1
|
Ahsan A, Lakhani A, Ashraf MU, Yar M, Sarfaraz S, Ayub K. CO 2 capturing by self-assembled belt[14]pyridine encapsulated ionic liquid complexes: a DFT study. RSC Adv 2024; 14:31837-31849. [PMID: 39380651 PMCID: PMC11459277 DOI: 10.1039/d4ra03394a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024] Open
Abstract
In the current study, CO2 capturing ability of encapsulated ionic liquids (ENILs) i.e., tetramethylammonium chloride (TMACl), 1,3-dimethylimidazolium chloride (MIMCl), and methylpyridinium hexafluorophosphate (MPHP) encapsulated in self assembled belt[14]pyridine (BP) has been studied. The results show that strong van der Waals forces are involved in capturing of CO2 by these encapsulated ionic liquids. Strong attractive forces arise from synergistic effect of ionic liquid (encapsulated) and atoms of belt. The interaction energies (E int) ranging from -12.54 to -18.64 kcal mol-1 reveal the capturing of CO2 by these systems as thermodynamically feasible process. The type and strength of interactions between CO2 and encapsulated ionic liquids is studied through QTAIM and NCI analyses. NCI analysis clearly shows that capturing of CO2 is assisted by van der Waals forces between CO2 and encapsulated ionic liquid complexes. The same feature is confirmed through QTAIM analysis as well. Natural bond orbital (NBO) analysis' results show the charge transfer between the fragments (encapsulated ionic liquids and CO2) which is validated further through electron density differences (EDD) analysis. Overall, transfer of charge towards CO2 from encapsulated ionic liquids is proved through the charge accumulation over CO2 (i.e., blue isosurfaces on CO2 molecules) through EDD analysis. The FMO analyses show the decrease in H-L gaps of encapsulated ionic liquids after CO2 capturing. The successful charge transfer and reduction in H-L gap indicate better interaction in the designed systems thus revealing these systems as a potential candidates for CO2 capturing. Overall, the best results for CO2 capture i.e., the highest interaction energy, the lowest H-L gap, and the strongest forces of interactions are shown by methylpyridinium hexafluorophosphate (MPHP) encapsulated belt[14]pyridine (BP-MPHP) system. This is due to the larger anion of methylpyridinium hexafluorophosphate as compared to the other two encapsulated ionic liquids with Cl- as anion which enables it to develop strong interactions with CO2. The designed belt[14]pyridine based encapsulated ionic liquid systems are promising prospects with better CO2 capture performance and represent a new entrant in the CO2 capturing systems.
Collapse
Affiliation(s)
- Annum Ahsan
- Department of Chemistry, COMSATS University Abbottabad Campus KPK 22060 Pakistan +92-992-383591
| | - Ahmed Lakhani
- Department of Biomedical and Health Sciences, Calumet College of St. Joseph Whiting Indiana 46394 USA
| | - Muhammad Umair Ashraf
- Institute for Applied Physics, Department of Physics, University of Science and Technology Beijing Beijing 100083 China
| | - Muhammad Yar
- Department of Chemistry, COMSATS University Abbottabad Campus KPK 22060 Pakistan +92-992-383591
- Department of Chemistry, Cholistan University of Veterinary and Animal Sciences Bahawalpur Punjab 63100 Pakistan
| | - Sehrish Sarfaraz
- Department of Chemistry, COMSATS University Abbottabad Campus KPK 22060 Pakistan +92-992-383591
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University Abbottabad Campus KPK 22060 Pakistan +92-992-383591
| |
Collapse
|
2
|
Xue S, Lv X, Dong Y, Zhang T, Qiu F, Pan J, Kuzuhara D, Yamada H, Aratani N. Synthesis of Hetero-Trimetal Porphyrin Nanobelts. Chemistry 2024:e202402680. [PMID: 39196603 DOI: 10.1002/chem.202402680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 08/29/2024]
Abstract
This work reported "trinitarian" porphyrin nanobelts, contained hetero-trimetal ions. The high-resolution mass spectrometry and X-ray crystallography proved PNBNiCuPd consisting of three different bent porphyrin(2.1.2.1) metal complex moieties. The redox properties indicate porphyrin nanobelts demonstrate the multielectron donating and accepting properties, more than nine redox processes.
