1
|
Ujcikova H, Lee YS, Roubalova L, Svoboda P. The impact of multifunctional enkephalin analogs and morphine on the protein changes in crude membrane fractions isolated from the rat brain cortex and hippocampus. Peptides 2024; 174:171165. [PMID: 38307418 DOI: 10.1016/j.peptides.2024.171165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
Endogenous opioid peptides serve as potent analgesics through the opioid receptor (OR) activation. However, they often suffer from poor metabolic stability, low lipophilicity, and low blood-brain barrier permeability. Researchers have developed many strategies to overcome the drawbacks of current pain medications and unwanted biological effects produced by the interaction with opioid receptors. Here, we tested multifunctional enkephalin analogs LYS739 (MOR/DOR agonist and KOR partial antagonist) and LYS744 (MOR/DOR agonist and KOR full antagonist) under in vivo conditions in comparison with MOR agonist, morphine. We applied 2D electrophoretic resolution to investigate differences in proteome profiles of crude membrane (CM) fractions isolated from the rat brain cortex and hippocampus exposed to the drugs (10 mg/kg, seven days). Our results have shown that treatment with analog LYS739 induced the most protein changes in cortical and hippocampal samples. The identified proteins were mainly associated with energy metabolism, cell shape and movement, apoptosis, protein folding, regulation of redox homeostasis, and signal transduction. Among these, the isoform of mitochondrial ATP synthase subunit beta (ATP5F1B) was the only protein upregulation in the hippocampus but not in the brain cortex. Contrarily, the administration of analog LYS744 caused a small number of protein alterations in both brain parts. Our results indicate that the KOR full antagonism, together with MOR/DOR agonism of multifunctional opioid ligands, can be beneficial in treating chronic pain states by reducing changes in protein expression levels but retaining analgesic efficacy.
Collapse
Affiliation(s)
- Hana Ujcikova
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic.
| | - Yeon Sun Lee
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA
| | - Lenka Roubalova
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic
| | - Petr Svoboda
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic
| |
Collapse
|
2
|
Kijewska M, Wołczański G, Kosson P, Wieczorek R, Lisowski M, Stefanowicz P. Stapling of leu-enkephalin analogs with bifunctional reagents for prolonged analgesic activity. Chem Commun (Camb) 2024; 60:3023-3026. [PMID: 38356394 DOI: 10.1039/d3cc06345c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The design and synthesis of leu-enkephalin analogs by replacing the glycine residues with N-(2-thioethyl)glycines and opening the cyclisation potential is presented. The cyclization (stapling) was achieved using bifunctional reagents (hexafluorobenzene and trithiocyanuric acid derivatives). The CD conformational studies of the stapled analogs suggest that the peptides adopt the type I β-turn conformation, which is in agreement with the theoretical analysis. The analog containing a trithiocyanuric acid derivative with a benzyl substituent shows potent analgesic activity.
Collapse
Affiliation(s)
- Monika Kijewska
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Grzegorz Wołczański
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Piotr Kosson
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warszawa, Poland
| | - Robert Wieczorek
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Marek Lisowski
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Piotr Stefanowicz
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland.
| |
Collapse
|
3
|
Hohenwarter L, Böttger R, Li SD. Modification and Delivery of Enkephalins for Pain Modulation. Int J Pharm 2023; 646:123425. [PMID: 37739096 DOI: 10.1016/j.ijpharm.2023.123425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/23/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
Chronic pain negatively affects patient's quality of life and poses a significant economic burden. First line pharmaceutical treatment of chronic pain, including NSAIDs or antidepressants, is often inefficient to reduce pain, or produces intolerable adverse effects. In such cases, opioids are frequently prescribed for their potent analgesia, but chronic opioid use is also frequently associated with debilitating side effects that may offset analgesic benefits. Nonetheless, opioids continue to be widely utilized due to the lack of effective alternative analgesics. Since their discovery in 1975, a class of endogenous opioids called enkephalins (ENKs) have been investigated for their ability to relieve pain with significantly reduced adverse effects compared to conventional opioids. Their low metabolic stability and inability to cross biological membranes, however, make ENKs ineffective analgesics. Over past decades, much effort has been invested to overcome these limitations and develop ENK-based pain therapies. This review summarizes and describes chemical modifications and ENK delivery technologies utilizing ENK conjugates, nanoparticles and ENK gene delivery approaches and discusses valid lessons, challenges, and future directions of this evolving field.
