss of locomotor performance, sleep, and memory. Treatment with the experimental DYRK1A inhibitor PST-001 decreased pathological phosphorylation of human Tau [at serine (S) 262]. PST-001 reduced degeneration caused by human Tau, Amyloid-β or mnb lengthening lifespan as well as improving locomotion, sleep and memory loss caused by expression of these AD and DS genes. This demonstrated PST-001 effectiveness as a potential new therapeutic targeting AD and DS pathology.
Collapse
Affiliation(s)
- Bangfu Zhu
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Science, University of Bristol, Bristol, United Kingdom
| | - Tom Parsons
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Science, University of Bristol, Bristol, United Kingdom
| | - Wenche Stensen
- Department of Chemistry, The Arctic University of Norway, Tromsø, Norway
- Pharmasum Therapeutics AS, ShareLab, Forskningsparken i Oslo, Oslo, Norway
| | - John S. Mjøen Svendsen
- Department of Chemistry, The Arctic University of Norway, Tromsø, Norway
- Pharmasum Therapeutics AS, ShareLab, Forskningsparken i Oslo, Oslo, Norway
| | - Anders Fugelli
- Pharmasum Therapeutics AS, ShareLab, Forskningsparken i Oslo, Oslo, Norway
| | - James J. L. Hodge
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Science, University of Bristol, Bristol, United Kingdom
- *Correspondence: James J. L. Hodge,
| |
Collapse
|
15
|
Szczepański J, Tuszewska H, Trotsko N. Anticancer Profile of Rhodanines: Structure-Activity Relationship (SAR) and Molecular Targets-A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123750. [PMID: 35744873 PMCID: PMC9231410 DOI: 10.3390/molecules27123750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
Abstract
The rhodanine core is a well-known privileged heterocycle in medicinal chemistry. The rhodanines, as subtypes of thiazolidin-4-ones, show a broad spectrum of biological activity, including anticancer properties. This review aims to analyze the anticancer features of the rhodanines described over the last decade in the scientific literature. The structure–activity relationship of rhodanine derivatives, as well as some of the molecular targets, were discussed. The information contained in this review could be of benefit to the design of new, effective small molecules with anticancer potential among rhodanine derivatives or their related heterocycles.
Collapse
|
16
|
Zhao L, Xiong X, Liu L, Liang Q, Tong R, Feng X, Bai L, Shi J. Recent research and development of DYRK1A inhibitors. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Identification of Pharmacophoric Fragments of DYRK1A Inhibitors Using Machine Learning Classification Models. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061753. [PMID: 35335117 PMCID: PMC8954712 DOI: 10.3390/molecules27061753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 11/17/2022]
Abstract
Dual-specific tyrosine phosphorylation regulated kinase 1 (DYRK1A) has been regarded as a potential therapeutic target of neurodegenerative diseases, and considerable progress has been made in the discovery of DYRK1A inhibitors. Identification of pharmacophoric fragments provides valuable information for structure- and fragment-based design of potent and selective DYRK1A inhibitors. In this study, seven machine learning methods along with five molecular fingerprints were employed to develop qualitative classification models of DYRK1A inhibitors, which were evaluated by cross-validation, test set, and external validation set with four performance indicators of predictive classification accuracy (CA), the area under receiver operating characteristic (AUC), Matthews correlation coefficient (MCC), and balanced accuracy (BA). The PubChem fingerprint-support vector machine model (CA = 0.909, AUC = 0.933, MCC = 0.717, BA = 0.855) and PubChem fingerprint along with the artificial neural model (CA = 0.862, AUC = 0.911, MCC = 0.705, BA = 0.870) were considered as the optimal modes for training set and test set, respectively. A hybrid data balancing method SMOTETL, a combination of synthetic minority over-sampling technique (SMOTE) and Tomek link (TL) algorithms, was applied to explore the impact of balanced learning on the performance of models. Based on the frequency analysis and information gain, pharmacophoric fragments related to DYRK1A inhibition were also identified. All the results will provide theoretical supports and clues for the screening and design of novel DYRK1A inhibitors.
Collapse
|
18
|
Shahroz MM, Sharma HK, Altamimi ASA, Alamri MA, Ali A, Ali A, Alqahtani S, Altharawi A, Alabbas AB, Alossaimi MA, Riadi Y, Firoz A, Afzal O. Novel and Potential Small Molecule Scaffolds as DYRK1A Inhibitors by Integrated Molecular Docking-Based Virtual Screening and Dynamics Simulation Study. Molecules 2022; 27:1159. [PMID: 35208955 PMCID: PMC8875901 DOI: 10.3390/molecules27041159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 12/16/2022] Open
Abstract
The dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a novel, promising and emerging biological target for therapeutic intervention in neurodegenerative diseases, especially in Alzheimer's disease (AD). The molMall database, comprising rare, diverse and unique compounds, was explored for molecular docking-based virtual screening against the DYRK1A protein, in order to find out potential inhibitors. Ligands exhibiting hydrogen bond interactions with key amino acid residues such as Ile165, Lys188 (catalytic), Glu239 (gk+1), Leu241 (gk+3), Ser242, Asn244, and Asp307, of the target protein, were considered potential ligands. Hydrogen bond interactions with Leu241 (gk+3) were considered key determinants for the selection. High scoring structures were also docked by Glide XP docking in the active sites of twelve DYRK1A related protein kinases, viz. DYRK1B, DYRK2, CDK5/p25, CK1, CLK1, CLK3, GSK3β, MAPK2, MAPK10, PIM1, PKA, and PKCα, in order to find selective DYRK1A inhibitors. MM/GBSA binding free energies of selected ligand-protein complexes were also calculated in order to remove false positive hits. Physicochemical and pharmacokinetic properties of the selected six hit ligands were also computed and related with the proposed limits for orally active CNS drugs. The computational toxicity webserver ProTox-II was used to predict the toxicity profile of selected six hits (molmall IDs 9539, 11352, 15938, 19037, 21830 and 21878). The selected six docked ligand-protein systems were exposed to 100 ns molecular dynamics (MD) simulations to validate their mechanism of interactions and stability in the ATP pocket of human DYRK1A kinase. All six ligands were found to be stable in the ATP binding pocket of DYRK1A kinase.
Collapse
Affiliation(s)
- Mir Mohammad Shahroz
- Department of Pharmaceutical Chemistry, College of Pharmacy, Sri Satya Sai University of Technology and Medical Sciences, Sehore 466001, Madhya Pradesh, India;
| | - Hemant Kumar Sharma
- Department of Pharmaceutical Chemistry, College of Pharmacy, Sri Satya Sai University of Technology and Medical Sciences, Sehore 466001, Madhya Pradesh, India;
| | - Abdulmalik S. A. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al Kharj 11942, Saudi Arabia; (A.S.A.A.); (M.A.A.); (S.A.); (A.A.); (A.B.A.); (M.A.A.); (Y.R.)
| | - Mubarak A. Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al Kharj 11942, Saudi Arabia; (A.S.A.A.); (M.A.A.); (S.A.); (A.A.); (A.B.A.); (M.A.A.); (Y.R.)
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Amena Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Safar Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al Kharj 11942, Saudi Arabia; (A.S.A.A.); (M.A.A.); (S.A.); (A.A.); (A.B.A.); (M.A.A.); (Y.R.)
| | - Ali Altharawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al Kharj 11942, Saudi Arabia; (A.S.A.A.); (M.A.A.); (S.A.); (A.A.); (A.B.A.); (M.A.A.); (Y.R.)
| | - Alhumaidi B. Alabbas
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al Kharj 11942, Saudi Arabia; (A.S.A.A.); (M.A.A.); (S.A.); (A.A.); (A.B.A.); (M.A.A.); (Y.R.)
| | - Manal A. Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al Kharj 11942, Saudi Arabia; (A.S.A.A.); (M.A.A.); (S.A.); (A.A.); (A.B.A.); (M.A.A.); (Y.R.)
