1
|
Li P, Lei W, Dong Y, Wang X, Ye X, Tian Y, Yang Y, Liu J, Li N, Niu X, Wang X, Tian Y, Xu L, Yang Y, Liu J. mGluR7: The new player protecting the central nervous system. Ageing Res Rev 2024; 102:102554. [PMID: 39454762 DOI: 10.1016/j.arr.2024.102554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/16/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
Metabotropic glutamate receptor 7 (mGluR7) belongs to the family of type III mGluR receptor, playing an important part in the central nervous system (CNS) through response to neurotransmitter regulation, reduction of excitatory toxicity, and early neuronal development. Drugs targeting mGluR7 (mGluR7 agonists, antagonists, and allosteric modulators) may be among the most promising agents for the treatment of CNS disorders, such as psychiatric disorders, neurodegenerative diseases, and neurodevelopmental impairments, though these potential therapies are at early stages and the data are still limited. In this review, we summarized the structure and function of mGluR7 and discussed recent progress on mGluR7 agonists and antagonists. A deeper understanding of mGluR7 will contribute to uncovering the molecular mechanisms of neuroprotection and providing a theoretical basis for the formulation of therapeutic strategies.
Collapse
Affiliation(s)
- Pan Li
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China; Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Department of Ophthalmology, Xi'an No.1 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 30 Fenxiang Road, Xi'an 710002, China
| | - Wangrui Lei
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yushu Dong
- Department of Neurosurgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Xingyan Ye
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Ye Tian
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yaru Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Jie Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Ning Li
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Xiaochen Niu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Xin Wang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yifan Tian
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Lu Xu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China.
| |
Collapse
|
2
|
Parent HH, Niswender CM. Therapeutic Potential for Metabotropic Glutamate Receptor 7 Modulators in Cognitive Disorders. Mol Pharmacol 2024; 105:348-358. [PMID: 38423750 PMCID: PMC11026152 DOI: 10.1124/molpharm.124.000874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Metabotropic glutamate receptor 7 (mGlu7) is the most highly conserved and abundantly expressed mGlu receptor in the human brain. The presynaptic localization of mGlu7, coupled with its low affinity for its endogenous agonist, glutamate, are features that contribute to the receptor's role in modulating neuronal excitation and inhibition patterns, including long-term potentiation, in various brain regions. These characteristics suggest that mGlu7 modulation may serve as a novel therapeutic strategy in disorders of cognitive dysfunction, including neurodevelopmental disorders that cause impairments in learning, memory, and attention. Primary mutations in the GRM7 gene have recently been identified as novel causes of neurodevelopmental disorders, and these patients exhibit profound intellectual and cognitive disability. Pharmacological tools, such as agonists, antagonists, and allosteric modulators, have been the mainstay for targeting mGlu7 in its endogenous homodimeric form to probe effects of its function and modulation in disease models. However, recent research has identified diversity in dimerization, as well as trans-synaptic interacting proteins, that also play a role in mGlu7 signaling and pharmacological properties. These novel findings represent exciting opportunities in the field of mGlu receptor drug discovery and highlight the importance of further understanding the functions of mGlu7 in complex neurologic conditions at both the molecular and physiologic levels. SIGNIFICANCE STATEMENT: Proper expression and function of mGlu7 is essential for learning, attention, and memory formation at the molecular level within neural circuits. The pharmacological targeting of mGlu7 is undergoing a paradigm shift by incorporating an understanding of receptor interaction with other cis- and trans- acting synaptic proteins, as well as various intracellular signaling pathways. Based upon these new findings, mGlu7's potential as a drug target in the treatment of cognitive disorders and learning impairments is primed for exploration.
Collapse
Affiliation(s)
- Harrison H Parent
- Department of Pharmacology (H.H.P., C.M.N.), Warren Center for Neuroscience Drug Discovery (H.H.P., C.M.N.), Vanderbilt Brain Institute (C.M.N.), and Vanderbilt Institute for Chemical Biology (C.M.N.), Vanderbilt University, Nashville, Tennessee; and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N.)
| | - Colleen M Niswender
- Department of Pharmacology (H.H.P., C.M.N.), Warren Center for Neuroscience Drug Discovery (H.H.P., C.M.N.), Vanderbilt Brain Institute (C.M.N.), and Vanderbilt Institute for Chemical Biology (C.M.N.), Vanderbilt University, Nashville, Tennessee; and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N.)
| |
Collapse
|
3
|
Lv X, Hou YS, Zhang ZH, Yue WH. OXTR polymorphisms associated with severity and treatment responses of schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:7. [PMID: 38184684 PMCID: PMC10851696 DOI: 10.1038/s41537-023-00413-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/13/2023] [Indexed: 01/08/2024]
Abstract
The mechanisms generating specific symptoms of schizophrenia remain unclear and genetic research makes it possible to explore these issues at a fundamental level. Taking into account the associations between the oxytocin system and social functions, which are apparently impaired in schizophrenia patients, we hypothesized that the oxytocin receptor gene (OXTR) might be associated with schizophrenia symptoms in both severity and responses to antipsychotics and did this exploratory positional study. A total of 2363 patients with schizophrenia (1181 males and 1182 females) included in our study were randomly allocated to seven antipsychotic treatment groups and received antipsychotic monotherapy for 6 weeks. Their blood DNA was genotyped for OXTR polymorphisms. Their symptom severity was assessed by Positive and Negative Syndrome Scale (PANSS), and the scores were transformed into seven factors (positive, disorganized, negative symptoms apathy/avolition, negative symptoms deficit of expression, hostility, anxiety and depression). Percentage changes in PANSS scores from baseline to week 6 were calculated to quantify antipsychotic responses. We found that OXTR polymorphisms were nominally associated with the severity of overall symptoms (rs237899, β = 1.669, p = 0.019), hostility symptoms (rs237899, β = 0.427, p = 0.044) and anxiety symptoms (rs13316193, β = -0.197, p = 0.038). As for treatment responses, OXTR polymorphisms were nominally associated with the improvement in negative symptoms apathy/avolition (rs2268490, β = 2.235, p = 0.0499). No association between severity or response to treatment and OXTR polymorphisms was found with statistical correction for multiplicity. Overall, our results highlighted the possibility of nominally significant associations of the OXTR gene with the severity and improvement in schizophrenia symptoms. Given the exploratory nature of this study, these associations are indicative of the role of the OXTR gene in the pathology of schizophrenia and may contribute to further elucidate the mechanism of specific symptoms of schizophrenia and to exploit antipsychotics more effective to specific symptoms.
Collapse
Affiliation(s)
- Xue Lv
- The First Affiliated Hospital of Xinxiang Medical College, 453100, Xinxiang, Henan, China
| | - Yue-Sen Hou
- The First Affiliated Hospital of Xinxiang Medical College, 453100, Xinxiang, Henan, China
- Henan Key Laboratory of Neurorestoratology, 453199, Xinxiang, Henan, China
- Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, 453005, Xinxiang, Henan, China
| | - Zhao-Hui Zhang
- The First Affiliated Hospital of Xinxiang Medical College, 453100, Xinxiang, Henan, China.
| | - Wei-Hua Yue
- Peking University Sixth Hospital, Peking University Institute of Mental Health, 100191, Beijing, China.
| |
Collapse
|
4
|
Rabeh N, Hajjar B, Maraka JO, Sammanasunathan AF, Khan M, Alkhaaldi SMI, Mansour S, Almheiri RT, Hamdan H, Abd-Elrahman KS. Targeting mGluR group III for the treatment of neurodegenerative diseases. Biomed Pharmacother 2023; 168:115733. [PMID: 37862967 DOI: 10.1016/j.biopha.2023.115733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023] Open
Abstract
Glutamate, an excitatory neurotransmitter, is essential for neuronal function, and it acts on ionotropic or metabotropic glutamate receptors (mGluRs). A disturbance in glutamatergic signaling is a hallmark of many neurodegenerative diseases. Developing disease-modifying treatments for neurodegenerative diseases targeting glutamate receptors is a promising avenue. The understudied group III mGluR 4, 6-8 are commonly found in the presynaptic membrane, and their activation inhibits glutamate release. Thus, targeted mGluRs therapies could aid in treating neurodegenerative diseases. This review describes group III mGluRs and their pharmacological ligands in the context of amyotrophic lateral sclerosis, Parkinson's, Alzheimer's, and Huntington's diseases. Attempts to evaluate the efficacy of these drugs in clinical trials are also discussed. Despite a growing list of group III mGluR-specific pharmacological ligands, research on the use of these drugs in neurodegenerative diseases is limited, except for Parkinson's disease. Future efforts should focus on delineating the contribution of group III mGluR to neurodegeneration and developing novel ligands with superior efficacy and a favorable side effect profile for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Nadia Rabeh
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates; Department of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Baraa Hajjar
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Jude O Maraka
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Ashwin F Sammanasunathan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Mohammed Khan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Saif M I Alkhaaldi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Samy Mansour
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Rashed T Almheiri
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Hamdan Hamdan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates; Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Khaled S Abd-Elrahman
- Department of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Pharmacology and Therapeutics, College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| |
Collapse
|
5
|
Alrefai AA, Ramadan AN, Omar MM, Elghobashy YA, Soliman SE. Association between genetic variants of GRM7 (rs1396409 and rs9883258) and treatment outcomes in Schizophrenic Egyptian patients. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:540-556. [PMID: 38723257 DOI: 10.1080/15257770.2023.2283184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 11/07/2023] [Indexed: 06/06/2024]
Abstract
BACKGROUND AND AIM This study evaluated the association between rs1396409 and rs9883258 and the risk of schizophrenia (SCZ) and treatment outcomes in Egyptian patients. METHODS This study included 88 patients with SCZ and 88 healthy controls. Lipid profile was assayed. Genotyping of rs1396409 and rs9883258 polymorphisms was analyzed using real-time PCR. RESULTS The rs1396409 AG genotype frequency was significantly associated with SCZ risk (p = 0.002). Also, significant increased risk of SCZ was observed under allelic (p = 0.001), dominant (p = 0.001) and overdominant (p = 0.001) genetic model of rs1396409. However, rs9883258 AA genotype revealed nonsignificant association with SCZ. Cases with the rs1396409AG genotype exhibited hypertriglyceridemia (p < 0.001) and hypercholesterolemia (p = 0.001). In total, 72.3% and 74.5% of the cases presented with rs1396409 AG have negative symptoms (p = 0.022) and exhibited poor drug response (p = 0.023), respectively; all cases with rs1396409 GG genotype attempted suicide (p = 0.002) and are drug-free (p = 0.003). SCZ patients with negative symptoms had hypercholesterolemia (p = 0.008) mainly low-density lipoproteins (LDLc) (p = 0.016), and those with cognitive symptoms presented with low level of high-density lipoprotein (HDLc) (p = 0.023). Moreover, the multivariate regression analysis revealed that both rs1396409 G allele and HDLc were predictors of SCZ (p = 0.003 and 0.001, resp.). CONCLUSION The current study concluded that metabotropic glutamate receptor 7 (GRM7) rs1396409 AG could be a potential biomarker for SCZ diagnosis. It also revealed an independent association between the GRM7 rs1396409 G allele, HDLc and SCZ development.