Collapse
Affiliation(s)
- Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Xiaojuan Lv
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Yuting Dong
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Daiki Kuzuhara
- Department of Physical Science and Materials Engineering, Iwate University, 4-3-5 Ueda, Morioka, 020-8551, Japan
| | - Hiroko Yamada
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Naoki Aratani
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
3
|
Jiang Z, Chen B, Zhao H, Wang J, Dong Q, Fu F, Liu D, Li Y, Newkome GR, Wang P, Chen M. Giant Expanded Porous Metallo-Hexagons. J Am Chem Soc 2024. [PMID: 38838168 DOI: 10.1021/jacs.4c04310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Molecular self-assembly is a widely recognized approach for fabricating biomimetic functional nanostructures. Here, we report the synthesis of two giant hollow coronoid-like supramolecular hexagons, H1 and H2. These hexagons feature large cavities, showcasing unique inner and outer hexagons fixed by specific connectivities for enhanced stability and high metal center density. H1 exhibits properties that can be transformed through the thermodynamic conversion of the metallopolymer formed by L1 and L2. With an edge length of 6.8 nm, H2 is one of the largest hexagons reported to date. 1D and 2D NMR, TEM, ESI-MS, and TWIM-MS experiments provided conclusive evidence for the composition and structure of the assembled hexagons. This work demonstrates the feasibility of constructing giant supramolecular architectures with precise control over their size and shape, opening up new possibilities for the design and synthesis of sophisticated supramolecules and nonbiological materials.
Collapse
Affiliation(s)
- Zhilong Jiang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangdong 510006, China
| | - Bangtang Chen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangdong 510006, China
| | - He Zhao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Jun Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangdong 510006, China
| | - Qiangqiang Dong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Fan Fu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Die Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Yiming Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - George R Newkome
- Center for Molecular Biology and Biotechnology, Florida Atlantic University, Jupiter, Florida 33458, United States
| | - Pingshan Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangdong 510006, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangdong 510006, China
| |
Collapse
|
4
|
Han Y, Guo WC, Du XS, Chen CF. Synthesis and properties of an O-doped aromatic belt. Chem Commun (Camb) 2024; 60:5719-5722. [PMID: 38742271 DOI: 10.1039/d4cc01667j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A new macrocyclic arene, dibenzofuran[3]arene, was synthesized, which could be conveniently transformed to an O-doped aromatic belt with a rigid ring-shaped structure and deep cavity. Moreover, the O-doped aromatic belt also showed a high HOMO energy and a narrow HOMO-LUMO gap experimentally and theoretically.
Collapse
Affiliation(s)
- Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Wei-Chen Guo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu-Sheng Du
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Li S, Chen J. Synthesis and Properties of Novel Alkyl-Substituted Hexaazacyclophanes and Their Diradical Dications. Molecules 2024; 29:789. [PMID: 38398541 PMCID: PMC10893516 DOI: 10.3390/molecules29040789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Radicals based on arylamine cyclophanes can be used as functional materials and show application potential in fields such as synthetic chemistry, molecular electronic components, organic light-emitting diodes, and catalytic chemistry. Using a Buchwald-Hartwig palladium-catalyzed aryl halide amination method, we synthesized a series of neutral hexaazacyclophane compounds 1-3 with different substituents in the meta-meta-meta positions of the phenyl rings. Three characteristic high-spin hexaazacyclophane diradical dications were obtained by two-electron oxidation using AgSbF6: 12·+•2[SbF6]-, 22·+•2[SbF6]-, and 32·+•2[SbF6]-. The electronic structures and physical properties of these compounds were then investigated by 1H and 13C nuclear magnetic resonance spectroscopy, cyclic voltammetry, electron paramagnetic resonance spectroscopy, superconducting quantum interferometry, ultraviolet-visible spectroscopy, and density functional theory calculations. The findings provide new ideas for designing radical species with novel physical properties and electronic structures. Importantly, the obtained radical species are not sensitive to air, making them valuable functional materials for practical applications.