Collapse
Affiliation(s)
- Lukas Hohenwarter
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Roland Böttger
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
4
|
Hosono Y, Uchida S, Shinkai M, Townsend CE, Kelly CN, Naylor MR, Lee HW, Kanamitsu K, Ishii M, Ueki R, Ueda T, Takeuchi K, Sugita M, Akiyama Y, Lokey SR, Morimoto J, Sando S. Amide-to-ester substitution as a stable alternative to N-methylation for increasing membrane permeability in cyclic peptides. Nat Commun 2023; 14:1416. [PMID: 36932083 PMCID: PMC10023679 DOI: 10.1038/s41467-023-36978-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
Naturally occurring peptides with high membrane permeability often have ester bonds on their backbones. However, the impact of amide-to-ester substitutions on the membrane permeability of peptides has not been directly evaluated. Here we report the effect of amide-to-ester substitutions on the membrane permeability and conformational ensemble of cyclic peptides related to membrane permeation. Amide-to-ester substitutions are shown to improve the membrane permeability of dipeptides and a model cyclic hexapeptide. NMR-based conformational analysis and enhanced sampling molecular dynamics simulations suggest that the conformational transition of the cyclic hexapeptide upon membrane permeation is differently influenced by an amide-to-ester substitution and an amide N-methylation. The effect of amide-to-ester substitution on membrane permeability of other cyclic hexapeptides, cyclic octapeptides, and a cyclic nonapeptide is also investigated to examine the scope of the substitution. Appropriate utilization of amide-to-ester substitution based on our results will facilitate the development of membrane-permeable peptides.
Collapse
Affiliation(s)
- Yuki Hosono
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Satoshi Uchida
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Moe Shinkai
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Chad E Townsend
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Colin N Kelly
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Matthew R Naylor
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Hsiau-Wei Lee
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Kayoko Kanamitsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mayumi Ishii
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ryosuke Ueki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takumi Ueda
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Koh Takeuchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masatake Sugita
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
- Middle-Molecule IT-based Drug Discovery Laboratory (MIDL), Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yutaka Akiyama
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.
- Middle-Molecule IT-based Drug Discovery Laboratory (MIDL), Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.
| | - Scott R Lokey
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA.
| | - Jumpei Morimoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
5
|
Lee YS. Peptidomimetics and Their Applications for Opioid Peptide Drug Discovery. Biomolecules 2022; 12:biom12091241. [PMID: 36139079 PMCID: PMC9496382 DOI: 10.3390/biom12091241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Despite various advantages, opioid peptides have been limited in their therapeutic uses due to the main drawbacks in metabolic stability, blood-brain barrier permeability, and bioavailability. Therefore, extensive studies have focused on overcoming the problems and optimizing the therapeutic potential. Currently, numerous peptide-based drugs are being marketed thanks to new synthetic strategies for optimizing metabolism and alternative routes of administration. This tutorial review briefly introduces the history and role of natural opioid peptides and highlights the key findings on their structure-activity relationships for the opioid receptors. It discusses details on opioid peptidomimetics applied to develop therapeutic candidates for the treatment of pain from the pharmacological and structural points of view. The main focus is the current status of various mimetic tools and the successful applications summarized in tables and figures.
Collapse
Affiliation(s)
- Yeon Sun Lee
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
6
|
An Effective and Safe Enkephalin Analog for Antinociception. Pharmaceutics 2021; 13:pharmaceutics13070927. [PMID: 34206631 PMCID: PMC8308721 DOI: 10.3390/pharmaceutics13070927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 11/17/2022] Open
Abstract
Opioids account for 69,000 overdose deaths per annum worldwide and cause serious side effects. Safer analgesics are urgently needed. The endogenous opioid peptide Leu-Enkephalin (Leu-ENK) is ineffective when introduced peripherally due to poor stability and limited membrane permeability. We developed a focused library of Leu-ENK analogs containing small hydrophobic modifications. N-pivaloyl analog KK-103 showed the highest binding affinity to the delta opioid receptor (68% relative to Leu-ENK) and an extended plasma half-life of 37 h. In the murine hot-plate model, subcutaneous KK-103 showed 10-fold improved anticonception (142%MPE·h) compared to Leu-ENK (14%MPE·h). In the formalin model, KK-103 reduced the licking and biting time to ~50% relative to the vehicle group. KK-103 was shown to act through the opioid receptors in the central nervous system. In contrast to morphine, KK-103 was longer-lasting and did not induce breathing depression, physical dependence, and tolerance, showing potential as a safe and effective analgesic.