Collapse
Affiliation(s)
- Abeer A Alrefai
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
- Biochemistry Department, Faculty of Medicine, UQU, Mecca, KSA
| | - Ahmed N Ramadan
- Neuropsychiatry Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Marwa M Omar
- Clinical Pathology Departments, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | | | - Shimaa E Soliman
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
- Medical Biochemistry Unit, Department of Pathology, College of Medicine, Qassim University, Buraydah, KSA
| |
Collapse
|
6
|
Lei X, Hofmann CS, Rodriguez AL, Niswender CM. Differential Activity of Orthosteric Agonists and Allosteric Modulators at Metabotropic Glutamate Receptor 7. Mol Pharmacol 2023; 104:17-27. [PMID: 37105671 PMCID: PMC10289241 DOI: 10.1124/molpharm.123.000678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Metabotropic glutamate receptor 7 (mGlu7) is a G protein coupled receptor that has demonstrated promise as a therapeutic target across a number of neurologic and psychiatric diseases. Compounds that modulate the activity of mGlu7, such as positive and negative allosteric modulators, may represent new therapeutic strategies to modulate receptor activity. The endogenous neurotransmitter associated with the mGlu receptor family, glutamate, exhibits low efficacy and potency in activating mGlu7, and surrogate agonists, such as the compound L-(+)-2-Amino-4-phosphonobutyric acid (L-AP4), are often used for receptor activation and compound profiling. To understand the implications of the use of such agonists in the development of positive allosteric modulators (PAMs), we performed a systematic evaluation of receptor activation using a system in which mutations can be made in either protomer of the mGlu7 dimer; we employed mutations that prevent interaction with the orthosteric site as well as the G-protein coupling site of the receptor. We then measured increases in calcium levels downstream of a promiscuous G protein to assess the effects of mutations in one of the two protomers in the presence of two different agonists and three positive allosteric modulators. Our results reveal that distinct PAMs, for example N-[3-Chloro-4-[(5-chloro-2-pyridinyl)oxy]phenyl]-2-pyridinecarboxamide (VU0422288) and 3-(2,3-Difluoro-4-methoxyphenyl)-2,5-dimethyl-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine (VU6005649), do exhibit different maximal levels of potentiation with L-AP4 versus glutamate, but there appear to be common stable receptor conformations that are shared among all of the compounds examined here. SIGNIFICANCE STATEMENT: This manuscript describes the systematic evaluation of the mGlu7 agonists glutamate and L-(+)-2-Amino-4-phosphonobutyric acid (L-AP4) in the presence and absence of three distinct potentiators examining possible mechanistic differences. These findings demonstrate that mGlu7 potentiators display subtle variances in response to glutamate versus L-AP4.
Collapse
Affiliation(s)
- Xia Lei
- Department of Pharmacology (X.L., C.S.H., A.L.R., C.M.N.), Warren Center for Neuroscience Drug Discovery (X.L., A.L.R., C.M.N.), Vanderbilt Institute of Chemical Biology (C.M.N.), and Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennesee (C.M.N.); and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N.)
| | - Christopher S Hofmann
- Department of Pharmacology (X.L., C.S.H., A.L.R., C.M.N.), Warren Center for Neuroscience Drug Discovery (X.L., A.L.R., C.M.N.), Vanderbilt Institute of Chemical Biology (C.M.N.), and Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennesee (C.M.N.); and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N.)
| | - Alice L Rodriguez
- Department of Pharmacology (X.L., C.S.H., A.L.R., C.M.N.), Warren Center for Neuroscience Drug Discovery (X.L., A.L.R., C.M.N.), Vanderbilt Institute of Chemical Biology (C.M.N.), and Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennesee (C.M.N.); and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N.)
| | - Colleen M Niswender
- Department of Pharmacology (X.L., C.S.H., A.L.R., C.M.N.), Warren Center for Neuroscience Drug Discovery (X.L., A.L.R., C.M.N.), Vanderbilt Institute of Chemical Biology (C.M.N.), and Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennesee (C.M.N.); and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N.)
| |
Collapse
|
7
|
Pershina EV, Chernomorets IY, Fedorov DA, Arkhipov VI. Pharmacological Modulation of Excitotoxicity through the Combined Use of NMDA Receptor Inhibition and Group III mGlu Activation Reduces TMT-Induced Neurodegeneration in the Rat Hippocampus. Int J Mol Sci 2023; 24:ijms24098249. [PMID: 37175959 PMCID: PMC10179112 DOI: 10.3390/ijms24098249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
We studied the neuroprotective properties of the non-competitive NMDA receptor antagonist memantine, in combination with a positive allosteric modulator of metabotropic glutamate receptors of Group III, VU 0422288. The treatment was started 48 h after the injection of neurotoxic agent trimethyltin (TMT) at 7.5 mg/kg. Three weeks after TMT injection, functional and morphological changes in a rat hippocampus were evaluated, including the expression level of genes characterizing glutamate transmission and neuroinflammation, animal behavior, and hippocampal cell morphology. Significant neuronal cell death occurred in the CA3 and CA4 regions, and to a lesser extent, in the CA1 and CA2 regions. The death of neurons in the CA1 field was significantly reduced in animals with a combined use of memantine and VU 0422288. In the hippocampus of these animals, the level of expression of genes characterizing glutamatergic synaptic transmission (Grin2b, Gria1, EAAT2) did not differ from the level in control animals, as well as the expression of genes characterizing neuroinflammation (IL1b, TGF beta 1, Aif1, and GFAP). However, the expression of genes characterizing neuroinflammation was markedly increased in the hippocampus of animals treated with memantine or VU 0422288 alone after TMT. The results of immunohistochemical studies confirmed a significant activation of microglia in the hippocampus three weeks after TMT injection. In contrast to the hilus, microglia in the CA1 region had an increase in rod-like cells. Moreover, in the CA1 field of the hippocampus of the animals of the MEM + VU group, the amount of such microglia was close to the control. Thus, the short-term modulation of glutamatergic synaptic transmission by memantine and subsequent activation of Group III mGluR significantly affected the dynamics of neurodegeneration in the hippocampus.
Collapse
Affiliation(s)
- Ekaterina V Pershina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Irina Yu Chernomorets
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Dmitry A Fedorov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Vladimir I Arkhipov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
8
|
Freitas GA, Niswender CM. GRM7 gene mutations and consequences for neurodevelopment. Pharmacol Biochem Behav 2023; 225:173546. [PMID: 37003303 PMCID: PMC10192299 DOI: 10.1016/j.pbb.2023.173546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The metabotropic glutamate receptor 7 (mGlu7), encoded by the GRM7 gene in humans, is a presynaptic, G protein-coupled glutamate receptor that is essential for modulating neurotransmission. Mutations in or reduced expression of GRM7 have been identified in different genetic neurodevelopmental disorders (NDDs), and rare biallelic missense variants have been proposed to underlie a subset of NDDs. Clinical GRM7 variants have been associated with a range of symptoms consistent with neurodevelopmental molecular features, including hypomyelination, brain atrophy and defects in axon outgrowth. Here, we review the newest findings regarding the cellular and molecular defects caused by GRM7 variants in NDD patients.
Collapse
Affiliation(s)
- Geanne A Freitas
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37212, United States of America
| | - Colleen M Niswender
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37212, United States of America; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37212, United States of America; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37212, United States of America; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, United States of America.
| |
Collapse
|
9
|
Dickson L, Teall M, Chevalier E, Cheung T, Liwicki GM, Mack S, Stephenson A, White K, Fosbeary R, Harrison DC, Brice NL, Doyle K, Ciccocioppo R, Wu C, Almond S, Patel TR, Mitchell P, Barnes M, Ayscough AP, Dawson LA, Carlton M, Bürli RW. Discovery of CVN636: A Highly Potent, Selective, and CNS Penetrant mGluR 7 Allosteric Agonist. ACS Med Chem Lett 2023; 14:442-449. [PMID: 37077399 PMCID: PMC10107911 DOI: 10.1021/acsmedchemlett.2c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
The low affinity metabotropic glutamate receptor mGluR7 has been implicated in numerous CNS disorders; however, a paucity of potent and selective activators has hampered full delineation of the functional role and therapeutic potential of this receptor. In this work, we present the identification, optimization, and characterization of highly potent, novel mGluR7 agonists. Of particular interest is the chromane CVN636, a potent (EC50 7 nM) allosteric agonist which demonstrates exquisite selectivity for mGluR7 compared to not only other mGluRs, but also a broad range of targets. CVN636 demonstrated CNS penetrance and efficacy in an in vivo rodent model of alcohol use disorder. CVN636 thus has potential to progress as a drug candidate in CNS disorders involving mGluR7 and glutamatergic dysfunction.