Collapse
Affiliation(s)
- Shunjie Li
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Jian Chen
- College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
6
|
Sayfutyarova ER. Molecular π-Orbital Construction for Non-Planar Conjugated Systems. J Chem Theory Comput 2024; 20:79-86. [PMID: 38134363 DOI: 10.1021/acs.jctc.3c00949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
We extend the π-orbital space (PiOS) method introduced for planar π-conjugated molecular systems [J. Chem. Theory Comput. 2019, 15, 1679] to also allow constructing efficient π-orbital active spaces for non-planar π-conjugated systems. We demonstrate the performance of this method with multiconfigurational and multireference calculations on prototypical non-planar π-systems: cycloacenes, short carbon nanotubes, various conformations of the 2,2-bipyridine anion, and C20 fullerenes.
Collapse
Affiliation(s)
- Elvira R Sayfutyarova
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
7
|
Wang Y, Huang S, Zhang Z, Yan X. Synthesis and Photophysical Properties of Silole-Fused Cycloparaphenylenes. J Org Chem 2024; 89:681-686. [PMID: 38065576 DOI: 10.1021/acs.joc.3c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Herein, we report the introduction of a silole unit into cycloparaphenylenes (CPPs), and two compounds [12]Si3CPP and [16]Si4CPP are obtained by a platinum- and gold-mediated cyclooligomerization strategy. Their optical and electronic properties are studied by UV-vis absorption and fluorescence spectra, which show red shifts and higher photoluminescence quantum yields (PLQYs) compared with the corresponding CPPs.
Collapse
Affiliation(s)
- Yedong Wang
- Department of Chemistry, Key Laboratory of Advanced Light Conversion Materials and Biophotonics Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| | - Shiqing Huang
- Department of Chemistry, Key Laboratory of Advanced Light Conversion Materials and Biophotonics Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| | - Zengyu Zhang
- Department of Chemistry, Key Laboratory of Advanced Light Conversion Materials and Biophotonics Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| | - Xiaoyu Yan
- Department of Chemistry, Key Laboratory of Advanced Light Conversion Materials and Biophotonics Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| |
Collapse
|
8
|
Li P, Jia Y, Chen P. Design and Synthesis of New Type of Macrocyclic Architectures Used for Optoelectronic Materials and Supramolecular Chemistry. Chemistry 2023; 29:e202300300. [PMID: 37439485 DOI: 10.1002/chem.202300300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 07/14/2023]
Abstract
Supramolecular chemistry has received much attention for decades. Macrocyclic architectures as representative receptors play a vital role in supramolecular chemistry and are applied in many fields such as supramolecular assembly and host-guest recognition. However, the classical macrocycles generally lack functional groups in the scaffolds, which limit their further applications, especially in optoelectronic materials. Therefore, developing a new design principle is not only essential to better understand macrocyclic chemistry and the supramolecular behaviors, but also further expand their applications in many research fields. In recent years, the doping compounds with main-group heteroatoms (B, N, S, O, P) into the carbon-based π-conjugated macrocycles offered a new strategy to build macrocyclic architectures with unique optoelectronic properties. In particular, the energy gaps and redox behavior can be effectively tuned by incorporating heteroatoms into the macrocyclic scaffolds. In this Minireview, we briefly summarize the design and synthesis of new macrocycles, and further discuss the related applications in optoelectronic materials and supramolecular chemistry.
