1
|
Wang T, Homberg JR, Boreggio L, Samina MCF, Castro RCR, Kolk SM, Alenina N, Bader M, Dai J, Wöhr M. Socio-affective communication in Tph2-deficient rat pups: communal nesting aggravates growth retardation despite ameliorating maternal affiliation deficits. Mol Autism 2024; 15:50. [PMID: 39614401 PMCID: PMC11606121 DOI: 10.1186/s13229-024-00629-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/30/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND A lack of serotonin (also known as 5-hydroxytryptamine, 5-HT) in the brain due to deficiency of the rate-limiting enzyme in 5-HT synthesis, tryptophan hydroxylase 2 (TPH2), was recently reported to result in impaired maternal affiliation across species, including mice, rats, and monkeys. In rodents, this was reflected in a lack of preference for maternal odors and reduced levels of isolation-induced ultrasonic vocalizations (USV), possibly contributing to a severe growth retardation phenotype. METHODS Here, we tested whether growth retardation, maternal affiliation deficits, and/or impairments in socio-affective communication caused by Tph2 deficiency can be rescued through early social enrichment in rats. To this aim, we compared male and female Tph2-/- knockout and Tph2+/- heterozygous rat pups to Tph2+/+ wildtype littermate controls, with litters being randomly assigned to standard nesting (SN; one mother with her litter) or communal nesting (CN; two mothers with their two litters). RESULTS Our results show that Tph2 deficiency causes severe growth retardation, together with moderate impairments in somatosensory reflexes and thermoregulatory capabilities, partially aggravated by CN. Tph2 deficiency further led to deficits in socio-affective communication, as evidenced by reduced emission of isolation-induced USV, associated with changes in acoustic features, clustering of subtypes, and temporal organization. Although CN did not rescue the impairments in socio-affective communication, CN ameliorated the maternal affiliation deficit caused by Tph2 deficiency in the homing test. To close the communicative loop between mother and pup, we assessed maternal preference and showed that mothers display a preference for Tph2+/+ controls over Tph2-/- pups, particularly under CN conditions. This is consistent with the aggravated growth phenotype in Tph2-/- pups exposed to the more competitive CN environment. CONCLUSION Together, this indicates that CN aggravates growth retardation despite ameliorating maternal affiliation deficits in Tph2-deficient rat pups, possibly due to reduced and acoustically altered isolation-induced USV, hindering efficient socio-affective communication between mother and pup.
Collapse
Affiliation(s)
- Tianhua Wang
- Faculty of Psychology, Experimental and Biological Psychology, Philipps-Universität Marburg, Behavioral Neuroscience, 35032, Marburg, Germany
- Philipps-Universität Marburg, Center for Mind, Brain, and Behavior (CMBB), 35032, Marburg, Germany
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, 6525 EN, Nijmegen, The Netherlands
| | - Laura Boreggio
- Molecular Biology of Peptide Hormones, Max-Delbrück-Centrum Für Molekulare Medizin (MDC), 13125, Berlin, Germany
| | - Marta C F Samina
- Radboud University, Donders Institute for Brain, Cognition, and Behaviour, 6525 AJ, Nijmegen, The Netherlands
| | - Rogério C R Castro
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, 6525 EN, Nijmegen, The Netherlands
| | - Sharon M Kolk
- Radboud University, Donders Institute for Brain, Cognition, and Behaviour, 6525 AJ, Nijmegen, The Netherlands
| | - Natalia Alenina
- Molecular Biology of Peptide Hormones, Max-Delbrück-Centrum Für Molekulare Medizin (MDC), 13125, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), partner site Berlin, 10785, Berlin, Germany
| | - Michael Bader
- Molecular Biology of Peptide Hormones, Max-Delbrück-Centrum Für Molekulare Medizin (MDC), 13125, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), partner site Berlin, 10785, Berlin, Germany
- Charité University Medicine Berlin, 10117, Berlin, Germany
- Institute for Biology, University of Lübeck, 23562, Lübeck, Germany
| | - Jinye Dai
- Department of Pharmacological Sciences and Department of Neuroscience, Mount Sinai, Icahn School of Medicine, Friedman Brain Institute, New York, 10029, USA
| | - Markus Wöhr
- Faculty of Psychology, Experimental and Biological Psychology, Philipps-Universität Marburg, Behavioral Neuroscience, 35032, Marburg, Germany.
- Philipps-Universität Marburg, Center for Mind, Brain, and Behavior (CMBB), 35032, Marburg, Germany.
- Faculty of Psychology and Educational Sciences, Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, KU Leuven, Tiensestraat 102 - Bus 3714, 3000, Louvain, Belgium.
- KU Leuven, Leuven Brain Institute, 3000, Louvain, Belgium.
| |
Collapse
|
2
|
Warner AK, Iskander L, Allen K, Quatela I, Borrelli H, Sachs BD. The effects of brain serotonin deficiency on the behavioral and neurogenesis-promoting effects of voluntary exercise in tryptophan hydroxylase 2 (R439H) knock-in mice. Neuropharmacology 2024; 258:110082. [PMID: 39009217 DOI: 10.1016/j.neuropharm.2024.110082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Exercise is known to reduce depression and anxiety symptoms. Although the cellular and molecular mechanisms underlying this effect remain unknown, exercise-induced increases in neurotransmitter release and hippocampal neurogenesis have been hypothesized to play key roles. One neurotransmitter that has been implicated in both antidepressant-like effects and the regulation of hippocampal neurogenesis is serotonin (5-HT). Complete loss of function of the brain 5-HT synthesis enzyme (tryptophan hydroxylase 2, Tph2) has been reported to prevent exercise-induced increases in neurogenesis and to block a subset of antidepressant-like responses to selective serotonin reuptake inhibitors (SSRIs), but whether partial loss of Tph2 function blocks the behavioral and neurogenic effects of exercise has not been established. This study used four tests that are predictive of antidepressant efficacy to determine the impact of 5-HT deficiency on responses to exercise in male and female mice. Our results demonstrate that low 5-HT impairs the behavioral effects of exercise in females in the forced swim and novelty-suppressed feeding tests. However, genetic reductions in 5-HT synthesis did not significantly impact exercise-induced alterations in cellular proliferation or immature neuron production in the hippocampus in either sex. These findings highlight the importance of brain 5-HT in mediating behavioral responses to exercise and suggest that individual differences in brain 5-HT synthesis could influence sensitivity to the mental health benefits of exercise. Furthermore, the observed disconnect between neurogenic and behavioral responses to exercise suggests that increased neurogenesis is unlikely to be the primary driver of the behavioral effects of exercise observed here.
Collapse
Affiliation(s)
- Allison K Warner
- Department of Psychological and Brain Sciences, Villanova University, USA
| | - Lauren Iskander
- Department of Psychological and Brain Sciences, Villanova University, USA
| | - Kristen Allen
- Department of Psychological and Brain Sciences, Villanova University, USA
| | - Isabella Quatela
- Department of Psychological and Brain Sciences, Villanova University, USA
| | - Hannah Borrelli
- Department of Psychological and Brain Sciences, Villanova University, USA
| | - Benjamin D Sachs
- Department of Psychological and Brain Sciences, Villanova University, USA.
| |
Collapse
|
3
|
Park I, Choi M, Kim J, Jang S, Kim D, Kim J, Choe Y, Geum D, Yu SW, Choi JW, Moon C, Choe HK, Son GH, Kim K. Role of the circadian nuclear receptor REV-ERBα in dorsal raphe serotonin synthesis in mood regulation. Commun Biol 2024; 7:998. [PMID: 39147805 PMCID: PMC11327353 DOI: 10.1038/s42003-024-06647-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/29/2024] [Indexed: 08/17/2024] Open
Abstract
Affective disorders are frequently associated with disrupted circadian rhythms. The existence of rhythmic secretion of central serotonin (5-hydroxytryptamine, 5-HT) pattern has been reported; however, the functional mechanism underlying the circadian control of 5-HTergic mood regulation remains largely unknown. Here, we investigate the role of the circadian nuclear receptor REV-ERBα in regulating tryptophan hydroxylase 2 (Tph2), the rate-limiting enzyme of 5-HT synthesis. We demonstrate that the REV-ERBα expressed in dorsal raphe (DR) 5-HTergic neurons functionally competes with PET-1-a nuclear activator crucial for 5-HTergic neuron development. In mice, genetic ablation of DR 5-HTergic REV-ERBα increases Tph2 expression, leading to elevated DR 5-HT levels and reduced depression-like behaviors at dusk. Further, pharmacological manipulation of the mice DR REV-ERBα activity increases DR 5-HT levels and affects despair-related behaviors. Our findings provide valuable insights into the molecular and cellular link between the circadian rhythm and the mood-controlling DR 5-HTergic systems.