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al Kharj 11942, Saudi Arabia; (A.S.A.A.); (M.A.A.); (S.A.); (A.A.); (A.B.A.); (M.A.A.); (Y.R.)
| | - Ahmad Firoz
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia;
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al Kharj 11942, Saudi Arabia; (A.S.A.A.); (M.A.A.); (S.A.); (A.A.); (A.B.A.); (M.A.A.); (Y.R.)
| |
Collapse
|
19
|
Liu T, Wang Y, Wang J, Ren C, Chen H, Zhang J. DYRK1A inhibitors for disease therapy: Current status and perspectives. Eur J Med Chem 2022; 229:114062. [PMID: 34954592 DOI: 10.1016/j.ejmech.2021.114062] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 02/05/2023]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1 A (DYRK1A) is a conserved protein kinase that plays essential roles in various biological processes. It is located in the region q22.2 of chromosome 21, which is involved in the pathogenesis of Down syndrome (DS). Moreover, DYRK1A has been shown to promote the accumulation of amyloid beta (Aβ) peptides leading to gradual Tau hyperphosphorylation, which contributes to neurodegeneration. Additionally, alterations in the DRK1A expression are also associated with cancer and diabetes. Recent years have witnessed an explosive increase in the development of DYRK1A inhibitors. A variety of novel DYRK1A inhibitors have been reported as potential treatments for human diseases. In this review, the latest therapeutic potential of DYRK1A for different diseases and the novel DYRK1A inhibitors discoveries are summarized, guiding future inhibitor development and structural optimization.
Collapse
Affiliation(s)
- Tong Liu
- Targeted Tracer Research and development laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Institute for Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuxi Wang
- Targeted Tracer Research and development laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Institute for Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan, 611130, China
| | - Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Jifa Zhang
- Targeted Tracer Research and development laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Institute for Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
20
|
Haghighijoo Z, Zamani L, Moosavi F, Emami S. Therapeutic potential of quinazoline derivatives for Alzheimer's disease: A comprehensive review. Eur J Med Chem 2022; 227:113949. [PMID: 34742016 DOI: 10.1016/j.ejmech.2021.113949] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/02/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022]
Abstract
Quinazolines are considered as a promising class of bioactive heterocyclic compounds with broad properties. Particularly, the quinazoline scaffold has an impressive role in the design and synthesis of new CNS-active drugs. The drug-like properties and pharmacological characteristics of quinazoline could lead to different drugs with various targets. Among CNS disorders, Alzheimer's disease (AD) is a progressive neurodegenerative disorder with memory loss, cognitive decline and language dysfunction. AD is a complex and multifactorial disease therefore, the need for finding multi-target drugs against this devastative disease is urgent. A literature survey revealed that quinazoline derivatives have diverse therapeutic potential for AD as modulators/inhibitors of β-amyloid, tau protein, cholinesterases, monoamine oxidases, and phosphodiesterases as well as other protective effects. Thus, we describe here the most relevant and recent studies about anti-AD agents with quinazoline structure which can further aid the development and discovery of new anti-AD agents.
Collapse
Affiliation(s)
- Zahra Haghighijoo
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Leila Zamani
- Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
21
|
AlNajjar YT, Gabr M, ElHady AK, Salah M, Wilms G, Abadi AH, Becker W, Abdel-Halim M, Engel M. Discovery of novel 6-hydroxybenzothiazole urea derivatives as dual Dyrk1A/α-synuclein aggregation inhibitors with neuroprotective effects. Eur J Med Chem 2022; 227:113911. [PMID: 34710745 DOI: 10.1016/j.ejmech.2021.113911] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/20/2022]
Abstract
A role of Dyrk1A in the progression of Down syndrome-related Alzheimer's disease (AD) is well supported. However, the involvement of Dyrk1A in the pathogenesis of Parkinson's disease (PD) was much less studied, and it is not clear whether it would be promising to test Dyrk1A inhibitors in relevant PD models. Herein, we modified our previously published 1-(6-hydroxybenzo[d]thiazol-2-yl)-3-phenylurea scaffold of Dyrk1A inhibitors to obtain a new series of analogues with higher selectivity for Dyrk1A on the one hand, but also with a novel, additional activity as inhibitors of α-synuclein (α-syn) aggregation, a major pathogenic hallmark of PD. The phenyl acetamide derivative b27 displayed the highest potency against Dyrk1A with an IC50 of 20 nM and high selectivity over closely related kinases. Furthermore, b27 was shown to successfully target intracellular Dyrk1A and to inhibit SF3B1 phosphorylation in HeLa cells with an IC50 of 690 nM. In addition, two compounds among the Dyrk1A inhibitors, b1 and b20, also suppressed the aggregation of α-synuclein (α-syn) oligomers (with IC50 values of 10.5 μM and 7.8 μM, respectively). Both compounds but not the Dyrk1A reference inhibitor harmine protected SH-SY5Y neuroblastoma cells against α-syn-induced cytotoxicity, with b20 exhibiting a higher neuroprotective effect. Compound b1 and harmine were more efficient in protecting SH-SY5Y cells against 6-hydroxydopamine-induced cell death, an effect that was previously correlated to Dyrk1A inactivation in cells but not yet verified using chemical inhibitors. The presented dual inhibitors exhibited a novel activity profile encouraging for further testing in neurodegenerative disease models.
Collapse
Affiliation(s)
- Yasmeen T AlNajjar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Moustafa Gabr
- Department of Radiology, Stanford University, CA, 94305, United States
| | - Ahmed K ElHady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt; School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt
| | - Mohamed Salah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts, Cairo, 12451, Egypt
| | - Gerrit Wilms
- Institute of Pharmacology and Toxicology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Walter Becker
- Institute of Pharmacology and Toxicology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt.
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123, Saarbrücken, Germany.
| |
Collapse
|
22
|
Saeger HN, Olson DE. Psychedelic-inspired approaches for treating neurodegenerative disorders. J Neurochem 2021; 162:109-127. [PMID: 34816433 DOI: 10.1111/jnc.15544] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 12/21/2022]
Abstract
Psychedelics are increasingly being recognized for their potential to treat a wide range of brain disorders including depression, post-traumatic stress disorder (PTSD), and substance use disorder. Their broad therapeutic potential might result from an ability to rescue cortical atrophy common to many neuropsychiatric and neurodegenerative diseases by impacting neurotrophic factor gene expression, activating neuronal growth and survival mechanisms, and modulating the immune system. While the therapeutic potential of psychedelics has not yet been extended to neurodegenerative disorders, we provide evidence suggesting that approaches based on psychedelic science might prove useful for treating these diseases. The primary target of psychedelics, the 5-HT2A receptor, plays key roles in cortical neuron health and is dysregulated in Alzheimer's disease. Moreover, evidence suggests that psychedelics and related compounds could prove useful for treating the behavioral and psychological symptoms of dementia (BPSD). While more research is needed to probe the effects of psychedelics in models of neurodegenerative diseases, the robust effects of these compounds on structural and functional neuroplasticity and inflammation clearly warrant further investigation.
Collapse
Affiliation(s)
- Hannah N Saeger
- Pharmacology and Toxicology Graduate Group, University of California, Davis, Davis, California, USA
| | - David E Olson
- Department of Chemistry, University of California, Davis, Davis, California, USA.,Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, California, USA.,Center for Neuroscience, University of California, Davis, Davis, California, USA
| |
Collapse
|
23
|
Nadeem MS, Hosawi S, Alshehri S, Ghoneim MM, Imam SS, Murtaza BN, Kazmi I. Symptomatic, Genetic, and Mechanistic Overlaps between Autism and Alzheimer's Disease. Biomolecules 2021; 11:1635. [PMID: 34827633 PMCID: PMC8615882 DOI: 10.3390/biom11111635] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 02/02/2023] Open
Abstract
Autism spectrum disorder (ASD) and Alzheimer's disease (AD) are neurodevelopmental and neurodegenerative disorders affecting two opposite ends of life span, i.e., childhood and old age. Both disorders pose a cumulative threat to human health, with the rate of incidences increasing considerably worldwide. In the context of recent developments, we aimed to review correlated symptoms and genetics, and overlapping aspects in the mechanisms of the pathogenesis of ASD and AD. Dementia, insomnia, and weak neuromuscular interaction, as well as communicative and cognitive impairments, are shared symptoms. A number of genes and proteins linked with both disorders have been tabulated, including MECP2, ADNP, SCN2A, NLGN, SHANK, PTEN, RELN, and FMR1. Theories about the role of neuron development, processing, connectivity, and levels of neurotransmitters in both disorders have been discussed. Based on the recent literature, the roles of FMRP (Fragile X mental retardation protein), hnRNPC (heterogeneous ribonucleoprotein-C), IRP (Iron regulatory proteins), miRNAs (MicroRNAs), and α-, β0, and γ-secretases in the posttranscriptional regulation of cellular synthesis and processing of APP (amyloid-β precursor protein) have been elaborated to describe the parallel and overlapping routes and mechanisms of ASD and AD pathogenesis. However, the interactive role of genetic and environmental factors, oxidative and metal ion stress, mutations in the associated genes, and alterations in the related cellular pathways in the development of ASD and AD needs further investigation.
