1
|
Ilyin NP, Nabiullin AD, Kozlova AD, Kupriyanova OV, Shevyrin VA, Gloriozova T, Filimonov D, Lagunin A, Galstyan DS, Kolesnikova TO, Mor MS, Efimova EV, Poroikov V, Yenkoyan KB, de Abreu MS, Demin KA, Kalueff AV. Chronic Behavioral and Neurochemical Effects of Four Novel N-Benzyl-2-phenylethylamine Derivatives Recently Identified as "Psychoactive" in Adult Zebrafish Screens. ACS Chem Neurosci 2024; 15:2006-2017. [PMID: 38683969 DOI: 10.1021/acschemneuro.4c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Potently affecting human and animal brain and behavior, hallucinogenic drugs have recently emerged as potentially promising agents in psychopharmacotherapy. Complementing laboratory rodents, the zebrafish (Danio rerio) is a powerful model organism for screening neuroactive drugs, including hallucinogens. Here, we tested four novel N-benzyl-2-phenylethylamine (NBPEA) derivatives with 2,4- and 3,4-dimethoxy substitutions in the phenethylamine moiety and the -F, -Cl, and -OCF3 substitutions in the ortho position of the phenyl ring of the N-benzyl moiety (34H-NBF, 34H-NBCl, 24H-NBOMe(F), and 34H-NBOMe(F)), assessing their behavioral and neurochemical effects following chronic 14 day treatment in adult zebrafish. While the novel tank test behavioral data indicate anxiolytic-like effects of 24H-NBOMe(F) and 34H-NBOMe(F), neurochemical analyses reveal reduced brain norepinephrine by all four drugs, and (except 34H-NBCl) - reduced dopamine and serotonin levels. We also found reduced turnover rates for all three brain monoamines but unaltered levels of their respective metabolites. Collectively, these findings further our understanding of complex central behavioral and neurochemical effects of chronically administered novel NBPEAs and highlight the potential of zebrafish as a model for preclinical screening of small psychoactive molecules.
Collapse
Affiliation(s)
- Nikita P Ilyin
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Arslan D Nabiullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Anna D Kozlova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Olga V Kupriyanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Kazan State Medical University, Kazan 420012, Russia
| | - Vadim A Shevyrin
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str. ,Ekaterinburg 620002, Russia
| | - Tatyana Gloriozova
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - Dmitry Filimonov
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - Alexey Lagunin
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - David S Galstyan
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Tatiana O Kolesnikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after Mkhitar Heratsi, Yerevan 0025, Armenia
| | - Mikael S Mor
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Evgeniya V Efimova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Vladimir Poroikov
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - Konstantin B Yenkoyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after Mkhitar Heratsi, Yerevan 0025, Armenia
- Biochemistry Department, Yerevan State Medical University after Mkhitar Heratsi, Yerevan 0025, Armenia
| | - Murilo S de Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 900050, Brazil
| | - Konstantin A Demin
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Allan V Kalueff
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Neurobiology Program, Sirius University of Science and Technology, Sochi 354340, Russia
- Suzhou Key Laboratory of Neurobiology and Cell Signalling, Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| |
Collapse
|
2
|
Braun D, Rosenberg AM, Rabaniam E, Haruvi R, Malamud D, Barbara R, Aiznkot T, Levavi-Sivan B, Kawashima T. High-resolution tracking of unconfined zebrafish behavior reveals stimulatory and anxiolytic effects of psilocybin. Mol Psychiatry 2024; 29:1046-1062. [PMID: 38233467 PMCID: PMC11176078 DOI: 10.1038/s41380-023-02391-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
Serotonergic psychedelics are emerging therapeutics for psychiatric disorders, yet their underlying mechanisms of action in the brain remain largely elusive. Here, we developed a wide-field behavioral tracking system for larval zebrafish and investigated the effects of psilocybin, a psychedelic serotonin receptor agonist. Machine learning analyses of precise body kinematics identified latent behavioral states reflecting spontaneous exploration, visually-driven rapid swimming, and irregular swim patterns following stress exposure. Using this method, we found that acute psilocybin treatment has two behavioral effects: [i] facilitation of spontaneous exploration ("stimulatory") and [ii] prevention of irregular swim patterns following stress exposure ("anxiolytic"). These effects differed from the effect of acute SSRI treatment and were rather similar to the effect of ketamine treatment. Neural activity imaging in the dorsal raphe nucleus suggested that psilocybin inhibits serotonergic neurons by activating local GABAergic neurons, consistent with psychedelic-induced suppression of serotonergic neurons in mammals. These findings pave the way for using larval zebrafish to elucidate neural mechanisms underlying the behavioral effects of serotonergic psychedelics.
Collapse
Affiliation(s)
- Dotan Braun
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
- The Jerusalem Mental Health Center, Jerusalem, Israel
| | - Ayelet M Rosenberg
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Elad Rabaniam
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Ravid Haruvi
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Dorel Malamud
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Rani Barbara
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Tomer Aiznkot
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 229 Herzl Street, Rehovot, Israel
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 229 Herzl Street, Rehovot, Israel
| | - Takashi Kawashima
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel.
| |
Collapse
|
3
|
Pinheiro J, Pinheiro E, de Deus GR, Saito G, Luz WL, Assad N, da Cunha Palheta MR, de Jesus Oliveira Batista E, Morais S, Passos A, Oliveira KRHM, Herculano AM. Brain oxidative stress mediates anxiety-like behavior induced by indomethacin in zebrafish: protective effect of alpha-tocopherol. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1715-1725. [PMID: 37721555 PMCID: PMC10858826 DOI: 10.1007/s00210-023-02661-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/01/2023] [Indexed: 09/19/2023]
Abstract
RATIONALE Indomethacin (INDO) is a widely utilized non-steroidal anti-inflammatory drug (NSAID) with recognized effect on the central nervous system. Although previous reports demonstrate that prolonged treatment with indomethacin can lead to behavioral alterations such as anxiety disorder, the biochemical effect exerted by this drug on the brain are not fully understood. OBJECTIVES The aim of present study was to evaluate if anxiety-like behavior elicited by indomethacin is mediated by brains oxidative stress as well as if alpha-tocopherol, a potent antioxidant, is able to prevent the behavioral and biochemical alterations induced by indomethacin treatment. METHODS Zebrafish were utilized as experimental model and subdivided into control, INDO 1 mg/Kg, INDO 2 mg/Kg, INDO 3 g/Kg, α-TP 2 mg/Kg, α-TP 2 mg/Kg + INDO 1 mg/Kg and α-TP + INDO 2 mg/Kg groups. Vertical distributions elicited by novelty and brain oxidative stress were utilized to determinate behavioral and biochemical alterations elicited by indomethacin treatment, respectively. RESULTS Our results showed that treatment with indomethacin 3 mg/kg induces animal death. No changes in animal survival were observed in animals treated with lower doses of indomethacin. Indomethacin induced significant anxiogenic-like behavior as well as intense oxidative stress in zebrafish brain. Treatment with alpha-tocopherol was able to prevent anxiety-like behavior and brain oxidative stress induced by indomethacin. CONCLUSIONS Data presented in current study demonstrated for the first time that indomethacin induces anxiety-like behavior mediated by brain oxidative stress in zebrafish as well as that pre-treatment with alpha-tocopherol is able to prevent these collateral effects.
Collapse
Affiliation(s)
- Jessica Pinheiro
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Emerson Pinheiro
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Gustavo Ramalho de Deus
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Geovanna Saito
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Waldo Lucas Luz
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Nadyme Assad
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Melk Roberto da Cunha Palheta
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Evander de Jesus Oliveira Batista
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Protozoology, Tropical Medicine Center, Federal University of Pará, Belém, Brazil
| | - Suellen Morais
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Adelaide Passos
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | - Anderson Manoel Herculano
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil.
| |
Collapse
|
4
|
Acero VP, Cribas ES, Browne KD, Rivellini O, Burrell JC, O’Donnell JC, Das S, Cullen DK. Bedside to bench: the outlook for psychedelic research. Front Pharmacol 2023; 14:1240295. [PMID: 37869749 PMCID: PMC10588653 DOI: 10.3389/fphar.2023.1240295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/30/2023] [Indexed: 10/24/2023] Open
Abstract
There has recently been a resurgence of interest in psychedelic compounds based on studies demonstrating their potential therapeutic applications in treating post-traumatic stress disorder, substance abuse disorders, and treatment-resistant depression. Despite promising efficacy observed in some clinical trials, the full range of biological effects and mechanism(s) of action of these compounds have yet to be fully established. Indeed, most studies to date have focused on assessing the psychological mechanisms of psychedelics, often neglecting the non-psychological modes of action. However, it is important to understand that psychedelics may mediate their therapeutic effects through multi-faceted mechanisms, such as the modulation of brain network activity, neuronal plasticity, neuroendocrine function, glial cell regulation, epigenetic processes, and the gut-brain axis. This review provides a framework supporting the implementation of a multi-faceted approach, incorporating in silico, in vitro and in vivo modeling, to aid in the comprehensive understanding of the physiological effects of psychedelics and their potential for clinical application beyond the treatment of psychiatric disorders. We also provide an overview of the literature supporting the potential utility of psychedelics for the treatment of brain injury (e.g., stroke and traumatic brain injury), neurodegenerative diseases (e.g., Parkinson's and Alzheimer's diseases), and gut-brain axis dysfunction associated with psychiatric disorders (e.g., generalized anxiety disorder and major depressive disorder). To move the field forward, we outline advantageous experimental frameworks to explore these and other novel applications for psychedelics.
Collapse
Affiliation(s)
- Victor P. Acero
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
- Penn Psychedelics Collaborative, University of Pennsylvania, Philadelphia, PA, United States
| | - Emily S. Cribas
- Penn Psychedelics Collaborative, University of Pennsylvania, Philadelphia, PA, United States
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kevin D. Browne
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Olivia Rivellini
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Penn Psychedelics Collaborative, University of Pennsylvania, Philadelphia, PA, United States
| | - Justin C. Burrell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - John C. O’Donnell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Penn Psychedelics Collaborative, University of Pennsylvania, Philadelphia, PA, United States
| | - Suradip Das
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - D. Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
5
|
Ved H, Doshi G, Bhatia N, Kale P. Metoclopramide as a Potential Antipsychotic Against Long-Term Methionine Exposure in Zebrafish. Zebrafish 2023; 20:19-27. [PMID: 36577055 DOI: 10.1089/zeb.2022.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Methionine (MET) contributes to brain function and is required for proper functioning of the central nervous system. However, exceptionally high levels of MET and its metabolites in plasma have been found to be toxic and can lead to cell alterations. Long-term exposure to MET has been shown to mimic psychotic symptoms in schizophrenic patients and rodents. The present study evaluated behavioral and neurochemical effects of long-term exposure to MET in zebrafish. Five groups of zebrafish were exposed to MET at a concentration of 4.5 mM for 7 days, along with acute exposure to 25 μM of clozapine and 750, 1000, and 1250 μM of metoclopramide. In contrast, the normal group was exposed to only water and dimethyl sulfoxide. After the treatment, social interaction, anxiety, memory, and locomotion of zebrafish and serotonin levels in zebrafish brains were evaluated. Our results showed that metoclopramide was not only beneficial in improving MET-induced cognitive impairment but it also prevented social withdrawal in zebrafish exposed to MET. In addition, metoclopramide reversed anxiety-like behavior, as indicated by significant changes in locomotion activity. Despite slight changes in serotonin levels in the zebrafish brain, an in vitro serotonin assay failed to demonstrate significant differences between the disease control, normal, and two treatment groups. Finally, results from the study showed that repeated administration of MET induced schizophrenia-like symptoms, although metoclopramide ameliorated the MET-mediated negative symptoms and cognitive deficits in zebrafish. Overall, our findings suggest a new perspective to further explore the antipsychotic properties of metoclopramide.