Collapse
Affiliation(s)
- Louise Dickson
- Cerevance Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
- Takeda Cambridge Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| | - Martin Teall
- Cerevance Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
- Takeda Cambridge Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| | - Elodie Chevalier
- Cerevance Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
- Takeda Cambridge Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| | - Toni Cheung
- Cerevance Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
- Takeda Cambridge Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| | - Gemma M. Liwicki
- Takeda Cambridge Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| | - Stephen Mack
- Takeda Cambridge Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| | - Anne Stephenson
- Takeda Cambridge Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| | - Kathryn White
- Takeda Cambridge Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| | - Richard Fosbeary
- Cerevance Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
- Takeda Cambridge Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| | - David C. Harrison
- Takeda Cambridge Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| | - Nicola L. Brice
- Cerevance Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
- Takeda Cambridge Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| | - Kevin Doyle
- Cerevance Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino 62032, Italy
| | - Chaobo Wu
- WuXi Apptec Limited, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Sarah Almond
- Takeda Cambridge Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| | - Toshal R. Patel
- Takeda Cambridge Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| | - Philip Mitchell
- Takeda Cambridge Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| | - Matt Barnes
- Takeda Cambridge Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| | - Andrew P. Ayscough
- Cerevance Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
- Takeda Cambridge Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| | - Lee A. Dawson
- Cerevance Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| | - Mark Carlton
- Cerevance Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
- Takeda Cambridge Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| | - Roland W. Bürli
- Cerevance Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| |
Collapse
|
10
|
Design and Synthesis of New Quinazolin-4-one Derivatives with Negative mGlu 7 Receptor Modulation Activity and Antipsychotic-Like Properties. Int J Mol Sci 2023; 24:ijms24031981. [PMID: 36768302 PMCID: PMC9916658 DOI: 10.3390/ijms24031981] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/21/2023] Open
Abstract
Following the glutamatergic theory of schizophrenia and based on our previous study regarding the antipsychotic-like activity of mGlu7 NAMs, we synthesized a new compound library containing 103 members, which were examined for NAM mGlu7 activity in the T-REx 293 cell line expressing a recombinant human mGlu7 receptor. Out of the twenty-two scaffolds examined, active compounds were found only within the quinazolinone chemotype. 2-(2-Chlorophenyl)-6-(2,3-dimethoxyphenyl)-3-methylquinazolin-4(3H)-one (A9-7, ALX-171, mGlu7 IC50 = 6.14 µM) was selective over other group III mGlu receptors (mGlu4 and mGlu8), exhibited satisfactory drug-like properties in preliminary DMPK profiling, and was further tested in animal models of antipsychotic-like activity, assessing the positive, negative, and cognitive symptoms. ALX-171 reversed DOI-induced head twitches and MK-801-induced disruptions of social interactions or cognition in the novel object recognition test and spatial delayed alternation test. On the other hand, the efficacy of the compound was not observed in the MK-801-induced hyperactivity test or prepulse inhibition. In summary, the observed antipsychotic activity profile of ALX-171 justifies the further development of the group of quinazolin-4-one derivatives in the search for a new drug candidate for schizophrenia treatment.
Collapse
|
11
|
Kalbfleisch JJ, Rodriguez AL, Lei X, Weiss K, Blobaum AL, Boutaud O, Niswender CM, Lindsley CW. Persistent challenges in the development of an mGlu 7 PAM in vivo tool compound: The discovery of VU6046980. Bioorg Med Chem Lett 2023; 80:129106. [PMID: 36528230 PMCID: PMC10201562 DOI: 10.1016/j.bmcl.2022.129106] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 12/16/2022]
Abstract
Herein, we report on the further chemical optimization of the first reported mGlu7 positive allosteric modulator (PAM), VU6027459. Replacement of the quinoline core by a cinnoline scaffold increased mGlu7 PAM potency by ∼ 10-fold, and concomitant introduction of a chiral tricyclic motif led to potent mGlu7 PAMs with enantioselective mGlu receptor selectivity profiles. Of these, VU6046980 emerged as a putative in vivo tool compound with excellent CNS penetration (Kp = 4.1; Kp,uu = 0.7) and efficacy in preclinical models. However, either off-target activity at the sigma-1 receptor or activity at a target not elucidated by large ancillary pharmacology panels led to sedation not driven by activation of mGlu7 (validated in Grm7 knockout mice). Thus, despite a significant advance, a viable mGlu7 PAM in vivo tool remains elusive.
Collapse
Affiliation(s)
- Jacob J Kalbfleisch
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Alice L Rodriguez
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Xia Lei
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kelly Weiss
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Annie L Blobaum
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Olivier Boutaud
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Craig W Lindsley
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
12
|
Reed CW, Rodriguez AL, Kalbfleisch JJ, Seto M, Jenkins MT, Blobaum AL, Chang S, Lindsley CW, Niswender CM. Development and profiling of mGlu 7 NAMs with a range of saturable inhibition of agonist responses in vitro. Bioorg Med Chem Lett 2022; 74:128923. [PMID: 35944850 PMCID: PMC10015594 DOI: 10.1016/j.bmcl.2022.128923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/02/2022]
Abstract
We describe here a series of metabotropic glutamate receptor 7 (mGlu7) negative allosteric modulators (NAMs) with a saturable range of activity in inhibiting responses to an orthosteric agonist in two distinct in vitro pharmacological assays. The range of inhibition among compounds in this scaffold provides highly structurally related ligands with differential degrees of receptor blockade that can be used to understand inhibitory efficacy profiles in native tissue or in vivo.
Collapse
Affiliation(s)
- Carson W Reed
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, United States
| | - Alice L Rodriguez
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, United States
| | - Jacob J Kalbfleisch
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, United States
| | - Mabel Seto
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, United States
| | - Matthew T Jenkins
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, United States
| | - Anna L Blobaum
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, United States
| | - Sichen Chang
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, United States
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, United States; Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN 37232, United States; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Vanderbilt Department of Chemistry, Vanderbilt University, Nashville, TN 37232, United States
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, United States; Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN 37232, United States; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, United States.
| |
Collapse
|
13
|
The mGlu 7 receptor in schizophrenia - An update and future perspectives. Pharmacol Biochem Behav 2022; 218:173430. [PMID: 35870668 DOI: 10.1016/j.pbb.2022.173430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022]
Abstract
The mGlu7 receptor belongs to the III group of metabotropic glutamatergic (mGlu) receptors and physiologically serves as an "emergency" receptor that is activated by high, almost pathological, glutamate concentrations. Of all mGlu receptors, this receptor is most highly expressed in the brain. Additionally, relatively intense expression of the receptor was found at the periphery, for example in the bowels or in the reproductive system of male mice, but this review will be focused predominantly on its role in the brain. In the CNS, the receptor is expressed presynaptically, in the center of the synaptic cleft, at the terminals of both excitatory glutamatergic and inhibitory GABAergic neurons. Thus, it may regulate the release of both glutamate and GABA. Schizophrenia is thought to develop as a consequence of a disturbed glutamatergic-GABAergic balance in different parts of the brain. Thus, the mGlu7 receptor may be involved in the pathophysiology of schizophrenia and consequently constitute the target for antipsychotic drug discovery. In this review, we summarize the available data about mGlu7 receptor ligands and their activity in animal models of schizophrenia. At present, only a few ligands are available, and negative allosteric modulators (NAMs) appear to exert antipsychotic-like efficacy, indicating that the inhibition of the receptor could constitute a promising target in the search for novel drugs. Additionally, the data concerning the expression of the receptor in the CNS and putative mechanisms by which its inhibition may contribute to the treatment of schizophrenia will be discussed. Finally, the polymorphisms of genes encoding the receptor in schizophrenic patients will also be provided.
Collapse
|
14
|
Stankiewicz A, Kaczorowska K, Bugno R, Kozioł A, Paluchowska MH, Burnat G, Chruścicka B, Chorobik P, Brański P, Wierońska JM, Duszyńska B, Pilc A, Bojarski AJ. New 1,2,4-oxadiazole derivatives with positive mGlu 4 receptor modulation activity and antipsychotic-like properties. J Enzyme Inhib Med Chem 2021; 37:211-225. [PMID: 34894953 PMCID: PMC8667925 DOI: 10.1080/14756366.2021.1998022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Considering the allosteric regulation of mGlu receptors for potential therapeutic applications, we developed a group of 1,2,4-oxadiazole derivatives that displayed mGlu4 receptor positive allosteric modulatory activity (EC50 = 282–656 nM). Selectivity screening revealed that they were devoid of activity at mGlu1, mGlu2 and mGlu5 receptors, but modulated mGlu7 and mGlu8 receptors, thus were classified as group III-preferring mGlu receptor agents. None of the compounds was active towards hERG channels or in the mini-AMES test. The most potent in vitro mGlu4 PAM derivative 52 (N-(3-chloro-4-(5-(2-chlorophenyl)-1,2,4-oxadiazol-3-yl)phenyl)picolinamide) was readily absorbed after i.p. administration (male Albino Swiss mice) and reached a maximum brain concentration of 949.76 ng/mL. Five modulators (34, 37, 52, 60 and 62) demonstrated significant anxiolytic- and antipsychotic-like properties in the SIH and DOI-induced head twitch test, respectively. Promising data were obtained, especially for N-(4-(5-(2-chlorophenyl)-1,2,4-oxadiazol-3-yl)-3-methylphenyl)picolinamide (62), whose effects in the DOI-induced head twitch test were comparable to those of clozapine and better than those reported for the selective mGlu4 PAM ADX88178.
Collapse
Affiliation(s)
- Anna Stankiewicz
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Kaczorowska
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Ryszard Bugno
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Aneta Kozioł
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Maria H Paluchowska
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Grzegorz Burnat
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Barbara Chruścicka
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Paulina Chorobik
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Piotr Brański
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Joanna M Wierońska
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Beata Duszyńska
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Andrzej Pilc
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
15
|
Structures of human mGlu2 and mGlu7 homo- and heterodimers. Nature 2021; 594:589-593. [PMID: 34135509 DOI: 10.1038/s41586-021-03641-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/13/2021] [Indexed: 12/16/2022]
Abstract
The metabotropic glutamate receptors (mGlus) are involved in the modulation of synaptic transmission and neuronal excitability in the central nervous system1. These receptors probably exist as both homo- and heterodimers that have unique pharmacological and functional properties2-4. Here we report four cryo-electron microscopy structures of the human mGlu subtypes mGlu2 and mGlu7, including inactive mGlu2 and mGlu7 homodimers; mGlu2 homodimer bound to an agonist and a positive allosteric modulator; and inactive mGlu2-mGlu7 heterodimer. We observed a subtype-dependent dimerization mode for these mGlus, as a unique dimer interface that is mediated by helix IV (and that is important for limiting receptor activity) exists only in the inactive mGlu2 structure. The structures provide molecular details of the inter- and intra-subunit conformational changes that are required for receptor activation, which distinguish class C G-protein-coupled receptors from those in classes A and B. Furthermore, our structure and functional studies of the mGlu2-mGlu7 heterodimer suggest that the mGlu7 subunit has a dominant role in controlling dimeric association and G-protein activation in the heterodimer. These insights into mGlu homo- and heterodimers highlight the complex landscape of mGlu dimerization and activation.
Collapse
|
16
|
Kim K, Christov PP, Romaine I, Tian J, Jana S, Lamers AP, Dutter BF, Scaggs T, Jeon K, Guttentag B, Weaver CD, Lindsley CW, Waterson AG, Sulikowski GA. Ten-Year Retrospective of the Vanderbilt Institute of Chemical Biology Chemical Synthesis Core. ACS Chem Biol 2021; 16:787-793. [PMID: 33877812 DOI: 10.1021/acschembio.0c00818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chemical synthesis has been described as a central science. Its practice provides access to the chemical structures of known and/or designed function. In particular, human health is greatly impacted by synthesis that enables advancements in both basic science discoveries in chemical biology as well as translational research that can lead to new therapeutics. To support the chemical synthesis needs of investigators across campus, the Vanderbilt Institute of Chemical Biology established a chemical synthesis core as part of its foundation in 2008. Provided in this Review are examples of synthetic products, known and designed, produced in the core over the past 10 years.