Collapse
Affiliation(s)
- Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.S.N.); (S.H.)
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.S.N.); (S.H.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.)
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology (AUST), Abbottabad 22310, Pakistan;
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.S.N.); (S.H.)
| |
Collapse
|
24
|
Design and Microwave Synthesis of New (5 Z) 5-Arylidene-2-thioxo-1,3-thiazolinidin-4-one and (5 Z) 2-Amino-5-arylidene-1,3-thiazol-4(5 H)-one as New Inhibitors of Protein Kinase DYRK1A. Pharmaceuticals (Basel) 2021; 14:ph14111086. [PMID: 34832868 PMCID: PMC8623179 DOI: 10.3390/ph14111086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 02/03/2023] Open
Abstract
Here, we report on the synthesis of libraries of new 5-arylidene-2-thioxo-1,3-thiazolidin-4-ones 3 (twenty-two compounds) and new 2-amino-5-arylidene-1,3-thiazol-4(5H)-ones 5 (twenty-four compounds) with stereo controlled Z-geometry under microwave irradiation. The 46 designed final compounds were tested in order to determine their activity against four representative protein kinases (DYR1A, CK1, CDK5/p25, and GSK3α/β). Among these 1,3-thiazolidin-4-ones, the molecules (5Z) 5-(4-hydroxybenzylidene)-2-thioxo-1,3-thiazolidin-4-one 3e (IC50 0.028 μM) and (5Z)-5-benzo[1,3]dioxol-5-ylmethylene-2-(pyridin-2-yl)amino-1,3-thiazol-4(5H)-one 5s (IC50 0.033 μM) were identified as lead compounds and as new nanomolar DYRK1A inhibitors. Some of these compounds in the two libraries have been also evaluated for their in vitro inhibition of cell proliferation (Huh7 D12, Caco2, MDA-MB 231, HCT 116, PC3, and NCI-H2 tumor cell lines). These results will enable us to use the 1,3-thiazolidin-4-one core as pharmacophores to develop potent treatment for neurological or oncological disorders in which DYRK1A is fully involved.
Collapse
|
25
|
MacAlpine J, Daniel-Ivad M, Liu Z, Yano J, Revie NM, Todd RT, Stogios PJ, Sanchez H, O'Meara TR, Tompkins TA, Savchenko A, Selmecki A, Veri AO, Andes DR, Fidel PL, Robbins N, Nodwell J, Whitesell L, Cowen LE. A small molecule produced by Lactobacillus species blocks Candida albicans filamentation by inhibiting a DYRK1-family kinase. Nat Commun 2021; 12:6151. [PMID: 34686660 PMCID: PMC8536679 DOI: 10.1038/s41467-021-26390-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/01/2021] [Indexed: 11/23/2022] Open
Abstract
The fungus Candida albicans is an opportunistic pathogen that can exploit imbalances in microbiome composition to invade its human host, causing pathologies ranging from vaginal candidiasis to fungal sepsis. Bacteria of the genus Lactobacillus are colonizers of human mucosa and can produce compounds with bioactivity against C. albicans. Here, we show that some Lactobacillus species produce a small molecule under laboratory conditions that blocks the C. albicans yeast-to-filament transition, an important virulence trait. It remains unexplored whether the compound is produced in the context of the human host. Bioassay-guided fractionation of Lactobacillus-conditioned medium linked this activity to 1-acetyl-β-carboline (1-ABC). We use genetic approaches to show that filamentation inhibition by 1-ABC requires Yak1, a DYRK1-family kinase. Additional biochemical characterization of structurally related 1-ethoxycarbonyl-β-carboline confirms that it inhibits Yak1 and blocks C. albicans biofilm formation. Thus, our findings reveal Lactobacillus-produced 1-ABC can prevent the yeast-to-filament transition in C. albicans through inhibition of Yak1.
Collapse
Affiliation(s)
- Jessie MacAlpine
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | - Zhongle Liu
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Junko Yano
- Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center School of Dentistry, New Orleans, LA, USA
| | - Nicole M Revie
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Robert T Todd
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Peter J Stogios
- BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Center for Structural Genomics of Infectious Diseases (CSGID), Chicago, IL, USA
| | - Hiram Sanchez
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Teresa R O'Meara
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Thomas A Tompkins
- Rosell Institute for Microbiome and Probiotics, 6100 Avenue Royalmount, Montreal, QC, Canada
| | - Alexei Savchenko
- BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Center for Structural Genomics of Infectious Diseases (CSGID), Chicago, IL, USA
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Amanda O Veri
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - David R Andes
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Paul L Fidel
- Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center School of Dentistry, New Orleans, LA, USA
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Justin Nodwell
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
26
|
Park A, Hwang J, Lee JY, Heo EJ, Na YJ, Kang S, Jeong KS, Kim KY, Shin SJ, Lee H. Synthesis of novel 1H-Pyrazolo[3,4-b]pyridine derivatives as DYRK 1A/1B inhibitors. Bioorg Med Chem Lett 2021; 47:128226. [PMID: 34182093 DOI: 10.1016/j.bmcl.2021.128226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 02/06/2023]
Abstract
As DYRK1A and 1B inhibitors, 1H-pyrazolo[3,4-b]pyridine derivatives were synthesized. Mostly, 3-aryl-5-arylamino compounds (6) and 3,5-diaryl compounds (8 and 9) were prepared and especially, 3,5-diaryl compound 8 and 9 showed excellent DYRK1B inhibitory enzymatic activities with IC50 Values of 3-287 nM. Among them, 3-(4-hydroxyphenyl), 5-(3,4-dihydroxyphenyl)-1H-pyrazolo[3,4-b]pyridine (8h) exhibited the highest inhibitory enzymatic activity (IC50 = 3 nM) and cell proliferation inhibitory activity (IC50 = 1.6 µM) towards HCT116 colon cancer cells. Also compound 8h has excellent inhibitory activities in patient-derived colon cancer organoids model as well as in 3D spheroid assay model of SW480 and SW620. The docking study supported that we confirmed that compound 8h binds to DYRK1B through various hydrogen bonding interactions and hydrophobic interactions.
Collapse
Affiliation(s)
- Areum Park
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea; Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Jieon Hwang
- Department of Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Joo-Youn Lee
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Eun Ji Heo
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yoon-Ju Na
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea; Drug Discovery Platform Technology Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Sein Kang
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea; Drug Discovery Platform Technology Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Kyu-Sung Jeong
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Ki Young Kim
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea; Drug Discovery Platform Technology Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.
| | - Sang Joon Shin
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Hyuk Lee
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea; Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
27
|
GSK-3β, FYN, and DYRK1A: Master Regulators in Neurodegenerative Pathways. Int J Mol Sci 2021; 22:ijms22169098. [PMID: 34445804 PMCID: PMC8396491 DOI: 10.3390/ijms22169098] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Protein kinases (PKs) have been recognized as central nervous system (CNS)-disease-relevant targets due to their master regulatory role in different signal transduction cascades in the neuroscience space. Among them, GSK-3β, FYN, and DYRK1A play a crucial role in the neurodegeneration context, and the deregulation of all three PKs has been linked to different CNS disorders with unmet medical needs, including Alzheimer’s disease (AD), Parkinson’s disease (PD), frontotemporal lobar degeneration (FTLD), and several neuromuscular disorders. The multifactorial nature of these diseases, along with the failure of many advanced CNS clinical trials, and the lengthy approval process of a novel CNS drug have strongly limited the CNS drug discovery. However, in the near-decade from 2010 to 2020, several computer-assisted drug design strategies have been combined with synthetic efforts to develop potent and selective GSK-3β, FYN, and DYRK1A inhibitors as disease-modifying agents. In this review, we described both structural and functional aspects of GSK-3β, FYN, and DYRK1A and their involvement and crosstalk in different CNS pathological signaling pathways. Moreover, we outlined attractive medicinal chemistry approaches including multi-target drug design strategies applied to overcome some limitations of known PKs inhibitors and discover improved modulators with suitable blood–brain barrier (BBB) permeability and drug-like properties.