Collapse
Affiliation(s)
- Hemen Ved
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Nirav Bhatia
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Pravin Kale
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
6
|
Anti-Melanogenic Potential of Natural and Synthetic Substances: Application in Zebrafish Model. Molecules 2023; 28:molecules28031053. [PMID: 36770722 PMCID: PMC9920495 DOI: 10.3390/molecules28031053] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Melanogenesis is a biosynthetic pathway for the formation of the pigment melanin in human skin. A key enzyme in the process of pigmentation through melanin is tyrosinase, which catalyzes the first and only limiting step in melanogenesis. Since the discovery of its methanogenic properties, tyrosinase has been the focus of research related to the anti-melanogenesis. In addition to developing more effective and commercially safe inhibitors, more studies are required to better understand the mechanisms involved in the skin depigmentation process. However, in vivo assays are necessary to develop and validate new drugs or molecules for this purpose, and to accomplish this, zebrafish has been identified as a model organism for in vivo application. In addition, such model would allow tracking and studying the depigmenting activity of many bioactive compounds, important to genetics, medicinal chemistry and even the cosmetic industry. Studies have shown the similarity between human and zebrafish genomes, encouraging their use as a model to understand the mechanism of action of a tested compound. Interestingly, zebrafish skin shares many similarities with human skin, suggesting that this model organism is suitable for studying melanogenesis inhibitors. Accordingly, several bioactive compounds reported herein for this model are compared in terms of their molecular structure and possible mode of action in zebrafish embryos. In particular, this article described the main metabolites of Trichoderma fungi, in addition to substances from natural and synthetic sources.
Collapse
|
7
|
Odland AU, Kristensen JL, Andreasen JT. Animal Behavior in Psychedelic Research. Pharmacol Rev 2022; 74:1176-1205. [PMID: 36180111 DOI: 10.1124/pharmrev.122.000590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/30/2022] [Indexed: 11/22/2022] Open
Abstract
Psychedelic-assisted psychotherapy holds great promise in the treatment of mental health disorders. Research into 5-hydroxytryptamine 2A receptor (5-HT2AR) agonist psychedelic compounds has increased dramatically over the past two decades. In humans, these compounds produce drastic effects on consciousness, and their therapeutic potential relates to changes in the processing of emotional, social, and self-referential information. The use of animal behavior to study psychedelics is under debate, and this review provides a critical perspective on the translational value of animal behavior studies in psychedelic research. Acute activation of 5-HT2ARs produces head twitches and unique discriminative cues, disrupts sensorimotor gating, and stimulates motor activity while inhibiting exploration in rodents. The acute treatment with psychedelics shows discrepant results in conventional rodent tests of depression-like behaviors but generally induces anxiolytic-like effects and inhibits repetitive behavior in rodents. Psychedelics impair waiting impulsivity but show discrepant effects in other tests of cognitive function. Tests of social interaction also show conflicting results. Effects on measures of time perception depend on the experimental schedule. Lasting or delayed effects of psychedelics in rodent tests related to different behavioral domains appear to be rather sensitive to changes in experimental protocols. Studying the effects of psychedelics on animal behaviors of relevance to effects on psychiatric symptoms in humans, assessing lasting effects, publishing negative findings, and relating behaviors in rodents and humans to other more translatable readouts, such as neuroplastic changes, will improve the translational value of animal behavioral studies in psychedelic research. SIGNIFICANCE STATEMENT: Psychedelics like LSD and psilocybin have received immense interest as potential new treatments of psychiatric disorders. Psychedelics change high-order consciousness in humans, and there is debate about the use of animal behavior studies to investigate these compounds. This review provides an overview of the behavioral effects of 5-HT2AR agonist psychedelics in laboratory animals and discusses the translatability of the effects in animals to effects in humans. Possible ways to improve the utility of animal behavior in psychedelic research are discussed.
Collapse
Affiliation(s)
- Anna U Odland
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Jesper L Kristensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Jesper T Andreasen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, 2100, Denmark
| |
Collapse
|
8
|
Demin KA, Kupriyanova OV, Shevyrin VA, Derzhavina KA, Krotova NA, Ilyin NP, Kolesnikova TO, Galstyan DS, Kositsyn YM, Khaybaev AAS, Seredinskaya MV, Dubrovskii Y, Sadykova RG, Nerush MO, Mor MS, Petersen EV, Strekalova T, Efimova EV, Kuvarzin SR, Yenkoyan KB, Bozhko DV, Myrov VO, Kolchanova SM, Polovian AI, Galumov GK, Kalueff AV. Acute behavioral and Neurochemical Effects of Novel N-Benzyl-2-Phenylethylamine Derivatives in Adult Zebrafish. ACS Chem Neurosci 2022; 13:1902-1922. [PMID: 35671176 DOI: 10.1021/acschemneuro.2c00123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Hallucinogenic drugs potently affect brain and behavior and have also recently emerged as potentially promising agents in pharmacotherapy. Complementing laboratory rodents, the zebrafish (Danio rerio) is a powerful animal model organism for screening neuroactive drugs, including hallucinogens. Here, we test a battery of ten novel N-benzyl-2-phenylethylamine (NBPEA) derivatives with the 2,4- and 3,4-dimethoxy substitutions in the phenethylamine moiety and the -OCH3, -OCF3, -F, -Cl, and -Br substitutions in the ortho position of the phenyl ring of the N-benzyl moiety, assessing their acute behavioral and neurochemical effects in the adult zebrafish. Overall, substitutions in the Overall, substitutions in the N-benzyl moiety modulate locomotion, and substitutions in the phenethylamine moiety alter zebrafish anxiety-like behavior, also affecting the brain serotonin and/or dopamine turnover. The 24H-NBOMe(F) and 34H-NBOMe(F) treatment also reduced zebrafish despair-like behavior. Computational analyses of zebrafish behavioral data by artificial intelligence identified several distinct clusters for these agents, including anxiogenic/hypolocomotor (24H-NBF, 24H-NBOMe, and 34H-NBF), behaviorally inert (34H-NBBr, 34H-NBCl, and 34H-NBOMe), anxiogenic/hallucinogenic-like (24H-NBBr, 24H-NBCl, and 24H-NBOMe(F)), and anxiolytic/hallucinogenic-like (34H-NBOMe(F)) drugs. Our computational analyses also revealed phenotypic similarity of the behavioral activity of some NBPEAs to that of selected conventional serotonergic and antiglutamatergic hallucinogens. In silico functional molecular activity modeling further supported the overlap of the drug targets for NBPEAs tested here and the conventional serotonergic and antiglutamatergic hallucinogens. Overall, these findings suggest potent neuroactive properties of several novel synthetic NBPEAs, detected in a sensitive in vivo vertebrate model system, the zebrafish, raising the possibility of their potential clinical use and abuse.
Collapse
Affiliation(s)
- Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Olga V Kupriyanova
- Institute of Fundamental Medicine and Biology, Kazan Volga Region Federal University, Kazan 420008, Russia.,Kazan State Medical University, Kazan 420012, Russia
| | - Vadim A Shevyrin
- Institute of Chemistry and Technology, Ural Federal University, 19 Mira Str., Ekaterinburg 620002, Russia
| | - Ksenia A Derzhavina
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Nataliya A Krotova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Nikita P Ilyin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Tatiana O Kolesnikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Neurobiology Program, Sirius University of Science and Technology, Sochi 354340, Russia
| | - David S Galstyan
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny 197758, Russia
| | - Yurii M Kositsyn
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | | | - Maria V Seredinskaya
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Yaroslav Dubrovskii
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia.,Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia.,St. Petersburg State Chemical Pharmaceutical University, St. Petersburg 197022, Russia
| | | | - Maria O Nerush
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Mikael S Mor
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Elena V Petersen
- Moscow Institute of Physics and Technology, Moscow 141701, Russia
| | | | - Evgeniya V Efimova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Savelii R Kuvarzin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Konstantin B Yenkoyan
- Neuroscience Laboratory, COBRAIN Center, M. Heratsi Yerevan State Medical University, Yerevan AM 0025, Armenia.,COBRAIN Scientific Educational Center for Fundamental Brain Research, Yerevan AM 0025, Armenia
| | | | | | | | | | | | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Almazov National Medical Research Centre, St. Petersburg 197341, Russia.,Ural Federal University, Ekaterinburg 620075, Russia.,Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny 197758, Russia.,Moscow Institute of Physics and Technology, Moscow 141701, Russia.,COBRAIN Scientific Educational Center for Fundamental Brain Research, Yerevan AM 0025, Armenia.,Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, 630117, Russia
| |
Collapse
|
9
|
Bedrossiantz J, Bellot M, Dominguez-García P, Faria M, Prats E, Gómez-Canela C, López-Arnau R, Escubedo E, Raldúa D. A Zebrafish Model of Neurotoxicity by Binge-Like Methamphetamine Exposure. Front Pharmacol 2021; 12:770319. [PMID: 34880760 PMCID: PMC8646101 DOI: 10.3389/fphar.2021.770319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Hyperthermia is a common confounding factor for assessing the neurotoxic effects of methamphetamine (METH) in mammalian models. The development of new models of methamphetamine neurotoxicity using vertebrate poikilothermic animals should allow to overcome this problem. The aim of the present study was to develop a zebrafish model of neurotoxicity by binge-like methamphetamine exposure. After an initial testing at 20 and 40 mg/L for 48 h, the later METH concentration was selected for developing the model and the effects on the brain monoaminergic profile, locomotor, anxiety-like and social behaviors as well as on the expression of key genes of the catecholaminergic system were determined. A concentration- and time-dependent decrease in the brain levels of dopamine (DA), norepinephrine (NE) and serotonin (5-HT) was found in METH-exposed fish. A significant hyperactivity was found during the first hour of exposure, followed 3 h after by a positive geotaxis and negative scototaxis in the novel tank and in the light/dark paradigm, respectively. Moreover, the behavioral phenotype in the treated fish was consistent with social isolation. At transcriptional level, th1 and slc18a2 (vmat2) exhibited a significant increase after 3 h of exposure, whereas the expression of gfap, a marker of astroglial response to neuronal injury, was strongly increased after 48 h exposure. However, no evidences of oxidative stress were found in the brain of the treated fish. Altogether, this study demonstrates the suitability of the adult zebrafish as a model of METH-induced neurotoxicity and provides more information about the biochemical and behavioral consequences of METH abuse.