Collapse
Affiliation(s)
- Inah Park
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Mijung Choi
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Jeongah Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Sangwon Jang
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Doyeon Kim
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Jihoon Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Youngshik Choe
- Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea
| | - Dongho Geum
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Seong-Woon Yu
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Ji-Woong Choi
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Cheil Moon
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Han Kyoung Choe
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Gi Hoon Son
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Department of Legal Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Kyungjin Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| |
Collapse
|
4
|
Zaniewska M, Alenina N, Fröhler S, Chen W, Bader M. Ethanol deprivation and central 5-HT deficiency differentially affect the mRNA editing of the 5-HT 2C receptor in the mouse brain. Pharmacol Rep 2023; 75:1502-1521. [PMID: 37923824 PMCID: PMC10661786 DOI: 10.1007/s43440-023-00545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Serotonin (5-HT) 5-HT2C receptor mRNA editing (at five sites, A-E), implicated in neuropsychiatric disorders, including clinical depression, remains unexplored during alcohol abstinence-often accompanied by depressive symptoms. METHODS We used deep sequencing to investigate 5-HT2C receptor editing in mice during early ethanol deprivation following prolonged alcohol exposure and mice lacking tryptophan hydroxylase (TPH)2, a key enzyme in central 5-HT production. We also examined Tph2 expression in ethanol-deprived animals using quantitative real-time PCR (qPCR). RESULTS Cessation from chronic 10% ethanol exposure in a two-bottle choice paradigm enhanced immobility time and decreased latency in the forced swim test (FST), indicating a depression-like phenotype. In the hippocampus, ethanol-deprived "high ethanol-drinking" mice displayed reduced Tph2 expression, elevated 5-HT2C receptor editing efficiency, and decreased frequency of the D mRNA variant, encoding the less-edited INV protein isoform. Tph2-/- mice showed attenuated receptor editing in the hippocampus and elevated frequency of non-edited None and D variants. In the prefrontal cortex, Tph2 deficiency increased receptor mRNA editing at site D and reduced the frequency of AB transcript, predicting a reduction in the corresponding partially edited VNI isoform. CONCLUSIONS Our findings reveal differential effects of 5-HT depletion and ethanol cessation on 5-HT2C receptor editing. Central 5-HT depletion attenuated editing in the prefrontal cortex and the hippocampus, whereas ethanol deprivation, coinciding with reduced Tph2 expression in the hippocampus, enhanced receptor editing efficiency specifically in this brain region. This study highlights the interplay between 5-HT synthesis, ethanol cessation, and 5-HT2C receptor editing, providing potential mechanism underlying increased ethanol consumption and deprivation.
Collapse
Affiliation(s)
- Magdalena Zaniewska
- Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland.
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany.
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Sebastian Fröhler
- Laboratory for New Sequencing Technology, Max-Delbrück-Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Wei Chen
- Laboratory for New Sequencing Technology, Max-Delbrück-Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Department of Systems Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
5
|
Chahuan S, Grover S, Singh S. Amelioration of modified chronic unpredictable stress using Celastrus paniculatus seed oil alone and in combination with fluoxetine. Drug Chem Toxicol 2023; 46:879-894. [PMID: 35943180 DOI: 10.1080/01480545.2022.2105862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/09/2022] [Accepted: 07/18/2022] [Indexed: 11/03/2022]
Abstract
The various stressors in chronic unpredictable stress (CUS) triggers depressive behavior, impairs learning, and decision-making abilities. The present study investigated the effects of Celastrus paniculatus seed oil (CPSO) alone and in combination with fluoxetine (FLU) in modified CUS (mCUS) induced depression in mice. In this study, adult albino mice were subjected to a modified version of CUS protocol having six different stressors and were applied daily consistently for 15 days. The post-treatment with CPSO (50 and 100 mg/kg) and FLU (10 mg/kg) alone and in combination from day 16th to 36th. Group I: normal control; group II: diseased control (mCUS subjected group); group III: CPSO (50 mg/kg); group IV: CPSO (100 mg/kg); group V: CPSO (50 mg/kg)+FLU (10 mg/kg); group VI: CPSO (100 mg/kg)+FLU (10 mg/kg); group VII: FLU (10 mg/kg); group VIII: FLU (20 mg/kg). During experimentation, various behavioral, biochemical, oxidative stress, inflammatory, and neurotransmitters level were checked. The CUS treated mice exhibited increased escaped latency, decreased number of open arm entries, increased immobility time, decreased percentage of sucrose consumption, and number of the boxes crossed as compared to the normal group. The post-treatment with the CPSO 50 + FLU 10, CPSO 100 + FLU 10, FLU 10 significantly (p < 0.05) attenuated behavioral, biochemical, inflammation, corticosteroid, and neurotransmitters level as compared to CPSO 50, CPSO 100, and FLU 20 alone. CPSO along with FLU appreciably achieved anti-depressant effect via lowering stress, inflammation, corticosteroid level, and restoration of neurotransmitters level in mCUS induced depression mice model.
Collapse
Affiliation(s)
- Sanjana Chahuan
- Department of Pharmacology, ISF College of Pharmacy, Moga, India
| | - Sania Grover
- Department of Pharmacology, ISF College of Pharmacy, Moga, India
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, India
| |
Collapse
|
6
|
Zhao C, Man T, Cao Y, Weiss PS, Monbouquette HG, Andrews AM. Flexible and Implantable Polyimide Aptamer-Field-Effect Transistor Biosensors. ACS Sens 2022; 7:3644-3653. [PMID: 36399772 PMCID: PMC9982941 DOI: 10.1021/acssensors.2c01909] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Monitoring neurochemical signaling across time scales is critical to understanding how brains encode and store information. Flexible (vs stiff) devices have been shown to improve in vivo monitoring, particularly over longer times, by reducing tissue damage and immunological responses. Here, we report our initial steps toward developing flexible and implantable neuroprobes with aptamer-field-effect transistor (FET) biosensors for neurotransmitter monitoring. A high-throughput process was developed to fabricate thin, flexible polyimide probes using microelectromechanical-system (MEMS) technologies, where 150 flexible probes were fabricated on each 4 in. Si wafer. Probes were 150 μm wide and 7 μm thick with two FETs per tip. The bending stiffness was 1.2 × 10-11 N·m2. Semiconductor thin films (3 nm In2O3) were functionalized with DNA aptamers for target recognition, which produces aptamer conformational rearrangements detected via changes in FET conductance. Flexible aptamer-FET neuroprobes detected serotonin at femtomolar concentrations in high-ionic strength artificial cerebrospinal fluid. A straightforward implantation process was developed, where microfabricated Si carrier devices assisted with implantation such that flexible neuroprobes detected physiological relevant serotonin in a tissue-hydrogel brain mimic.
Collapse
Affiliation(s)
- Chuanzhen Zhao
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Tianxing Man
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yan Cao
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States,Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Paul S. Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States,Departments of Bioengineering and Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Harold G. Monbouquette
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States,Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Anne M. Andrews
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States,Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience & Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States,To whom correspondence should be addressed to:
| |
Collapse
|
7
|
Ceasrine AM, Devlin BA, Bolton JL, Green LA, Jo YC, Huynh C, Patrick B, Washington K, Sanchez CL, Joo F, Campos-Salazar AB, Lockshin ER, Kuhn C, Murphy SK, Simmons LA, Bilbo SD. Maternal diet disrupts the placenta-brain axis in a sex-specific manner. Nat Metab 2022; 4:1732-1745. [PMID: 36443520 PMCID: PMC10507630 DOI: 10.1038/s42255-022-00693-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/17/2022] [Indexed: 11/30/2022]
Abstract
High maternal weight is associated with detrimental outcomes in offspring, including increased susceptibility to neurological disorders such as anxiety, depression and communicative disorders. Despite widespread acknowledgement of sex biases in the development of these disorders, few studies have investigated potential sex-biased mechanisms underlying disorder susceptibility. Here, we show that a maternal high-fat diet causes endotoxin accumulation in fetal tissue, and subsequent perinatal inflammation contributes to sex-specific behavioural outcomes in offspring. In male offspring exposed to a maternal high-fat diet, increased macrophage Toll-like receptor 4 signalling results in excess microglial phagocytosis of serotonin (5-HT) neurons in the developing dorsal raphe nucleus, decreasing 5-HT bioavailability in the fetal and adult brains. Bulk sequencing from a large cohort of matched first-trimester human samples reveals sex-specific transcriptome-wide changes in placental and brain tissue in response to maternal triglyceride accumulation (a proxy for dietary fat content). Further, fetal brain 5-HT levels decrease as placental triglycerides increase in male mice and male human samples. These findings uncover a microglia-dependent mechanism through which maternal diet can impact offspring susceptibility for neuropsychiatric disorder development in a sex-specific manner.
Collapse
Affiliation(s)
- Alexis M Ceasrine
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Benjamin A Devlin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Jessica L Bolton
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Lauren A Green
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Young Chan Jo
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Carolyn Huynh
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Bailey Patrick
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Kamryn Washington
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Cristina L Sanchez
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Faith Joo
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | | | - Elana R Lockshin
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Cynthia Kuhn
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Leigh Ann Simmons
- Department of Human Ecology, Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA, USA
| | - Staci D Bilbo
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
- Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
8
|
Gudasheva TA, Sazonova NM, Tarasiuk AV, Logvinov IO, Antipova TA, Nikiforov DM, Povarnina PY, Seredenin SB. The First Dipeptide Mimetic of Neurotrofin-3: Design and Pharmacological Properties. DOKL BIOCHEM BIOPHYS 2022; 505:160-165. [DOI: 10.1134/s1607672922040032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022]
|
9
|
Zaniewska M, Mosienko V, Bader M, Alenina N. Tph2 Gene Expression Defines Ethanol Drinking Behavior in Mice. Cells 2022; 11:cells11050874. [PMID: 35269497 PMCID: PMC8909500 DOI: 10.3390/cells11050874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 01/22/2023] Open
Abstract
Indirect evidence supports a link between disrupted serotonin (5-hydroxytryptamine; 5-HT) signaling in the brain and addictive behaviors. However, the effects of hyposerotonergia on ethanol drinking behavior are contradictory. In this study, mice deficient in tryptophan hydroxylase 2 (Tph2−/−), the rate-limiting enzyme of 5-HT synthesis in the brain, were used to assess the role of central 5-HT in alcohol drinking behavior. Life-long 5-HT depletion in these mice led to an increased ethanol consumption in comparison to wild-type animals in a two-bottle choice test. Water consumption was increased in naïve 5-HT-depleted mice. However, exposure of Tph2−/− animals to ethanol resulted in the normalization of water intake to the level of wild-type mice. Tph2 deficiency in mice did not interfere with ethanol-evoked antidepressant response in the forced swim test. Gene expression analysis in wild-type animals revealed no change in Tph2 expression in the brain of mice consuming ethanol compared to control mice drinking water. However, within the alcohol-drinking group, inter-individual differences in chronic ethanol intake correlated with Tph2 transcript levels. Taken together, central 5-HT is an important modulator of drinking behavior in mice but is not required for the antidepressant effects of ethanol.
Collapse
Affiliation(s)
- Magdalena Zaniewska
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany; (V.M.); (M.B.)