Collapse
|
28
|
Pucelik B, Barzowska A, Dąbrowski JM, Czarna A. Diabetic Kinome Inhibitors-A New Opportunity for β-Cells Restoration. Int J Mol Sci 2021; 22:9083. [PMID: 34445786 PMCID: PMC8396662 DOI: 10.3390/ijms22169083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 01/03/2023] Open
Abstract
Diabetes, and several diseases related to diabetes, including cancer, cardiovascular diseases and neurological disorders, represent one of the major ongoing threats to human life, becoming a true pandemic of the 21st century. Current treatment strategies for diabetes mainly involve promoting β-cell differentiation, and one of the most widely studied targets for β-cell regeneration is DYRK1A kinase, a member of the DYRK family. DYRK1A has been characterized as a key regulator of cell growth, differentiation, and signal transduction in various organisms, while further roles and substrates are the subjects of extensive investigation. The targets of interest in this review are implicated in the regulation of β-cells through DYRK1A inhibition-through driving their transition from highly inefficient and death-prone populations into efficient and sufficient precursors of islet regeneration. Increasing evidence for the role of DYRK1A in diabetes progression and β-cell proliferation expands the potential for pharmaceutical applications of DYRK1A inhibitors. The variety of new compounds and binding modes, determined by crystal structure and in vitro studies, may lead to new strategies for diabetes treatment. This review provides recent insights into the initial self-activation of DYRK1A by tyrosine autophosphorylation. Moreover, the importance of developing novel DYRK1A inhibitors and their implications for the treatment of diabetes are thoroughly discussed. The evolving understanding of DYRK kinase structure and function and emerging high-throughput screening technologies have been described. As a final point of this work, we intend to promote the term "diabetic kinome" as part of scientific terminology to emphasize the role of the synergistic action of multiple kinases in governing the molecular processes that underlie this particular group of diseases.
Collapse
Affiliation(s)
- Barbara Pucelik
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (B.P.); (A.B.)
| | - Agata Barzowska
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (B.P.); (A.B.)
| | - Janusz M. Dąbrowski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Anna Czarna
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (B.P.); (A.B.)
| |
Collapse
|
29
|
Henderson SH, Sorrell F, Bennett J, Fedorov O, Hanley MT, Godoi PH, Ruela de Sousa R, Robinson S, Ashall-Kelly A, Hopkins Navratilova I, Walter DS, Elkins JM, Ward SE. Discovery and Characterization of Selective and Ligand-Efficient DYRK Inhibitors. J Med Chem 2021; 64:11709-11728. [PMID: 34342227 PMCID: PMC8482766 DOI: 10.1021/acs.jmedchem.1c01115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Indexed: 11/29/2022]
Abstract
Dual-specificity tyrosine-regulated kinase 1A (DYRK1A) regulates the proliferation and differentiation of neuronal progenitor cells during brain development. Consequently, DYRK1A has attracted interest as a target for the treatment of neurodegenerative diseases, including Alzheimer's disease (AD) and Down's syndrome. Recently, the inhibition of DYRK1A has been investigated as a potential treatment for diabetes, while DYRK1A's role as a mediator in the cell cycle has garnered interest in oncologic indications. Structure-activity relationship (SAR) analysis in combination with high-resolution X-ray crystallography leads to a series of pyrazolo[1,5-b]pyridazine inhibitors with excellent ligand efficiencies, good physicochemical properties, and a high degree of selectivity over the kinome. Compound 11 exhibited good permeability and cellular activity without P-glycoprotein liability, extending the utility of 11 in an in vivo setting. These pyrazolo[1,5-b]pyridazines are a viable lead series in the discovery of new therapies for the treatment of diseases linked to DYRK1A function.
Collapse
Affiliation(s)
- Scott H. Henderson
- Sussex
Drug Discovery Centre, University of Sussex, Brighton BN1 9RH, U.K.
| | - Fiona Sorrell
- Structural
Genomics Consortium, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, U.K.
| | - James Bennett
- Target
Discovery Institute, University of Oxford, Oxford OX3 7FZ, U.K.
| | - Oleg Fedorov
- Target
Discovery Institute, University of Oxford, Oxford OX3 7FZ, U.K.
| | - Marcus T. Hanley
- Medicines
Discovery Institute, Cardiff University, Cardiff CF10 3AT, U.K.
| | - Paulo H. Godoi
- Structural
Genomics Consortium, Universidade Estadual
de Campinas, Cidade Universitária
Zeferino Vaz, Av. Dr. André Tosello, 550, Barão Geraldo, Campinas, SP 13083-886, Brazil
| | - Roberta Ruela de Sousa
- Structural
Genomics Consortium, Universidade Estadual
de Campinas, Cidade Universitária
Zeferino Vaz, Av. Dr. André Tosello, 550, Barão Geraldo, Campinas, SP 13083-886, Brazil
| | - Sean Robinson
- Exscientia, The Schrödinger Building,
Oxford Science Park, Oxford OX4 4GE, U.K.
| | | | - Iva Hopkins Navratilova
- Exscientia, The Schrödinger Building,
Oxford Science Park, Oxford OX4 4GE, U.K.
- University
of Dundee, Dow Street, Dundee DD1
5EH, U.K
| | - Daryl S. Walter
- Evotec (UK)
Ltd., 112-114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K.
| | - Jonathan M. Elkins
- Structural
Genomics Consortium, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, U.K.
- Structural
Genomics Consortium, Universidade Estadual
de Campinas, Cidade Universitária
Zeferino Vaz, Av. Dr. André Tosello, 550, Barão Geraldo, Campinas, SP 13083-886, Brazil
| | - Simon E. Ward
- Medicines
Discovery Institute, Cardiff University, Cardiff CF10 3AT, U.K.
| |
Collapse
|
30
|
Weber C, Sipos M, Paczal A, Balint B, Kun V, Foloppe N, Dokurno P, Massey AJ, Walmsley DL, Hubbard RE, Murray J, Benwell K, Edmonds T, Demarles D, Bruno A, Burbridge M, Cruzalegui F, Kotschy A. Structure-Guided Discovery of Potent and Selective DYRK1A Inhibitors. J Med Chem 2021; 64:6745-6764. [PMID: 33975430 DOI: 10.1021/acs.jmedchem.1c00023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The kinase DYRK1A is an attractive target for drug discovery programs due to its implication in multiple diseases. Through a fragment screen, we identified a simple biaryl compound that is bound to the DYRK1A ATP site with very high efficiency, although with limited selectivity. Structure-guided optimization cycles enabled us to convert this fragment hit into potent and selective DYRK1A inhibitors. Exploiting the structural differences in DYRK1A and its close homologue DYRK2, we were able to fine-tune the selectivity of our inhibitors. Our best compounds potently inhibited DYRK1A in the cell culture and in vivo and demonstrated drug-like properties. The inhibition of DYRK1A in vivo translated into dose-dependent tumor growth inhibition in a model of ovarian carcinoma.
Collapse
Affiliation(s)
- Csaba Weber
- Servier Research Institute of Medicinal Chemistry, Záhony u. 7., H-1031 Budapest, Hungary
| | - Melinda Sipos
- Servier Research Institute of Medicinal Chemistry, Záhony u. 7., H-1031 Budapest, Hungary
| | - Attila Paczal
- Servier Research Institute of Medicinal Chemistry, Záhony u. 7., H-1031 Budapest, Hungary
| | - Balazs Balint
- Servier Research Institute of Medicinal Chemistry, Záhony u. 7., H-1031 Budapest, Hungary
| | - Vilibald Kun
- Servier Research Institute of Medicinal Chemistry, Záhony u. 7., H-1031 Budapest, Hungary
| | | | - Pawel Dokurno
- Vernalis (R&D) Ltd., Granta Park, CB21 6GB Cambridge, U.K
| | | | | | | | - James Murray
- Vernalis (R&D) Ltd., Granta Park, CB21 6GB Cambridge, U.K
| | - Karen Benwell
- Vernalis (R&D) Ltd., Granta Park, CB21 6GB Cambridge, U.K
| | - Thomas Edmonds
- Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Didier Demarles
- Technologie Servier, 27 Rue Eugène Vignat, 45000 Orleans, France
| | - Alain Bruno
- Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Mike Burbridge
- Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Francisco Cruzalegui
- Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Andras Kotschy
- Servier Research Institute of Medicinal Chemistry, Záhony u. 7., H-1031 Budapest, Hungary
| |
Collapse
|
31
|
Discovery of potent glycogen synthase kinase 3/cholinesterase inhibitors with neuroprotection as potential therapeutic agent for Alzheimer’s disease. Bioorg Med Chem 2021; 30:115940. [DOI: 10.1016/j.bmc.2020.115940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/02/2020] [Accepted: 12/06/2020] [Indexed: 01/02/2023]
|
32
|
Laham AJ, Saber-Ayad M, El-Awady R. DYRK1A: a down syndrome-related dual protein kinase with a versatile role in tumorigenesis. Cell Mol Life Sci 2021; 78:603-619. [PMID: 32870330 PMCID: PMC11071757 DOI: 10.1007/s00018-020-03626-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/22/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a dual kinase that can phosphorylate its own activation loop on tyrosine residue and phosphorylate its substrates on threonine and serine residues. It is the most studied member of DYRK kinases, because its gene maps to human chromosome 21 within the Down syndrome critical region (DSCR). DYRK1A overexpression was found to be responsible for the phenotypic features observed in Down syndrome such as mental retardation, early onset neurodegenerative, and developmental heart defects. Besides its dual activity in phosphorylation, DYRK1A carries the characteristic of duality in tumorigenesis. Many studies indicate its possible role as a tumor suppressor gene; however, others prove its pro-oncogenic activity. In this review, we will focus on its multifaceted role in tumorigenesis by explaining its participation in some cancer hallmarks pathways such as proliferative signaling, transcription, stress, DNA damage repair, apoptosis, and angiogenesis, and finally, we will discuss targeting DYRK1A as a potential strategy for management of cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Amina Jamal Laham
- College of Medicine, University of Sharjah, Sharjah, UAE
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah, UAE.