Collapse
Affiliation(s)
- Kwangho Kim
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Plamen P. Christov
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Ian Romaine
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jianhua Tian
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Somnath Jana
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Alexander P. Lamers
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Brendan F. Dutter
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Toya Scaggs
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Kyouk Jeon
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Benjamin Guttentag
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - C. David Weaver
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Alex G. Waterson
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Gary A. Sulikowski
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
17
|
Pathogenic GRM7 Mutations Associated with Neurodevelopmental Disorders Impair Axon Outgrowth and Presynaptic Terminal Development. J Neurosci 2021; 41:2344-2359. [PMID: 33500274 DOI: 10.1523/jneurosci.2108-20.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 12/18/2022] Open
Abstract
Metabotropic glutamate receptor 7 (mGlu7) is an inhibitory heterotrimeric G-protein-coupled receptor that modulates neurotransmitter release and synaptic plasticity at presynaptic terminals in the mammalian central nervous system. Recent studies have shown that rare mutations in glutamate receptors and synaptic scaffold proteins are associated with neurodevelopmental disorders (NDDs). However, the role of presynaptic mGlu7 in the pathogenesis of NDDs remains largely unknown. Recent whole-exome sequencing (WES) studies in families with NDDs have revealed that several missense mutations (c.1865G>A:p.R622Q; c.461T>C:p.I154T; c.1972C>T:p.R658W and c.2024C>A:p.T675K) or a nonsense mutation (c.1757G>A:p.W586X) in the GRM7 gene may be linked to NDDs. In the present study, we investigated the mechanistic links between GRM7 point mutations and NDD pathology. We find that the pathogenic GRM7 I154T and R658W/T675K mutations lead to the degradation of the mGlu7 protein. In particular, the GRM7 R658W/T675K mutation results in a lack of surface mGlu7 expression in heterologous cells and cultured neurons isolated from male and female rat embryos. We demonstrate that the expression of mGlu7 variants or exposure to mGlu7 antagonists impairs axon outgrowth through the mitogen-activated protein kinase (MAPK)-cAMP-protein kinase A (PKA) signaling pathway during early neuronal development, which subsequently leads to a decrease in the number of presynaptic terminals in mature neurons. Treatment with an mGlu7 agonist restores the pathologic phenotypes caused by mGlu7 I154T but not by mGlu7 R658W/T675K because of its lack of neuronal surface expression. These findings provide evidence that stable neuronal surface expression of mGlu7 is essential for neural development and that mGlu7 is a promising therapeutic target for NDDs.SIGNIFICANCE STATEMENT Neurodevelopmental disorders (NDDs) affect brain development and function by multiple etiologies. Metabotropic glutamate receptor 7 (mGlu7) is a receptor that controls excitatory neurotransmission and synaptic plasticity. Since accumulating evidence indicates that the GRM7 gene locus is associated with NDD risk, we analyzed the functional effects of human GRM7 variants identified in patients with NDDs. We demonstrate that stable neuronal surface expression of mGlu7 is essential for axon outgrowth and presynaptic terminal development in neurons. We found that mitogen-activated protein kinase (MAPK)-cAMP-protein kinase A (PKA) signaling and subsequent cytoskeletal dynamics are defective because of the degradation of mGlu7 variants. Finally, we show that the defects caused by mGlu7 I154T can be reversed by agonists, providing the rationale for proposing mGlu7 as a potential therapeutic target for NDDs.
Collapse
|
18
|
Orgován Z, Ferenczy GG, Keserű GM. Allosteric Molecular Switches in Metabotropic Glutamate Receptors. ChemMedChem 2021; 16:81-93. [PMID: 32686363 PMCID: PMC7818470 DOI: 10.1002/cmdc.202000444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Indexed: 12/22/2022]
Abstract
Metabotropic glutamate receptors (mGlu) are class C G protein-coupled receptors of eight subtypes that are omnipresently expressed in the central nervous system. mGlus have relevance in several psychiatric and neurological disorders, therefore they raise considerable interest as drug targets. Allosteric modulators of mGlus offer advantages over orthosteric ligands owing to their increased potential to achieve subtype selectivity, and this has prompted discovery programs that have produced a large number of reported allosteric mGlu ligands. However, the optimization of allosteric ligands into drug candidates has proved to be challenging owing to induced-fit effects, flat or steep structure-activity relationships and unexpected changes in theirpharmacology. Subtle structural changes identified as molecular switches might modulate the functional activity of allosteric ligands. Here we review these switches discovered in the metabotropic glutamate receptor family..
Collapse
Affiliation(s)
- Zoltán Orgován
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 2Budapest1117Hungary
| | - György G. Ferenczy
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 2Budapest1117Hungary
| | - György M. Keserű
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 2Budapest1117Hungary
| |
Collapse
|
19
|
Gregory KJ, Goudet C. International Union of Basic and Clinical Pharmacology. CXI. Pharmacology, Signaling, and Physiology of Metabotropic Glutamate Receptors. Pharmacol Rev 2020; 73:521-569. [PMID: 33361406 DOI: 10.1124/pr.119.019133] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors respond to glutamate, the major excitatory neurotransmitter in the mammalian brain, mediating a modulatory role that is critical for higher-order brain functions such as learning and memory. Since the first mGlu receptor was cloned in 1992, eight subtypes have been identified along with many isoforms and splice variants. The mGlu receptors are transmembrane-spanning proteins belonging to the class C G protein-coupled receptor family and represent attractive targets for a multitude of central nervous system disorders. Concerted drug discovery efforts over the past three decades have yielded a wealth of pharmacological tools including subtype-selective agents that competitively block or mimic the actions of glutamate or act allosterically via distinct sites to enhance or inhibit receptor activity. Herein, we review the physiologic and pathophysiological roles for individual mGlu receptor subtypes including the pleiotropic nature of intracellular signal transduction arising from each. We provide a comprehensive analysis of the in vitro and in vivo pharmacological properties of prototypical and commercially available orthosteric agonists and antagonists as well as allosteric modulators, including ligands that have entered clinical trials. Finally, we highlight emerging areas of research that hold promise to facilitate rational design of highly selective mGlu receptor-targeting therapeutics in the future. SIGNIFICANCE STATEMENT: The metabotropic glutamate receptors are attractive therapeutic targets for a range of psychiatric and neurological disorders. Over the past three decades, intense discovery efforts have yielded diverse pharmacological tools acting either competitively or allosterically, which have enabled dissection of fundamental biological process modulated by metabotropic glutamate receptors and established proof of concept for many therapeutic indications. We review metabotropic glutamate receptor molecular pharmacology and highlight emerging areas that are offering new avenues to selectively modulate neurotransmission.
Collapse
Affiliation(s)
- Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| | - Cyril Goudet
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| |
Collapse
|
20
|
Kalbfleisch JJ, Reed CW, Park C, Spearing PK, Quitalig MC, Jenkins MT, Rodriguez AL, Blobaum AL, Conn PJ, Niswender CM, Lindsley CW. Synthesis and SAR of a series of mGlu 7 NAMs based on an ethyl-8-methoxy-4-(4-phenylpiperazin-1-yl)quinoline carboxylate core. Bioorg Med Chem Lett 2020; 30:127529. [PMID: 32890686 PMCID: PMC7686273 DOI: 10.1016/j.bmcl.2020.127529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 10/23/2022]
Abstract
A High-Throughput Screening (HTS) campaign identified a fundamentally new mGlu7 NAM chemotype, based on an ethyl-8-methoxy-4-(4-phenylpiperazin-1-yl)quinolone carboxylate core. The initial hit, VU0226390, was a potent mGlu7 NAM (IC50 = 647 nM, 6% L-AP4 min) with selectivity versus the other group III mGlu receptors (>30 μM vs. mGlu4 and mGlu8). A multi-dimensional optimization effort surveyed all regions of this new chemotype, and found very steep SAR, reminiscent of allosteric modulators, and unexpected piperazine mimetics (whereas classical bioisosteres failed). While mGlu7 NAM potency could be improved (IC50s ~ 350 nM), the necessity of the ethyl ester moiety and poor physiochemical and DMPK properties precluded optimization towards in vivo tool compounds or clinical candidates. Still, this hit-to-lead campaign afforded key medicinal chemistry insights and new opportunities.
Collapse
Affiliation(s)
- Jacob J Kalbfleisch
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Carson W Reed
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Charlotte Park
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Paul K Spearing
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Marc C Quitalig
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Matthew T Jenkins
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Alice L Rodriguez
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Anna L Blobaum
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Craig W Lindsley
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
21
|
Reed C, Kalbfleisch JJ, Wong MJ, Washecheck JP, Hunter A, Rodriguez AL, Blobaum AL, Conn PJ, Niswender CM, Lindsley CW. Discovery of VU6027459: A First-in-Class Selective and CNS Penetrant mGlu 7 Positive Allosteric Modulator Tool Compound. ACS Med Chem Lett 2020; 11:1773-1779. [PMID: 32944146 PMCID: PMC7488291 DOI: 10.1021/acsmedchemlett.0c00432] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/20/2020] [Indexed: 01/07/2023] Open
Abstract
Herein, we report the discovery of the first selective and CNS penetrant mGlu7 PAM (VU6027459) derived from a "molecular switch" within a selective mGlu7 NAM chemotype. VU6027459 displayed CNS penetration in both mice (Kp = 2.74) and rats (Kp= 4.78), it was orally bioavailable in rats (%F = 69.5), and undesired activity at DAT was ablated.