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
- Correspondence: (M.Z.); (N.A.); Tel.: +48-1-2662-3289 (M.Z.); +49-30-9406-3576 (N.A.)
| | - Valentina Mosienko
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany; (V.M.); (M.B.)
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany; (V.M.); (M.B.)
- Institute for Biology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Potsdamer Str. 58, 10785 Berlin, Germany
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany; (V.M.); (M.B.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Potsdamer Str. 58, 10785 Berlin, Germany
- Correspondence: (M.Z.); (N.A.); Tel.: +48-1-2662-3289 (M.Z.); +49-30-9406-3576 (N.A.)
| |
Collapse
|
10
|
Use of Spirituality in the Treatment of Depression: Systematic Literature Review. Psychiatr Q 2022; 93:255-269. [PMID: 35226252 DOI: 10.1007/s11126-020-09881-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2020] [Indexed: 10/19/2022]
Abstract
Spirituality has been gaining recognition as a potential treatment modality. Our paper aimed to provide a systematic overview of existing research examining the use of spirituality as a treatment method for depression. All articles published between 2000 and 2018 that scientifically evaluated therapeutic interventions with elements of spirituality were included in the review. Ten studies met the inclusion criteria. Their analysis showed that there were elements of spirituality-based treatments that were repeatedly mentioned, including gratitude, forgiveness, self-acceptance, and compassion. Most often, spirituality was used together with psychotherapy. The review also noted the emergence of digital interventions.
Collapse
|
11
|
Mezhlumyan AG, Tallerova AV, Povarnina PY, Tarasiuk AV, Sazonova NM, Gudasheva TA, Seredenin SB. Antidepressant-like Effects of BDNF and NGF Individual Loop Dipeptide Mimetics Depend on the Signal Transmission Patterns Associated with Trk. Pharmaceuticals (Basel) 2022; 15:ph15030284. [PMID: 35337082 PMCID: PMC8950955 DOI: 10.3390/ph15030284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/29/2022] Open
Abstract
Neurotrophins are considered as an attractive target for the development of antidepressants with a novel mechanism of action. Previously, the dimeric dipeptide mimetics of individual loops of nerve growth factor, NGF (GK-6, loop 1; GK-2, loop 4) and brain-derived neurotrophic factor, BDNF (GSB-214, loop 1; GTS-201, loop 2; GSB-106, loop 4) were designed and synthesized. All the mimetics of NGF and BDNF in vitro after a 5–180 min incubation in a HT-22 cell culture were able to phosphorylate the tropomyosin-related kinase A (TrkA) or B (TrkB) receptors, respectively, but had different post-receptor signaling patterns. In the present study, we conduct comparative research of the antidepressant-like activity of these mimetics at acute and subchronic administration in the forced swim test in mice. Only the dipeptide GSB-106 that in vitro activates mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK), phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and phospholipase C-gamma (PLCγ) post-receptor pathways exhibited antidepressant-like activity (0.1 and 1.0 mg/kg, ip) at acute administration. At the same time, the inhibition of any one of these signaling pathways completely prevented the antidepressant-like effects of GSB-106 in the forced swim test. All the NGF mimetics were inactive after a single injection regardless of post-receptor in vitro signaling patterns. All the investigated dipeptides, except GTS-201, not activating PI3K/AKT in vitro unlike the other compounds, were active at subchronic administration. The data obtained demonstrate that the low-molecular weight BDNF mimetic GSB-106 that activates all three main post-receptor TrkB signaling pathways is the most promising for the development as an antidepressant.
Collapse
Affiliation(s)
- Armen G. Mezhlumyan
- Department of Medicinal Chemistry, V.V. Zakusov Research Institute of Pharmacology, 125315 Moscow, Russia; (A.G.M.); (A.V.T.); (P.Y.P.); (A.V.T.); (N.M.S.)
| | - Anna V. Tallerova
- Department of Medicinal Chemistry, V.V. Zakusov Research Institute of Pharmacology, 125315 Moscow, Russia; (A.G.M.); (A.V.T.); (P.Y.P.); (A.V.T.); (N.M.S.)
| | - Polina Y. Povarnina
- Department of Medicinal Chemistry, V.V. Zakusov Research Institute of Pharmacology, 125315 Moscow, Russia; (A.G.M.); (A.V.T.); (P.Y.P.); (A.V.T.); (N.M.S.)
| | - Aleksey V. Tarasiuk
- Department of Medicinal Chemistry, V.V. Zakusov Research Institute of Pharmacology, 125315 Moscow, Russia; (A.G.M.); (A.V.T.); (P.Y.P.); (A.V.T.); (N.M.S.)
| | - Nellya M. Sazonova
- Department of Medicinal Chemistry, V.V. Zakusov Research Institute of Pharmacology, 125315 Moscow, Russia; (A.G.M.); (A.V.T.); (P.Y.P.); (A.V.T.); (N.M.S.)
| | - Tatiana A. Gudasheva
- Department of Medicinal Chemistry, V.V. Zakusov Research Institute of Pharmacology, 125315 Moscow, Russia; (A.G.M.); (A.V.T.); (P.Y.P.); (A.V.T.); (N.M.S.)
- Correspondence:
| | - Sergey B. Seredenin
- Department of Pharmacogenetics, V.V. Zakusov Research Institute of Pharmacology, 25315 Moscow, Russia;
| |
Collapse
|
12
|
Zhao C, Cheung KM, Huang IW, Yang H, Nakatsuka N, Liu W, Cao Y, Man T, Weiss PS, Monbouquette HG, Andrews AM. Implantable aptamer-field-effect transistor neuroprobes for in vivo neurotransmitter monitoring. SCIENCE ADVANCES 2021; 7:eabj7422. [PMID: 34818033 PMCID: PMC8612678 DOI: 10.1126/sciadv.abj7422] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
While tools for monitoring in vivo electrophysiology have been extensively developed, neurochemical recording technologies remain limited. Nevertheless, chemical communication via neurotransmitters plays central roles in brain information processing. We developed implantable aptamer–field-effect transistor (FET) neuroprobes for monitoring neurotransmitters. Neuroprobes were fabricated using high-throughput microelectromechanical system (MEMS) technologies, where 150 probes with shanks of either 150- or 50-μm widths and thicknesses were fabricated on 4-inch Si wafers. Nanoscale FETs with ultrathin (~3 to 4 nm) In2O3 semiconductor films were prepared using sol-gel processing. The In2O3 surfaces were coupled with synthetic oligonucleotide receptors (aptamers) to recognize and to detect the neurotransmitter serotonin. Aptamer-FET neuroprobes enabled femtomolar serotonin detection limits in brain tissue with minimal biofouling. Stimulated serotonin release was detected in vivo. This study opens opportunities for integrated neural activity recordings at high spatiotemporal resolution by combining these aptamer-FET sensors with other types of Si-based implantable probes to advance our understanding of brain function.
Collapse
Affiliation(s)
- Chuanzhen Zhao
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kevin M. Cheung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - I-Wen Huang
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hongyan Yang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nako Nakatsuka
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wenfei Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yan Cao
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tianxing Man
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Paul S. Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Harold G. Monbouquette
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anne M. Andrews
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Corresponding author.
| |
Collapse
|
13
|
Wang W, Wei C, Quan M, Li T, Jia J. Sulforaphane Reverses the Amyloid-β Oligomers Induced Depressive-Like Behavior. J Alzheimers Dis 2021; 78:127-137. [PMID: 32925042 DOI: 10.3233/jad-200397] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Depression is one of the most common behavioral and psychological symptoms in people with Alzheimer's disease (AD). To date, however, the molecular mechanisms underlying the clinical association between depression and AD remained elusive. OBJECTIVE Here, we study the relationship between memory impairment and depressive-like behavior in AD animal model, and investigate the potential mechanisms. METHODS Male SD rats were administered amyloid-β oligomers (AβOs) by intracerebroventricular injection, and then the depressive-like behavior, neuroinflammation, oxidative stress, and the serotonergic system were measured in the brain. Sulforaphane (SF), a compound with dual capacities of anti-inflammation and anti-oxidative stress, was injected intraperitoneally to evaluate the therapeutic effect. RESULTS The results showed that AβOs induced both memory impairment and depressive-like behavior in rats, through the mechanisms of inducing neuroinflammation and oxidative stress, and impairing the serotonergic axis. SF could reduce both inflammatory factors and oxidative stress parameters to protect the serotonergic system and alleviate memory impairment and depressive-like behavior in rats. CONCLUSION These results provided insights into the biological mechanisms underlying the clinical link between depressive disorder and AD, and offered new drug options for the treatment of depressive symptoms in dementia.
Collapse
Affiliation(s)
- Wei Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, P.R. China
| | - Cuibai Wei
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China
| | - Meina Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China
| | - Tingting Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, P.R. China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, P.R. China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, P.R. China
| |
Collapse
|
14
|
Serotonin deficiency induced after brain maturation rescues consequences of early life adversity. Sci Rep 2021; 11:5368. [PMID: 33686115 PMCID: PMC7940624 DOI: 10.1038/s41598-021-83592-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 01/22/2021] [Indexed: 01/31/2023] Open
Abstract
Brain serotonin (5-HT) system dysfunction is implicated in depressive disorders and acute depletion of 5-HT precursor tryptophan has frequently been used to model the influence of 5-HT deficiency on emotion regulation. Tamoxifen (TAM)-induced Cre/loxP-mediated inactivation of the tryptophan hydroxylase-2 gene (Tph2) was used to investigate the effects of provoked 5-HT deficiency in adult mice (Tph2 icKO) previously subjected to maternal separation (MS). The efficiency of Tph2 inactivation was validated by immunohistochemistry and HPLC. The impact of Tph2 icKO in interaction with MS stress (Tph2 icKO × MS) on physiological parameters, emotional behavior and expression of 5-HT system-related marker genes were assessed. Tph2 icKO mice displayed a significant reduction in 5-HT immunoreactive cells and 5-HT concentrations in the rostral raphe region within four weeks following TAM treatment. Tph2 icKO and MS differentially affected food and water intake, locomotor activity as well as panic-like escape behavior. Tph2 icKO prevented the adverse effects of MS stress and altered the expression of the genes previously linked to stress and emotionality. In conclusion, an experimental model was established to study the behavioral and neurobiological consequences of 5-HT deficiency in adulthood in interaction with early-life adversity potentially affecting brain development and the pathogenesis of depressive disorders.