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE.
| | - Raafat El-Awady
- College of Medicine, University of Sharjah, Sharjah, UAE.
- College of Pharmacy, University of Sharjah, Sharjah, UAE.
| |
Collapse
|
33
|
Guo Y, Wu Y, Li N, Wang Z. Up-regulation of miRNA-151-3p enhanced the neuroprotective effect of dexmedetomidine against β-amyloid by targeting DAPK-1 and TP53. Exp Mol Pathol 2020; 118:104587. [PMID: 33275947 DOI: 10.1016/j.yexmp.2020.104587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and is the leading lethal disease among the elderly. Dexmedetomidine (Dex) has been reported to have multiple neuroprotective effects, but its effect against beta-amyloid (Aβ) has not been completely determined and understood. Dex can activate both α2 adrenoceptor/cAMP/PKA and imidazoline I receptors/ERK1/2 signals. To determine which signal is critical for the effect of Dex on Aβ toxicity, we treated SH-SY5Y and PC12 cells with inhibitors of α2 adrenoceptor and ERK1/2. Dex suppressed the apoptosis of neuronal cells and production of reactive oxygen species induced by Aβ. These suppressive effects were attenuated by both inhibitors. As indicated by western blot, Dex stimulates both pro-apoptosis (activating death-associated protein kinase 1 [DAPK-1] and p53) and anti-apoptotic (up-regulating bcl-2 and bcl-xL) signals in Aβ-treated neuronal cells. This effect is likely associated with ERK1/2 signaling because ERK1/2 inhibitor disrupts the effect of Dex on these signals. To eliminate the pro-apoptotic effect of Dex while retaining its anti-apoptosis action, we screened miRNA-151-3p to target DAPK-1 and p53. Transfection with miRNA-151-3p mimics suppressed DAPK-1 and TP53 expression induced by Dex and increased Nrf-2 and SOD expression. More importantly, increasing miRNA-151-3p enhanced the anti-apoptotic and antioxidative effects of Dex in Aβ-treated neuronal cells. Overall, this study revealed that Dex additionally stimulated pro-apoptosis signaling, although it suppressed Aβ-induced apoptosis of neuronal cells. miRNA-151-3p enhanced the neuroprotective effect of Dex against Aβ by targeting DAPK-1 and TP53.
Collapse
Affiliation(s)
- Yan Guo
- Department of Anesthesiology, Changzhi Medical College, No.271, Taihang East Street, Changzhi City, Shanxi Province 046011, China
| | - Yipeng Wu
- Department of Anesthesiology, Changzhi Medical College, No.271, Taihang East Street, Changzhi City, Shanxi Province 046011, China
| | - Na Li
- Department of Ophthalmology, Changzhi people's Hospital, No.053, Yingbin West Street, Changzhi County, Changzhi City, Shanxi Province 046000, China
| | - Zehua Wang
- Department of Anesthesiology, Changzhi Medical College, No.271, Taihang East Street, Changzhi City, Shanxi Province 046011, China.
| |
Collapse
|
34
|
Jiang X, Zhou J, Wang Y, Chen L, Duan Y, Huang J, Liu C, Chen Y, Liu W, Sun H, Feng F, Qu W. Rational design and biological evaluation of a new class of thiazolopyridyl tetrahydroacridines as cholinesterase and GSK-3 dual inhibitors for Alzheimer’s disease. Eur J Med Chem 2020; 207:112751. [DOI: 10.1016/j.ejmech.2020.112751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/06/2020] [Accepted: 08/09/2020] [Indexed: 12/28/2022]
|
35
|
Le-Nhat-Thuy G, Nguyen Thi N, Pham-The H, Dang Thi TA, Nguyen Thi H, Nguyen Thi TH, Nguyen Hoang S, Nguyen TV. Synthesis and biological evaluation of novel quinazoline-triazole hybrid compounds with potential use in Alzheimer’s disease. Bioorg Med Chem Lett 2020; 30:127404. [DOI: 10.1016/j.bmcl.2020.127404] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022]
|
36
|
Liu YA, Jin Q, Ding Q, Hao X, Mo T, Yan S, Zou Y, Huang Z, Zhang X, Gao W, Wu TYH, Li C, Bursalaya B, Di Donato M, Zhang YQ, Deaton L, Shen W, Taylor B, Kamireddy A, Harb G, Li J, Jia Y, Schumacher AM, Laffitte B, Glynne R, Pan S, McNamara P, Molteni V, Loren J. A Dual Inhibitor of DYRK1A and GSK3β for β-Cell Proliferation: Aminopyrazine Derivative GNF4877. ChemMedChem 2020; 15:1562-1570. [PMID: 32613743 DOI: 10.1002/cmdc.202000183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/05/2020] [Indexed: 12/14/2022]
Abstract
Loss of β-cell mass and function can lead to insufficient insulin levels and ultimately to hyperglycemia and diabetes mellitus. The mainstream treatment approach involves regulation of insulin levels; however, approaches intended to increase β-cell mass are less developed. Promoting β-cell proliferation with low-molecular-weight inhibitors of dual-specificity tyrosine-regulated kinase 1A (DYRK1A) offers the potential to treat diabetes with oral therapies by restoring β-cell mass, insulin content and glycemic control. GNF4877, a potent dual inhibitor of DYRK1A and glycogen synthase kinase 3β (GSK3β) was previously reported to induce primary human β-cell proliferation in vitro and in vivo. Herein, we describe the lead optimization that lead to the identification of GNF4877 from an aminopyrazine hit identified in a phenotypic high-throughput screening campaign measuring β-cell proliferation.
Collapse
Affiliation(s)
- Yahu A Liu
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Qihui Jin
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Qiang Ding
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Xueshi Hao
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Tingting Mo
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Shanshan Yan
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Yefen Zou
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Zhihong Huang
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Xiaoyue Zhang
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Wenqi Gao
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Tom Y-H Wu
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Chun Li
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Badry Bursalaya
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Michael Di Donato
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - You-Qing Zhang
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Lisa Deaton
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Weijun Shen
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Brandon Taylor
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Anwesh Kamireddy
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - George Harb
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Jing Li
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Yong Jia
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Andrew M Schumacher
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Bryan Laffitte
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Richard Glynne
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Shifeng Pan
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Peter McNamara
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Valentina Molteni
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Jon Loren
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| |
Collapse
|
37
|
Henderson SH, Sorrell F, Bennett J, Hanley MT, Robinson S, Hopkins Navratilova I, Elkins JM, Ward SE. Mining Public Domain Data to Develop Selective DYRK1A Inhibitors. ACS Med Chem Lett 2020; 11:1620-1626. [PMID: 32832032 DOI: 10.1021/acsmedchemlett.0c00279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/30/2020] [Indexed: 01/08/2023] Open
Abstract
Kinases represent one of the most intensively pursued groups of targets in modern-day drug discovery. Often it is desirable to achieve selective inhibition of the kinase of interest over the remaining ∼500 kinases in the human kinome. This is especially true when inhibitors are intended to be used to study the biology of the target of interest. We present a pipeline of open-source software that analyzes public domain data to repurpose compounds that have been used in previous kinase inhibitor development projects. We define the dual-specificity tyrosine-regulated kinase 1A (DYRK1A) as the kinase of interest, and by addition of a single methyl group to the chosen starting point we remove glycogen synthase kinase β (GSK3β) and cyclin-dependent kinase (CDK) inhibition. Thus, in an efficient manner we repurpose a GSK3β/CDK chemotype to deliver 8b, a highly selective DYRK1A inhibitor.