Collapse
|
7
|
Kumari S, Carmona AV, Tiwari AK, Trippier PC. Amide Bond Bioisosteres: Strategies, Synthesis, and Successes. J Med Chem 2020; 63:12290-12358. [PMID: 32686940 DOI: 10.1021/acs.jmedchem.0c00530] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The amide functional group plays a key role in the composition of biomolecules, including many clinically approved drugs. Bioisosterism is widely employed in the rational modification of lead compounds, being used to increase potency, enhance selectivity, improve pharmacokinetic properties, eliminate toxicity, and acquire novel chemical space to secure intellectual property. The introduction of a bioisostere leads to structural changes in molecular size, shape, electronic distribution, polarity, pKa, dipole or polarizability, which can be either favorable or detrimental to biological activity. This approach has opened up new avenues in drug design and development resulting in more efficient drug candidates introduced onto the market as well as in the clinical pipeline. Herein, we review the strategic decisions in selecting an amide bioisostere (the why), synthetic routes to each (the how), and success stories of each bioisostere (the implementation) to provide a comprehensive overview of this important toolbox for medicinal chemists.
Collapse
Affiliation(s)
- Shikha Kumari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Angelica V Carmona
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, Ohio 43614, United States
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.,UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
8
|
Beaudeau JL, Blais V, Holleran BJ, Bergeron A, Piñeyro G, Guérin B, Gendron L, Dory YL. N-Guanidyl and C-Tetrazole Leu-Enkephalin Derivatives: Efficient Mu and Delta Opioid Receptor Agonists with Improved Pharmacological Properties. ACS Chem Neurosci 2019; 10:1615-1626. [PMID: 30614675 DOI: 10.1021/acschemneuro.8b00550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Leu-enkephalin and d-Ala2-Leu-enkephalin were modified at their N- and C-termini with guanidyl and tetrazole groups. The resulting molecules were prepared in solution or by solid phase peptide synthesis. The affinity of the different analogues at mu (MOP) and delta opioid receptors (DOP) was then assessed by competitive binding in stably transfected DOP and MOP HEK293 cells. Inhibition of cAMP production and recruitment of β-arrestin were also investigated. Finally, lipophilicity (logD7.4) and plasma stability of each compound were measured. Compared to the native ligands, we found that the replacement of the terminal carboxylate by a tetrazole slightly decreased both the affinity at mu and delta opioid receptors as well as the half-life. By contrast, replacing the ammonium at the N-terminus with a guanidyl significantly improved the affinity, the potency, as well as the lipophilicity and the stability of the resulting peptides. Replacing the glycine residue with a d-alanine in position 2 consistently improved the potency as well as the stability of the analogues. The best peptidomimetic of the whole series, guanidyl-Tyr-d-Ala-Gly-Phe-Leu-tetrazole, displayed sub-nanomolar affinity and an increased lipophilicity. Moreover, it proved to be stable in plasma for up to 24 h, suggesting that the modifications are protecting the compound against protease degradation.
Collapse
Affiliation(s)
| | | | | | | | - Graciela Piñeyro
- Département de Psychiatrie, Centre de Recherche du CHU Ste-Justine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | | | | | | |
Collapse
|
9
|
Altman RA, Sharma KK, Rajewski LG, Toren PC, Baltezor MJ, Pal M, Karad SN. Tyr 1-ψ[( Z)CF═CH]-Gly 2 Fluorinated Peptidomimetic Improves Distribution and Metabolism Properties of Leu-Enkephalin. ACS Chem Neurosci 2018; 9:1735-1742. [PMID: 29648788 DOI: 10.1021/acschemneuro.8b00085] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Opioid peptides are key regulators in cellular and intercellular physiological responses, and could be therapeutically useful for modulating several pathological conditions. Unfortunately, the use of peptide-based agonists to target centrally located opioid receptors is limited by poor physicochemical (PC), distribution, metabolic, and pharmacokinetic (DMPK) properties that restrict penetration across the blood-brain barrier via passive diffusion. To address these problems, the present paper exploits fluorinated peptidomimetics to simultaneously modify PC and DMPK properties, thus facilitating entry into the central nervous system. As an initial example, the present paper exploited the Tyr1-ψ[( Z)CF═CH]-Gly2 peptidomimetic to improve PC druglike characteristics (computational), plasma and microsomal degradation, and systemic and CNS distribution of Leu-enkephalin (Tyr-Gly-Gly-Phe-Leu). Thus, the fluoroalkene replacement transformed an instable in vitro tool compound into a stable and centrally distributed in vivo probe. In contrast, the Tyr1-ψ[CF3CH2-NH]-Gly2 peptidomimetic decreased stability by accelerating proteolysis at the Gly3-Phe4 position.