Collapse
Affiliation(s)
- Pengfei Li
- School of Chemistry and Material Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan Province, P. R. China
| | - Yawei Jia
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| |
Collapse
|
9
|
Zhang N, Li W, Zhu J, Wang T, Zhang R, Chi K, Liu Y, Zhao Y, Lu X. Periphery Fusion Strategy of a Carbazole-Based Macrocycle toward Coplanar N-Heterocycloarene for High-Mobility Single-Crystal Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300094. [PMID: 36807375 DOI: 10.1002/adma.202300094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/10/2023] [Indexed: 05/19/2023]
Abstract
Designing (hetero)cycloarenes through the modifications of the π-topology and molecular packing of organic semiconductors has recently garnered considerable attention. However, their applications as an organic active layer in field-effect transistors are very limited, and the obtained hole carrier mobilities are less than 1 cm2 V-1 s-1 . In this work, a novel alkyl-substituted coplanar N-heterocycloarene (FM-C4) containing four carbazole units is successfully synthesized in crystalline form. As compared to the corresponding single-bond-linked carbazole-based macrocycle M-C4, it is found that the periphery fusion strategy greatly changes the electronic structures, energy levels, photophysical properties, host-guest interactions with fullerenes, and molecular crystal stacking motifs. In particular, the fully fused N-heterocycloarene FM-C4 exhibits a herringbone packing structure with an unusual long-range π-π overlap distance as low as 3.19 Å, whereas the single crystal of M-C4 demonstrates no π-π interactions. As a consequence, FM-C4 in single-crystal transistors displays the highest hole mobility of 2.06 cm2 V-1 s-1 , significantly outperforming M-C4 and all the reported (hetero)cycloarenes and suggesting the high potential of (hetero)cycloarenes for organic electronic applications.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| | - Wenhao Li
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| | - Jiangyu Zhu
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| | - Teng Wang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| | - Rong Zhang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| | - Kai Chi
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| | - Yunqi Liu
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| | - Yan Zhao
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| | - Xuefeng Lu
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
10
|
Zhao F, Zhao J, Liu H, Wang Y, Duan J, Li C, Di J, Zhang N, Zheng X, Chen P. Synthesis of π-Conjugated Chiral Organoborane Macrocycles with Blue to Near-Infrared Emissions and the Diradical Character of Cations. J Am Chem Soc 2023; 145:10092-10103. [PMID: 37125835 DOI: 10.1021/jacs.3c00306] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Highly emissive π-conjugated macrocycles with tunable circularly polarized luminescence (CPL) have sparked theoretical and synthetic interests in recent years. Herein, we report a synthetic approach to obtain new chiral organoborane macrocycles (CMC1, CMC2, and CMC3) that are built on the structurally chiral [5]helicenes and highly luminescent triarylborane/amine moieties embedded into the cyclic systems. These rarely accessible B/N-doped main-group chiral macrocycles show a unique topology dependence of the optoelectronic and chiroptical properties. CMC1 and CMC2 show a higher luminescence dissymmetry factor (glum) together with an enhanced CPL brightness (BCPL) as compared with CMC3. Electronic effects were also tuned and resulted in bathochromic shifts of their emission and CPL responses from blue for CMC1 to the near-infrared (NIR) region for CMC3. Furthermore, chemical oxidations of the N donor sites in CMC1 gave rise to a highly stable radical cation (CMC1·+SbF6-) and diradical dication species (CMC12·2+2SbF6-) that serve as a rare example of a positively charged open-shell chiral macrocycle.
Collapse
Affiliation(s)
- Fei Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jingyi Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Houting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Yu Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jiaxian Duan
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Chenglong Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jiaqi Di
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Niu Zhang
- Analysis & Testing Centre, Beijing Institute of Technology, Beijing 102488, China
| | - Xiaoyan Zheng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
11
|
Arockiaraj M, Kavitha SRJ, Klavžar S, Fiona JC, Balasubramanian K. Topological, Spectroscopic and Energetic Properties of Cycloparaphenylene Series. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2186442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Affiliation(s)
| | | | - Sandi Klavžar
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia
- Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia
| | - J. Celin Fiona
- Department of Mathematics, Loyola College, Chennai, India
| | | |
Collapse
|
12
|
Macleod-Carey D, Muñoz-Castro A. Switch from local to global aromatic character in Möbius carbon nanobelts upon dioxidation. Evaluation of magnetic behavior in neutral and charged species. Phys Chem Chem Phys 2023; 25:4467-4471. [PMID: 36722854 DOI: 10.1039/d2cp05326h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Here we show that recent Möbius carbon nanobelts (MCNBs) can be switched from a local to a global aromatic behavior upon dioxidation. Hence, large aromatic structures can be achieved by the choice of the charge states, giving rise to shielding cone characteristics extended within the overall structure at the nanoscale regime, pushing the limit of aromatic circuits to 198 π-electrons.