Collapse
Affiliation(s)
- Scott H. Henderson
- Sussex Drug Discovery Centre, University of Sussex, Brighton BN1 9RH, U.K
| | - Fiona Sorrell
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, U.K
| | - James Bennett
- Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, U.K
| | - Marcus T. Hanley
- Medicines Discovery Institute, Cardiff University, Cardiff CF10 3AT, U.K
| | - Sean Robinson
- Exscientia, The Schrödinger Building, Oxford Science
Park, Oxford OX4 4GE, U.K
| | - Iva Hopkins Navratilova
- Exscientia, The Schrödinger Building, Oxford Science
Park, Oxford OX4 4GE, U.K
- University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| | - Jonathan M. Elkins
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, U.K
- Structural Genomics Consortium, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Av. Dr. André Tosello, 550, Barão Geraldo, Campinas, SP 13083-886, Brazil
| | - Simon E. Ward
- Medicines Discovery Institute, Cardiff University, Cardiff CF10 3AT, U.K
| |
Collapse
|
38
|
Loidreau Y, Dubouilh-Benard C, Nourrisson MR, Loaëc N, Meijer L, Besson T, Marchand P. Exploring Kinase Inhibition Properties of 9 H-pyrimido[5,4- b]- and [4,5- b]indol-4-amine Derivatives. Pharmaceuticals (Basel) 2020; 13:ph13050089. [PMID: 32397570 PMCID: PMC7281298 DOI: 10.3390/ph13050089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/01/2020] [Accepted: 05/08/2020] [Indexed: 11/30/2022] Open
Abstract
We previously highlighted the interest in 6,5,6-fused tricyclic analogues of 4-aminoquinazolines as kinase inhibitors in the micromolar to the nanomolar range of IC50 values. For the generation of chemical libraries, the formamide-mediated cyclization of the cyanoamidine precursors was carried out under microwave irradiation in an eco-friendly approach. In order to explore more in-depth the pharmacological interest in such tricyclic skeletons, the central five member ring, i.e., thiophène or furan, was replaced by a pyrrole to afford 9H-pyrimido[5,4-b]- and [4,5-b]indol-4-amine derivatives inspired from harmine. The inhibitory potency of the final products was determined against four protein kinases (CDK5/p25, CK1δ/ε, GSK3α/β, and DYRK1A). As a result, we have identified promising compounds targeting CK1δ/ε and DYRK1A and displaying micromolar and submicromolar IC50 values.
Collapse
Affiliation(s)
- Yvonnick Loidreau
- Normandie Université, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, F-76000 Rouen, France; (Y.L.); (C.D.-B.)
| | - Carole Dubouilh-Benard
- Normandie Université, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, F-76000 Rouen, France; (Y.L.); (C.D.-B.)
| | - Marie-Renée Nourrisson
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000 Nantes, France;
| | - Nadège Loaëc
- Station Biologique de Roscoff, Protein Phosphorylation & Human Disease Group, 29680 Roscoff, France; (N.L.); (L.M.)
| | - Laurent Meijer
- Station Biologique de Roscoff, Protein Phosphorylation & Human Disease Group, 29680 Roscoff, France; (N.L.); (L.M.)
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France
| | - Thierry Besson
- Normandie Université, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, F-76000 Rouen, France; (Y.L.); (C.D.-B.)
- Correspondence: (T.B.); (P.M.); Tel.: +33-235-522-904 (T.B.); +33-253-009-155 (P.M.)
| | - Pascal Marchand
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000 Nantes, France;
- Correspondence: (T.B.); (P.M.); Tel.: +33-235-522-904 (T.B.); +33-253-009-155 (P.M.)
| |
Collapse
|
39
|
Structure-Activity Relationships and Biological Evaluation of 7-Substituted Harmine Analogs for Human β-Cell Proliferation. Molecules 2020; 25:molecules25081983. [PMID: 32340326 PMCID: PMC7221803 DOI: 10.3390/molecules25081983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/26/2022] Open
Abstract
Recently, we have shown that harmine induces β-cell proliferation both in vitro and in vivo, mediated via the DYRK1A-NFAT pathway. We explore structure-activity relationships of the 7-position of harmine for both DYRK1A kinase inhibition and β-cell proliferation based on our related previous structure-activity relationship studies of harmine in the context of diabetes and β-cell specific targeting strategies. 33 harmine analogs of the 7-position substituent were synthesized and evaluated for biological activity. Two novel inhibitors were identified which showed DYRK1A inhibition and human β-cell proliferation capability. The DYRK1A inhibitor, compound 1-2b, induced β-cell proliferation half that of harmine at three times higher concentration. From these studies we can draw the inference that 7-position modification is limited for further harmine optimization focused on β-cell proliferation and cell-specific targeting approach for diabetes therapeutics.
Collapse
|
40
|
Kumar K, Wang P, Wilson J, Zlatanic V, Berrouet C, Khamrui S, Secor C, Swartz EA, Lazarus MB, Sanchez R, Stewart AF, Garcia-Ocana A, DeVita RJ. Synthesis and Biological Validation of a Harmine-Based, Central Nervous System (CNS)-Avoidant, Selective, Human β-Cell Regenerative Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase A (DYRK1A) Inhibitor. J Med Chem 2020; 63:2986-3003. [PMID: 32003560 PMCID: PMC7388697 DOI: 10.1021/acs.jmedchem.9b01379] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recently, our group identified that harmine is able to induce β-cell proliferation both in vitro and in vivo, mediated via the DYRK1A-NFAT pathway. Since, harmine suffers from a lack of selectivity, both against other kinases and CNS off-targets, we therefore sought to expand structure-activity relationships for harmine's DYRK1A activity, to enhance selectivity for off-targets while retaining human β-cell proliferation activity. We carried out optimization of the 9-N-position of harmine to synthesize 29 harmine-based analogs. Several novel inhibitors showed excellent DYRK1A inhibition and human β-cell proliferation capability. An optimized DYRK1A inhibitor, 2-2c, was identified as a novel, efficacious in vivo lead candidate. 2-2c also demonstrates improved selectivity for kinases and CNS off-targets, as well as in vivo efficacy for β-cell proliferation and regeneration at lower doses than harmine. Collectively, these findings demonstrate that 2-2c is a much improved in vivo lead candidate as compared to harmine for the treatment of diabetes.
Collapse
Affiliation(s)
- Kunal Kumar
- Drug Discovery Institute, Icahn School of Medicine at Mount
Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peng Wang
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jessica Wilson
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Viktor Zlatanic
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cecilia Berrouet
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Susmita Khamrui
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cody Secor
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ethan A. Swartz
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael B. Lazarus
- Drug Discovery Institute, Icahn School of Medicine at Mount
Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| | - Roberto Sanchez
- Drug Discovery Institute, Icahn School of Medicine at Mount
Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew F. Stewart
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo Garcia-Ocana
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert J. DeVita
- Drug Discovery Institute, Icahn School of Medicine at Mount
Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
41
|
Liu YA, Jin Q, Zou Y, Ding Q, Yan S, Wang Z, Hao X, Nguyen B, Zhang X, Pan J, Mo T, Jacobsen K, Lam T, Wu TYH, Petrassi HM, Bursulaya B, DiDonato M, Gordon WP, Liu B, Baaten J, Hill R, Nguyen-Tran V, Qiu M, Zhang YQ, Kamireddy A, Espinola S, Deaton L, Ha S, Harb G, Jia Y, Li J, Shen W, Schumacher AM, Colman K, Glynne R, Pan S, McNamara P, Laffitte B, Meeusen S, Molteni V, Loren J. Selective DYRK1A Inhibitor for the Treatment of Type 1 Diabetes: Discovery of 6-Azaindole Derivative GNF2133. J Med Chem 2020; 63:2958-2973. [PMID: 32077280 DOI: 10.1021/acs.jmedchem.9b01624] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Autoimmune deficiency and destruction in either β-cell mass or function can cause insufficient insulin levels and, as a result, hyperglycemia and diabetes. Thus, promoting β-cell proliferation could be one approach toward diabetes intervention. In this report we describe the discovery of a potent and selective DYRK1A inhibitor GNF2133, which was identified through optimization of a 6-azaindole screening hit. In vitro, GNF2133 is able to proliferate both rodent and human β-cells. In vivo, GNF2133 demonstrated significant dose-dependent glucose disposal capacity and insulin secretion in response to glucose-potentiated arginine-induced insulin secretion (GPAIS) challenge in rat insulin promoter and diphtheria toxin A (RIP-DTA) mice. The work described here provides new avenues to disease altering therapeutic interventions in the treatment of type 1 diabetes (T1D).