Collapse
Affiliation(s)
- Juliette Bedrossiantz
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Marina Bellot
- Department of Analytical and Applied Chemistry (Chromatography Section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Barcelona, Spain
| | - Pol Dominguez-García
- Department of Analytical and Applied Chemistry (Chromatography Section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Barcelona, Spain
| | - Melissa Faria
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Eva Prats
- Research and Development Center (CID-CSIC), Barcelona, Spain
| | - Cristian Gómez-Canela
- Department of Analytical and Applied Chemistry (Chromatography Section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Barcelona, Spain
| | - Raul López-Arnau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Elena Escubedo
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Demetrio Raldúa
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| |
Collapse
|
10
|
Subedi B, Anderson S, Croft TL, Rouchka EC, Zhang M, Hammond-Weinberger DR. Gene alteration in zebrafish exposed to a mixture of substances of abuse. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116777. [PMID: 33689951 PMCID: PMC8053679 DOI: 10.1016/j.envpol.2021.116777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/23/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
A recent surge in the use and abuse of diverse prescribed psychotic and illicit drugs necessitates the surveillance of drug residues in source water and the associated ecological impacts of chronic exposure to the aquatic organism. Thirty-six psychotic and illicit drug residues were determined in discharged wastewater from two centralized municipal wastewater treatment facilities and two wastewater receiving creeks for seven consecutive days in Kentucky. Zebrafish (Danio rerio) larvae were exposed to the environmental relevant mixtures of all drug residues, all illicit drugs, and all prescribed psychotic drugs. The extracted RNA from fish homogenates was sequenced, and differentially expressed sequences were analyzed for known or predicted nervous system expression, and screened annotated protein-coding genes to the true environmental cocktail mixture. Illicit stimulant (cocaine and one metabolite), opioids (methadone, methadone metabolite, and oxycodone), hallucinogen (MDA), benzodiazepine (oxazepam and temazepam), carbamazepine, and all target selective serotonin reuptake inhibitors including sertraline, fluoxetine, venlafaxine, and citalopram were quantified in 100% of collected samples from both creeks. The high dose cocktail mixture exposure group revealed the largest group of differentially expressed genes: 100 upregulated and 77 downregulated (p ≤ 0.05; q ≤ 0.05). The top 20 differentially expressed sequences in each exposure group comprise 82 unique transcripts corresponding to 74% annotated genes, 7% non-coding sequences, and 19% uncharacterized sequences. Among 61 differentially expressed sequences that corresponded to annotated protein-coding genes, 23 (38%) genes or their homologs are known to be expressed in the nervous system of fish or other organisms. Several of the differentially expressed sequences are associated primarily with the immune system, including several major histocompatibility complex class I and interferon-induced proteins. Interleukin-1 beta (downregulated in this study) abnormalities are considered a risk factor for psychosis. This is the first study to assess the contributions of multiple classes of psychotic and illicit drugs in combination with developmental gene expression.
Collapse
Affiliation(s)
- B Subedi
- Department of Chemistry, Murray State University, Murray, KY, United States.
| | - S Anderson
- Department of Biology, Murray State University, Murray, KY, United States
| | - T L Croft
- Department of Chemistry, Murray State University, Murray, KY, United States
| | - E C Rouchka
- Department of Computer Science and Engineering, University of Louisville, Louisville, KY, United States; KBRIN Bioinformatics Core, University of Louisville, Louisville, KY, United States
| | - M Zhang
- Genomics Facility University of Louisville, Louisville, KY, United States
| | | |
Collapse
|
11
|
Suryanto ME, Audira G, Uapipatanakul B, Hussain A, Saputra F, Siregar P, Chen KHC, Hsiao CD. Antidepressant Screening Demonstrated Non-Monotonic Responses to Amitriptyline, Amoxapine and Sertraline in Locomotor Activity Assay in Larval Zebrafish. Cells 2021; 10:cells10040738. [PMID: 33810553 PMCID: PMC8066259 DOI: 10.3390/cells10040738] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Antidepressants are well-known drugs to treat depression and major depressive disorder for humans. However, the misuse and abuse of antidepressants keep increasing with several side effects reported. The aim of this study was to assess the potential adverse effects of 18 antidepressants by monitoring zebrafish larval locomotor activity performance based on the total distance traveled, burst movement count, and total rotation count at four dark-light intercalated phases. In general, zebrafish larvae displayed sedative effects after antidepressant exposure by showing a significant reduction in all of the locomotor activity-related endpoints. However, three antidepressants i.e., amitriptyline, amoxapine, and sertraline were able to trigger a significantly high locomotor activity in zebrafish larvae during the light cycle. These differences might be due to the pharmacologic differences among the antidepressants. In addition, since each antidepressant possesses a different dosage range from the other, overdoses of these antidepressants might also be the causes of these differences. Furthermore, based on these results, a further study was conducted to observe the effect of these three antidepressants in lower concentrations. From the results, biphasic effects in terms of zebrafish larval locomotor activity were demonstrated by these drugs. Even though further studies are still required to validate the mechanism, these findings indicate that these antidepressants might share a common mechanism responsible for their effects on zebrafish larval locomotor activity although there were some differences in potency of these effects.
Collapse
Affiliation(s)
- Michael Edbert Suryanto
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (M.E.S.); (G.A.); (A.H.); (F.S.); (P.S.)
| | - Gilbert Audira
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (M.E.S.); (G.A.); (A.H.); (F.S.); (P.S.)
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Boontida Uapipatanakul
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi 12110, Thailand;
| | - Akhlaq Hussain
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (M.E.S.); (G.A.); (A.H.); (F.S.); (P.S.)
| | - Ferry Saputra
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (M.E.S.); (G.A.); (A.H.); (F.S.); (P.S.)
| | - Petrus Siregar
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (M.E.S.); (G.A.); (A.H.); (F.S.); (P.S.)
| | - Kelvin H.-C. Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan
- Correspondence: (K.H.-C.C.); (C.-D.H.)
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (M.E.S.); (G.A.); (A.H.); (F.S.); (P.S.)
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Correspondence: (K.H.-C.C.); (C.-D.H.)
| |
Collapse
|
12
|
Álvarez-Alarcón N, Osorio-Méndez JJ, Ayala-Fajardo A, Garzón-Méndez WF, Garavito-Aguilar ZV. Zebrafish and Artemia salina in vivo evaluation of the recreational 25C-NBOMe drug demonstrates its high toxicity. Toxicol Rep 2021; 8:315-323. [PMID: 33598409 PMCID: PMC7868744 DOI: 10.1016/j.toxrep.2021.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/15/2022] Open
Abstract
The NBOMe (N-2-methoxybenzyl-phenethylamines) family of compounds are synthetic hallucinogens derived from the 2C series. Although this family of compounds has been responsible for multiple cases of acute toxicity and several deaths around the world, to date there are few studies. These compounds act as potent 5-HT2A receptor agonists, including the hallucinogen 25C-NBOMe (2-(4-chloro-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine). In this study, we first evaluated the toxicity of 25C-NBOMe in two animal models: Artemia salina and zebrafish using the lethality test of Meyer et al. (1982) modified for Artemia salina and the Fish Embryo Toxicity test (FET) for zebrafish (Danio rerio). Subsequently, we determined the behavioral and morphological effects using different concentrations of the 25C-NBOMe. As a result, we found that this substance is highly toxic according to lethality tests in both animal models. We also observe that this hallucinogen induces alterations in swimming and motility patterns in Artemia salina. Similarly, there were alterations in the motor response to a stimulus, as well as abnormal development in the zebrafish. The developmental effects of zebrafish suggest a teratogenic potential for 25C-NBOMe. Therefore, these findings are correlated with side effects, such as motor response abnormalities and muscle deterioration, clinically reported for consumers of this recreational drug. Finally, although recent studies are addressing the neurotoxicity and cardiotoxicity of 25C-NBOMe in cell cultures, to the best of our knowledge, this is the first in vivo report for 25C-NBOMe related to toxicological parameters and their global effects on development. Therefore, it could represent an advance in the study of the substance that contributes to the understanding of the effects on behavior and development in humans.
Collapse
Affiliation(s)
- Natalie Álvarez-Alarcón
- Laboratory of Developmental Biology, Department of Biological Sciences, Universidad de los Andes, Cra. 1 # 18A-12, Bloque A, Oficina 308, Bogotá D.C, 111711, Colombia
- Grupo de Investigación de Bioquímica y Biología Molecular, Facultad de Ciencias y Educación, Licenciatura en Química, Universidad Distrital Francisco José de Caldas, Cra. 4 # 26B-54, 5th Floor, Bogotá D.C., Colombia
| | - Jhon Jairo Osorio-Méndez
- Laboratory of Developmental Biology, Department of Biological Sciences, Universidad de los Andes, Cra. 1 # 18A-12, Bloque A, Oficina 308, Bogotá D.C, 111711, Colombia
- Grupo de Investigación de Bioquímica y Biología Molecular, Facultad de Ciencias y Educación, Licenciatura en Química, Universidad Distrital Francisco José de Caldas, Cra. 4 # 26B-54, 5th Floor, Bogotá D.C., Colombia
| | - Adis Ayala-Fajardo
- Grupo de Investigación de Bioquímica y Biología Molecular, Facultad de Ciencias y Educación, Licenciatura en Química, Universidad Distrital Francisco José de Caldas, Cra. 4 # 26B-54, 5th Floor, Bogotá D.C., Colombia
| | - William F. Garzón-Méndez
- Chemistry Group, Central-Level, Fiscalía General de la Nación, Diagonal 22B # 52-01, Building L, 3rd Floor, Bogotá D.C., Colombia
| | - Zayra V. Garavito-Aguilar
- Laboratory of Developmental Biology, Department of Biological Sciences, Universidad de los Andes, Cra. 1 # 18A-12, Bloque A, Oficina 308, Bogotá D.C, 111711, Colombia
| |
Collapse
|
13
|
Timothy M, Forlano PM. Serotonin distribution in the brain of the plainfin midshipman: Substrates for vocal-acoustic modulation and a reevaluation of the serotonergic system in teleost fishes. J Comp Neurol 2020; 528:3451-3478. [PMID: 32361985 DOI: 10.1002/cne.24938] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
Abstract
Serotonin (5-HT) is a modulator of neural circuitry underlying motor patterning, homeostatic control, and social behavior. While previous studies have described 5-HT distribution in various teleosts, serotonergic raphe subgroups in fish are not well defined and therefore remain problematic for cross-species comparisons. Here we used the plainfin midshipman fish, Porichthys notatus, a well-studied model for investigating the neural and hormonal mechanisms of vertebrate vocal-acoustic communication, to redefine raphe subgroups based on both stringent neuroanatomical landmarks as well as quantitative cell measurements. In addition, we comprehensively characterized 5-HT-immunoreactive (-ir) innervation throughout the brain, including well-delineated vocal and auditory nuclei. We report neuroanatomical heterogeneity in populations of the serotonergic raphe nuclei of the brainstem reticular formation, with three discrete subregions in the superior raphe, an intermediate 5-HT-ir cell cluster, and an extensive inferior raphe population. 5-HT-ir neurons were also observed within the vocal motor nucleus (VMN), forming putative contacts on those cells. In addition, three major 5-HT-ir cell groups were identified in the hypothalamus and one group in the pretectum. Significant 5-HT-ir innervation was found in components of the vocal pattern generator and cranial motor nuclei. All vocal midbrain nuclei showed considerable 5-HT-ir innervation, as did thalamic and hindbrain auditory and lateral line areas and vocal-acoustic integration sites in the preoptic area and ventral telencephalon. This comprehensive atlas offers new insights into the organization of 5-HT nuclei in teleosts and provides neuroanatomical evidence for serotonin as a modulator of vocal-acoustic circuitry and behavior in midshipman fish, consistent with findings in vocal tetrapods.