Collapse
|
15
|
Demin KA, Smagin DA, Kovalenko IL, Strekalova T, Galstyan DS, Kolesnikova TO, De Abreu MS, Galyamina AG, Bashirzade A, Kalueff AV. CNS genomic profiling in the mouse chronic social stress model implicates a novel category of candidate genes integrating affective pathogenesis. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110086. [PMID: 32889031 DOI: 10.1016/j.pnpbp.2020.110086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/17/2020] [Accepted: 08/26/2020] [Indexed: 01/23/2023]
Abstract
Despite high prevalence, medical impact and societal burden, anxiety, depression and other affective disorders remain poorly understood and treated. Clinical complexity and polygenic nature complicate their analyses, often revealing genetic overlap and cross-disorder heritability. However, the interplay or overlaps between disordered phenotypes can also be based on shared molecular pathways and 'crosstalk' mechanisms, which themselves may be genetically determined. We have earlier predicted (Kalueff et al., 2014) a new class of 'interlinking' brain genes that do not affect the disordered phenotypes per se, but can instead specifically determine their interrelatedness. To test this hypothesis experimentally, here we applied a well-established rodent chronic social defeat stress model, known to progress in C57BL/6J mice from the Anxiety-like stage on Day 10 to Depression-like stage on Day 20. The present study analyzed mouse whole-genome expression in the prefrontal cortex and hippocampus during the Day 10, the Transitional (Day 15) and Day 20 stages in this model. Our main question here was whether a putative the Transitional stage (Day 15) would reveal distinct characteristic genomic responses from Days 10 and 20 of the model, thus reflecting unique molecular events underlining the transformation or switch from anxiety to depression pathogenesis. Overall, while in the Day 10 (Anxiety) group both brain regions showed major genomic alterations in various neurotransmitter signaling pathways, the Day 15 (Transitional) group revealed uniquely downregulated astrocyte-related genes, and the Day 20 (Depression) group demonstrated multiple downregulated genes of cell adhesion, inflammation and ion transport pathways. Together, these results reveal a complex temporal dynamics of mouse affective phenotypes as they develop. Our genomic profiling findings provide first experimental support to the idea that novel brain genes (activated here only during the Transitional stage) may uniquely integrate anxiety and depression pathogenesis and, hence, determine the progression from one pathological state to another. This concept can potentially be extended to other brain conditions as well. This preclinical study also further implicates cilial and astrocytal mechanisms in the pathogenesis of affective disorders.
Collapse
Affiliation(s)
- Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Dmitry A Smagin
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | | | - Tatyana Strekalova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - David S Galstyan
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Granov Russian Scientific Center of Radiology and Surgical Technologies, Ministry of Healthcare, St. Petersburg, Russia
| | - Tatyana O Kolesnikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Laboratory of Cell and Molecular Biology and Neurobiology, School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russia
| | | | | | - Alim Bashirzade
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia; Laboratory of Cell and Molecular Biology and Neurobiology, School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russia.
| |
Collapse
|
16
|
Angoa-Pérez M, Zagorac B, Francescutti DM, Theis KR, Kuhn DM. Responses to chronic corticosterone on brain glucocorticoid receptors, adrenal gland, and gut microbiota in mice lacking neuronal serotonin. Brain Res 2020; 1751:147190. [PMID: 33152342 DOI: 10.1016/j.brainres.2020.147190] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/30/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023]
Abstract
Dysregulation of the stress-induced activation of the hypothalamic-pituitary-adrenocortical axis can result in disease. Bidirectional communication exists between the brain and the gut, and alterations in these interactions appear to be involved in stress regulation and in the pathogenesis of neuropsychiatric diseases, such as depression. Serotonin (5HT) plays a crucial role in the functions of these two major organs but its direct influence under stress conditions remains unclear. To investigate the role of neuronal 5HT on chronic stress responses and its influence on the gut microbiome, mice lacking the gene for tryptophan hydroxylase-2 were treated with the stress hormone corticosterone (CORT) for 21 days. The intake of fluid and food, as well as body weights were recorded daily. CORT levels, expression of glucocorticoid receptors (GR) in the brain and the size of the adrenal gland were evaluated. Caecum was used for 16S rRNA gene characterization of the gut microbiota. Results show that 5HT depletion produced an increase in food intake and a paradoxical reduction in body weight that were enhanced by CORT. Neuronal 5HT depletion impaired the feedback regulation of CORT levels but had no putative effect on the CORT-induced decrease in hippocampal GR expression and the reduction of the adrenal cortex size. Finally, the composition and structure of the gut microbiota were significantly impacted by the absence of neuronal 5HT, and these alterations were enhanced by chronic CORT treatment. Therefore, we conclude that neuronal 5HT influences the stress-related responses at different levels involving CORT levels regulation and the gut microbiome.
Collapse
Affiliation(s)
- Mariana Angoa-Pérez
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, United States; Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States.
| | - Branislava Zagorac
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, United States; Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Dina M Francescutti
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, United States; Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Kevin R Theis
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, United States; Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI, United States
| | - Donald M Kuhn
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, United States; Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
17
|
Bowman MA, Vitela M, Clarke KM, Koek W, Daws LC. Serotonin Transporter and Plasma Membrane Monoamine Transporter Are Necessary for the Antidepressant-Like Effects of Ketamine in Mice. Int J Mol Sci 2020; 21:ijms21207581. [PMID: 33066466 PMCID: PMC7589995 DOI: 10.3390/ijms21207581] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 01/17/2023] Open
Abstract
Major depressive disorder is typically treated with selective serotonin reuptake inhibitors (SSRIs), however, SSRIs take approximately six weeks to produce therapeutic effects, if any. Not surprisingly, there has been great interest in findings that low doses of ketamine, a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist, produce rapid and long-lasting antidepressant effects. Preclinical studies show that the antidepressant-like effects of ketamine are dependent upon availability of serotonin, and that ketamine increases extracellular serotonin, yet the mechanism by which this occurs is unknown. Here we examined the role of the high-affinity, low-capacity serotonin transporter (SERT), and the plasma membrane monoamine transporter (PMAT), a low-affinity, high-capacity transporter for serotonin, as mechanisms contributing to ketamine’s ability to increase extracellular serotonin and produce antidepressant-like effects. Using high-speed chronoamperometry to measure real-time clearance of serotonin from CA3 region of hippocampus in vivo, we found ketamine robustly inhibited serotonin clearance in wild-type mice, an effect that was lost in mice constitutively lacking SERT or PMAT. As expected, in wild-type mice, ketamine produced antidepressant-like effects in the forced swim test. Mapping onto our neurochemical findings, the antidepressant-like effects of ketamine were lost in mice lacking SERT or PMAT. Future research is needed to understand how constitutive loss of either SERT or PMAT, and compensation that occurs in other systems, is sufficient to void ketamine of its ability to inhibit serotonin clearance and produce antidepressant-like effects. Taken together with existing literature, a critical role for serotonin, and its inhibition of uptake via SERT and PMAT, cannot be ruled out as important contributing factors to ketamine’s antidepressant mechanism of action. Combined with what is already known about ketamine’s action at NMDA receptors, these studies help lead the way to the development of drugs that lack ketamine’s abuse potential but have superior efficacy in treating depression.
Collapse
Affiliation(s)
- Melodi A. Bowman
- Department of Cellular and Integrative Physiology at University of Texas Health, San Antonio, TX 78229, USA; (M.A.B.); (M.V.); (K.M.C.)
| | - Melissa Vitela
- Department of Cellular and Integrative Physiology at University of Texas Health, San Antonio, TX 78229, USA; (M.A.B.); (M.V.); (K.M.C.)
| | - Kyra M. Clarke
- Department of Cellular and Integrative Physiology at University of Texas Health, San Antonio, TX 78229, USA; (M.A.B.); (M.V.); (K.M.C.)
- Department of Pharmacology at University of Texas Health, San Antonio, TX 78229, USA;
| | - Wouter Koek
- Department of Pharmacology at University of Texas Health, San Antonio, TX 78229, USA;
- Department of Psychiatry at University of Texas Health, San Antonio, TX 78229, USA
| | - Lynette C. Daws
- Department of Cellular and Integrative Physiology at University of Texas Health, San Antonio, TX 78229, USA; (M.A.B.); (M.V.); (K.M.C.)
- Department of Pharmacology at University of Texas Health, San Antonio, TX 78229, USA;
- Correspondence:
| |
Collapse
|
18
|
Gallardo CM, Martin CS, Steele AD. Food Anticipatory Activity on Circadian Time Scales Is Not Dependent on Central Serotonin: Evidence From Tryptophan Hydroxylase-2 and Serotonin Transporter Knockout Mice. Front Mol Neurosci 2020; 13:534238. [PMID: 33041772 PMCID: PMC7517832 DOI: 10.3389/fnmol.2020.534238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/13/2020] [Indexed: 01/14/2023] Open
Abstract
A number of studies implicate biogenic amines in regulating circadian rhythms. In particular, dopamine and serotonin influence the entrainment of circadian rhythms to daily food availability. To study circadian entrainment to feeding, food availability is typically restricted to a short period within the light cycle daily. This results in a notable increase in pre-meal activity, termed "food anticipatory activity" (FAA), which typically develops within about 1 week of scheduled feeding. Several studies have implicated serotonin as a negative regulator of FAA: (1) aged rats treated with serotonin 5-HT2 and 3 receptor antagonists showed enhanced FAA, (2) mice lacking for the 2C serotonin receptor demonstrate enhanced FAA, and (3) pharmacologically increased serotonin levels suppressed FAA while decreased serotonin levels enhanced FAA in mice. We sought to confirm and extend these findings using genetic models with impairments in central serotonin production or re-uptake, but were surprised to find that both serotonin transporter (Slc6a4) and tryptophan hydroxylase-2 knockout mice demonstrated a normal behavioral response to timed, calorie restricted feeding. Our data suggest that FAA is largely independent of central serotonin and/or serotonin reuptake and that serotonin may not be a robust negative regulator of FAA.