Collapse
Affiliation(s)
- Carson
W. Reed
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jacob J. Kalbfleisch
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Madison J. Wong
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jordan P. Washecheck
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Ashton Hunter
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Alice L. Rodriguez
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Anna L. Blobaum
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - P. Jeffrey Conn
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Kennedy Center, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Colleen M. Niswender
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Kennedy Center, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
22
|
Sengmany K, Hellyer SD, Christopoulos A, Lapinsky DJ, Leach K, Gregory KJ. Differential contribution of metabotropic glutamate receptor 5 common allosteric binding site residues to biased allosteric agonism. Biochem Pharmacol 2020; 177:114011. [DOI: 10.1016/j.bcp.2020.114011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/29/2020] [Indexed: 01/06/2023]
|
23
|
Hellyer SD, Aggarwal S, Chen ANY, Leach K, Lapinsky DJ, Gregory KJ. Development of Clickable Photoaffinity Ligands for Metabotropic Glutamate Receptor 2 Based on Two Positive Allosteric Modulator Chemotypes. ACS Chem Neurosci 2020; 11:1597-1609. [PMID: 32396330 DOI: 10.1021/acschemneuro.0c00009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The metabotropic glutamate receptor 2 (mGlu2) is a transmembrane-spanning class C G protein-coupled receptor that is an attractive therapeutic target for multiple psychiatric and neurological disorders. A key challenge has been deciphering the contribution of mGlu2 relative to other closely related mGlu receptors in mediating different physiological responses, which could be achieved through the utilization of subtype selective pharmacological tools. In this respect, allosteric modulators that recognize ligand-binding sites distinct from the endogenous neurotransmitter glutamate offer the promise of higher receptor-subtype selectivity. We hypothesized that mGlu2-selective positive allosteric modulators could be derivatized to generate bifunctional pharmacological tools. Here we developed clickable photoaffinity probes for mGlu2 based on two different positive allosteric modulator scaffolds that retained similar pharmacological activity to parent compounds. We demonstrate successful probe-dependent incorporation of a commercially available clickable fluorophore using bioorthogonal conjugation. Importantly, we also show the limitations of using these probes to assess in situ fluorescence of mGlu2 in intact cells where significant nonspecific membrane binding is evident.
Collapse
Affiliation(s)
- Shane D. Hellyer
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - Shaili Aggarwal
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Amy N. Y. Chen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - David J. Lapinsky
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Karen J. Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
24
|
Liang W, Yu H, Su Y, Lu T, Yan H, Yue W, Zhang D. Variants of GRM7 as risk factor and response to antipsychotic therapy in schizophrenia. Transl Psychiatry 2020; 10:83. [PMID: 32127521 PMCID: PMC7054263 DOI: 10.1038/s41398-020-0763-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/07/2020] [Accepted: 02/12/2020] [Indexed: 11/09/2022] Open
Abstract
Genome-wide association study (GWAS) has determined the metabotropic glutamate receptor 7 (GRM7) gene as potential locus for schizophrenia risk variants; However, the relationship between the GRM7 variants and the risk of schizophrenia is still uncertain, and there are significant individual variations in response to the antipsychotic drugs. In order to identify susceptible gene and drug-response-related markers, 2413 subjects in our research were chosen for determining drug-response-related markers in schizophrenia. The rs1516569 variant (OR = 0.95, P < 3.47 × 10-4) was a significant risk factor, and a single-nucleotide polymorphism of GRM7 gene- rs9883258 (OR = 0.84, P = 2.18 × 10-3) has been determined as potential biomarkers for therapeutic responses of seven commonly used antipsychotic drugs (aripiprazole, haloperidol, olanzapine, perphenazine, quetiapine, risperidone and ziprasidone) in Chinese Han population; Significant associations with treatment response for several single-nucleotide polymorphisms in every antipsychotic drugs, such as rs779746 (OR = 1.39, P = 0.03), rs480409 (OR = 0.73, P = 0.04), rs78137319 (OR = 3.09, P = 0.04), rs1154370 (OR = 1.51, P = 0.006) have been identified in our study. Hence our research elucidates that GRM7 variants play the critical role of predicting the risk of schizophrenia and antipsychotic effect of seven common drugs.
Collapse
Affiliation(s)
- Wei Liang
- grid.459847.30000 0004 1798 0615Institute of Mental Health, Peking University Sixth Hospital, 100191 Beijing, China ,grid.453135.50000 0004 1769 3691NHC Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders and Key Laboratory of Mental Health, Ministry of Health (Peking University Sixth Hospital), 100191 Beijing, China
| | - Hao Yu
- grid.449428.70000 0004 1797 7280Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Department of Psychiatry, Jining Medical University, 272067 Jining, Shandong China
| | - Yi Su
- grid.459847.30000 0004 1798 0615Institute of Mental Health, Peking University Sixth Hospital, 100191 Beijing, China ,grid.453135.50000 0004 1769 3691NHC Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders and Key Laboratory of Mental Health, Ministry of Health (Peking University Sixth Hospital), 100191 Beijing, China
| | - Tianlan Lu
- grid.459847.30000 0004 1798 0615Institute of Mental Health, Peking University Sixth Hospital, 100191 Beijing, China ,grid.453135.50000 0004 1769 3691NHC Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders and Key Laboratory of Mental Health, Ministry of Health (Peking University Sixth Hospital), 100191 Beijing, China
| | - Hao Yan
- grid.459847.30000 0004 1798 0615Institute of Mental Health, Peking University Sixth Hospital, 100191 Beijing, China ,grid.453135.50000 0004 1769 3691NHC Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders and Key Laboratory of Mental Health, Ministry of Health (Peking University Sixth Hospital), 100191 Beijing, China
| | - Weihua Yue
- Institute of Mental Health, Peking University Sixth Hospital, 100191, Beijing, China. .,NHC Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders and Key Laboratory of Mental Health, Ministry of Health (Peking University Sixth Hospital), 100191, Beijing, China. .,PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China. .,Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Peking University, 100191, Beijing, China.
| | - Dai Zhang
- Institute of Mental Health, Peking University Sixth Hospital, 100191, Beijing, China. .,NHC Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders and Key Laboratory of Mental Health, Ministry of Health (Peking University Sixth Hospital), 100191, Beijing, China. .,PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China.
| |
Collapse
|
25
|
Hao J, Chen Q. Insights into the Structural Aspects of the mGlu Receptor Orthosteric Binding Site. Curr Top Med Chem 2019; 19:2421-2446. [PMID: 31660833 DOI: 10.2174/1568026619666191011094935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023]
Abstract
The amino terminal domain (ATD) of the metabotropic glutamate (mGlu) receptors contains the orthosteric glutamate recognition site, which is highly conserved across the eight mGlu receptor subtypes. In total, 29 X-ray crystal structures of the mGlu ATD proteins have been reported to date. These structures span across 3 subgroups and 6 subtypes, and include apo, agonist- and antagonist-bound structures. We will discuss the insights gained from the analysis of these structures with the focus on the interactions contributing to the observed group and subtype selectivity for select agonists. Furthermore, we will define the full expanded orthosteric ligand binding pocket (LBP) of the mGlu receptors, and discuss the macroscopic features of the mGlu ATD proteins.
Collapse
Affiliation(s)
- Junliang Hao
- Discovery Chemistry Research and Technologies, Lilly Research Laboratory, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, United States
| | - Qi Chen
- Discovery Chemistry Research and Technologies, Lilly Research Laboratory, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, United States
| |
Collapse
|
26
|
Azari I, Moghadam RH, Fallah H, Noroozi R, Ghafouri-Fard S, Taheri M. GRM7 polymorphisms and risk of schizophrenia in Iranian population. Metab Brain Dis 2019; 34:847-852. [PMID: 30610437 DOI: 10.1007/s11011-018-0380-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/26/2018] [Indexed: 11/29/2022]
Abstract
The role of metabotropic glutamate receptors in the pathogenesis of schizophrenia or response to antipsychotic treatment has been proposed previously. The aim of the current study was to investigate the associations between two intronic variants within GRM7 gene (rs6782011 and rs779867) and schizophrenia in Iranian population. These two single nucleotide polymorphisms (SNPs) were genotyped in 273 schizophrenic patients and 300 age and sex-matched normal controls. The frequency of A allele of the rs779867 was significantly lower in the schizophrenic patients compared with healthy subjects (OR (95% CI) = 0.71 (0.56-0.89), adjusted P value = 0.008). This SNP was associated with schizophrenia in co-dominant and dominant models (adjusted P values of 0.03 and 0.02 respectively). However, there was no difference in allele and genotype frequencies of the rs6782011 SNP between cases and controls. Consequently, the results of current study further highlight the participation of GRM7 in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Iman Azari
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Hosseinpour Moghadam
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Fallah
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rezvan Noroozi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Surveying heterocycles as amide bioisosteres within a series of mGlu7 NAMs: Discovery of VU6019278. Bioorg Med Chem Lett 2019; 29:1211-1214. [DOI: 10.1016/j.bmcl.2019.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/18/2019] [Accepted: 03/13/2019] [Indexed: 12/19/2022]
|
28
|
Cid JM, Lavreysen H, Tresadern G, Pérez-Benito L, Tovar F, Fontana A, Trabanco AA. Computationally Guided Identification of Allosteric Agonists of the Metabotropic Glutamate 7 Receptor. ACS Chem Neurosci 2019; 10:1043-1054. [PMID: 30216043 DOI: 10.1021/acschemneuro.8b00331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The metabotropic glutamate 7 (mGlu7) receptor belongs to the group III of mGlu receptors. Since the mGlu7 receptor can control excitatory neurotransmission in the hippocampus and cortex, modulation of the receptor may have therapeutic benefit in several CNS diseases. However, mGlu7 remains relatively unexplored among the eight known mGlu receptors partly because of the limited availability of tool compounds to interrogate its potential therapeutic utility. Here we report the discovery of a new class of mGlu7 allosteric agonists. Hits originating from virtual screening were followed up with further analogue searching and screening, leading to a novel series of mGlu7 allosteric agonists. Guided by docking into a structural model of the mGlu7 receptor the initial hit 5 was successfully optimized to analogues with comparable potencies and more attractive drug-like attributes than AMN082.
Collapse
Affiliation(s)
- Jose María Cid
- Janssen Research and Development, Calle Jarama 75A, Toledo 45007, Spain
| | - Hilde Lavreysen
- Janssen Research and Development, Turnhoutseweg 30, 2440 Beerse, Belgium
| | - Gary Tresadern
- Janssen Research and Development, Turnhoutseweg 30, 2440 Beerse, Belgium
| | - Laura Pérez-Benito
- Laboratori de Medicina Computacional Unitat de Bioestadistica, Facultat de Medicina, Universitat Autonoma de Barcelona, Bellaterra 08193, Spain
| | - Fulgencio Tovar
- Villapharma Research
S.L., Parque Tecnológico de Fuente Álamo. Ctra. El Estrecho-Lobosillo, Km. 2.5- Av. Azul, 30320 Fuente Álamo de Murcia, Murcia, Spain
| | - Alberto Fontana
- Janssen Research and Development, Calle Jarama 75A, Toledo 45007, Spain
| | | |
Collapse
|
29
|
Vázquez-Villa H, Trabanco AA. Progress toward allosteric ligands of metabotropic glutamate 7 (mGlu7) receptor: 2008-present. MEDCHEMCOMM 2019; 10:193-199. [PMID: 30881607 PMCID: PMC6390470 DOI: 10.1039/c8md00524a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/11/2018] [Indexed: 01/01/2023]
Abstract
Metabotropic glutamate type 7 (mGlu7) receptor is a member of the group III family of mGlu receptors. It is widely distributed in the central nervous system (CNS) and is preferentially expressed on presynaptic nerve terminals where it is thought to play a critical role in modulating normal neuronal function and synaptic transmission, making it particularly relevant in neuropharmacology. The lack of small-molecule mGlu7 ligands with adequate potency, selectivity and drug-like properties has resulted in difficulties in the preclinical validation of mGlu7 modulation in disease models. In the last decade, allosteric modulators of mGlu7 receptors have emerged as valuable tools with good potency, selectivity and physicochemical properties to study and unleash the therapeutic potential of mGlu7 receptors. This review focusses on the medicinal chemistry of mGlu7 receptor allosteric ligands discovered since 2008.