Collapse
Affiliation(s)
- Miky Timothy
- Department of Biology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA
| | - Paul M Forlano
- Department of Biology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.,Biology Subprogram in Ecology, Evolution, and Behavior, The Graduate Center, City University of New York, 365 5th Avenue, New York, New York, 10016, USA.,Biology Subprogram in Neuroscience, The Graduate Center, City University of New York, 365 5th Avenue, New York, New York, 10016, USA.,Psychology Subprogram in Behavioral and Cognitive Neuroscience, The Graduate Center, City University of New York, 365 5th Avenue, New York, New York, 10016, USA.,Aquatic Research and Environmental Assessment Center, Brooklyn College, Brooklyn, New York, USA
| |
Collapse
|
14
|
Acute DOB and PMA Administration Impairs Motor and Sensorimotor Responses in Mice and Causes Hallucinogenic Effects in Adult Zebrafish. Brain Sci 2020; 10:brainsci10090586. [PMID: 32847111 PMCID: PMC7563198 DOI: 10.3390/brainsci10090586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 01/19/2023] Open
Abstract
The drastic increase in hallucinogenic compounds in illicit drug markets of new psychoactive substances (NPS) is a worldwide threat. Among these, 2, 5-dimetoxy-4-bromo-amphetamine (DOB) and paramethoxyamphetamine (PMA; marketed as “ecstasy”) are frequently purchased on the dark web and consumed for recreational purposes during rave/dance parties. In fact, these two substances seem to induce the same effects as MDMA, which could be due to their structural similarities. According to users, DOB and PMA share the same euphoric effects: increasing of the mental state, increasing sociability and empathy. Users also experienced loss of memory, temporal distortion, and paranoia following the repetition of the same thought. The aim of this study was to investigate the effect of the acute systemic administration of DOB and PMA (0.01–30 mg/kg; i.p.) on motor, sensorimotor (visual, acoustic, and tactile), and startle/PPI responses in CD-1 male mice. Moreover, the pro-psychedelic effect of DOB (0.075–2 mg/kg) and PMA (0.0005–0.5 mg/kg) was investigated by using zebrafish as a model. DOB and PMA administration affected spontaneous locomotion and impaired behaviors and startle/PPI responses in mice. In addition, the two compounds promoted hallucinatory states in zebrafish by reducing the hallucinatory score and swimming activity in hallucinogen-like states.
Collapse
|
15
|
Rubbini D, Cornet C, Terriente J, Di Donato V. CRISPR Meets Zebrafish: Accelerating the Discovery of New Therapeutic Targets. SLAS DISCOVERY 2020; 25:552-567. [PMID: 32462967 DOI: 10.1177/2472555220926920] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bringing a new drug to the market costs an average of US$2.6 billion and takes more than 10 years from discovery to regulatory approval. Despite the need to reduce cost and time to increase productivity, pharma companies tend to crowd their efforts in the same indications and drug targets. This results in the commercialization of drugs that share the same mechanism of action (MoA) and, in many cases, equivalent efficacies among them-an outcome that helps neither patients nor the balance sheet of the companies trying to bring therapeutics to the same patient population. Indeed, the discovery of new therapeutic targets, based on a deeper understanding of the disease biology, would likely provide more innovative MoAs and potentially greater drug efficacies. It would also bring better chances for identifying appropriate treatments according to the patient's genetic stratification. Nowadays, we count with an enormous amount of unprocessed information on potential disease targets that could be extracted from omics data obtained from patient samples. In addition, hundreds of pharmacological and genetic screenings have been performed to identify innovative drug targets. Traditionally, rodents have been the animal models of choice to perform functional genomic studies. The high experimental cost, combined with the low throughput provided by those models, however, is a bottleneck for discovering and validating novel genetic disease associations. To overcome these limitations, we propose that zebrafish, in conjunction with the use of CRISPR/Cas9 genome-editing tools, could streamline functional genomic processes to bring biologically relevant knowledge on innovative disease targets in a shorter time frame.
Collapse
Affiliation(s)
- Davide Rubbini
- ZeClinics SL, IGTP (Germans Trias I Pujol Research Institute), Barcelona, Spain
| | - Carles Cornet
- ZeClinics SL, IGTP (Germans Trias I Pujol Research Institute), Barcelona, Spain
| | - Javier Terriente
- ZeClinics SL, IGTP (Germans Trias I Pujol Research Institute), Barcelona, Spain
| | - Vincenzo Di Donato
- ZeClinics SL, IGTP (Germans Trias I Pujol Research Institute), Barcelona, Spain
| |
Collapse
|
16
|
Kolesnikova TO, Khatsko SL, Eltsov OS, Shevyrin VA, Kalueff AV. When fish take a bath: Psychopharmacological characterization of the effects of a synthetic cathinone bath salt ‘flakka’ on adult zebrafish. Neurotoxicol Teratol 2019; 73:15-21. [DOI: 10.1016/j.ntt.2019.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/16/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022]
|
17
|
Volgin AD, Yakovlev OA, Demin KA, Alekseeva PA, Kyzar EJ, Collins C, Nichols DE, Kalueff AV. Understanding Central Nervous System Effects of Deliriant Hallucinogenic Drugs through Experimental Animal Models. ACS Chem Neurosci 2019; 10:143-154. [PMID: 30252437 DOI: 10.1021/acschemneuro.8b00433] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hallucinogenic drugs potently alter human behavior and have a millennia-long history of use for medicinal and religious purposes. Interest is rapidly growing in their potential as CNS modulators and therapeutic agents for brain conditions. Antimuscarinic cholinergic drugs, such as atropine and scopolamine, induce characteristic hyperactivity and dream-like hallucinations and form a separate group of hallucinogens known as "deliriants". Although atropine and scopolamine are relatively well-studied drugs in cholinergic physiology, deliriants represent the least-studied class of hallucinogens in terms of their behavioral and neurological phenotypes. As such, novel approaches and new model organisms are needed to investigate the CNS effects of these compounds. Here, we comprehensively evaluate the preclinical effects of deliriant hallucinogens in various animal models, their mechanisms of action, and potential interplay with other signaling pathways. We also parallel experimental and clinical findings on deliriant agents and outline future directions of translational research in this field.
Collapse
Affiliation(s)
- Andrey D. Volgin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Military Medical Academy, St. Petersburg 194044, Russia
| | - Oleg A. Yakovlev
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Military Medical Academy, St. Petersburg 194044, Russia
| | | | | | - Evan J. Kyzar
- College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- The International Zebrafish Neuroscience Research Consortium (ZNRC), New Orleans, Louisiana 70458, United States
| | - Christopher Collins
- The International Zebrafish Neuroscience Research Consortium (ZNRC), New Orleans, Louisiana 70458, United States
| | - David E. Nichols
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Allan V. Kalueff
- School of Pharmacy, Southwest University, Chongqing 400716, China
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk 630117, Russiai
- Ural Federal University, Ekaterinburg 620075, Russia
- ZENEREI Research Center, Slidell, Louisiana 70458, United States
- Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
18
|
Ketamine modulates aggressive behavior in adult zebrafish. Neurosci Lett 2018; 684:164-168. [DOI: 10.1016/j.neulet.2018.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/19/2018] [Accepted: 08/09/2018] [Indexed: 01/06/2023]
|
19
|
Andrade TS, de Oliveira R, da Silva ML, Von Zuben MV, Grisolia CK, Domingues I, Caldas ED, Pic-Taylor A. Exposure to ayahuasca induces developmental and behavioral alterations on early life stages of zebrafish. Chem Biol Interact 2018; 293:133-140. [PMID: 30086270 DOI: 10.1016/j.cbi.2018.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/19/2018] [Accepted: 08/03/2018] [Indexed: 01/09/2023]
Abstract
Ayahuasca is a psychoactive concoction prepared from the plants Banisteriopsis caapi and Psychotria viridis which are used ancestrally by Amazonian Indian populations and more recently, by Christian religious groups in Brazil and other countries. The aims of the present study were to identify the effects of ayahuasca on zebrafish embryo development and neurobehavior. Toxicity and developmental endpoints for zebrafish embryos were assessed from 0 to 1000 mg/L over 96 h of exposure. The effects on locomotor activity of zebrafish larvae were assessed using a video tracking system (ZebraBox) from 0 to 20 mg/L and after 120 and 144 h of exposure. The LC50 of ayahuasca in zebrafish was determined as 236.3 mg/L. Ayahuasca exposure caused significant developmental anomalies in zebrafish embryos, mainly at the highest concentration tested, including hatching delay, loss of equilibrium, edema and the accumulation of red blood cells. Embryo behavior was also significantly affected, with decreased locomotor activity at the highest concentration tested. These results are in accordance with data obtained in mammal studies highlighting the possible risks of uncontrolled use of ayahuasca. Further research employing more specific behavior analysis could provide additional data on both therapeutic benefits and possible toxicological risk of ayahuasca.