Collapse
Affiliation(s)
- Desmond Macleod-Carey
- Laboratorio de Química Inorgánica y Materiales Moleculares, Facultad de Ingenieria, Universidad Autonoma de Chile, Llano Subercaceaux 2801, San Miguel, Santiago, Chile
| | - Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago, 8420524, Chile.
| |
Collapse
|
13
|
Grabicki N, Fisher S, Dumele O. A Fourfold Gold(I)-Aryl Macrocycle with Hyperbolic Geometry and its Reductive Elimination to a Carbon Nanoring Host. Angew Chem Int Ed Engl 2023; 62:e202217917. [PMID: 36753601 DOI: 10.1002/anie.202217917] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/10/2023]
Abstract
An ethylene glycol-decorated [6]cyclo-meta-phenylene (CMP) macrocycle was synthesized and utilized as a subunit to construct a fourfold AuI 2 -aryl metallacycle with an overall square arrangement. The corners consist of rigid dinuclear gold(I) complexes previously known to form only triangular metallacycles. The interplay between the conformational flexibility of the [6]CMP macrocycle and the rigid dinuclear gold(I) moieties enable the square geometry, as revealed by single-crystal X-ray diffraction. The formation of the gold complex shows size-selectivity compared to an alternative route using platinum(II) corner motifs. Upon reductive elimination, an all-organic ether-decorated carbon nanoring was obtained. Investigation as a host for the complexation of large guest molecules with a suitable convex π-surfaces was accomplished using isothermal NMR binding titrations. Association constants for [6]cycloparaphenylene ([6]CPP), [7]CPP, C60 , and C70 were determined.
Collapse
Affiliation(s)
- Niklas Grabicki
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Sergey Fisher
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Oliver Dumele
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| |
Collapse
|
14
|
Fan D, Du J, Dang J, Wang C, Mo Y. The strength and selectivity of perfluorinated nano-hoops and buckybowls for anion binding and the nature of anion-π interactions. J Comput Chem 2023; 44:138-148. [PMID: 35147229 DOI: 10.1002/jcc.26820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 12/31/2022]
Abstract
Perfluorinated cycloparaphenylenes (F-[n]CPP, n = 5-8), boron nitride nanohoop (F-[5]BNNH), and buckybowls (F-BBs) were proposed as anion receptors via anion-π interactions with halide anions (Cl- , Br- and I- ), and remarkable binding strengths up to -294.8 kJ/mol were computationally verified. The energy decomposition approach based on the block-localized wavefunction method, which combines the computational efficiency of molecular orbital theory and the chemical intuition of ab initio valence bond theory, was applied to the above anion-π complexes, in order to elucidate the nature and selectivity of these interactions. The overall attraction is mainly governed by the frozen energy component, in which the electrostatic interaction is included. Remarkable binding strengths with F-[n]CPPs can be attributed to the accumulated anion-π interactions between the anion and each conjugated ring on the hoop, while for F-BBs, additional stability results from the curved frameworks, which distribute electron densities unequally on π-faces. Interestingly, the strongest host was proved to be the F-[5]BNNH, which exhibits the most significant anisotropy of the electrostatic potential surface due to the difference in the electronegativities of nitrogen and boron. The selectivity of each host for anions was explored and the importance of the often-overlooked Pauli exchange repulsion was illustrated. Chloride anion turns out to be the most favorable anion for all receptors, due to the smallest ionic radius and the weakest destabilizing Pauli exchange repulsion.