Collapse
Affiliation(s)
- Ryan A. Altman
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Krishna K. Sharma
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Lian G. Rajewski
- Biotechnology Innovation and Optimization Center, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Paul C. Toren
- Biotechnology Innovation and Optimization Center, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Michael J. Baltezor
- Biotechnology Innovation and Optimization Center, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Mohan Pal
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Somnath N. Karad
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
10
|
Banghart MR, He XJ, Sabatini BL. A Caged Enkephalin Optimized for Simultaneously Probing Mu and Delta Opioid Receptors. ACS Chem Neurosci 2018; 9:684-690. [PMID: 29266926 PMCID: PMC5906201 DOI: 10.1021/acschemneuro.7b00485] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Physiological responses to the opioid neuropeptide enkephalin often involve both mu and delta opioid receptors. To facilitate quantitative studies into opioid signaling, we previously developed a caged [Leu5]-enkephalin that responds to ultraviolet irradiation, but its residual activity at delta receptors confounds experiments that involve both receptors. To reduce residual activity, we evaluated side-chain, N-terminus, and backbone caging sites and further incorporated the dimethoxy-nitrobenzyl moiety to improve sensitivity to ultraviolet light-emitting diodes (LEDs). Residual activity was characterized using an in vitro functional assay, and the power dependence and kinetics of the uncaging response to 355 nm laser irradiation were assayed using electrophysiological recordings of mu opioid receptor-mediated potassium currents in brain slices of rat locus coeruleus. These experiments identified N-MNVOC-LE as an optimal compound. Using ultraviolet LED illumination to photoactivate N-MNVOC-LE in the CA1 region of hippocampus, we found that enkephalin engages both mu and delta opioid receptors to suppress inhibitory synaptic transmission.
Collapse
Affiliation(s)
- Matthew R. Banghart
- Division of Biological Sciences, Section on Neurobiology, University of California San Diego, La Jolla, California 92093, United States
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Xinyi J. He
- Division of Biological Sciences, Section on Neurobiology, University of California San Diego, La Jolla, California 92093, United States
| | - Bernardo L. Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
11
|
Bella Ndong D, Blais V, Holleran BJ, Proteau-Gagné A, Cantin-Savoie I, Robert W, Nadon JF, Beauchemin S, Leduc R, Piñeyro G, Guérin B, Gendron L, Dory YL. Exploration of the fifth position of leu-enkephalin and its role in binding and activating delta (DOP) and mu (MOP) opioid receptors. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Dominique Bella Ndong
- Institut de Pharmacologie, Université de Sherbrooke, 3001 12 av. Nord; Sherbrooke Québec J1H 5N4 Canada
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec Canada
| | - Véronique Blais
- Institut de Pharmacologie, Université de Sherbrooke, 3001 12 av. Nord; Sherbrooke Québec J1H 5N4 Canada
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec Canada
| | - Brian J. Holleran
- Institut de Pharmacologie, Université de Sherbrooke, 3001 12 av. Nord; Sherbrooke Québec J1H 5N4 Canada
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec Canada
| | - Arnaud Proteau-Gagné
- Institut de Pharmacologie, Université de Sherbrooke, 3001 12 av. Nord; Sherbrooke Québec J1H 5N4 Canada
- Département de Chimie, Facult des Sciences; Université de Sherbrooke; Sherbrooke Québec Canada
| | - Isabelle Cantin-Savoie
- Institut de Pharmacologie, Université de Sherbrooke, 3001 12 av. Nord; Sherbrooke Québec J1H 5N4 Canada
- Département de Chimie, Facult des Sciences; Université de Sherbrooke; Sherbrooke Québec Canada
| | - William Robert
- Institut de Pharmacologie, Université de Sherbrooke, 3001 12 av. Nord; Sherbrooke Québec J1H 5N4 Canada
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec Canada
| | - Jean-François Nadon
- Institut de Pharmacologie, Université de Sherbrooke, 3001 12 av. Nord; Sherbrooke Québec J1H 5N4 Canada
- Département de Chimie, Facult des Sciences; Université de Sherbrooke; Sherbrooke Québec Canada
| | - Sophie Beauchemin
- Institut de Pharmacologie, Université de Sherbrooke, 3001 12 av. Nord; Sherbrooke Québec J1H 5N4 Canada
- Département de Chimie, Facult des Sciences; Université de Sherbrooke; Sherbrooke Québec Canada
| | - Richard Leduc