Collapse
Affiliation(s)
- Christian M Gallardo
- Division of Biology, California Institute of Technology, Pasadena, CA, United States
| | - Camille S Martin
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, United States
| | - Andrew D Steele
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, United States
| |
Collapse
|
19
|
Gorlova A, Ortega G, Waider J, Bazhenova N, Veniaminova E, Proshin A, Kalueff AV, Anthony DC, Lesch KP, Strekalova T. Stress-induced aggression in heterozygous TPH2 mutant mice is associated with alterations in serotonin turnover and expression of 5-HT6 and AMPA subunit 2A receptors. J Affect Disord 2020; 272:440-451. [PMID: 32553388 DOI: 10.1016/j.jad.2020.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/31/2020] [Accepted: 04/17/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND The contribution of gene-environment interactions that lead to excessive aggression is poorly understood. Environmental stressors and mutations of the gene encoding tryptophan hydroxylase-2 (TPH2) are known to influence aggression. For example, TPH2 null mutant mice (Tph2-/-) are naturally highly aggressive, while heterozygous mice (Tph2+/-) lack a behavioral phenotype and are considered endophenotypically normal. Here we sought to discover whether an environmental stressor would affect the phenotype of the genetically 'susceptible' heterozygous mice (Tph2+/-). METHODS Tph2+/- male mice or Tph2+/+ controls were subjected to a five-day long rat exposure stress paradigm. Brain serotonin metabolism and the expression of selected genes encoding serotonin receptors, AMPA receptors, and stress markers were studied. RESULTS Stressed Tph2+/- mice displayed increased levels of aggression and social dominance, whereas Tph2+/+ animals became less aggressive and less dominant. Brain tissue concentrations of serotonin, its precursor hydroxytryptophan and its metabolite 5-hydroxyindoleacetic acid were significantly altered in all groups in the prefrontal cortex, striatum, amygdala, hippocampus and dorsal raphe after stress. Compared to non-stressed animals, the concentration of 5-hydroxytryptophan was elevated in the amygdala though decreased in the other brain structures. The overexpression of the AMPA receptor subunit, GluA2, and downregulation of 5-HT6 receptor, as well as overexpression of c-fos and glycogen-synthase-kinase-3β (GSK3-β), were found in most structures of the stressed Tph2+/- mice. LIMITATIONS Rescue experiments would help to verify causal relationships of reported changes. CONCLUSIONS The interaction of a partial TPH2 gene deficit with stress results in pathological aggression and molecular changes, and suggests that the presence of genetic susceptibility can augment aggression in seemingly resistant phenotypes.
Collapse
Affiliation(s)
- Anna Gorlova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Gabriela Ortega
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Jonas Waider
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Natalia Bazhenova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands; Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Ekaterina Veniaminova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Andrey Proshin
- PK Anokhin Research Institute of Normal Physiology, Moscow
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China with Ural Federal University, Ekaterinburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University and Almazov Medical Research Center, Institute of Experimental Medicine, St. Petersburg Russia
| | - Daniel C Anthony
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Department of Pharmacology, Oxford University, Oxford, United Kingdom
| | - Klaus-Peter Lesch
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands; Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Tatyana Strekalova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands; Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany; Institute of General Pathology and Pathophysiology, Moscow, Russia.
| |
Collapse
|
20
|
Meng F, Liu J, Dai J, Wu M, Wang W, Liu C, Zhao D, Wang H, Zhang J, Li M, Li C. Brain-derived neurotrophic factor in 5-HT neurons regulates susceptibility to depression-related behaviors induced by subchronic unpredictable stress. J Psychiatr Res 2020; 126:55-66. [PMID: 32416387 DOI: 10.1016/j.jpsychires.2020.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/12/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
Chronic stress is a major risk factor for the development of depression. Brain-derived neurotrophic factor (BDNF) plays an important role in neural functions and exhibits antidepressant effects. However, studies on depression-related behavioral response to BDNF have mainly focused on the limbic system, whereas other regions of the brain still require further exploration. Here, we report that exposure to chronic unpredictable stress (CUS) can induce depression-associated behaviors in mice. CUS could decrease total Bdnf mRNA and protein levels in the dorsal raphe nucleus (DRN), which correlated with depression-related behaviors. A corresponding reduction in exon-specific Bdnf mRNA was observed in the DRN of CUS mice. Bdnf was highly expressed in 5- Hydroxytryptamine (5-HT) neurons from the DRN. Selective deletion of Bdnf in 5-HT neurons alone could not induce anhedonia and behavioral despair in male or female mice, as indicated by the unchanged female urine sniffing time and preference for sucrose/saccharin. However, it could increase the latency to food in female mice, but not in male mice as shown by novelty-suppressed food test. Nevertheless, enhanced stress-induced susceptibility is observed in these male mice as suggested by the decrease in female urine sniffing time, and for female mice by the reduced sucrose preference and increased immobility in forced swim test. Furtherly, total Bdnf mRNA levels in DRN were correlated with depression-related behaviors of female, but not male 5-HT neurons specific Bdnf knockout mice. Our results indicate that BDNF might act on 5-HT neurons to regulate depression-related behaviors and stress vulnerability in a sex-dependent manner.
Collapse
Affiliation(s)
- Fantao Meng
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jing Liu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Juanjuan Dai
- Cancer Research Institute, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Min Wu
- Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Wentao Wang
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Cuilan Liu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Di Zhao
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Hongcai Wang
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jingyan Zhang
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Min Li
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Chen Li
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
21
|
Effects of a high fat diet on gut microbiome dysbiosis in a mouse model of Gulf War Illness. Sci Rep 2020; 10:9529. [PMID: 32533086 PMCID: PMC7293234 DOI: 10.1038/s41598-020-66833-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023] Open
Abstract
Gulf War Illness (GWI) is a chronic health condition that appeared in Veterans after returning home from the Gulf War. The primary symptoms linked to deployment are posttraumatic stress disorder, mood disorders, GI problems and chronic fatigue. At first glance, these symptoms are difficult to ascribe to a single pathological mechanism. However, it is now clear that each symptom can be linked individually to alterations in the gut microbiome. The primary objective of the present study was to determine if gut microbiome dysbiosis was evident in a mouse model of GWl. Because the majority of Gulf War Veterans are overweight, a second objective was to determine if a high fat diet (HF) would alter GWI outcomes. We found that the taxonomic structure of the gut microbiome was significantly altered in the GWI model and after HF exposure. Their combined effects were significantly different from either treatment alone. Most treatment-induced changes occurred at the level of phylum in Firmicutes and Bacteroidetes. If mice fed HF were returned to a normal diet, the gut microbiome recovered toward normal levels in both controls and GWI agent-treated mice. These results add support to the hypotheses that dysbiosis in the gut microbiome plays a role in GWI and that life-style risk factors such as an unhealthy diet can accentuate the effects of GWI by impacting the gut microbiome. The reversibility of the effect of HF on the gut microbiome suggests new avenues for treating GWI through dietary intervention.
Collapse
|
22
|
Karth MM, Baugher BJ, Daly N, Karth MD, Gironda SC, Sachs BD. Brain 5-HT Deficiency Prevents Antidepressant-Like Effects of High-Fat-Diet and Blocks High-Fat-Diet-Induced GSK3β Phosphorylation in the Hippocampus. Front Mol Neurosci 2019; 12:298. [PMID: 31920532 PMCID: PMC6917648 DOI: 10.3389/fnmol.2019.00298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity is associated with an increased risk of depression and anxiety disorders, but the nature of the relationship(s) between obesity and mental illness remains highly controversial. Some argue that depression and anxiety lead to increased consumption of "comfort foods," the intake of which reduces negative affect and promotes obesity. In contrast, others have theorized that negative affect results from chronic excessive consumption of highly palatable foods. The brain serotonin (5-HT) system has long been implicated in both the development and treatment of mental illness. Preclinical studies have shown that low brain 5-HT exacerbates depression- and anxiety-like behaviors induced by stress and blocks reductions in depression-like behavior induced by antidepressants, but the effects of brain 5-HT deficiency on responses to high-fat diet (HFD) have not been explored. The current work used genetically modified mice to evaluate the effects of low 5-HT on behavioral and molecular alterations induced by chronic exposure to HFD. Our results reveal that HFD decreases depression-like behavior and increases some anxiety-like behaviors in wild-type (WT) mice. However, genetic brain 5-HT deficiency blocks HFD-induced reductions in forced swim immobility and prevents HFD-induced increases in hippocampal GSK3β phosphorylation despite having no significant effects on HFD-induced changes in body weight or anxiety-like behavior. Together, our results suggest that brain 5-HT deficiency significantly impacts a subset of behavioral and molecular responses to HFD, a finding that could help explain the complex relationships between obesity and mental illness.