Collapse
Affiliation(s)
- Thayres S Andrade
- Laboratory of Toxicological Genetics, Institute of Biology, University of Brasilia, Brasilia-DF, Brazil
| | - Rhaul de Oliveira
- Laboratory of Toxicological Genetics, Institute of Biology, University of Brasilia, Brasilia-DF, Brazil; School of Technology, University of Campinas, Limeira, Brazil; Toxicology and Toxicological Analysis Postgraduate Program, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Muriel Lopes da Silva
- Laboratory of Toxicological Genetics, Institute of Biology, University of Brasilia, Brasilia-DF, Brazil
| | | | - Cesar Koppe Grisolia
- Laboratory of Toxicological Genetics, Institute of Biology, University of Brasilia, Brasilia-DF, Brazil
| | - Inês Domingues
- Department of Biology & CESAM, University of Aveiro, Campus of Santiago, Aveiro, Portugal
| | - Eloisa Dutra Caldas
- Laboratory of Toxicology, Faculty of Health Sciences, University of Brasilia, Brasilia-DF, Brazil
| | - Aline Pic-Taylor
- Laboratory of Embryology and Developmental Biology, Institute of Biology, University of Brasilia, Brasilia-DF, Brazil.
| |
Collapse
|
20
|
Liao PH, Yang WK, Yang CH, Lin CH, Hwang CC, Chen PJ. Illicit drug ketamine induces adverse effects from behavioral alterations and oxidative stress to p53-regulated apoptosis in medaka fish under environmentally relevant exposures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:1062-1071. [PMID: 29146197 DOI: 10.1016/j.envpol.2017.11.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/27/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
With increasing problems of drug abuse worldwide, aquatic ecosystems are contaminated by human pharmaceuticals from the discharge of hospital or municipal effluent. However, ecotoxicity data and related toxic mechanism for neuroactive controlled or illicit drugs are still lacking, so assessing the associated hazardous risk is difficult. This study aims to investigate the behavioral changes, oxidative stress, gene expression and neurotoxic or apoptosis effect(s) in larvae of medaka fish (Oryzias latipes) with environmentally relevant exposures of ketamine (KET) solutions for 1-14 days. KET exposure at an environmentally relevant concentration (0.004 μM) to 40 μM conferred specific patterns in larval swimming behavior during 24 h. At 14 days, such exposure induced dose- and/or time-dependent alteration on reactive oxygen species induction, the activity of antioxidants catalase and superoxide dismutase, glutathione S-transferase and malondialdehyde contents in fish bodies. KET-induced oxidative stress disrupted the expression of acetylcholinesterase and p53-regulated apoptosis pathways and increased caspase expression in medaka larvae. The toxic responses of medaka larvae, in terms of chemical effects, were qualitatively analogous to those of zebrafish and mammals. Our results implicate a toxicological impact of waterborne KET on fish development and human health, for potential ecological risks of directly releasing neuroactive drugs-containing wastewater into the aquatic environment.
Collapse
Affiliation(s)
- Pei-Han Liao
- Department of Agricultural Chemistry, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Wen-Kai Yang
- Department of Agricultural Chemistry, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Ching-Hsin Yang
- Department of Agricultural Chemistry, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Chun-Hon Lin
- Department of Agricultural Chemistry, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Chin-Chu Hwang
- Department of Agricultural Chemistry, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Pei-Jen Chen
- Department of Agricultural Chemistry, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
21
|
Acute effects of amitriptyline on adult zebrafish: Potential relevance to antidepressant drug screening and modeling human toxidromes. Neurotoxicol Teratol 2017; 62:27-33. [DOI: 10.1016/j.ntt.2017.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/31/2017] [Accepted: 04/18/2017] [Indexed: 12/18/2022]
|
22
|
Kysil EV, Meshalkina DA, Frick EE, Echevarria DJ, Rosemberg DB, Maximino C, Lima MG, Abreu MS, Giacomini AC, Barcellos LJG, Song C, Kalueff AV. Comparative Analyses of Zebrafish Anxiety-Like Behavior Using Conflict-Based Novelty Tests. Zebrafish 2017; 14:197-208. [DOI: 10.1089/zeb.2016.1415] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Elana V. Kysil
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Darya A. Meshalkina
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Erin E. Frick
- Department of Psychology, University of Southern Mississippi, Hattiesburg, Mississippi
| | - David J. Echevarria
- Department of Psychology, University of Southern Mississippi, Hattiesburg, Mississippi
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, Louisiana
| | - Denis B. Rosemberg
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, Louisiana
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Caio Maximino
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, Louisiana
- Laboratory of Neurosciences and Behavior “Frederico Guilherme Graeff,” Center for Biological and Health Sciences, Institute of Health and Biological Studies, Federal University of Southern and Southeastern Pará (UNIFESSPA), Marabá, Brazil
| | - Monica Gomes Lima
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, Louisiana
- University of the State of Pará (UEPA), Marabá, Brazil
| | - Murilo S. Abreu
- Postgraduate Program in Bio-Experimentation, University of Passo Fundo (UPF), Passo Fundo, Brazil
| | - Ana C. Giacomini
- Postgraduate Program in Bio-Experimentation, University of Passo Fundo (UPF), Passo Fundo, Brazil
| | - Leonardo J. G. Barcellos
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, Louisiana
- Postgraduate Program in Bio-Experimentation, University of Passo Fundo (UPF), Passo Fundo, Brazil
- Postgraduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Graduate Institute of Neural and Cognitive Sciences, China Medical University Hospital, Taichung, Taiwan
| | - Allan V. Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, Louisiana
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Ural Federal University, Ekaterinburg, Russia
- ZENEREI Research Center, Slidell, Louisiana
| |
Collapse
|
23
|
Kalueff AV, Kaluyeva A, Maillet EL. Anxiolytic-like effects of noribogaine in zebrafish. Behav Brain Res 2017; 330:63-67. [PMID: 28479267 DOI: 10.1016/j.bbr.2017.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 04/27/2017] [Accepted: 05/03/2017] [Indexed: 01/09/2023]
Abstract
Noribogaine is the main psychoactive metabolite of the hallucinogenic drug ibogaine, and is a particularly interesting compound potentially useful to treat dependence and various psychiatric disorders. Here, we report the effects of noribogaine on anxiety and locomotion in zebrafish (Danio rerio), a new promising model organism in neurobehavioral and psychopharmacological research. Adult zebrafish were subjected to the 5min novel tank test (NTT) following an acute, 20-min drug immersion in 1, 5 and 10mg/L noribogaine. Overall, noribogaine produced robust anxiolytic-like behavior in zebrafish (increasing the time spent and transitions to the top half compartment and reducing freezing bouts) without overt effects on fish locomotion. Taken together, these results indicate that noribogaine modulates the components of the acute stress response related to emotionality and anxiety behaviors, implicating this drug as a potentially useful non-sedative anxiolytic agent.
Collapse
Affiliation(s)
- Allan V Kalueff
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400700, China; ZENEREI Research Center, 309 Palmer Court, Slidell, LA 70458, USA; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell 70458, LA, USA; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia; Ural Federal University, Yekaterinburg, 620020, Russia.
| | - Aleksandra Kaluyeva
- ZENEREI Research Center, 309 Palmer Court, Slidell, LA 70458, USA; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell 70458, LA, USA
| | - Emeline L Maillet
- DemeRx, Inc., R&D Laboratory, University of Miami Life Science and Tech Park. Blg 1, 1951 NW 7th Ave, Suite 300, Miami, FL 33136, USA.
| |
Collapse
|
24
|
Kolesnikova TO, Khatsko SL, Shevyrin VA, Morzherin YY, Kalueff AV. Effects of a non-competitive N-methyl-d-aspartate (NMDA) antagonist, tiletamine, in adult zebrafish. Neurotoxicol Teratol 2017; 59:62-67. [DOI: 10.1016/j.ntt.2016.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/25/2016] [Accepted: 11/29/2016] [Indexed: 10/20/2022]
|
25
|
Ponzoni L, Braida D, Bondiolotti G, Sala M. The Non-Peptide Arginine-Vasopressin v 1a Selective Receptor Antagonist, SR49059, Blocks the Rewarding, Prosocial, and Anxiolytic Effects of 3,4-Methylenedioxymethamphetamine and Its Derivatives in Zebra Fish. Front Psychiatry 2017; 8:146. [PMID: 28855876 PMCID: PMC5557732 DOI: 10.3389/fpsyt.2017.00146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/27/2017] [Indexed: 01/23/2023] Open
Abstract
3,4-Methylenedioxymethamphetamine (MDMA) and its derivatives, 2,5-dimethoxy-4-bromo-amphetamine hydrobromide (DOB) and para-methoxyamphetamine (PMA), are recreational drugs whose pharmacological effects have recently been attributed to serotonin 5HT2A/C receptors. However, there is growing evidence that the oxytocin (OT)/vasopressin system can modulate some the effects of MDMA. In this study, MDMA (2.5-10 mg/kg), DOB (0.5 mg/kg), or PMA (0.005, 0.1, or 0.25 mg/kg) were administered intramuscularly to adult zebra fish, alone or in combination with the V1a vasopressin antagonist, SR49059 (0.01-1 ng/kg), before carrying out conditioned place preference (CPP), social preference, novel tank diving, and light-dark tests in order to evaluate subsequent rewarding, social, and emotional-like behavior. The combination of SR49059 and each drug progressively blocked: (1) rewarding behavior as measured by CPP in terms of time spent in drug-paired compartment; (2) prosocial effects measured on the basis of the time spent in the proximity of a nacre fish picture; and (3) anxiolytic effects in terms of the time spent in the upper half of the novel tank and in the white compartment of the tank used for the light-dark test. Antagonism was obtained at SR49059 doses which, when given alone, did not change motor function. In comparison with a control group, receiving vehicle alone, there was a three to five times increase in the brain release of isotocin (the analog of OT in fish) after treatment with the most active doses of MDMA (10 mg/kg), DOB (0.5 mg/kg), and PMA (0.1 mg/kg) as evaluated by means of bioanalytical reversed-phase high-performance liquid chromatography. Taken together, these findings show that the OT/vasopressin system is involved in the rewarding, prosocial, and anxiolytic effects of MDMA, DOB, and PMA in zebra fish and underline the association between this system and the behavioral alterations associated with disorders related to substance abuse.