- Institut de Pharmacologie, Université de Sherbrooke, 3001 12 av. Nord; Sherbrooke Québec J1H 5N4 Canada
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec Canada
- Centre de recherche du CHU de Sherbrooke; Sherbrooke Québec Canada
| | - Graciela Piñeyro
- Département de Psychiatrie, Centre de Recherche du CHU Ste-Justine; Université de Montréal; Montreal Québec Canada
| | - Brigitte Guérin
- Institut de Pharmacologie, Université de Sherbrooke, 3001 12 av. Nord; Sherbrooke Québec J1H 5N4 Canada
- Centre de recherche du CHU de Sherbrooke; Sherbrooke Québec Canada
- Département de Médecine Nucléaire et de Radiobiologie, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec Canada
| | - Louis Gendron
- Institut de Pharmacologie, Université de Sherbrooke, 3001 12 av. Nord; Sherbrooke Québec J1H 5N4 Canada
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec Canada
- Centre de recherche du CHU de Sherbrooke; Sherbrooke Québec Canada
| | - Yves L. Dory
- Institut de Pharmacologie, Université de Sherbrooke, 3001 12 av. Nord; Sherbrooke Québec J1H 5N4 Canada
- Département de Chimie, Facult des Sciences; Université de Sherbrooke; Sherbrooke Québec Canada
- Centre de recherche du CHU de Sherbrooke; Sherbrooke Québec Canada
| |
Collapse
|
12
|
Li MM, Xu ZJ, Wu Y, Liu B. Synthesis, Structure and Configuration of Streptanoate. ChemistrySelect 2018. [DOI: 10.1002/slct.201702871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mei-Mei Li
- Key Laboratory of Green Chemical Technology of College of Heilongjiang Province; School of Chemical and Environmental Engineering; Harbin University of Science and Technology; Harbin 150040 China
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Ze-Jun Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Yikang Wu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Bo Liu
- Key Laboratory of Green Chemical Technology of College of Heilongjiang Province; School of Chemical and Environmental Engineering; Harbin University of Science and Technology; Harbin 150040 China
| |
Collapse
|
13
|
Liu X, Zhao L, Wang Y, Zhou J, Wang D, Zhang Y, Zhang X, Wang Z, Yang D, Mou L, Wang R. MEL-N16: A Series of Novel Endomorphin Analogs with Good Analgesic Activity and a Favorable Side Effect Profile. ACS Chem Neurosci 2017; 8:2180-2193. [PMID: 28732166 DOI: 10.1021/acschemneuro.7b00097] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Opioid peptides are neuromodulators that bind to opioid receptors and reduce pain sensitivity. Endomorphins are among the most active endogenous opioid peptides, and they have good affinity and selectivity toward the μ opioid receptor. However, their clinical usage is hindered by their inability to cross the blood-brain barrier and their poor in vivo activity after peripheral injection. In order to overcome these defects, we have designed and synthesized a series of novel endomorphin analogs with multiple site modifications. Radioligand binding, cAMP accumulation, and β-arrestin-2 recruitment assays were employed to determine the activity of synthesized endomorphin analogs toward opioid receptors. The blood-brain barrier permeability and antinociceptive effect of these analogs were determined in several rodent models of acute and persistent pain. In addition, the side effects of the analogs were examined. The radioligand binding assay and functional activity examination indicated that the MEL-N16 series of compounds were more active agonists against μ opioid receptor than were the parent peptides. Notably, the analogs displayed biased downstream signaling toward G-protein pathways over β-arrestin-2 recruitment. The analogs showed highly potent antinociceptive effects in the tested nociceptive models. In comparison with endomorphins, the synthesized analogs were better able to penetrate the blood-brain barrier and exerted their pain regulatory activity in the central nervous system after peripheral injection. These analogs also have lower tendency to cause side effects than morphine does at similar or equal antinociceptive doses. The MEL-N16 compounds have highly potent and efficacious analgesic effects in various pain models with a favorable side effect profile.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, Department of Pharmacology,
Institute of Biochemistry and Molecular Biology, School of Basic Medical
Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Long Zhao
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, Department of Pharmacology,
Institute of Biochemistry and Molecular Biology, School of Basic Medical
Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yuan Wang
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, Department of Pharmacology,