Collapse
Affiliation(s)
- Michelle M Karth
- Department of Psychological and Brain Sciences, College of Liberal Arts and Sciences, Villanova University, Villanova, PA, United States
| | - Brittany J Baugher
- Department of Psychological and Brain Sciences, College of Liberal Arts and Sciences, Villanova University, Villanova, PA, United States
| | - Nicole Daly
- Department of Psychological and Brain Sciences, College of Liberal Arts and Sciences, Villanova University, Villanova, PA, United States
| | - Melinda D Karth
- Department of Psychological and Brain Sciences, College of Liberal Arts and Sciences, Villanova University, Villanova, PA, United States
| | - Stephen C Gironda
- Department of Psychological and Brain Sciences, College of Liberal Arts and Sciences, Villanova University, Villanova, PA, United States
| | - Benjamin D Sachs
- Department of Psychological and Brain Sciences, College of Liberal Arts and Sciences, Villanova University, Villanova, PA, United States
| |
Collapse
|
23
|
Abdel-Rahman M, Rezk MM, Abdel Moneim AE, Ahmed-Farid OA, Essam S. Thorium exerts hazardous effects on some neurotransmitters and thyroid hormones in adult male rats. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:167-176. [DOI: 10.1007/s00210-019-01718-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022]
|
24
|
Design, synthesis, and molecular docking of new 5-HT reuptake inhibitors based on modified 1,2-dihydrocyclopenta[b]indol-3(4H)-one scaffold. J CHEM SCI 2019. [DOI: 10.1007/s12039-019-1621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Pratelli M, Pasqualetti M. Serotonergic neurotransmission manipulation for the understanding of brain development and function: Learning from Tph2 genetic models. Biochimie 2019; 161:3-14. [DOI: 10.1016/j.biochi.2018.11.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/24/2018] [Indexed: 01/04/2023]
|
26
|
Dissociation between hypothermia and neurotoxicity caused by mephedrone and methcathinone in TPH2 knockout mice. Psychopharmacology (Berl) 2019; 236:1097-1106. [PMID: 30074064 DOI: 10.1007/s00213-018-4991-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/30/2018] [Indexed: 01/01/2023]
Abstract
RATIONALE Mephedrone is a commonly abused constituent of "bath salts" and has many pharmacological effects in common with methamphetamine. Despite their structural similarity, mephedrone differs significantly from methamphetamine in its effects on core body temperature and dopamine nerve endings. The reasons for these differences remain unclear. OBJECTIVES Mephedrone elicits a transient hypothermia which may provide intrinsic neuroprotection against methamphetamine-like toxicity to dopamine nerve endings. Furthermore, evidence in the literature suggests that this hypothermia is mediated by serotonin. By utilizing transgenic mice devoid of brain serotonin, we determined the contribution of this neurotransmitter to changes in core body temperature as well as its possible role in protecting against neurotoxicity. The effects of methcathinone and 4-methyl-methamphetamine, two structural analogs of mephedrone and methamphetamine, were also evaluated in these mice. RESULTS The hypothermia induced by mephedrone and methcathinone in wild-type mice was not observed in mice lacking brain serotonin. Despite preventing drug-induced hypothermia, the lack of serotonin did not alter the neurotoxic profiles of the test drugs. CONCLUSIONS Serotonin is a key mediator of pharmacological hypothermia induced by mephedrone and methcathinone, but these body temperature effects do not contribute to dopamine nerve ending damage observed in mice following treatment with mephedrone, methcathinone or 4-methyl-methamphetamine. Thus, the key component of methamphetamine neurotoxicity lacking in mephedrone remains to be elucidated.
Collapse
|
27
|
Abstract
The neurotransmitter serotonin plays a key role in the control of aggressive behaviour. While so far most studies have investigated variation in serotonin levels, a recently created tryptophan hydroxylase 2 (Tph2) knockout mouse model allows studying effects of complete brain serotonin deficiency. First studies revealed increased aggressiveness in homozygous Tph2 knockout mice in the context of a resident-intruder paradigm. Focussing on females, this study aimed to elucidate effects of serotonin deficiency on aggressive and non-aggressive social behaviours not in a test situation but a natural setting. For this purpose, female Tph2 wildtype (n = 40) and homozygous knockout mice (n = 40) were housed with a same-sex conspecific of either the same or the other genotype in large terraria. The main findings were: knockout females displayed untypically high levels of aggressive behaviour even after several days of co-housing. Notably, in response to aggressive knockout partners, they showed increased levels of defensive behaviours. While most studies on aggression in rodents have focussed on males, this study suggests a significant involvement of serotonin also in the control of female aggression. Future research will show, whether the observed behavioural effects are directly caused by the lack of serotonin or by potential compensatory mechanisms.
Collapse
|
28
|
Twenty years after ‘Listening to Prozac but hearing placebo’. Do we hear placebo even louder? HEALTH PSYCHOLOGY REPORT 2019. [DOI: 10.5114/hpr.2019.83383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
29
|
Yang J, Zhao X, Ma J, Qiao Z, Yang X, Zhao E, Ban B, Zhu X, Cao D, Yang Y, Qiu X. The Interaction of TPH2 and 5-HT2A Polymorphisms on Major Depressive Disorder Susceptibility in a Chinese Han Population: A Case-Control Study. Front Psychiatry 2019; 10:172. [PMID: 31019472 PMCID: PMC6458236 DOI: 10.3389/fpsyt.2019.00172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 03/08/2019] [Indexed: 12/31/2022] Open
Abstract
Purpose: TPH2 and 5-HT2A appear to play vital roles in the homeostatic regulation of serotonin levels in the brain, their genetic variations may lead to impaired homeostatic regulation of serotonin resulting in abnormal levels of serotonin in the brain, thus predisposing individuals to MDD. However, research studies have yet to confirm which gene-gene interaction effect between TPH2 and 5-HT2A polymorphisms results in increased susceptibility to MDD. Methods: A total of 565 participants, consisting of 278 MDD patients and 287 healthy controls from the Chinese Han population, were recruited for the present study. Six single nucleotide polymorphisms (SNPs) of TPH2/5-HT2A were selected to assess their interaction by use of a generalized multifactor dimensionality reduction method. Results: A-allele carriers of rs11178997 and rs120074175 were more likely to suffer from MDD than T-allele carriers of rs11178997, or G-allele carriers of rs120074175. The interaction between TPH2 (rs120074175, rs11178997) and 5-HT2A (rs7997012) was considered as the best multi-locus model upon the MDD susceptibility. Conclusions: Our data identified an important effect of TPH2 genetic variants (rs11178997 and rs120074175) upon the risk of MDD, and suggested that the interaction of TPH2/5-HT2A polymorphism variants confer a greater susceptibility to MDD in Chinese Han population.
Collapse
Affiliation(s)
- Jiarun Yang
- Department of Medical Psychology, Institute of Public Health, Harbin Medical University, Harbin, China
| | - Xueyan Zhao
- Department of Medical Psychology, Institute of Public Health, Harbin Medical University, Harbin, China
| | - Jingsong Ma
- Department of Medical Psychology, Institute of Public Health, Harbin Medical University, Harbin, China
| | - Zhengxue Qiao
- Department of Medical Psychology, Institute of Public Health, Harbin Medical University, Harbin, China
| | - Xiuxian Yang
- Department of Medical Psychology, Institute of Public Health, Harbin Medical University, Harbin, China
| | - Erying Zhao
- Department of Medical Psychology, Institute of Public Health, Harbin Medical University, Harbin, China
| | - Bo Ban
- Department of Endocrinology, Affiliated Hosptial of Jining Medical University, Jining, China
| | - Xiongzhao Zhu
- Medical Psychological, Institute of the Second Xiangya Hospital of Central South University, Changsha, China
| | - Depin Cao
- Department of Medical Education Management, Harbin Medical University, Harbin, China
| | - Yanjie Yang
- Department of Medical Psychology, Institute of Public Health, Harbin Medical University, Harbin, China
| | - Xiaohui Qiu
- Department of Medical Psychology, Institute of Public Health, Harbin Medical University, Harbin, China
| |
Collapse
|
30
|
Gebhardt C, Mosienko V, Alenina N, Albrecht D. Priming of LTP in amygdala and hippocampus by prior paired pulse facilitation paradigm in mice lacking brain serotonin. Hippocampus 2018; 29:610-618. [PMID: 30457189 DOI: 10.1002/hipo.23055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 10/08/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023]
Abstract
This study focuses on analyzing long-term potentiation (LTP) changes in the lateral nucleus of the amygdala (LA) and in the CA1 region of the hippocampus in slices derived from mice deficient in tryptophan hydroxylase 2 (TPH2-/- ), the rate-limiting enzyme for 5-HT synthesis in the brain. We found a reduced LTP in both brain structures in TPH2-/- mice. However, we found no changes in the magnitude of LTP in TPH2-/- mice compared to wildtype mice when it was preceded by a paired pulse protocol. Whereas the magnitude of long-term depression (LTD) did not differ between wildtype and TPH2-/- mice, priming synapses by LTD-induction facilitated subsequent CA1-LTP in wildtype mice to a greater extent than in TPH2-/- mice. In the LA we found no differences between the genotypes in this protocol of metaplasticity. These data show that, unlike exogenous 5-HT application, lack of 5-HT in the brain impairs cellular mechanisms responsible for induction of LTP. It is supposed that suppression of LTP observed in TPH2-/- mice might be compensated by mechanisms of metaplasticity induced by paired pulse stimulation or low frequency stimulation before the induction of LTP.
Collapse
Affiliation(s)
- Christine Gebhardt
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Valentina Mosienko
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Natalia Alenina
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Doris Albrecht
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
31
|
Nakatsuka N, Yang KA, Abendroth JM, Cheung KM, Xu X, Yang H, Zhao C, Zhu B, Rim YS, Yang Y, Weiss PS, Stojanović MN, Andrews AM. Aptamer-field-effect transistors overcome Debye length limitations for small-molecule sensing. Science 2018; 362:319-324. [PMID: 30190311 DOI: 10.1126/science.aao6750] [Citation(s) in RCA: 468] [Impact Index Per Article: 66.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 04/30/2018] [Accepted: 08/06/2018] [Indexed: 12/17/2022]
Abstract
Detection of analytes by means of field-effect transistors bearing ligand-specific receptors is fundamentally limited by the shielding created by the electrical double layer (the "Debye length" limitation). We detected small molecules under physiological high-ionic strength conditions by modifying printed ultrathin metal-oxide field-effect transistor arrays with deoxyribonucleotide aptamers selected to bind their targets adaptively. Target-induced conformational changes of negatively charged aptamer phosphodiester backbones in close proximity to semiconductor channels gated conductance in physiological buffers, resulting in highly sensitive detection. Sensing of charged and electroneutral targets (serotonin, dopamine, glucose, and sphingosine-1-phosphate) was enabled by specifically isolated aptameric stem-loop receptors.