Collapse
Affiliation(s)
- Henar Vázquez-Villa
- Departamento de Química Orgánica , Facultad de Ciencias Químicas , Universidad Complutense de Madrid , E-28040 Madrid , Spain .
| | - Andrés A Trabanco
- Discovery Sciences , Medicinal Chemistry Department , Janssen Research & Development , c/ Jarama 75A , 45007 Toledo , Spain .
| |
Collapse
|
30
|
Reed CW, Yohn SE, Washecheck JP, Roenfanz HF, Quitalig MC, Luscombe VB, Jenkins MT, Rodriguez AL, Engers DW, Blobaum AL, Conn PJ, Niswender CM, Lindsley CW. Discovery of an Orally Bioavailable and Central Nervous System (CNS) Penetrant mGlu 7 Negative Allosteric Modulator (NAM) in Vivo Tool Compound: N-(2-(1 H-1,2,4-triazol-1-yl)-5-(trifluoromethoxy)phenyl)-4-(cyclopropylmethoxy)-3-methoxybenzamide (VU6012962). J Med Chem 2019; 62:1690-1695. [PMID: 30608678 DOI: 10.1021/acs.jmedchem.8b01810] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Herein, we report the discovery of a new, orally bioavailable and CNS-penetrant metabotropic glutamate receptor 7 (mGlu7) negative allosteric modulator (NAM) that achieves exposure in cerebral spinal fluid (CSF) 2.5× above the in vitro IC50 at minimum effective doses (MEDs) of 3 mg/kg in preclinical anxiety models.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - P Jeffrey Conn
- Vanderbilt Kennedy Center , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States
| | - Colleen M Niswender
- Vanderbilt Kennedy Center , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States
| | | |
Collapse
|
31
|
Fisher NM, Seto M, Lindsley CW, Niswender CM. Corrigendum: Metabotropic Glutamate Receptor 7: A New Therapeutic Target in Neurodevelopmental Disorders. Front Mol Neurosci 2018; 11:444. [PMID: 30588231 PMCID: PMC6302680 DOI: 10.3389/fnmol.2018.00444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/19/2018] [Indexed: 11/23/2022] Open
Affiliation(s)
- Nicole M Fisher
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University , Nashville, TN, United States
| | - Mabel Seto
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University , Nashville, TN, United States
| | - Craig W Lindsley
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University , Nashville, TN, United States.,Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Colleen M Niswender
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University , Nashville, TN, United States.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
32
|
Chen Q, Ho JD, Ashok S, Vargas MC, Wang J, Atwell S, Bures M, Schkeryantz JM, Monn JA, Hao J. Structural Basis for ( S)-3,4-Dicarboxyphenylglycine (DCPG) As a Potent and Subtype Selective Agonist of the mGlu 8 Receptor. J Med Chem 2018; 61:10040-10052. [PMID: 30365309 DOI: 10.1021/acs.jmedchem.8b01120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
( S)-3,4-Dicarboxyphenylglycine (DCPG) was first reported in 2001 as a potent orthosteric agonist with high subtype selectivity for the mGlu8 receptor, but the structural basis for its high selectivity is not well understood. We have solved a cocrystal structure of recombinant human mGlu8 amino terminal domain (ATD) protein bound to ( S)-DCPG, which possesses the largest lobe opening angle observed to date among known agonist-bound mGlu ATD crystal structures. The binding conformation of ( S)-DCPG observed in the crystal structure is significantly different from that in the homology model built from an l-glutamate-bound rat mGlu1 ATD crystal structure, which has a smaller lobe opening angle. This highlights the importance of considering various lobe opening angles when modeling mGlu ATD-ligand complex. New homology models of other mGlu receptors based on the ( S)-DCPG-bound mGlu8 ATD crystal structure were explored to rationalize ( S)-DCPG's high mGlu8 receptor subtype selectivity.
Collapse
|
33
|
Biased agonism and allosteric modulation of metabotropic glutamate receptor 5. Clin Sci (Lond) 2018; 132:2323-2338. [PMID: 30389826 DOI: 10.1042/cs20180374] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/18/2022]
Abstract
Metabotropic glutamate receptors belong to class C G-protein-coupled receptors and consist of eight subtypes that are ubiquitously expressed throughout the central nervous system. In recent years, the metabotropic glutamate receptor subtype 5 (mGlu5) has emerged as a promising target for a broad range of psychiatric and neurological disorders. Drug discovery programs targetting mGlu5 are primarily focused on development of allosteric modulators that interact with sites distinct from the endogenous agonist glutamate. Significant efforts have seen mGlu5 allosteric modulators progress into clinical trials; however, recent failures due to lack of efficacy or adverse effects indicate a need for a better understanding of the functional consequences of mGlu5 allosteric modulation. Biased agonism is an interrelated phenomenon to allosterism, describing how different ligands acting through the same receptor can differentially influence signaling to distinct transducers and pathways. Emerging evidence demonstrates that allosteric modulators can induce biased pharmacology at the level of intrinsic agonism as well as through differential modulation of orthosteric agonist-signaling pathways. Here, we present key considerations in the discovery and development of mGlu5 allosteric modulators and the opportunities and pitfalls offered by biased agonism and modulation.
Collapse
|
34
|
Fisher NM, Seto M, Lindsley CW, Niswender CM. Metabotropic Glutamate Receptor 7: A New Therapeutic Target in Neurodevelopmental Disorders. Front Mol Neurosci 2018; 11:387. [PMID: 30405350 PMCID: PMC6206046 DOI: 10.3389/fnmol.2018.00387] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/01/2018] [Indexed: 12/27/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are characterized by a wide range of symptoms including delayed speech, intellectual disability, motor dysfunction, social deficits, breathing problems, structural abnormalities, and epilepsy. Unfortunately, current treatment strategies are limited and innovative new approaches are sorely needed to address these complex diseases. The metabotropic glutamate receptors are a class of G protein-coupled receptors that act to modulate neurotransmission across many brain structures. They have shown great promise as drug targets for numerous neurological and psychiatric diseases. Moreover, the development of subtype-selective allosteric modulators has allowed detailed studies of each receptor subtype. Here, we focus on the metabotropic glutamate receptor 7 (mGlu7) as a potential therapeutic target for NDDs. mGlu7 is expressed widely throughout the brain in regions that correspond to the symptom domains listed above and has established roles in synaptic physiology and behavior. Single nucleotide polymorphisms and mutations in the GRM7 gene have been associated with idiopathic autism and other NDDs in patients. In rodent models, existing literature suggests that decreased mGlu7 expression and/or function may lead to symptoms that overlap with those of NDDs. Furthermore, potentiation of mGlu7 activity has shown efficacy in a mouse model of Rett syndrome. In this review, we summarize current findings that provide rationale for the continued development of mGlu7 modulators as potential therapeutics.
Collapse
Affiliation(s)
- Nicole M Fisher
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, United States
| | - Mabel Seto
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, United States
| | - Craig W Lindsley
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, United States.,Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Colleen M Niswender
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
35
|
Gogliotti RG, Senter RK, Fisher NM, Adams J, Zamorano R, Walker AG, Blobaum AL, Engers DW, Hopkins CR, Daniels JS, Jones CK, Lindsley CW, Xiang Z, Conn PJ, Niswender CM. mGlu 7 potentiation rescues cognitive, social, and respiratory phenotypes in a mouse model of Rett syndrome. Sci Transl Med 2018; 9:9/403/eaai7459. [PMID: 28814546 DOI: 10.1126/scitranslmed.aai7459] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/25/2017] [Accepted: 04/27/2017] [Indexed: 12/20/2022]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the methyl-CpG binding protein 2 (MECP2) gene. The cognitive impairments seen in mouse models of RTT correlate with deficits in long-term potentiation (LTP) at Schaffer collateral (SC)-CA1 synapses in the hippocampus. Metabotropic glutamate receptor 7 (mGlu7) is the predominant mGlu receptor expressed presynaptically at SC-CA1 synapses in adult mice, and its activation on GABAergic interneurons is necessary for induction of LTP. We demonstrate that pathogenic mutations in MECP2 reduce mGlu7 protein expression in brain tissue from RTT patients and in MECP2-deficient mouse models. In rodents, this reduction impairs mGlu7-mediated control of synaptic transmission. We show that positive allosteric modulation of mGlu7 activity restores LTP and improves contextual fear learning, novel object recognition, and social memory. Furthermore, mGlu7 positive allosteric modulation decreases apneas in Mecp2+/- mice, suggesting that mGlu7 may be a potential therapeutic target for multiple aspects of the RTT phenotype.