Institute of Biochemistry and Molecular Biology, School of Basic Medical
Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jingjing Zhou
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, Department of Pharmacology,
Institute of Biochemistry and Molecular Biology, School of Basic Medical
Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Dan Wang
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, Department of Pharmacology,
Institute of Biochemistry and Molecular Biology, School of Basic Medical
Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yixin Zhang
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, Department of Pharmacology,
Institute of Biochemistry and Molecular Biology, School of Basic Medical
Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xianghui Zhang
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, Department of Pharmacology,
Institute of Biochemistry and Molecular Biology, School of Basic Medical
Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhaojuan Wang
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, Department of Pharmacology,
Institute of Biochemistry and Molecular Biology, School of Basic Medical
Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Dongxu Yang
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, Department of Pharmacology,
Institute of Biochemistry and Molecular Biology, School of Basic Medical
Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Lingyun Mou
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, Department of Pharmacology,
Institute of Biochemistry and Molecular Biology, School of Basic Medical
Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Rui Wang
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, Department of Pharmacology,
Institute of Biochemistry and Molecular Biology, School of Basic Medical
Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
14
|
Möller GP, Müller S, Wolfstädter BT, Wolfrum S, Schepmann D, Wünsch B, Carreira EM. Oxetanyl Amino Acids for Peptidomimetics. Org Lett 2017; 19:2510-2513. [PMID: 28459595 DOI: 10.1021/acs.orglett.7b00745] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptides are important in the drug discovery process. In analogy to nonpeptidic small-molecule counterparts, they can sometimes suffer from disadvantages such as their low bioavailability and poor metabolic stability. Herein, we report the synthesis of new oxetanyl dipeptides and their incorporation into Leu-enkephalin analogues as proof-of-principle studies. The modular approach that is described enables the incorporation of a variety of oxetanyl amino acids into potential peptide therapeutics.
Collapse
Affiliation(s)
- Guido P Möller
- Laboratorium für Organische Chemie, ETH Zürich , Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Steffen Müller
- Laboratorium für Organische Chemie, ETH Zürich , Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Bernd T Wolfstädter
- Laboratorium für Organische Chemie, ETH Zürich , Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland.,Competence Center for Systems Physiology and Metabolic Diseases, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland
| | - Susanne Wolfrum
- Laboratorium für Organische Chemie, ETH Zürich , Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie, WWU Münster , Corrensstrasse 48, 48149 Münster, Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie, WWU Münster , Corrensstrasse 48, 48149 Münster, Germany
| | - Erick M Carreira
- Laboratorium für Organische Chemie, ETH Zürich , Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| |
Collapse
|
15
|
Karad SN, Pal M, Crowley RS, Prisinzano TE, Altman RA. Synthesis and Opioid Activity of Tyr 1 -ψ[(Z)CF=CH]-Gly 2 and Tyr 1 -ψ[(S)/(R)-CF 3 CH-NH]-Gly 2 Leu-enkephalin Fluorinated Peptidomimetics. ChemMedChem 2017; 12:571-576. [PMID: 28296145 PMCID: PMC5486982 DOI: 10.1002/cmdc.201700103] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/13/2017] [Indexed: 12/16/2022]
Abstract
We describe the design, synthesis, and opioid activity of fluoroalkene (Tyr1 -ψ[(Z)CF=CH]-Gly2 ) and trifluoroethylamine (Tyr1 -ψ[(S)/(R)-CF3 CH-NH]-Gly2 ) analogues of the endogenous opioid neuropeptide, Leu-enkephalin. The fluoroalkene peptidomimetic exhibited low nanomolar functional activity (5.0±2 nm and 60±15 nm for δ- and μ-opioid receptors, respectively) with a μ/δ-selectivity ratio that mimics that of the natural peptide. However, the trifluoroethylamine peptidomimetics, irrespective of stereochemistry, did not activate the opioid receptors, which suggest that bulky CF3 substituents are not tolerated at this position.