Collapse
Affiliation(s)
- Dan Fan
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Juan Du
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Jingshuang Dang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Changwei Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Yirong Mo
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| |
Collapse
|
15
|
Li N, Sun M. Optical Physical Mechanisms of Helicene Carbon Nanohoop with Möbius Topology. Chemphyschem 2023; 24:e202200846. [PMID: 36594674 DOI: 10.1002/cphc.202200846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/04/2023]
Abstract
Optical and spectral properties of carbon nanohoop with Möbius topology is of great interest in nano-science and nano-technology. And it can be imagined that it has a lot of unexpected potential application prospects. However, theoretical calculations based on some figure-of-eight helicene carbon nanohoop with Möbius topology are still insufficient. Therefore, in this paper, we theoretically study the optical and spectral properties of figure-of-eight helicene carbon nanohoop with Möbius topology. Optical and spectral properties are analyzed with visualization method of transition density matrix and charge density difference, which reveal the unique characterization of carbon nanohoop with Möbius topology. Our results can not only deepen the understanding of the optical physical mechanisms of the nanorings with mobius carbons, but also provide deeper insight on optical properties and potential design on optical nanodevices.
Collapse
Affiliation(s)
- Ning Li
- School of Mathematics and Physics, University of Science and Technology Beijing, 100083, Beijing, China
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, 100083, Beijing, China
| |
Collapse
|
16
|
Wei Y, Zhou P, Chen X, Bao Q, Xie L. Research Progress on Organic Nanohoops/Nanogrids. ACTA CHIMICA SINICA 2023. [DOI: 10.6023/a22110480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
17
|
Li X, Pan X, Qi Z, Li X. Palladium-Catalyzed [3 + 2] Annulation of Aryl Halides with 7-Oxa- and 7-Azabenzonorbornadienes via C(sp 2 or sp 3)–H Activation. Org Lett 2022; 24:8964-8968. [DOI: 10.1021/acs.orglett.2c03422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Xiaojiao Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an, Shaanxi 710062, China
| | - Xianting Pan
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an, Shaanxi 710062, China
| | - Zisong Qi
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an, Shaanxi 710062, China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an, Shaanxi 710062, China
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
18
|
Miranda W, Frazão N, Moreira E, Azevedo D. Penta-belt: A new carbon nanobelt. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Sun B, Oakley MS, Yoshida K, Yang Y, Tommasini M, Zanchi C, Lucotti A, Ferguson MJ, Hampel F, Klobukowski M, Tykwinski RR. The Effects of Ring Strain on Cyclic Tetraaryl[5]cumulenes. Chemistry 2022; 28:e202200616. [DOI: 10.1002/chem.202200616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Bozheng Sun
- Department of Chemistry University of Alberta Edmonton AB T6G 2G2 Canada
| | - Meagan S. Oakley
- Department of Chemistry University of Alberta Edmonton AB T6G 2G2 Canada
| | - Kota Yoshida
- Department of Chemistry Graduate School of Science Kyoto University Kyoto 606-8502 Japan
| | - Yanwen Yang
- Department of Chemistry University of Alberta Edmonton AB T6G 2G2 Canada
| | - Matteo Tommasini
- Dipartimento di Chimica Materiali e Ingegneria Chimica “Giulio Natta” Politecnico di Milano Piazza Leonardo da Vinci 32 20133 Milano Italy
| | - Chiara Zanchi
- Dipartimento di Chimica Materiali e Ingegneria Chimica “Giulio Natta” Politecnico di Milano Piazza Leonardo da Vinci 32 20133 Milano Italy
| | - Andrea Lucotti
- Dipartimento di Chimica Materiali e Ingegneria Chimica “Giulio Natta” Politecnico di Milano Piazza Leonardo da Vinci 32 20133 Milano Italy
| | | | - Frank Hampel
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM) University of Erlangen-Nuremberg Nikolaus-Fiebiger Str. 10 91058 Erlangen Germany
| | | | - Rik R. Tykwinski
- Department of Chemistry University of Alberta Edmonton AB T6G 2G2 Canada
| |
Collapse
|
20
|