Collapse
Affiliation(s)
- Yahu A Liu
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Qihui Jin
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Yefen Zou
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Qiang Ding
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Shanshan Yan
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Zhicheng Wang
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Xueshi Hao
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Bao Nguyen
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Xiaoyue Zhang
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Jianfeng Pan
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Tingting Mo
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Kate Jacobsen
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Thanh Lam
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Tom Y-H Wu
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - H Michael Petrassi
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Badry Bursulaya
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Michael DiDonato
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - W Perry Gordon
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Bo Liu
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Janine Baaten
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Robert Hill
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Vân Nguyen-Tran
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Minhua Qiu
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - You-Qing Zhang
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Anwesh Kamireddy
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Sheryll Espinola
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Lisa Deaton
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Sukwon Ha
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - George Harb
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Yong Jia
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Jing Li
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Weijun Shen
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Andrew M Schumacher
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Karyn Colman
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Richard Glynne
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Shifeng Pan
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Peter McNamara
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Bryan Laffitte
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Shelly Meeusen
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Valentina Molteni
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Jon Loren
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| |
Collapse
|
42
|
Martínez Cué C, Dierssen M. Plasticity as a therapeutic target for improving cognition and behavior in Down syndrome. PROGRESS IN BRAIN RESEARCH 2020; 251:269-302. [DOI: 10.1016/bs.pbr.2019.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Lechner C, Flaßhoff M, Falke H, Preu L, Loaëc N, Meijer L, Knapp S, Chaikuad A, Kunick C. [ b]-Annulated Halogen-Substituted Indoles as Potential DYRK1A Inhibitors. Molecules 2019; 24:E4090. [PMID: 31766108 PMCID: PMC6891749 DOI: 10.3390/molecules24224090] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022] Open
Abstract
Since hyperactivity of the protein kinase DYRK1A is linked to several neurodegenerative disorders, DYRK1A inhibitors have been suggested as potential therapeutics for Down syndrome and Alzheimer's disease. Most published inhibitors to date suffer from low selectivity against related kinases or from unfavorable physicochemical properties. In order to identify DYRK1A inhibitors with improved properties, a series of new chemicals based on [b]-annulated halogenated indoles were designed, synthesized, and evaluated for biological activity. Analysis of crystal structures revealed a typical type-I binding mode of the new inhibitor 4-chlorocyclohepta[b]indol-10(5H)-one in DYRK1A, exploiting mainly shape complementarity for tight binding. Conversion of the DYRK1A inhibitor 8-chloro-1,2,3,9-tetrahydro-4H-carbazol-4-one into a corresponding Mannich base hydrochloride improved the aqueous solubility but abrogated kinase inhibitory activity.
Collapse
Affiliation(s)
- Christian Lechner
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany
| | - Maren Flaßhoff
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| | - Hannes Falke
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| | - Lutz Preu
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| | - Nadége Loaëc
- Faculté de Médecine et des Sciences de la Santé UBO, 22 avenue Camille Desmoulins, 29200-Brest, France
- ManRos Therapeutics & Perha Pharmaceuticals, Perharidy Research Center, 29680 Roscoff, France
| | - Laurent Meijer
- ManRos Therapeutics & Perha Pharmaceuticals, Perharidy Research Center, 29680 Roscoff, France
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry and Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Apirat Chaikuad
- Institute for Pharmaceutical Chemistry and Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Conrad Kunick
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany
| |
Collapse
|
44
|
Guo E, Hu Y, Du T, Zhu H, Chen L, Qu W, Zhang J, Xie N, Liu W, Feng F, Xu J. Effects of Picrasma quassioides and its active constituents on Alzheimer's disease in vitro and in vivo. Bioorg Chem 2019; 92:103258. [PMID: 31520892 DOI: 10.1016/j.bioorg.2019.103258] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/30/2019] [Accepted: 09/04/2019] [Indexed: 01/18/2023]
Abstract
Alzheimer disease (AD), a prevalent neurodegenerative disorder, is one of the leading causes of dementia. However, there is no effective drug for this disease to date. Picrasma quassioides (D.Don) Benn, a Chinese traditional medicine, was used mainly for the treatment of inflammation, fever, microbial infection and dysentery. In this paper, we reported that the EtOAc extract of Picrasma quassioides stems showed potential neuroprotective activities in l-glutamate-stimulated PC12 and Aβ25-35-stimulated SH-SY5Y cell models, as well as improved memory and cognitive abilities in AD mice induced by amyloid-β peptide. Moreover, it was revealed that the anti-AD mechanism was related to suppressing neuroinflammatory and reducing Aβ1-42 deposition using ELISA assay kits. To clarify the active components of the EtOAc extract of Picrasma quassioides stems, a systematic phytochemistry study led to isolate and identify six β-carboline alkaloids (1-6), seven canthin-6-one alkaloids (7-13), and five quassinoids (14-18). Among them, four β-carbolines (1-3, and 6) and six canthin-6-ones (7-11, and 13) exhibited potential neuroprotective activities in vitro. Based on these date, the structure-activity relationships of alkaloids were discussed. Furthermore, molecular docking experiments showed that compounds 2 and 3 have high affinity for both of dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYPKIA) and butyrylcholinesterase (BuChE).
Collapse
Affiliation(s)
- Eryan Guo
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yunwei Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Tao Du
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Huilin Zhu
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lei Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wei Qu
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Jie Zhang
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ning Xie
- State Key Laboratory of Innovative Natural Medicines and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co., Ltd., Ganzhou 341000, Jiangxi, China
| | - Wenyuan Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, People's Republic of China; Jiangsu Food & Pharmaceutical Science College, Huaian 223003, People's Republic of China.
| | - Jian Xu
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
45
|
Patil P, Thakur A, Sharma A, Flora SJS. Natural products and their derivatives as multifunctional ligands against Alzheimer's disease. Drug Dev Res 2019; 81:165-183. [PMID: 31820476 DOI: 10.1002/ddr.21587] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 07/02/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD), a complex neurodegenerative disorder causing multiple cellular changes including impaired cholinergic system, beta-amyloid (βA) aggregation, tau hyperphosphorylation, metal dyshomeostasis, neuroinflammation, and many other pathways are involved in the pathogenesis of the disease. However, the exact cause of the disease is not known. Natural products such as flavonoids, alkaloids, resveratrol, and curcumin have multifunctional properties, and have drawn the attention of the researchers because these molecules are capable of interacting concurrently with the multiple targets of AD. Therefore, natural products and their derivatives with proven efficacy could be used in the management of the neurodegenerative disorders. This review focuses on the natural product based multitarget directed ligands like tacrine-coumarin, tacrine-huperzine A, harmine-isoxazoline, berberine-thiophenyl, galantamine-indole, pyridoxine-resveratrol, donepezil-curcumin and their mode of action.
Collapse
Affiliation(s)
- Pooja Patil
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow, Uttar Pradesh, India.,Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow, Uttar Pradesh, India
| | - Ashima Thakur
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow, Uttar Pradesh, India
| | - Abha Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow, Uttar Pradesh, India
| | - Swaran Jeet Singh Flora
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow, Uttar Pradesh, India
| |
Collapse
|
46
|
Vargas DF, Larghi EL, Kaufman TS. The 6π-azaelectrocyclization of azatrienes. Synthetic applications in natural products, bioactive heterocycles, and related fields. Nat Prod Rep 2019; 36:354-401. [PMID: 30090891 DOI: 10.1039/c8np00014j] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Covering: 2006 to 2018 The application of the 6π-azaelectrocyclization of azatrienes as a key strategy for the synthesis of natural products, their analogs and related bioactive or biomedically-relevant compounds (from 2006 to date) is comprehensively reviewed. Details about reaction optimization studies, relevant reaction mechanisms and conditions are also discussed.