Collapse
Affiliation(s)
- Somnath Narayan Karad
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas, 66045, USA
| | - Mohan Pal
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas, 66045, USA
| | - Rachel S Crowley
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas, 66045, USA
| | - Thomas E Prisinzano
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas, 66045, USA
| | - Ryan A Altman
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas, 66045, USA
| |
Collapse
|
16
|
Adeyemi CM, Isaacs M, Mnkandhla D, Klein R, Hoppe HC, Krause RW, Lobb KA, Kaye PT. Synthesis and anti-parasitic activity of C -benzylated ( N -arylcarbamoyl)alkylphosphonate esters. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.01.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Nadon JF, Rochon K, Grastilleur S, Langlois G, Dao TTH, Blais V, Guérin B, Gendron L, Dory YL. Synthesis of Gly-ψ[(Z)CF═CH]-Phe, a Fluoroalkene Dipeptide Isostere, and Its Incorporation into a Leu-enkephalin Peptidomimetic. ACS Chem Neurosci 2017; 8:40-49. [PMID: 27762555 DOI: 10.1021/acschemneuro.6b00163] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A new Leu-enkephalin peptidomimetic designed to explore the hydrogen bond acceptor ability of the third peptide bond has been prepared and studied. This new analog is produced by replacing the third amide of Leu-enkephalin with a fluoroalkene. An efficient and innovative synthesis of the corresponding dipeptide surrogate Fmoc-Gly-ψ[(Z)CF═CH]-Phe-OH is described. The key step involves the alkylation of a tin dienolate from the less hindered face of its chiral sulfonamide auxiliary derived from camphor. Once its synthesis was complete, its incorporation into the peptidomimetic sequence was achieved on a solid support with chlorotrityl resin following the Fmoc strategy. The peptidomimetic was characterized using competition binding with [125I]-deltorphin I on membrane extracts of HEK293 cells expressing the mouse delta opioid receptor (DOPr) and based on its abilities to inhibit the electrically induced contractions of the mouse vas deferens and to activate the ERK1/2 signaling pathway in DRGF11/DOPr-GFP cells. Together with our previous observations, our findings strongly suggest that the third amide bond of Leu-enkephalin primarily acts as a hydrogen bond acceptor in DOPr. Consequently, this amide bond can be successfully replaced by an ester, a thioamide, or a fluoroalkene without greatly impacting the binding or biological activity of the corresponding analogs. The lipophilicity (LogD7.4) of the active analog was also measured. It appears that fluoroalkenes are almost as efficient at increasing the lipophilicity as normal alkenes.
Collapse
Affiliation(s)
- Jean-François Nadon
- Laboratoire de synthèse
supramoléculaire, Département
de chimie, Faculté des sciences ‡Département de pharmacologie-physiologie, §Département
d’anesthésiologie, and ∥Département de médecine
nucléaire et radiobiologie, Faculté
de médecine et des sciences de la santé, ⊥Centre de recherche
du CHUS, #Quebec
Pain Research Network, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Kristina Rochon
- Laboratoire de synthèse
supramoléculaire, Département
de chimie, Faculté des sciences ‡Département de pharmacologie-physiologie, §Département
d’anesthésiologie, and ∥Département de médecine
nucléaire et radiobiologie, Faculté
de médecine et des sciences de la santé, ⊥Centre de recherche
du CHUS, #Quebec
Pain Research Network, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Sébastien Grastilleur
- Laboratoire de synthèse
supramoléculaire, Département
de chimie, Faculté des sciences ‡Département de pharmacologie-physiologie, §Département
d’anesthésiologie, and ∥Département de médecine
nucléaire et radiobiologie, Faculté
de médecine et des sciences de la santé, ⊥Centre de recherche
du CHUS, #Quebec
Pain Research Network, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Guillaume Langlois
- Laboratoire de synthèse
supramoléculaire, Département
de chimie, Faculté des sciences ‡Département de pharmacologie-physiologie, §Département
d’anesthésiologie, and ∥Département de médecine
nucléaire et radiobiologie, Faculté
de médecine et des sciences de la santé, ⊥Centre de recherche
du CHUS, #Quebec
Pain Research Network, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Thi Thanh Hà Dao
- Laboratoire de synthèse
supramoléculaire, Département
de chimie, Faculté des sciences ‡Département de pharmacologie-physiologie, §Département
d’anesthésiologie, and ∥Département de médecine
nucléaire et radiobiologie, Faculté
de médecine et des sciences de la santé, ⊥Centre de recherche
du CHUS, #Quebec
Pain Research Network, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Véronique Blais
- Laboratoire de synthèse
supramoléculaire, Département
de chimie, Faculté des sciences ‡Département de pharmacologie-physiologie, §Département
d’anesthésiologie, and ∥Département de médecine
nucléaire et radiobiologie, Faculté
de médecine et des sciences de la santé, ⊥Centre de recherche
du CHUS, #Quebec
Pain Research Network, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Brigitte Guérin