Collapse
Affiliation(s)
- Rocco G Gogliotti
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Rebecca K Senter
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Nicole M Fisher
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Jeffrey Adams
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Rocio Zamorano
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Adam G Walker
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Anna L Blobaum
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Darren W Engers
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Corey R Hopkins
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - J Scott Daniels
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Zixiu Xiang
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA. .,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
36
|
Hellyer SD, Albold S, Wang T, Chen ANY, May LT, Leach K, Gregory KJ. “Selective” Class C G Protein-Coupled Receptor Modulators Are Neutral or Biased mGlu5 Allosteric Ligands. Mol Pharmacol 2018. [DOI: 10.1124/mol.117.111518] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
37
|
Selvam C, Lemasson IA, Brabet I, Oueslati N, Karaman B, Cabaye A, Tora AS, Commare B, Courtiol T, Cesarini S, McCort-Tranchepain I, Rigault D, Mony L, Bessiron T, McLean H, Leroux FR, Colobert F, Daniel H, Goupil-Lamy A, Bertrand HO, Goudet C, Pin JP, Acher FC. Increased Potency and Selectivity for Group III Metabotropic Glutamate Receptor Agonists Binding at Dual sites. J Med Chem 2018; 61:1969-1989. [DOI: 10.1021/acs.jmedchem.7b01438] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Chelliah Selvam
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Isabelle A. Lemasson
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Isabelle Brabet
- IGF, CNRS, INSERM, Université Montpellier, F-34094 Montpellier, France
| | - Nadia Oueslati
- IGF, CNRS, INSERM, Université Montpellier, F-34094 Montpellier, France
| | - Berin Karaman
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Alexandre Cabaye
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Amélie S. Tora
- IGF, CNRS, INSERM, Université Montpellier, F-34094 Montpellier, France
| | - Bruno Commare
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
- UMR 7509/CNRS/ECPM, Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg 02, France
| | - Tiphanie Courtiol
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Sara Cesarini
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Isabelle McCort-Tranchepain
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Delphine Rigault
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Laetitia Mony
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
- Institut de Biologie, Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, PSL University, 46 rue d’Ulm, 75005 Paris, France
| | - Thomas Bessiron
- Pharmacologie et Biochimie de la Synapse, Université Paris-Sud/CNRS/NeuroPSI−UMR 9197, F-91405 Orsay, France
| | - Heather McLean
- Pharmacologie et Biochimie de la Synapse, Université Paris-Sud/CNRS/NeuroPSI−UMR 9197, F-91405 Orsay, France
| | - Frédéric R. Leroux
- UMR 7509/CNRS/ECPM, Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg 02, France
| | - Françoise Colobert
- UMR 7509/CNRS/ECPM, Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg 02, France
| | - Hervé Daniel
- Pharmacologie et Biochimie de la Synapse, Université Paris-Sud/CNRS/NeuroPSI−UMR 9197, F-91405 Orsay, France
| | - Anne Goupil-Lamy
- BIOVIA, Dassault Systèmes, 10 rue Marcel Dassault, CS 40501, 78946 Vélizy-Villacoublay Cedex, France
| | - Hugues-Olivier Bertrand
- BIOVIA, Dassault Systèmes, 10 rue Marcel Dassault, CS 40501, 78946 Vélizy-Villacoublay Cedex, France
| | - Cyril Goudet
- IGF, CNRS, INSERM, Université Montpellier, F-34094 Montpellier, France
| | - Jean-Philippe Pin
- IGF, CNRS, INSERM, Université Montpellier, F-34094 Montpellier, France
| | - Francine C. Acher
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| |
Collapse
|
38
|
Reed CW, McGowan KM, Spearing PK, Stansley BJ, Roenfanz HF, Engers DW, Rodriguez AL, Engelberg EM, Luscombe VB, Loch MT, Remke DH, Rook JM, Blobaum AL, Conn PJ, Niswender CM, Lindsley CW. VU6010608, a Novel mGlu 7 NAM from a Series of N-(2-(1 H-1,2,4-Triazol-1-yl)-5-(trifluoromethoxy)phenyl)benzamides. ACS Med Chem Lett 2017; 8:1326-1330. [PMID: 29259756 DOI: 10.1021/acsmedchemlett.7b00429] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/08/2017] [Indexed: 01/08/2023] Open
Abstract
Herein, we report the structure-activity relationships within a series of mGlu7 NAMs based on an N-(2-(1H-1,2,4-triazol-1-yl)-5-(trifluoromethoxy)phenyl)benzamide core with excellent CNS penetration (Kp 1.9-5.8 and Kp,uu 0.4-1.4). Analogues in this series displayed steep SAR. Of these, VU6010608 (11a) emerged with robust efficacy in blocking high frequency stimulated long-term potentiation in electrophysiology studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - P. Jeffrey Conn
- Vanderbilt
Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Colleen M. Niswender
- Vanderbilt
Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | | |
Collapse
|
39
|
Abe M, Seto M, Gogliotti RG, Loch MT, Bollinger KA, Chang S, Engelberg EM, Luscombe VB, Harp JM, Bubser M, Engers DW, Jones CK, Rodriguez AL, Blobaum AL, Conn PJ, Niswender CM, Lindsley CW. Discovery of VU6005649, a CNS Penetrant mGlu 7/8 Receptor PAM Derived from a Series of Pyrazolo[1,5- a]pyrimidines. ACS Med Chem Lett 2017; 8:1110-1115. [PMID: 29057060 DOI: 10.1021/acsmedchemlett.7b00317] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/01/2017] [Indexed: 12/25/2022] Open
Abstract
Herein, we report the structure-activity relationships within a series of mGlu7 PAMs based on a pyrazolo[1,5-a]pyrimidine core with excellent CNS penetration (Kps > 1 and Kp,uus > 1). Analogues in this series proved to display a range of Group III mGlu receptor selectivity, but VU6005649 emerged as the first dual mGlu7/8 PAM, filling a void in the Group III mGlu receptor PAM toolbox and demonstrating in vivo efficacy in a mouse contextual fear conditioning model.
Collapse
Affiliation(s)
- Masahito Abe
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Mabel Seto
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Rocco G. Gogliotti
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Matthew T. Loch
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Katrina A. Bollinger
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Sichen Chang
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Eileen M. Engelberg
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Vincent B. Luscombe
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Joel M. Harp
- Department
of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Michael Bubser
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Darren W. Engers
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Carrie K. Jones
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Alice L. Rodriguez
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Anna L. Blobaum
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - P. Jeffrey Conn
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Colleen M. Niswender
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
40
|
Johnstone S, Albert JS. Pharmacological property optimization for allosteric ligands: A medicinal chemistry perspective. Bioorg Med Chem Lett 2017; 27:2239-2258. [PMID: 28408223 DOI: 10.1016/j.bmcl.2017.03.084] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/26/2017] [Accepted: 03/27/2017] [Indexed: 12/11/2022]
Abstract
New strategies to potentially improve drug safety and efficacy emerge with allosteric programs. Biased allosteric modulators can be designed with high subtype selectivity and defined receptor signaling endpoints, however, selecting the most meaningful parameters for optimization can be perplexing. Historically, "potency hunting" at the expense of physicochemical and pharmacokinetic optimization has led to numerous tool compounds with excellent pharmacological properties but no path to drug development. Conversely, extensive physicochemical and pharmacokinetic screening with only post hoc bias and allosteric characterization has led to inefficacious compounds or compounds with on-target toxicities. This field is rapidly evolving with new mechanistic understanding, changes in terminology, and novel opportunities. The intent of this digest is to summarize current understanding and debates within the field. We aim to discuss, from a medicinal chemistry perspective, the parameter choices available to drive SAR.
Collapse
Affiliation(s)
- Shawn Johnstone
- Department of Chemistry, IntelliSyn Pharma, 7171 Frederick-Banting, Montreal, Quebec H4S 1Z9, Canada.
| | - Jeffrey S Albert
- Department of Chemistry, IntelliSyn Pharma, 7171 Frederick-Banting, Montreal, Quebec H4S 1Z9, Canada; Department of Chemistry, AviSyn Pharma, 4275 Executive Square, Suite 200, La Jolla, CA 92037, United States.
| |
Collapse
|
41
|
Jin C, Ma S. Recent advances in the medicinal chemistry of group II and group III mGlu receptors. MEDCHEMCOMM 2017; 8:501-515. [PMID: 30108768 PMCID: PMC6072351 DOI: 10.1039/c6md00612d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/03/2017] [Indexed: 11/21/2022]
Abstract
Metabotropic glutamate receptors (mGlu receptors) belong to the G-protein-coupled receptors superfamily. They are divided into three groups, in which group II and group III belong to presynaptic receptors that negatively modulate glutamate and γ-aminobutyric acid (GABA) release when activated. In this review, we introduce not only the functions of mGlu receptors, but also the group II and group III allosteric modulators and agonists/antagonists reported over the past five years according to a classification of their structures, with a specific focus on their biological activity and selectivity. In particular, the structure of these compounds and the future directions of ideal candidates are highlighted.
Collapse
Affiliation(s)
- Chaobin Jin
- Department of Medicinal Chemistry , Key Laboratory of Chemical Biology (Ministry of Education) , School of Pharmaceutical Sciences , Shandong University , 44, West Culture Road , Jinan 250012 , P.R. China .
| | - Shutao Ma
- Department of Medicinal Chemistry , Key Laboratory of Chemical Biology (Ministry of Education) , School of Pharmaceutical Sciences , Shandong University , 44, West Culture Road , Jinan 250012 , P.R. China .
| |
Collapse
|
42
|
Hellyer S, Leach K, Gregory KJ. Neurobiological insights and novel therapeutic opportunities for CNS disorders from mGlu receptor allosteric and biased modulation. Curr Opin Pharmacol 2017; 32:49-55. [DOI: 10.1016/j.coph.2016.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 11/30/2022]
|
43
|
Leach K, Gregory KJ. Molecular insights into allosteric modulation of Class C G protein-coupled receptors. Pharmacol Res 2017; 116:105-118. [DOI: 10.1016/j.phrs.2016.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 11/18/2016] [Accepted: 12/07/2016] [Indexed: 12/23/2022]
|
44
|
Senter RK, Ghoshal A, Walker AG, Xiang Z, Niswender CM, Conn PJ. The Role of mGlu Receptors in Hippocampal Plasticity Deficits in Neurological and Psychiatric Disorders: Implications for Allosteric Modulators as Novel Therapeutic Strategies. Curr Neuropharmacol 2017; 14:455-73. [PMID: 27296640 PMCID: PMC4983746 DOI: 10.2174/1570159x13666150421003225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/18/2015] [Accepted: 04/09/2015] [Indexed: 11/22/2022] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are two distinct forms of synaptic plasticity that have been extensively characterized at the Schaffer collateral-CA1 (SCCA1) synapse and the mossy fiber (MF)-CA3 synapse within the hippocampus, and are postulated to be the molecular underpinning for several cognitive functions. Deficits in LTP and LTD have been implicated in the pathophysiology of several neurological and psychiatric disorders. Therefore, there has been a large effort focused on developing an understanding of the mechanisms underlying these forms of plasticity and novel therapeutic strategies that improve or rescue these plasticity deficits. Among many other targets, the metabotropic glutamate (mGlu) receptors show promise as novel therapeutic candidates for the treatment of these disorders. Among the eight distinct mGlu receptor subtypes (mGlu1-8), the mGlu1,2,3,5,7 subtypes are expressed throughout the hippocampus and have been shown to play important roles in the regulation of synaptic plasticity in this brain area. However, development of therapeutic agents that target these mGlu receptors has been hampered by a lack of subtype-selective compounds. Recently, discovery of allosteric modulators of mGlu receptors has provided novel ligands that are highly selective for individual mGlu receptor subtypes. The mGlu receptors modulate the multiple forms of synaptic plasticity at both SC-CA1 and MF synapses and allosteric modulators of mGlu receptors have emerged as potential therapeutic agents that may rescue plasticity deficits and improve cognitive function in patients suffering from multiple neurological and psychiatric disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - P Jeffrey Conn
- Department of Pharmacology, Faculty of Vanderbilt University Medical Center, 1205 Light Hall, Nashville, TN 37232, USA.