Collapse
Affiliation(s)
- Didier F Vargas
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina.
| | | | | |
Collapse
|
47
|
Peglow TJ, Costa GPD, Duarte LFB, Silva MS, Barcellos T, Perin G, Alves D. Ultrasound-Promoted One-Pot Synthesis of Mono- or Bis-Substituted Organylselanyl Pyrroles. J Org Chem 2019; 84:5471-5482. [DOI: 10.1021/acs.joc.9b00405] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Thiago J. Peglow
- Laboratório de Síntese Orgânica Limpa—LASOL, CCQFA, Universidade Federal de Pelotas—UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Gabriel P. da Costa
- Laboratório de Síntese Orgânica Limpa—LASOL, CCQFA, Universidade Federal de Pelotas—UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Luis Fernando B. Duarte
- Laboratório de Síntese Orgânica Limpa—LASOL, CCQFA, Universidade Federal de Pelotas—UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Márcio S. Silva
- Laboratório de Síntese Orgânica Limpa—LASOL, CCQFA, Universidade Federal de Pelotas—UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Thiago Barcellos
- Laboratório de Biotecnologia de Produtos Naturais e Sintéticos, Universidade de Caxias do Sul—UCS, 95070-560 Caxias do Sul, RS, Brazil
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa—LASOL, CCQFA, Universidade Federal de Pelotas—UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa—LASOL, CCQFA, Universidade Federal de Pelotas—UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| |
Collapse
|
48
|
Barré A, Azzouz R, Gembus V, Papamicaël C, Levacher V. Design, Synthesis, and In Vitro Biological Activities of a Bio-Oxidizable Prodrug to Deliver Both ChEs and DYRK1A Inhibitors for AD Therapy. Molecules 2019; 24:E1264. [PMID: 30939771 PMCID: PMC6479981 DOI: 10.3390/molecules24071264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 01/28/2023] Open
Abstract
Despite their side effects, cholinesterase (ChE) inhibitors remain the only approved drugs to treat Alzheimer's disease patients, along with the N-methyl-d-aspartate (NMDA) receptor antagonist memantine. In the last few years, the dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) has also been studied as a promising target for the development of new drugs for this pathology. In this context, and based on our previous characterization of bio-oxidizable prodrugs of potent acetylcholinesterase (AChE) inhibitors, we envisioned a strategy involving the synthesis of a bio-oxidizable prodrug of both ChE and DYRK1A inhibitors. To this end, we fixed our interest on a known potent inhibitor of DYRK1A, namely INDY. The designed prodrug of both ChE and DYRK1A inhibitors was successfully synthesized, connecting both inhibitors by a carbonate link. This prodrug and its corresponding drug were then evaluated as ChEs and DYRK1A inhibitors. Remarkably, in vitro results were in accordance with the starting hypothesis, showing a relative inactivity of the prodrug against DYRK1A and ChEs and a potent inhibition of ChEs by the oxidized form. Molecular docking and kinetic studies of ChE inhibition by the active compound are also discussed in this report.
Collapse
Affiliation(s)
- Anaïs Barré
- VFP Therapies R&D; 1 rue Tesnière, 76130 Mont Saint-Aignan, France.
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France.
| | - Rabah Azzouz
- VFP Therapies R&D; 1 rue Tesnière, 76130 Mont Saint-Aignan, France.
| | - Vincent Gembus
- VFP Therapies R&D; 1 rue Tesnière, 76130 Mont Saint-Aignan, France.
| | - Cyril Papamicaël
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France.
| | - Vincent Levacher
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France.
| |
Collapse
|
49
|
Souchet B, Audrain M, Billard JM, Dairou J, Fol R, Orefice NS, Tada S, Gu Y, Dufayet-Chaffaud G, Limanton E, Carreaux F, Bazureau JP, Alves S, Meijer L, Janel N, Braudeau J, Cartier N. Inhibition of DYRK1A proteolysis modifies its kinase specificity and rescues Alzheimer phenotype in APP/PS1 mice. Acta Neuropathol Commun 2019; 7:46. [PMID: 30885273 PMCID: PMC6421685 DOI: 10.1186/s40478-019-0678-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/14/2019] [Indexed: 01/19/2023] Open
Abstract
Recent evidences suggest the involvement of DYRK1A (dual specificity tyrosine phosphorylation-regulated kinase 1 A) in Alzheimer's disease (AD). Here we showed that DYRK1A undergoes a proteolytic processing in AD patients hippocampus without consequences on its kinase activity. Resulting truncated forms accumulate in astrocytes and exhibit increased affinity towards STAT3ɑ, a regulator of inflammatory process. These findings were confirmed in APP/PS1 mice, an amyloid model of AD, suggesting that this DYRK1A cleavage is a consequence of the amyloid pathology. We identified in vitro the Leucettine L41 as a compound able to prevent DYRK1A proteolysis in both human and mouse protein extracts. We then showed that intraperitoneal injections of L41 in aged APP/PS1 mice inhibit STAT3ɑ phosphorylation and reduce pro-inflammatory cytokines levels (IL1- β, TNF-ɑ and IL-12) associated to an increased microglial recruitment around amyloid plaques and decreased amyloid-β plaque burden. Importantly, L41 treatment improved synaptic plasticity and rescued memory functions in APP/PS1 mice. Collectively, our results suggest that DYRK1A may contribute to AD pathology through its proteolytic process, reducing its kinase specificity. Further evaluation of inhibitors of DYRK1A truncation promises a new therapeutic approach for AD.
Collapse
Affiliation(s)
- Benoît Souchet
- INSERM UMR1169, 92265, Fontenay-aux-Roses, France.
- Université Paris Saclay, Saclay, France.
| | | | - Jean Marie Billard
- INSERM UMR894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Julien Dairou
- UMR 8601 CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes-Sorbonne Paris Cité, 75270, Paris, France
| | - Romain Fol
- INSERM UMR1169, 92265, Fontenay-aux-Roses, France
| | | | - Satoru Tada
- INSERM UMR1169, 92265, Fontenay-aux-Roses, France
| | - Yuchen Gu
- INSERM UMR894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Emmanuelle Limanton
- Laboratoire Sciences Chimique de Rennes, UMR CNRS 6226, Groupe ICMV, Université de Rennes 1, 35042, Rennes, France
| | - François Carreaux
- Laboratoire Sciences Chimique de Rennes, UMR CNRS 6226, Groupe ICMV, Université de Rennes 1, 35042, Rennes, France
| | - Jean-Pierre Bazureau
- Laboratoire Sciences Chimique de Rennes, UMR CNRS 6226, Groupe ICMV, Université de Rennes 1, 35042, Rennes, France
| | - Sandro Alves
- INSERM UMR1169, 92265, Fontenay-aux-Roses, France
| | - Laurent Meijer
- ManRos Therapeutics, Hôtel de Recherche, Centre de Perharidy, 29680, Roscoff, France
| | - Nathalie Janel
- Sorbonne Paris Cité, Adaptive Functional Biology, Université Paris-Diderot, UMR CNRS, 8251, Paris, France
| | - Jérôme Braudeau
- INSERM UMR1169, 92265, Fontenay-aux-Roses, France.
- CEA, DRF Institut François Jacob, MIRCen, 92265, Fontenay-aux-Roses, France.
| | - Nathalie Cartier
- INSERM UMR1169, 92265, Fontenay-aux-Roses, France.
- Université Paris Saclay, Saclay, France.
- Institute for Brain and Spine (ICM) Hôpital Pitié -Salpêtrière, Université Paris Sorbonne, 47 boulevard de l'Hôpital 75013, Paris, France.
| |
Collapse
|
50
|
Jain AK, Karthikeyan C, McIntosh KD, Tiwari AK, Trivedi P, DuttKonar A. Unravelling the potency of 4,5-diamino-4H-1,2,4 triazole-3-thiol derivatives for kinase inhibition using a rational approach. NEW J CHEM 2019. [DOI: 10.1039/c8nj04205e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This report describes the design of potent kinase inhibitors by simply fine tuning the surroundings of triazole core with diversified derivatization.
Collapse
Affiliation(s)
- Arvind Kumar Jain
- School of Pharmaceutical Sciences
- Rajiv Gandhi Technological University
- Bhopal
- Gandhinagar
- India
| | - C. Karthikeyan
- School of Pharmaceutical Sciences
- Rajiv Gandhi Technological University
- Bhopal
- Gandhinagar
- India
| | - Kyle Douglas McIntosh
- Department of Pharmacology and Experimental Therapeutics
- College of Pharmacy and Pharmaceutical Sciences
- University of Toledo
- USA
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics
- College of Pharmacy and Pharmaceutical Sciences
- University of Toledo
- USA
| | - Piyush Trivedi
- School of Pharmaceutical Sciences
- Rajiv Gandhi Technological University
- Bhopal
- Gandhinagar
- India
| | - Anita DuttKonar
- School of Pharmaceutical Sciences
- Rajiv Gandhi Technological University
- Bhopal
- Gandhinagar
- India
| |
Collapse
|