Collapse
Affiliation(s)
| | - Daniela Braida
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Gianpietro Bondiolotti
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Mariaelvina Sala
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| |
Collapse
|
26
|
McCarroll MN, Gendelev L, Keiser MJ, Kokel D. Leveraging Large-scale Behavioral Profiling in Zebrafish to Explore Neuroactive Polypharmacology. ACS Chem Biol 2016; 11:842-9. [PMID: 26845413 DOI: 10.1021/acschembio.5b00800] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Many psychiatric drugs modulate the nervous system through multitarget mechanisms. However, systematic identification of multitarget compounds has been difficult using traditional in vitro screening assays. New approaches to phenotypic profiling in zebrafish can help researchers identify novel compounds with complex polypharmacology. For example, large-scale behavior-based chemical screens can rapidly identify large numbers of structurally diverse and phenotype-related compounds. Once these compounds have been identified, a systems-level analysis of their structures may help to identify statistically enriched target pathways. Together, systematic behavioral profiling and multitarget predictions may help researchers identify new behavior-modifying pathways and CNS therapeutics.
Collapse
Affiliation(s)
- Matthew N. McCarroll
- University of California San Francisco, Institute of Neurodegenerative
Diseases, 675 Nelson Rising
Lane, San Francisco, California 94143, United States
| | - Leo Gendelev
- University of California San Francisco, Institute of Neurodegenerative
Diseases, 675 Nelson Rising
Lane, San Francisco, California 94143, United States
| | - Michael J. Keiser
- University of California San Francisco, Institute of Neurodegenerative
Diseases, 675 Nelson Rising
Lane, San Francisco, California 94143, United States
| | - David Kokel
- University of California San Francisco, Institute of Neurodegenerative
Diseases, 675 Nelson Rising
Lane, San Francisco, California 94143, United States
| |
Collapse
|
27
|
Kyzar EJ, Kalueff AV. Exploring Hallucinogen Pharmacology and Psychedelic Medicine with Zebrafish Models. Zebrafish 2016; 13:379-90. [PMID: 27002655 DOI: 10.1089/zeb.2016.1251] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
After decades of sociopolitical obstacles, the field of psychiatry is experiencing a revived interest in the use of hallucinogenic agents to treat brain disorders. Along with the use of ketamine for depression, recent pilot studies have highlighted the efficacy of classic serotonergic hallucinogens, such as lysergic acid diethylamide and psilocybin, in treating addiction, post-traumatic stress disorder, and anxiety. However, many basic pharmacological and toxicological questions remain unanswered with regard to these compounds. In this study, we discuss psychedelic medicine as well as the behavioral and toxicological effects of hallucinogenic drugs in zebrafish. We emphasize this aquatic organism as a model ideally suited to assess both the potential toxic and therapeutic effects of major known classes of hallucinogenic compounds. In addition, novel drugs with hallucinogenic properties can be efficiently screened using zebrafish models. Well-designed preclinical studies utilizing zebrafish can contribute to the reemerging treatment paradigm of psychedelic medicine, leading to new avenues of clinical exploration for psychiatric disorders.
Collapse
Affiliation(s)
- Evan J Kyzar
- 1 Department of Psychiatry, College of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Allan V Kalueff
- 2 Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University (GDOU) , Zhanjiang, China .,3 ZENEREI Institute , Slidell, Louisiana.,4 Institute of Translational Biomedicine, St. Petersburg State University , St. Petersburg, Russia .,5 Institutes of Chemical Technology and Natural Sciences, Ural Federal University , Ekaterinburg, Russia .,6 The International Zebrafish Neuroscience Research Consortium (ZNRC) , Slidell, Louisiana
| |
Collapse
|
28
|
Lin HJ, Hong ZY, Li YK, Liau I. Fluorescent tracer of dopamine enables selective labelling and interrogation of dopaminergic amacrine cells in the retina of living zebrafish. RSC Adv 2016. [DOI: 10.1039/c6ra13073a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A ‘fluorescent dopamine’ that enables selective labeling and interrogation of retinal dopaminergic amacrine cells in living zebrafish was demonstrated.
Collapse
Affiliation(s)
- Hui-Jen Lin
- Department of Applied Chemistry
- Institute of Molecular Science
- National Chiao Tung University
- Hsinchu 300
- Taiwan
| | - Zhen-Yi Hong
- Department of Applied Chemistry
- Institute of Molecular Science
- National Chiao Tung University
- Hsinchu 300
- Taiwan
| | - Yaw-Kuen Li
- Department of Applied Chemistry
- Institute of Molecular Science
- National Chiao Tung University
- Hsinchu 300
- Taiwan
| | - Ian Liau
- Department of Applied Chemistry
- Institute of Molecular Science
- National Chiao Tung University
- Hsinchu 300
- Taiwan
| |
Collapse
|
29
|
Kalueff AV, Echevarria DJ, Homechaudhuri S, Stewart AM, Collier AD, Kaluyeva AA, Li S, Liu Y, Chen P, Wang J, Yang L, Mitra A, Pal S, Chaudhuri A, Roy A, Biswas M, Roy D, Podder A, Poudel MK, Katare DP, Mani RJ, Kyzar EJ, Gaikwad S, Nguyen M, Song C. Zebrafish neurobehavioral phenomics for aquatic neuropharmacology and toxicology research. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 170:297-309. [PMID: 26372090 DOI: 10.1016/j.aquatox.2015.08.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 05/25/2023]
Abstract
Zebrafish (Danio rerio) are rapidly emerging as an important model organism for aquatic neuropharmacology and toxicology research. The behavioral/phenotypic complexity of zebrafish allows for thorough dissection of complex human brain disorders and drug-evoked pathological states. As numerous zebrafish models become available with a wide spectrum of behavioral, genetic, and environmental methods to test novel drugs, here we discuss recent zebrafish phenomics methods to facilitate drug discovery, particularly in the field of biological psychiatry. Additionally, behavioral, neurological, and endocrine endpoints are becoming increasingly well-characterized in zebrafish, making them an inexpensive, robust and effective model for toxicology research and pharmacological screening. We also discuss zebrafish behavioral phenotypes, experimental considerations, pharmacological candidates and relevance of zebrafish neurophenomics to other 'omics' (e.g., genomic, proteomic) approaches. Finally, we critically evaluate the limitations of utilizing this model organism, and outline future strategies of research in the field of zebrafish phenomics.
Collapse
Affiliation(s)
- Allan V Kalueff
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia; Chemical-Technological Institute and Institute of Natural Sciences, Ural Federal University, Ekaterinburg 620002, Russia.
| | - David J Echevarria
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; Department of Psychology, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA
| | - Sumit Homechaudhuri
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Adam Michael Stewart
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
| | - Adam D Collier
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; Department of Psychology, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA
| | | | - Shaomin Li
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - Yingcong Liu
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - Peirong Chen
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - JiaJia Wang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - Lei Yang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - Anisa Mitra
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Subharthi Pal
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Adwitiya Chaudhuri
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Anwesha Roy
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Missidona Biswas
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Dola Roy
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Anupam Podder
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Manoj K Poudel
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
| | - Deepshikha P Katare
- Proteomics and Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201303, UP, India
| | - Ruchi J Mani
- Proteomics and Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201303, UP, India
| | - Evan J Kyzar
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, 1601 W Taylor St., Chicago, IL 60612, USA
| | - Siddharth Gaikwad
- Graduate Institute of Neural and Cognitive Sciences, China Medical University Hospital, Taichung 40402, Taiwan
| | - Michael Nguyen
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China; Graduate Institute of Neural and Cognitive Sciences, China Medical University Hospital, Taichung 40402, Taiwan
| |
Collapse
|
30
|
Stewart AM, Grossman L, Collier AD, Echevarria DJ, Kalueff AV. Anxiogenic-like effects of chronic nicotine exposure in zebrafish. Pharmacol Biochem Behav 2015; 139 Pt B:112-20. [DOI: 10.1016/j.pbb.2015.01.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/15/2015] [Accepted: 01/21/2015] [Indexed: 01/28/2023]
|
31
|
Stewart AM, Grieco F, Tegelenbosch RA, Kyzar EJ, Nguyen M, Kaluyeva A, Song C, Noldus LP, Kalueff AV. A novel 3D method of locomotor analysis in adult zebrafish: Implications for automated detection of CNS drug-evoked phenotypes. J Neurosci Methods 2015; 255:66-74. [DOI: 10.1016/j.jneumeth.2015.07.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/20/2015] [Accepted: 07/23/2015] [Indexed: 01/16/2023]
|
32
|
Liao PH, Hwang CC, Chen TH, Chen PJ. Developmental exposures to waterborne abused drugs alter physiological function and larval locomotion in early life stages of medaka fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 165:84-92. [PMID: 26026672 DOI: 10.1016/j.aquatox.2015.05.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 06/04/2023]
Abstract
Environmental pollution by neuroactive pharmaceuticals from wastewater discharge is a major threat to aquatic ecosystems. However, the ecotoxicologic effect of waterborne abused drugs remains unclear. Embryos of medaka fish (Oryzias latipes) were exposed to aqueous solutions of 2 hallucinogenic drugs, ketamine (KET) and methamphetamine (MET) (0.004-40μM) to assess developmental toxicity, oxidative stress and behavioral alteration in early life stages. The environmentally relevant concentration (0.004μM) of both KET and MET significantly delayed blood circulation and hatching time in embryos and altered larval swimming behavior (e.g., maximum velocity and relative turn angle). KET and MET induced similar oxidative stress responses in embryos, which were unrecoverable in hatchlings in drug-free solutions. Early life exposure to the 2 drugs conferred distinct patterns in larval locomotion: KET induced hyperactivity and a less tortuous swimming path, but MET-treated larvae showed hypoactivity and a clockwise swimming direction at high doses. The alteration in locomotor responses were generally similar in mammals and zebrafish. We report sensitive biomarkers (e.g., heartbeat, hatching and swimming behavior) by developmental stage of medaka that reflect environmentally relevant exposures of abused drugs. They could be useful for ecological risk assessment of waterborne neuroactive drugs. The toxicity results implicate a potential ecotoxicological impact of controlled or abused drugs on fish development and populations in aquatic environments.