Collapse
Affiliation(s)
- Nako Nakatsuka
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.,Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Kyung-Ae Yang
- Center for Innovative Diagnostic and Therapeutic Approaches, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - John M Abendroth
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.,Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Kevin M Cheung
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.,Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Xiaobin Xu
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.,Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Hongyan Yang
- Department of Psychiatry and Biobehavioral Science, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, CA 90095, USA
| | - Chuanzhen Zhao
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.,Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Bowen Zhu
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.,Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA
| | - You Seung Rim
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.,Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA
| | - Yang Yang
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.,Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA
| | - Paul S Weiss
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA. .,Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA.,Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA
| | - Milan N Stojanović
- Center for Innovative Diagnostic and Therapeutic Approaches, Department of Medicine, Columbia University, New York, NY 10032, USA. .,Departments of Biomedical Engineering and Systems Biology, Columbia University, New York, NY 10032, USA
| | - Anne M Andrews
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA. .,Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA.,Department of Psychiatry and Biobehavioral Science, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
32
|
Williams AV, Trainor BC. The impact of sex as a biological variable in the search for novel antidepressants. Front Neuroendocrinol 2018; 50:107-117. [PMID: 29859882 PMCID: PMC6139050 DOI: 10.1016/j.yfrne.2018.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/15/2018] [Accepted: 05/30/2018] [Indexed: 12/14/2022]
Abstract
A roadblock to successful treatment for anxiety and depression is the high proportion of individuals that do not respond to existing treatments. Different underlying neurobiological mechanisms may drive similar symptoms, so a more personalized approach to treatment could be more successful. There is increasing evidence that sex is an important biological variable modulating efficacy of antidepressants and anxiolytics. We review evidence for sex-specific effects of traditional monoamine based antidepressants and newer pharmaceuticals targeting kappa opioid receptors (KOR), oxytocin receptors (OTR), and N-methyl-D-aspartate receptors (ketamine). In some cases, similar behavioral effects are observed in both sexes while in other cases strong sex-specific effects are observed. Most intriguing are cases such as ketamine which has similar behavioral effects in males and females, perhaps through sex-specific neurobiological mechanisms. These results show how essential it is to include both males and females in both clinical and preclinical evaluations of novel antidepressants and anxiolytics.
Collapse
Affiliation(s)
- Alexia V Williams
- Department of Psychology, University of California, Davis, CA 95616, United States.
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, CA 95616, United States.
| |
Collapse
|
33
|
Ma L, Demin KA, Kolesnikova TO, Kharsko SL, Zhu X, Yuan X, Song C, Meshalkina DA, Leonard BE, Tian L, Kalueff AV. Animal inflammation-based models of depression and their application to drug discovery. Expert Opin Drug Discov 2017; 12:995-1009. [DOI: 10.1080/17460441.2017.1362385] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Li Ma
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | | | | | - Xiaokang Zhu
- School of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xiaodong Yuan
- Department of Neurology, Kailuan General Hospital, North China University of Science and Technology, Tangshan, China
| | - Cai Song
- Institute for Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, China
- Graduate Institute of Biomedical Sciences, College of Medicine, and Department of Medical Research, China Medical University and Hospital, Taichung, Taiwan
| | - Darya A. Meshalkina
- Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg, Russia
| | - Brian E. Leonard
- Department of Pharmacology, National University of Ireland, Galway, Ireland
| | - Li Tian
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University, Beijing, China
| | - Allan V. Kalueff
- School of Pharmaceutical Sciences, Southwest University, Chongqing, China
- Institute for Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, China
- Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg, Russia
- Institute of Chemical Technologies, Ural Federal University, Ekaterinburg, Russia
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| |
Collapse
|
34
|
Song NN, Huang Y, Yu X, Lang B, Ding YQ, Zhang L. Divergent Roles of Central Serotonin in Adult Hippocampal Neurogenesis. Front Cell Neurosci 2017; 11:185. [PMID: 28713247 PMCID: PMC5492328 DOI: 10.3389/fncel.2017.00185] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/16/2017] [Indexed: 11/13/2022] Open
Abstract
The central serotonin (5-HT) system is the main target of selective serotonin reuptake inhibitors (SSRIs), the first-line antidepressants widely used in current general practice. One of the prominent features of chronic SSRI treatment in rodents is the enhanced adult neurogenesis in the hippocampus, which has been proposed to contribute to antidepressant effects. Therefore, tremendous effort has been made to decipher how central 5-HT regulates adult hippocampal neurogenesis. In this paper, we review how changes in the central serotonergic system alter adult hippocampal neurogenesis. We focus on data obtained from three categories of genetically engineered mouse models: (1) mice with altered central 5-HT levels from embryonic stages, (2) mice with deletion of 5-HT receptors from embryonic stages, and (3) mice with altered central 5-HT system exclusively in adulthood. These recent findings provide unique insights to interpret the multifaceted roles of central 5-HT on adult hippocampal neurogenesis and its associated effects on depression.
Collapse
Affiliation(s)
- Ning-Ning Song
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, Tongji University School of MedicineShanghai, China.,Department of Anatomy and Neurobiology, Tongji University School of MedicineShanghai, China
| | - Ying Huang
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, Tongji University School of MedicineShanghai, China.,Department of Anatomy and Neurobiology, Tongji University School of MedicineShanghai, China
| | - Xin Yu
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, Tongji University School of MedicineShanghai, China.,Department of Anatomy and Neurobiology, Tongji University School of MedicineShanghai, China
| | - Bing Lang
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, Tongji University School of MedicineShanghai, China.,Department of Anatomy and Neurobiology, Tongji University School of MedicineShanghai, China.,Mental Health Institute of the Second Xiangya Hospital, National Clinical Research Center on Mental Disorders, National Technology Institute on Mental Disorders, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South UniversityChangsha, China
| | - Yu-Qiang Ding
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, Tongji University School of MedicineShanghai, China.,Department of Anatomy and Neurobiology, Tongji University School of MedicineShanghai, China
| | - Lei Zhang
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, Tongji University School of MedicineShanghai, China.,Department of Anatomy and Neurobiology, Tongji University School of MedicineShanghai, China
| |
Collapse
|
35
|
Garfinkel BP, Arad S, Neuner SM, Netser S, Wagner S, Kaczorowski CC, Rosen CJ, Gal M, Soreq H, Orly J. HP1BP3 expression determines maternal behavior and offspring survival. GENES BRAIN AND BEHAVIOR 2017; 15:678-88. [PMID: 27470444 DOI: 10.1111/gbb.12312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/03/2016] [Accepted: 07/26/2016] [Indexed: 12/17/2022]
Abstract
Maternal care is an indispensable behavioral component necessary for survival and reproductive success in mammals, and postpartum maternal behavior is mediated by an incompletely understood complex interplay of signals including effects of epigenetic regulation. We approached this issue using our recently established mice with targeted deletion of heterochromatin protein 1 binding protein 3 (HP1BP3), which we found to be a novel epigenetic repressor with critical roles in postnatal growth. Here, we report a dramatic reduction in the survival of pups born to Hp1bp3(-/-) deficient mouse dams, which could be rescued by co-fostering with wild-type dams. Hp1bp3(-/-) females failed to retrieve both their own pups and foster pups in a pup retrieval test, and showed reduced anxiety-like behavior in the open-field and elevated-plus-maze tests. In contrast, Hp1bp3(-/-) females showed no deficits in behaviors often associated with impaired maternal care, including social behavior, depression, motor coordination and olfactory capability; and maintained unchanged anxiety-associated hallmarks such as cholinergic status and brain miRNA profiles. Collectively, our results suggest a novel role for HP1BP3 in regulating maternal and anxiety-related behavior in mice and call for exploring ways to manipulate this epigenetic process.
Collapse
Affiliation(s)
- B P Garfinkel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel. .,Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - S Arad
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Biomedical Sciences, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - S M Neuner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - S Netser
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - S Wagner
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - C C Kaczorowski
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - C J Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - M Gal
- Biomedical Sciences, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.,The IVF Unit - Obstetrics and Gynecology Department, Shaare Zedek Medical Center, Jerusalem, Israel
| | - H Soreq
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - J Orly
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
36
|
Reducing central serotonin in adulthood promotes hippocampal neurogenesis. Sci Rep 2016; 6:20338. [PMID: 26839004 PMCID: PMC4738271 DOI: 10.1038/srep20338] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/30/2015] [Indexed: 12/20/2022] Open
Abstract
Chronic administration of selective serotonin reuptake inhibitors (SSRIs), which up-regulates central serotonin (5-HT) system function, enhances adult hippocampal neurogenesis. However, the relationship between central 5-HT system and adult neurogenesis has not fully been understood. Here, we report that lowering 5-HT level in adulthood is also able to enhance adult hippocampal neurogenesis. We used tamoxifen (TM)-induced Cre in Pet1-CreERT2 mice to either deplete central serotonergic (5-HTergic) neurons or inactivate 5-HT synthesis in adulthood and explore the role of central 5-HT in adult hippocampal neurogenesis. A dramatic increase in hippocampal neurogenesis is present in these two central 5-HT-deficient mice and it is largely prevented by administration of agonist for 5-HTR2c receptor. In addition, the survival of new-born neurons in the hippocampus is enhanced. Furthermore, the adult 5-HT-deficient mice showed reduced depression-like behaviors but enhanced contextual fear memory. These findings demonstrate that lowering central 5-HT function in adulthood can also enhance adult hippocampal neurogenesis, thus revealing a new aspect of central 5-HT in regulating adult neurogenesis.