| |
Collapse
|
45
|
Biased allosteric agonism and modulation of metabotropic glutamate receptor 5: Implications for optimizing preclinical neuroscience drug discovery. Neuropharmacology 2016; 115:60-72. [PMID: 27392634 DOI: 10.1016/j.neuropharm.2016.07.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 12/20/2022]
Abstract
Allosteric modulators, that exhibit no intrinsic agonist activity, offer the advantage of spatial and temporal fine-tuning of endogenous agonist activity, allowing the potential for increased selectivity, reduced adverse effects and improved clinical outcomes. Some allosteric ligands can differentially activate and/or modulate distinct signaling pathways arising from the same receptor, phenomena referred to as 'biased agonism' and 'biased modulation'. Emerging evidence for CNS disorders with glutamatergic dysfunction suggests the metabotropic glutamate receptor subtype 5 (mGlu5) is a promising target. Current mGlu5 allosteric modulators have largely been classified based on modulation of intracellular calcium (iCa2+) responses to orthosteric agonists alone. We assessed eight mGlu5 allosteric modulators previously classified as mGlu5 PAMs or PAM-agonists representing four distinct chemotypes across multiple measures of receptor activity, to explore their potential for engendering biased agonism and/or modulation. Relative to the reference orthosteric agonist, DHPG, the eight allosteric ligands exhibited distinct biased agonism fingerprints for iCa2+ mobilization, IP1 accumulation and ERK1/2 phosphorylation in HEK293A cells stably expressing mGlu5 and in cortical neuron cultures. VU0424465, DPFE and VU0409551 displayed the most disparate biased signaling fingerprints in both HEK293A cells and cortical neurons that may account for the marked differences observed previously for these ligands in vivo. Select mGlu5 allosteric ligands also showed 'probe dependence' with respect to their cooperativity with different orthosteric agonists, as well as biased modulation for the magnitude of positive cooperativity observed. Unappreciated biased agonism and modulation may contribute to unanticipated effects (both therapeutic and adverse) when translating from recombinant systems to preclinical models. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.
Collapse
|
46
|
Lindsley CW, Emmitte KA, Hopkins CR, Bridges TM, Gregory KJ, Niswender CM, Conn PJ. Practical Strategies and Concepts in GPCR Allosteric Modulator Discovery: Recent Advances with Metabotropic Glutamate Receptors. Chem Rev 2016; 116:6707-41. [PMID: 26882314 PMCID: PMC4988345 DOI: 10.1021/acs.chemrev.5b00656] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Allosteric modulation of GPCRs has initiated a new era of basic and translational discovery, filled with therapeutic promise yet fraught with caveats. Allosteric ligands stabilize unique conformations of the GPCR that afford fundamentally new receptors, capable of novel pharmacology, unprecedented subtype selectivity, and unique signal bias. This review provides a comprehensive overview of the basics of GPCR allosteric pharmacology, medicinal chemistry, drug metabolism, and validated approaches to address each of the major challenges and caveats. Then, the review narrows focus to highlight recent advances in the discovery of allosteric ligands for metabotropic glutamate receptor subtypes 1-5 and 7 (mGlu1-5,7) highlighting key concepts ("molecular switches", signal bias, heterodimers) and practical solutions to enable the development of tool compounds and clinical candidates. The review closes with a section on late-breaking new advances with allosteric ligands for other GPCRs and emerging data for endogenous allosteric modulators.
Collapse
Affiliation(s)
- Craig W. Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Kyle A. Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas 76107, United States
| | - Corey R. Hopkins
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Thomas M. Bridges
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Karen J. Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville VIC 3052, Australia
| | - Colleen M. Niswender
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - P. Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
47
|
Nho K, Ramanan VK, Horgusluoglu E, Kim S, Inlow MH, Risacher SL, McDonald BC, Farlow MR, Foroud TM, Gao S, Callahan CM, Hendrie HC, Niculescu AB, Saykin AJ. Comprehensive gene- and pathway-based analysis of depressive symptoms in older adults. J Alzheimers Dis 2016; 45:1197-206. [PMID: 25690665 DOI: 10.3233/jad-148009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Depressive symptoms are common in older adults and are particularly prevalent in those with or at elevated risk for dementia. Although the heritability of depression is estimated to be substantial, single nucleotide polymorphism-based genome-wide association studies of depressive symptoms have had limited success. In this study, we performed genome-wide gene- and pathway-based analyses of depressive symptom burden. Study participants included non-Hispanic Caucasian subjects (n = 6,884) from three independent cohorts, the Alzheimer's Disease Neuroimaging Initiative (ADNI), the Health and Retirement Study (HRS), and the Indiana Memory and Aging Study (IMAS). Gene-based meta-analysis identified genome-wide significant associations (ANGPT4 and FAM110A, q-value = 0.026; GRM7-AS3 and LRFN5, q-value = 0.042). Pathway analysis revealed enrichment of association in 105 pathways, including multiple pathways related to ERK/MAPK signaling, GSK3 signaling in bipolar disorder, cell development, and immune activation and inflammation. GRM7, ANGPT4, and LRFN5 have been previously implicated in psychiatric disorders, including the GRM7 region displaying association with major depressive disorder. The ERK/MAPK signaling pathway is a known target of antidepressant drugs and has important roles in neuronal plasticity, and GSK3 signaling has been previously implicated in Alzheimer's disease and as a promising therapeutic target for depression. Our results warrant further investigation in independent and larger cohorts and add to the growing understanding of the genetics and pathobiology of depressive symptoms in aging and neurodegenerative disorders. In particular, the genes and pathways demonstrating association with depressive symptoms may be potential therapeutic targets for these symptoms in older adults.
Collapse
Affiliation(s)
- Kwangsik Nho
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Vijay K Ramanan
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Emrin Horgusluoglu
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sungeun Kim
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mark H Inlow
- Department of Mathematics, Rose-Hulman Institute of Technology, Terre Haute, IN, USA
| | - Shannon L Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brenna C McDonald
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Martin R Farlow
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tatiana M Foroud
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sujuan Gao
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Hugh C Hendrie
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexander B Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
48
|
Sengmany K, Gregory KJ. Metabotropic glutamate receptor subtype 5: molecular pharmacology, allosteric modulation and stimulus bias. Br J Pharmacol 2015; 173:3001-17. [PMID: 26276909 DOI: 10.1111/bph.13281] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/30/2015] [Accepted: 07/26/2015] [Indexed: 12/12/2022] Open
Abstract
The metabotropic glutamate receptor subtype 5 (mGlu5 ) is a family C GPCR that has been implicated in various neuronal processes and, consequently, in several CNS disorders. Over the past few decades, GPCR-based drug discovery, including that for mGlu5 receptors, has turned considerable attention to targeting allosteric binding sites. Modulation of endogenous agonists by allosteric ligands offers the advantages of spatial and temporal fine-tuning of receptor activity, increased selectivity and reduced adverse effects with the potential to elicit improved clinical outcomes. Further, with greater appreciation of the multifaceted nature of the transduction of mGlu5 receptor signalling, it is increasingly apparent that drug discovery must take into consideration unique receptor conformations and the potential for stimulus-bias. This novel paradigm proposes that different ligands may differentially modulate distinct signalling pathways arising from the same receptor. We review our current understanding of the complexities of mGlu5 receptor signalling and regulation, and how these relate to allosteric ligands. Ultimately, a deeper appreciation of these relationships will provide the foundation for targeted drug design of compounds with increased selectivity, not only for the desired receptor but also for the desired signalling outcome from the receptor. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.
Collapse
Affiliation(s)
- K Sengmany
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - K J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
49
|
Niu W, Huang X, Yu T, Chen S, Li X, Wu X, Cao Y, Zhang R, Bi Y, Yang F, Wang L, Li W, Xu Y, He L, He G. Association study of GRM7 polymorphisms and schizophrenia in the Chinese Han population. Neurosci Lett 2015; 604:109-12. [PMID: 26254163 DOI: 10.1016/j.neulet.2015.07.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 11/26/2022]
|
50
|
Activation of Metabotropic Glutamate Receptor 7 Is Required for Induction of Long-Term Potentiation at SC-CA1 Synapses in the Hippocampus. J Neurosci 2015; 35:7600-15. [PMID: 25972184 DOI: 10.1523/jneurosci.4543-14.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Of the eight metabotropic glutamate (mGlu) receptor subtypes, only mGlu7 is expressed presynaptically at the Schaffer collateral (SC)-CA1 synapse in the hippocampus in adult animals. Coupled with the inhibitory effects of Group III mGlu receptor agonists on transmission at this synapse, mGlu7 is thought to be the predominant autoreceptor responsible for regulating glutamate release at SC terminals. However, the lack of mGlu7-selective pharmacological tools has hampered direct testing of this hypothesis. We used a novel, selective mGlu7-negative allosteric modulator (NAM), ADX71743, and a newly described Group III mGlu receptor agonist, LSP4-2022, to elucidate the role of mGlu7 in modulating transmission in hippocampal area CA1 in adult C57BL/6J male mice. Interestingly, although mGlu7 agonists inhibit SC-CA1 EPSPs, we found no evidence for activation of mGlu7 by stimulation of SC-CA1 afferents. However, LSP4-2022 also reduced evoked monosynaptic IPSCs in CA1 pyramidal cells and, in contrast to its effect on SC-CA1 EPSPs, ADX71743 reversed the ability of high-frequency stimulation of SC afferents to reduce IPSC amplitudes. Furthermore, blockade of mGlu7 prevented induction of LTP at the SC-CA1 synapse and activation of mGlu7 potentiated submaximal LTP. Together, these data suggest that mGlu7 serves as a heteroreceptor at inhibitory synapses in area CA1 and that the predominant effect of activation of mGlu7 by stimulation of glutamatergic afferents is disinhibition, rather than reduced excitatory transmission. Furthermore, this mGlu7-mediated disinhibition is required for induction of LTP at the SC-CA1 synapse, suggesting that mGlu7 could serve as a novel therapeutic target for treatment of cognitive disorders.
Collapse
|