Collapse
Affiliation(s)
- Pei-Han Liao
- Department of Agricultural Chemistry, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Chiu-Chu Hwang
- Department of Agricultural Chemistry, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Te-Hao Chen
- Department of Biology, National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
| | - Pei-Jen Chen
- Department of Agricultural Chemistry, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
33
|
Cavero I. 14th Annual Meeting of the Safety Pharmacology Society: threading through scientific sessions for originality and novelty. Expert Opin Drug Saf 2015; 14:999-1008. [DOI: 10.1517/14740338.2015.1034104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Andersson MÅ, Ek F, Olsson R. Using visual lateralization to model learning and memory in zebrafish larvae. Sci Rep 2015; 5:8667. [PMID: 25727677 PMCID: PMC4345346 DOI: 10.1038/srep08667] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/23/2015] [Indexed: 12/31/2022] Open
Abstract
Impaired learning and memory are common symptoms of neurodegenerative and neuropsychiatric diseases. Present, there are several behavioural test employed to assess cognitive functions in animal models, including the frequently used novel object recognition (NOR) test. However, although atypical functional brain lateralization has been associated with neuropsychiatric conditions, spanning from schizophrenia to autism, few animal models are available to study this phenomenon in learning and memory deficits. Here we present a visual lateralization NOR model (VLNOR) in zebrafish larvae as an assay that combines brain lateralization and NOR. In zebrafish larvae, learning and memory are generally assessed by habituation, sensitization, or conditioning paradigms, which are all representatives of nondeclarative memory. The VLNOR is the first model for zebrafish larvae that studies a memory similar to the declarative memory described for mammals. We demonstrate that VLNOR can be used to study memory formation, storage, and recall of novel objects, both short and long term, in 10-day-old zebrafish. Furthermore we show that the VLNOR model can be used to study chemical modulation of memory formation and maintenance using dizocilpine (MK-801), a frequently used non-competitive antagonist of the NMDA receptor, used to test putative antipsychotics in animal models.
Collapse
Affiliation(s)
- Madelene Åberg Andersson
- 1] Chemical Biology &Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden [2] Medicinal Chemistry, Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Ek
- Chemical Biology &Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Roger Olsson
- 1] Chemical Biology &Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden [2] Medicinal Chemistry, Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
35
|
Stewart AM, Gerlai R, Kalueff AV. Developing highER-throughput zebrafish screens for in-vivo CNS drug discovery. Front Behav Neurosci 2015; 9:14. [PMID: 25729356 PMCID: PMC4325915 DOI: 10.3389/fnbeh.2015.00014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/14/2015] [Indexed: 11/13/2022] Open
Abstract
The high prevalence of brain disorders and the lack of their efficient treatments necessitate improved in-vivo pre-clinical models and tests. The zebrafish (Danio rerio), a vertebrate species with high genetic and physiological homology to humans, is an excellent organism for innovative central nervous system (CNS) drug discovery and small molecule screening. Here, we outline new strategies for developing higher-throughput zebrafish screens to test neuroactive drugs and predict their pharmacological mechanisms. With the growing application of automated 3D phenotyping, machine learning algorithms, movement pattern- and behavior recognition, and multi-animal video-tracking, zebrafish screens are expected to markedly improve CNS drug discovery.
Collapse
Affiliation(s)
- Adam Michael Stewart
- ZENEREI Institute and The International Zebrafish Neuroscience Research Consortium Slidell, LA, USA
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga ON, Canada
| | - Allan V Kalueff
- ZENEREI Institute and The International Zebrafish Neuroscience Research Consortium Slidell, LA, USA ; Research Institute for Marine Drugs and Nutrients, College of Food Science and Technology, Guangdong Ocean University Zhanjiang, Guangdong, China
| |
Collapse
|
36
|
Herculano AM, Puty B, Miranda V, Lima MG, Maximino C. Interactions between serotonin and glutamate-nitric oxide pathways in zebrafish scototaxis. Pharmacol Biochem Behav 2014; 129:97-104. [PMID: 25536532 DOI: 10.1016/j.pbb.2014.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 12/11/2014] [Accepted: 12/16/2014] [Indexed: 11/26/2022]
Abstract
NMDA receptors have been implicated in the acute response to stress, possibly mediated the nitric oxide pathway; serotonin has also been implicated in these responses, and has recently been shown to modulate the nitric oxide pathway via 5-HT1 and 5-HT2 receptors. In this work, we compare the effects of NMDA and a 5-HT1A receptor ligands on light/dark preference in adult zebrafish, and investigate whether nitric oxide mediates the effects of such drugs. The noncompetitive NMDA receptor antagonist MK-801 decreased dark preference (scototaxis), while NMDA increased it; the effects of NMDA were completely blocked by pretreatment with the nitric oxide synthase (NOS) antagonist L-NAME. SNP, a nitric oxide donor, produced a bell-shaped dose-response profile on scototaxis. Treatment with 5-HTP increased scototaxis, an effect which was potentiated by pre-treatment with NMDA, but not MK-801, and partially blocked by L-NAME. The 5-HT1A receptor antagonist WAY 100,635 decreased scototaxis, an effect which was completely blocked by L-NAME. These results suggest that tonic NOS inhibition is an important downstream effector of 5-HT1A receptors in the regulation of dark preference behavior in zebrafish, and that NOS is also under phasic independent control by NMDA receptors.
Collapse
Affiliation(s)
- Anderson Manoel Herculano
- Laboratório de Neuroendocrinologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Zebrafish Neuroscience Research Consortium, USA
| | - Bruna Puty
- Laboratório de Neuroendocrinologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Vanessa Miranda
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Monica Gomes Lima
- Zebrafish Neuroscience Research Consortium, USA; Departamento de Morfologia e Ciências Fisiológicas, Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Marabá, PA, Brazil
| | - Caio Maximino
- Zebrafish Neuroscience Research Consortium, USA; Departamento de Morfologia e Ciências Fisiológicas, Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Marabá, PA, Brazil.
| |
Collapse
|
37
|
Herculano AM, Maximino C. Serotonergic modulation of zebrafish behavior: towards a paradox. Prog Neuropsychopharmacol Biol Psychiatry 2014; 55:50-66. [PMID: 24681196 DOI: 10.1016/j.pnpbp.2014.03.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 12/22/2022]
Abstract
Due to the fish-specific genome duplication event (~320-350 mya), some genes which code for serotonin proteins were duplicated in teleosts; this duplication event was preceded by a reorganization of the serotonergic system, with the appearance of the raphe nuclei (dependent on the isthmus organizer) and prosencephalic nuclei, including the paraventricular and pretectal complexes. With the appearance of amniotes, duplicated genes were lost, and the serotonergic system was reduced to a more complex raphe system. From a comparative point of view, then, the serotonergic system of zebrafish and that of mammals shows many important differences. However, many different behavioral functions of serotonin, as well as the effects of drugs which affect the serotonergic system, seem to be conserved among species. For example, in both zebrafish and rodents acute serotonin reuptake inhibitors (SSRIs) seem to increase anxiety-like behavior, while chronic SSRIs decrease it; drugs which act at the 5-HT1A receptor seem to decrease anxiety-like behavior in both zebrafish and rodents. In this article, we will expose this paradox, reviewing the chemical neuroanatomy of the zebrafish serotonergic system, followed by an analysis of the role of serotonin in zebrafish fear/anxiety, stress, aggression and the effects of psychedelic drugs.
Collapse
Affiliation(s)
- Anderson Manoel Herculano
- Neuroendocrinology Laboratory, Biological Sciences Institute, Federal University of Pará, Belém, PA, Brazil; "Frederico Graeff" Neurosciences and Behavior Laboratory, Department of Morphology and Physiological Sciences, Biological and Health Sciences Center, State University of Pará, Marabá, PA, Brazil
| | - Caio Maximino
- "Frederico Graeff" Neurosciences and Behavior Laboratory, Department of Morphology and Physiological Sciences, Biological and Health Sciences Center, State University of Pará, Marabá, PA, Brazil; International Zebrafish Neuroscience Research Consortium, United States.
| |
Collapse
|
38
|
Developing zebrafish models relevant to PTSD and other trauma- and stressor-related disorders. Prog Neuropsychopharmacol Biol Psychiatry 2014; 55:67-79. [PMID: 25138994 DOI: 10.1016/j.pnpbp.2014.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/01/2014] [Accepted: 08/07/2014] [Indexed: 11/20/2022]
Abstract
While post-traumatic stress disorder (PTSD) and other trauma- and stress-related disorders (TSRDs) represent a serious societal and public health concern, their pathogenesis is largely unknown. Given the clinical complexity of TSRD development and susceptibility, greater investigation into candidate biomarkers and specific genetic pathways implicated in both risk and resilience to trauma becomes critical. In line with this, numerous animal models have been extensively used to better understand the pathogenic mechanisms of PTSD and related TSRD. Here, we discuss the rapidly increasing potential of zebrafish as models of these disorders, and how their use may aid researchers in uncovering novel treatments and therapies in this field.
Collapse
|
39
|
Stewart AM, Grossman L, Nguyen M, Maximino C, Rosemberg DB, Echevarria DJ, Kalueff AV. Aquatic toxicology of fluoxetine: understanding the knowns and the unknowns. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 156:269-273. [PMID: 25245382 DOI: 10.1016/j.aquatox.2014.08.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 08/23/2014] [Accepted: 08/27/2014] [Indexed: 06/03/2023]
Abstract
Fluoxetine is one of the most prescribed psychotropic medications, and is an agent of increasing interest for environmental toxicology. Fish and other aquatic organisms are excellent models to study neuroactive small molecules like fluoxetine. However, prone to variance due to experimental factors, data obtained in these models need to be interpreted with caution, using proper experimental protocols, study designs, validated endpoints as well as well-established models and tests. Choosing the treatment protocol and dose range for fluoxetine and other serotonergic drugs is critical for obtaining valid test results and correct data interpretation. Here we discuss the value of aquatic models to study fluoxetine effects, based on prior high-quality research, and outline the directions of future translational studies in the field. We review fluoxetine-evoked phenotypes in acute vs. chronic protocols, discussing them in the contact of complex role of serotonin in behavioral regulation. We conclude that zebrafish and other aquatic models represent a useful in-vivo tool for fluoxetine pharmacology and (eco)toxicology research.
Collapse
Affiliation(s)
- Adam Michael Stewart
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA
| | - Leah Grossman
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; St. George's University School of Medicine, Grenada, WI, USA
| | - Michael Nguyen
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA 22908, USA
| | - Caio Maximino
- The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA; Center for Biological and Health Sciences, State University of Para, Maraba, Para, Brazil
| | - Denis Broock Rosemberg
- The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA; Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 1000 Roraima Ave, Santa Maria, Brazil
| | - David J Echevarria
- The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA; Department of Psychology, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA
| | - Allan V Kalueff
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA; Research Institute of Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China.
| |
Collapse
|
40
|
Yasgar A, Simeonov A. Current approaches for the discovery of drugs that deter substance and drug abuse. Expert Opin Drug Discov 2014; 9:1319-31. [PMID: 25251069 DOI: 10.1517/17460441.2014.956721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Much has been presented and debated on the topic of drug abuse and its multidimensional nature, including the role of society and its customs and laws, economical factors, and the magnitude and nature of the burden. Given the complex nature of the receptors and pathways implicated in regulation of the cognitive and behavioral processes associated with addiction, a large number of molecular targets have been interrogated during recent years to discover starting points for development of small-molecule interventions. AREAS COVERED This review describes recent developments in the field of early drug discovery for drug abuse interventions with an emphasis on the advances published during the 2012 - 2014 period. EXPERT OPINION Technologically, the processes/platforms utilized in drug abuse drug discovery are nearly identical to those used in the other disease areas. A key complicating factor in drug abuse research is the enormous biological complexity surrounding the brain processes involved and the associated difficulty in finding 'good' targets and achieving exquisite selectivity of treatment agents. While tremendous progress has been made during recent years to use the power of high-throughput technologies to discover proof-of-principle molecules for many new targets, next-generation models will be especially important in this field. Examples include: seeking advantageous drug-drug combinations, the use of automated whole-animal behavioral screening systems, advancing our understanding of the role of epigenetics in drug addiction and the employment of organoid-level 3D test platforms (also referred to as tissue-chip or organs-on-chip).