Collapse
|
37
|
Laporta J, Peñagaricano F, Hernandez LL. Transcriptomic Analysis of the Mouse Mammary Gland Reveals New Insights for the Role of Serotonin in Lactation. PLoS One 2015; 10:e0140425. [PMID: 26470019 PMCID: PMC4607441 DOI: 10.1371/journal.pone.0140425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/17/2015] [Indexed: 11/18/2022] Open
Abstract
Serotonin regulates numerous processes in the mammary gland. Our objective was to discover novel genes, pathways and functions which serotonin modulates during lactation. The rate limiting enzyme in the synthesis of non-neuronal serotonin is tryptophan-hydroxylase (TPH1). Therefore, we used TPH1 deficient dams (KO; serotonin deficient, n = 4) and compared them to wild-type (WT; n = 4) and rescue (RC; KO + 100 mg/kg 5-hydroxytryptophan injected daily, n = 4) dams. Mammary tissues were collected on day 10 of lactation. Total RNA extraction, amplification, library preparation and sequencing were performed following the Illumina mRNA-Seq. Overall, 97 and 204 genes (false discovery rate, FDR ≤ 0.01) exhibited a minimum of a 2-fold expression difference between WT vs. KO and WT vs. RC dams, respectively. Most differentially expressed genes were related to calcium homeostasis, apoptosis regulation, cell cycle, cell differentiation and proliferation, and the immune response. Additionally, gene set enrichment analysis using Gene Ontology and Medical Subject Headings databases revealed the alteration of several biological processes (FDR ≤ 0.01) including fat cell differentiation and lipid metabolism, regulation of extracellular signal-related kinase and mitogen-activated kinase cascades, insulin resistance, nuclear transport, membrane potential regulation, and calcium release from the endoplasmic reticulum into the cytosol. The majority of the biological processes and pathways altered in the KO dams are central for mammary gland homeostasis. Increasing peripheral serotonin in the RC dams affects specific pathways that favor lactation. Our data confirms the importance of serotonin during lactation in the mammary gland.
Collapse
Affiliation(s)
- Jimena Laporta
- Department of Animal Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Francisco Peñagaricano
- Department of Animal Sciences, University of Florida, Gainesville, Florida, United States of America
- University of Florida Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | - Laura L. Hernandez
- Department of Dairy Science, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
38
|
Treatment-resistant depression: are animal models of depression fit for purpose? Psychopharmacology (Berl) 2015; 232:3473-95. [PMID: 26289353 DOI: 10.1007/s00213-015-4034-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/20/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Resistance to antidepressant drug treatment remains a major health problem. Animal models of depression are efficient in detecting effective treatments but have done little to increase the reach of antidepressant drugs. This may be because most animal models of depression target the reversal of stress-induced behavioural change, whereas treatment-resistant depression is typically associated with risk factors that predispose to the precipitation of depressive episodes by relatively low levels of stress. Therefore, the search for treatments for resistant depression may require models that incorporate predisposing factors leading to heightened stress responsiveness. METHOD Using a diathesis-stress framework, we review developmental, genetic and genomic models against four criteria: (i) increased sensitivity to stress precipitation of a depressive behavioural phenotype, (ii) resistance to chronic treatment with conventional antidepressants, (iii) a good response to novel modes of antidepressant treatment (e.g. ketamine; deep brain stimulation) that are reported to be effective in treatment-resistant depression and (iv) a parallel to a known clinical risk factor. RESULTS We identify 18 models that may have some potential. All require further validation. Currently, the most promising are the Wistar-Kyoto (WKY) and congenital learned helplessness (cLH) rat strains, the high anxiety behaviour (HAB) mouse strain and the CB1 receptor knockout and OCT2 null mutant mouse strains. CONCLUSION Further development is needed to validate models of antidepressant resistance that are fit for purpose. The criteria used in this review may provide a helpful framework to guide research in this area.
Collapse
|
39
|
Chronic imipramine treatment differentially alters the brain and plasma amino acid metabolism in Wistar and Wistar Kyoto rats. Eur J Pharmacol 2015; 762:127-35. [DOI: 10.1016/j.ejphar.2015.05.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/20/2015] [Accepted: 05/20/2015] [Indexed: 11/24/2022]
|
40
|
Abstract
BACKGROUND The aetiology of depression is not fully understood, which allows many different perspectives on aetiology to be adopted. Researchers and clinicians may be attracted to concepts of aetiology that parallel other diagnoses with which they are familiar. Such parallels may assume the role of informal models or metaphors for depressive disorders. They may even function as informal scientific theories of aetiology, energising research activities by guiding hypothesis generation and organising new knowledge. Parallels between different types of disease may ultimately prove valuable as frameworks supporting the emergence and maturation of new knowledge. However, such models may be counterproductive if their basis, which is likely to lay at least partially in analogy, is unacknowledged or overlooked. This could cause such models to appear more compelling than they really are. Listing examples of situations in which models of depression may arise from, or be strengthened by, parallels to other familiar conditions may increase the accessibility of such models either to criticism or support. However, such a list has not yet appeared in the literature. The present paper was written with the modest goal of stating several examples of models or metaphors for depression. METHOD This paper adopted narrative review methods. The intention was not to produce a comprehensive list of such ideas, but rather to identify prominent examples of ways of thinking about depression that may have been invigorated as a result parallels with other types of disease. RESULTS Eight possible models are identified: depressive disorders as chemical imbalances (e.g., a presumed or theoretical imbalance of normally balanced neurotransmission in the brain), degenerative conditions (e.g., a brain disease characterised by atrophy of specified brain structures), toxicological syndromes (a result of exposure to a noxious psychological environment), injuries (e.g., externally induced brain damage related to stress), deficiency states (e.g., a serotonin deficiency), an obsolete category (e.g., similar to obsolete terms such as 'consumption' or 'dropsy'), medical mysteries (e.g., a condition poised for a paradigm-shifting breakthrough) or evolutionary vestiges (residual components of once adaptive mechanisms have become maladaptive in modern environments). CONCLUSIONS Conceptualisation of depressive disorders may be partially shaped by familiar disease concepts. Analogies of this sort may ultimately be productive (e.g., through generating hypotheses by analogy) or destructive (e.g., by structuring knowledge in incorrect, but intellectually seductive, ways).
Collapse
|
41
|
Duan X, Zhang M, Zhang X, Wang F, Lei M. Molecular modeling and docking study on dopamine D2-like and serotonin 5-HT2A receptors. J Mol Graph Model 2015; 57:143-55. [DOI: 10.1016/j.jmgm.2015.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/23/2015] [Accepted: 01/29/2015] [Indexed: 01/22/2023]
|
42
|
Patrick RP, Ames BN. Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior. FASEB J 2015; 29:2207-22. [PMID: 25713056 DOI: 10.1096/fj.14-268342] [Citation(s) in RCA: 299] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/04/2015] [Indexed: 01/22/2023]
Abstract
Serotonin regulates a wide variety of brain functions and behaviors. Here, we synthesize previous findings that serotonin regulates executive function, sensory gating, and social behavior and that attention deficit hyperactivity disorder, bipolar disorder, schizophrenia, and impulsive behavior all share in common defects in these functions. It has remained unclear why supplementation with omega-3 fatty acids and vitamin D improve cognitive function and behavior in these brain disorders. Here, we propose mechanisms by which serotonin synthesis, release, and function in the brain are modulated by vitamin D and the 2 marine omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Brain serotonin is synthesized from tryptophan by tryptophan hydroxylase 2, which is transcriptionally activated by vitamin D hormone. Inadequate levels of vitamin D (∼70% of the population) and omega-3 fatty acids are common, suggesting that brain serotonin synthesis is not optimal. We propose mechanisms by which EPA increases serotonin release from presynaptic neurons by reducing E2 series prostaglandins and DHA influences serotonin receptor action by increasing cell membrane fluidity in postsynaptic neurons. We propose a model whereby insufficient levels of vitamin D, EPA, or DHA, in combination with genetic factors and at key periods during development, would lead to dysfunctional serotonin activation and function and may be one underlying mechanism that contributes to neuropsychiatric disorders and depression. This model suggests that optimizing vitamin D and marine omega-3 fatty acid intake may help prevent and modulate the severity of brain dysfunction.
Collapse
Affiliation(s)
- Rhonda P Patrick
- Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, California, USA
| | - Bruce N Ames
- Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, California, USA
| |
Collapse
|
43
|
Solarewicz JZ, Angoa-Perez M, Kuhn DM, Mateika JH. The sleep-wake cycle and motor activity, but not temperature, are disrupted over the light-dark cycle in mice genetically depleted of serotonin. Am J Physiol Regul Integr Comp Physiol 2014; 308:R10-7. [PMID: 25394829 DOI: 10.1152/ajpregu.00400.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We examined the role that serotonin has in the modulation of sleep and wakefulness across a 12-h:12-h light-dark cycle and determined whether temperature and motor activity are directly responsible for potential disruptions to arousal state. Telemetry transmitters were implanted in 24 wild-type mice (Tph2(+/+)) and 24 mice with a null mutation for tryptophan hydroxylase 2 (Tph2(-/-)). After surgery, electroencephalography, core body temperature, and motor activity were recorded for 24 h. Temperature for a given arousal state (quiet and active wake, non-rapid eye movement, and paradoxical sleep) was similar in the Tph2(+/+) and Tph2(-/-) mice across the light-dark cycle. The percentage of time spent in active wakefulness, along with motor activity, was decreased in the Tph2(+/+) compared with the Tph2(-/-) mice at the start and end of the dark cycle. This difference persisted into the light cycle. In contrast, the time spent in a given arousal state was similar at the remaining time points. Despite this similarity, periods of non-rapid-eye-movement sleep and wakefulness were less consolidated in the Tph2(+/+) compared with the Tph2(-/-) mice throughout the light-dark cycle. We conclude that the depletion of serotonin does not disrupt the diurnal variation in the sleep-wake cycle, motor activity, and temperature. However, serotonin may suppress photic and nonphotic inputs that manifest at light-dark transitions and serve to shorten the ultraradian duration of wakefulness and non-rapid-eye-movement sleep. Finally, alterations in the sleep-wake cycle following depletion of serotonin are unrelated to disruptions in the modulation of temperature.
Collapse
Affiliation(s)
- Julia Z Solarewicz
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan; Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Mariana Angoa-Perez
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan; Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Donald M Kuhn
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan; Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Jason H Mateika
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan; Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan; Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan;
| |
Collapse
|