- Laboratoire de synthèse
supramoléculaire, Département
de chimie, Faculté des sciences ‡Département de pharmacologie-physiologie, §Département
d’anesthésiologie, and ∥Département de médecine
nucléaire et radiobiologie, Faculté
de médecine et des sciences de la santé, ⊥Centre de recherche
du CHUS, #Quebec
Pain Research Network, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Louis Gendron
- Laboratoire de synthèse
supramoléculaire, Département
de chimie, Faculté des sciences ‡Département de pharmacologie-physiologie, §Département
d’anesthésiologie, and ∥Département de médecine
nucléaire et radiobiologie, Faculté
de médecine et des sciences de la santé, ⊥Centre de recherche
du CHUS, #Quebec
Pain Research Network, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Yves L. Dory
- Laboratoire de synthèse
supramoléculaire, Département
de chimie, Faculté des sciences ‡Département de pharmacologie-physiologie, §Département
d’anesthésiologie, and ∥Département de médecine
nucléaire et radiobiologie, Faculté
de médecine et des sciences de la santé, ⊥Centre de recherche
du CHUS, #Quebec
Pain Research Network, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| |
Collapse
|
18
|
Vicente-Sanchez A, Segura L, Pradhan AA. The delta opioid receptor tool box. Neuroscience 2016; 338:145-159. [PMID: 27349452 DOI: 10.1016/j.neuroscience.2016.06.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/29/2016] [Accepted: 06/16/2016] [Indexed: 12/14/2022]
Abstract
In recent years, the delta opioid receptor has attracted increasing interest as a target for the treatment of chronic pain and emotional disorders. Due to their therapeutic potential, numerous tools have been developed to study the delta opioid receptor from both a molecular and a functional perspective. This review summarizes the most commonly available tools, with an emphasis on their use and limitations. Here, we describe (1) the cell-based assays used to study the delta opioid receptor. (2) The features of several delta opioid receptor ligands, including peptide and non-peptide drugs. (3) The existing approaches to detect delta opioid receptors in fixed tissue, and debates that surround these techniques. (4) Behavioral assays used to study the in vivo effects of delta opioid receptor agonists; including locomotor stimulation and convulsions that are induced by some ligands, but not others. (5) The characterization of genetically modified mice used specifically to study the delta opioid receptor. Overall, this review aims to provide a guideline for the use of these tools with the final goal of increasing our understanding of delta opioid receptor physiology.
Collapse
Affiliation(s)
| | - Laura Segura
- Department of Psychiatry, University of Illinois at Chicago, United States
| | - Amynah A Pradhan
- Department of Psychiatry, University of Illinois at Chicago, United States.
| |
Collapse
|
19
|
Synthetic and structural routes for the rational conversion of peptides into small molecules. Methods Mol Biol 2015; 1268:159-93. [PMID: 25555725 DOI: 10.1007/978-1-4939-2285-7_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The demand for modified peptides with improved stability profiles and pharmacokinetic properties is driving extensive research effort in this field. The conversion of peptides into organic molecules, as traditional drugs, is a long and puzzled way. Many and versatile approaches have been described for designing peptide mimetics: the substitution of natural residues with modified amino acids and the rigidification and modification of the backbone are the main structural and chemical routes walked in medicinal chemistry. All of these strategies have been successfully applied to obtain active new compounds in molecular biology, drug discovery and design. Here we propose a panoramic review of the most common methods for the preparation of modified peptides and the most interesting findings of the last decade.
Collapse
|
20
|
Abstract
This paper is the thirty-sixth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2013 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
21
|
Systematic replacement of amides by 1,4-disubstituted[1,2,3]triazoles in Leu-enkephalin and the impact on the delta opioid receptor activity. Bioorg Med Chem Lett 2013; 23:5267-9. [PMID: 23988352 DOI: 10.1016/j.bmcl.2013.08.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/25/2013] [Accepted: 08/05/2013] [Indexed: 12/28/2022]
Abstract
Using Cu(I)-catalyzed azide-alkyne cycloaddition in a mixed classical organic phase and solid phase peptide synthesis approach, we synthesized four analogs of Leu-enkephalin to systematically replace amides by 1,4-disubstituted[1,2,3]triazoles. The peptidomimetics obtained were characterized by competitive binding, contractility assays and ERK1/2 phosphorylation. The present study reveals that the analog bearing a triazole between Phe and Leu retains some potency, more than all the others, suggesting that the hydrogen bond acceptor capacity of the last amide of Leu-enkephalin is essential for the biological activity of the peptide.
Collapse
|