Collapse
Affiliation(s)
- Adam Yasgar
- National Institutes of Health, NIH Chemical Genomics Center, National Center for Advancing Translational Sciences , Bethesda, MD , USA +1 301 217 5721 ; +1 301 217 5736 ;
| | | |
Collapse
|
41
|
Romero L, Vela JM. Alternative Models in Drug Discovery and Development Part II:In VivoNonmammalian and Exploratory/Experimental Human Models. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/9783527679348.ch03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
42
|
Stewart AM, Braubach O, Spitsbergen J, Gerlai R, Kalueff AV. Zebrafish models for translational neuroscience research: from tank to bedside. Trends Neurosci 2014; 37:264-78. [PMID: 24726051 DOI: 10.1016/j.tins.2014.02.011] [Citation(s) in RCA: 455] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 01/23/2023]
Abstract
The zebrafish (Danio rerio) is emerging as a new important species for studying mechanisms of brain function and dysfunction. Focusing on selected central nervous system (CNS) disorders (brain cancer, epilepsy, and anxiety) and using them as examples, we discuss the value of zebrafish models in translational neuroscience. We further evaluate the contribution of zebrafish to neuroimaging, circuit level, and drug discovery research. Outlining the role of zebrafish in modeling a wide range of human brain disorders, we also summarize recent applications and existing challenges in this field. Finally, we emphasize the potential of zebrafish models in behavioral phenomics and high-throughput genetic/small molecule screening, which is critical for CNS drug discovery and identifying novel candidate genes.
Collapse
Affiliation(s)
- Adam Michael Stewart
- ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA; Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| | - Oliver Braubach
- Center for Functional Connectomics, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seoul, 136791, Republic of Korea
| | - Jan Spitsbergen
- Department of Microbiology, Oregon State University, Nash Hall 220 Corvallis, OR 97331, USA
| | - Robert Gerlai
- Department of Psychology, University of Toronto at Mississauga, 3359 Mississauga Road, N Mississauga, Ontario L5L 1C6, Canada
| | - Allan V Kalueff
- ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
43
|
Cousin MA, Ebbert JO, Wiinamaki AR, Urban MD, Argue DP, Ekker SC, Klee EW. Larval zebrafish model for FDA-approved drug repositioning for tobacco dependence treatment. PLoS One 2014; 9:e90467. [PMID: 24658307 PMCID: PMC3962344 DOI: 10.1371/journal.pone.0090467] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 02/03/2014] [Indexed: 12/18/2022] Open
Abstract
Cigarette smoking remains the most preventable cause of death and excess health care costs in the United States, and is a leading cause of death among alcoholics. Long-term tobacco abstinence rates are low, and pharmacotherapeutic options are limited. Repositioning medications approved by the U.S. Food and Drug Administration (FDA) may efficiently provide clinicians with new treatment options. We developed a drug-repositioning paradigm using larval zebrafish locomotion and established predictive clinical validity using FDA-approved smoking cessation therapeutics. We evaluated 39 physician-vetted medications for nicotine-induced locomotor activation blockade. We further evaluated candidate medications for altered ethanol response, as well as in combination with varenicline for nicotine-response attenuation. Six medications specifically inhibited the nicotine response. Among this set, apomorphine and topiramate blocked both nicotine and ethanol responses. Both positively interact with varenicline in the Bliss Independence test, indicating potential synergistic interactions suggesting these are candidates for translation into Phase II clinical trials for smoking cessation.
Collapse
Affiliation(s)
- Margot A. Cousin
- Mayo Addiction Research Center, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Jon O. Ebbert
- Mayo Addiction Research Center, Mayo Clinic, Rochester, Minnesota, United States of America
- Nicotine Dependence Center, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Amanda R. Wiinamaki
- Mayo Addiction Research Center, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Mark D. Urban
- Mayo Addiction Research Center, Mayo Clinic, Rochester, Minnesota, United States of America
| | - David P. Argue
- Mayo Addiction Research Center, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Stephen C. Ekker
- Mayo Addiction Research Center, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Eric W. Klee
- Mayo Addiction Research Center, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
44
|
Lin KY, Chang WT, Lai YC, Liau I. Toward functional screening of cardioactive and cardiotoxic drugs with zebrafish in vivo using pseudodynamic three-dimensional imaging. Anal Chem 2014; 86:2213-20. [PMID: 24456565 DOI: 10.1021/ac403877h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Given the high mortality in patients with cardiovascular diseases and the life-threatening consequences of drugs with unforeseen adverse effects on hearts, a critical evaluation of the pharmacological response of cardiovascular function on model animals is important especially in the early stages of drug development. We report a proof-of-principle study to demonstrate the utility of zebrafish as an analytical platform to predict the cardiac response of new drugs or chemicals on human beings. With pseudodynamic 3D imaging, we derive individual parameters that are central to the cardiac function of zebrafish, including the ventricular stroke volume, ejection fraction, cardiac output, heart rate, diastolic filling function, and ventricular mass. We evaluate both inotropic and chronotropic responses of the heart of zebrafish treated with drugs that are commonly prescribed and possess varied known cardiac activities. We reveal deranged cardiac function of a zebrafish model of cardiomyopathy induced with a cardiotoxic drug. The cardiac function of zebrafish exhibits a pharmacological response similar to that of human beings. We compare also cardiac parameters obtained in this work with those derived with conventional 2D approximation and show that the latter tends to overestimate the cardiac parameters and produces results of greater variation. In view of the growing interest of using zebrafish in both fundamental and translational biomedical research, we envisage that our approach should benefit not only contemporary pharmaceutical development but also exploratory research such as gene, stem cell, or regenerative therapies targeting congenital or acquired heart diseases.
Collapse
Affiliation(s)
- Kuen-You Lin
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University , Hsinchu 300, Taiwan
| | | | | | | |
Collapse
|
45
|
Kalueff AV, Stewart AM, Gerlai R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci 2014; 35:63-75. [PMID: 24412421 DOI: 10.1016/j.tips.2013.12.002] [Citation(s) in RCA: 737] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 12/27/2022]
Abstract
The zebrafish (Danio rerio) is rapidly becoming a popular model organism in pharmacogenetics and neuropharmacology. Both larval and adult zebrafish are currently used to increase our understanding of brain function, dysfunction, and their genetic and pharmacological modulation. Here we review the developing utility of zebrafish in the analysis of complex brain disorders (including, e.g., depression, autism, psychoses, drug abuse, and cognitive deficits), also covering zebrafish applications towards the goal of modeling major human neuropsychiatric and drug-induced syndromes. We argue that zebrafish models of complex brain disorders and drug-induced conditions are a rapidly emerging critical field in translational neuroscience and pharmacology research.
Collapse
Affiliation(s)
- Allan V Kalueff
- ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| | - Adam Michael Stewart
- ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA; Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| | - Robert Gerlai
- Department of Psychology, University of Toronto at Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|
46
|
Stewart AM, Kalueff AV. Anxiolytic drug discovery: what are the novel approaches and how can we improve them? Expert Opin Drug Discov 2013; 9:15-26. [PMID: 24206163 DOI: 10.1517/17460441.2014.857309] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Contemporary biological psychiatry uses experimental (animal) models to increase our understanding of affective disorder pathogenesis. Despite the well-recognized spectrum nature of affective disorders, modern anxiolytic drug discovery mainly targets specific pathways and molecular determinants within a single phenotypic domain. However, greater understanding of the integrative mechanisms and pathogenesis is essential in order to develop new effective therapies. AREAS COVERED In this review, the authors emphasize the importance of a 'domain interplay-oriented' approach to experimental affective research. They also highlight the need to expand the scope of anxiolytic drug targets to better understand the pathogenesis of anxiety-spectrum disorders. EXPERT OPINION There is the potential to markedly improve the utility of animal models for affective disorders. First, the authors suggest that one such way would be by analyzing the systems of several domains and their interplay to better understand disease pathogenesis. Further, it could also be improved by expanding the range of model species and by extending the spectrum of anxiolytic drug targets; this would help to focus on emerging and unconventional systems to better develop new therapies.
Collapse
Affiliation(s)
- Adam Michael Stewart
- ZENEREI Institute , 309 Palmer Court, Slidell, LA 70458 , USA +1 240 328 2275 ; +1 240 328 2275 ;
| | | |
Collapse
|
47
|
Stewart AM, Kalueff AV. The behavioral effects of acute Δ⁹-tetrahydrocannabinol and heroin (diacetylmorphine) exposure in adult zebrafish. Brain Res 2013; 1543:109-19. [PMID: 24216135 DOI: 10.1016/j.brainres.2013.11.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 01/02/2023]
Abstract
The use of psychotropic drugs in clinical and translational brain research continues to grow, and the need for novel experimental models and screens is becoming widely recognized. Mounting evidence supports the utility of zebrafish (Danio rerio) for studying various pharmacological manipulations, as an alternative model complementing the existing rodent paradigms in this field. Here, we explore the effects of acute 20-min exposure to two commonly abused psychotropic compounds, Δ(9)-tetrahydrocannabinol (THC) and heroin, on adult zebrafish behavior in the novel tank test. Overall, THC administration (30 and 50 mg/L) produces an anxiogenic-like reduction of top swimming, paralleled with a slower, continuous bottom swimming. In contrast, heroin exposure (15 and 25 mg/L) evoked a hyperlocomotor response (with rapid bouts of bottom swimming and frequent 'bouncing' motions) without altering anxiety-sensitive top/bottom endpoints. The behavioral effects of these two compounds in zebrafish seem to parallel the respective rodent and human findings. Collectively, this emphasizes the growing significance of novel emerging aquatic models in translational drug abuse research and small molecule screening.
Collapse
Affiliation(s)
- Adam Michael Stewart
- Zebrafish Neuroscience Research Consortium (ZNRC) and ZENEREI Institute, 309 Palmer Court, Slidell 70458, USA; Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| | - Allan V Kalueff
- Zebrafish Neuroscience Research Consortium (ZNRC) and ZENEREI Institute, 309 Palmer Court, Slidell 70458, USA; Department of Pharmacology and Neuroscience Program, Tulane University Medical School, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| |
Collapse
|