Wu Y, Zhao T, Rong J, Rao Y, Zhou M, Yin B, Ni X, Osuka A, Xu L, Song J. Low-Valent Zirconocene-Mediated Synthesis of Porphyrin(2.1.2.1)s and Its Extension to Synthesis of a Porphyrin(2.1.2.1) Nanobarrel. Angew Chem Int Ed Engl 2022; 61:e202201327. [PMID: 35245411 DOI: 10.1002/anie.202201327] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 11/11/2022]
Abstract
Rosenthal's-reagent-mediated intramolecular cyclometallation of α,α-dialkynyldipyrrin nickel(II) complex and subsequent acid treatment afforded a 1,3-butadiene-embedded porphyrin(2.1.2.1), 6, which served as a reactive diene towards dienophiles such as dimethyl acetylenedicarboxylate (DMAD) and benzyne to give corresponding Diels-Alder adducts. Diels-Alder reaction of 6 and benzdiyne gave adducts 14, 15 a, and 15 b along with a trace amount of porphyrin(2.1.2.1) barrel 13. Stepwise routes using 14 or 15 a/15 b as a substrate allowed for the synthesis of 13 as a single stereoisomer. The nanobarrel structure for 13 was revealed by X-ray diffraction, where its cavity held two chloroform molecules via C-H⋅⋅⋅π interaction. DFT calculations revealed that the electrostatic attraction was dominant with binding energy of 32.8 kcal mol-1 .
Collapse
Affiliation(s)
- Yidan Wu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Tingting Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Jian Rong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Yutao Rao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Mingbo Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Bangshao Yin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Xinlong Ni
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Atsuhiro Osuka
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Ling Xu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Jianxin Song
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
21
|
Li P, Shimoyama D, Zhang N, Jia Y, Hu G, Li C, Yin X, Wang N, Jäkle F, Chen P. A New Platform of B/N‐Doped Cyclophanes: Access to a π‐Conjugated Block‐Type B
3
N
3
Macrocycle with Strong Dipole Moment and Unique Optoelectronic Properties. Angew Chem Int Ed Engl 2022; 61:e202200612. [DOI: 10.1002/anie.202200612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Pengfei Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Daisuke Shimoyama
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Niu Zhang
- Analysis & Testing Centers Beijing Institute of Technology of China Beijing 102488 China
| | - Yawei Jia
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Guofei Hu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Chenglong Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Frieder Jäkle
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| |
Collapse
|
22
|
Liu Z, Song W, Yang S, Yuan C, Liu Z, Zhang H, Shao X. Marriage of Heterobuckybowls with Triptycene: Molecular Waterwheels for Separating C
60
and C
70. Chemistry 2022; 28:e202200306. [DOI: 10.1002/chem.202200306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Zhe Liu
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| | - Wenru Song
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| | - Shaojie Yang
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| | - Chengshan Yuan
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| | - Hao‐Li Zhang
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| |
Collapse
|
23
|
Wang Y, Ke XS, Lee S, Kang S, Lynch VM, Kim D, Sessler JL. Pyrene-Bridged Expanded Carbaporphyrin Nanobelts. J Am Chem Soc 2022; 144:9212-9216. [PMID: 35358383 DOI: 10.1021/jacs.2c01605] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Two belt-like expanded carbaporphyrins (NB1 and NB2) were prepared via a one-pot procedure that involves a [6 + 3] condensation between a pyrene-bearing tetrapyrrole precursor (2) and pentafluorobenzaldehyde, followed by oxidation. Single crystal X-ray diffraction analyses revealed that NB1 and NB2 both contain six dipyrromethene moieties and three bridging pyrene units. In the structure of NB1, there are two vertically orientated pyrene units and one transverse orientated pyrene unit; however, in NB2 all three pyrene units are vertically orientated. The structural differences between NB1 and NB2 are reflected in their respective physical properties as revealed by proton NMR, UV-vis, and fluorescence spectroscopies. In contrast to all-carbon nanobelts, NB1 and NB2 contain multiple pyrrolic nitrogen donors that could serve as potential metal coordination sites. As a test of this possibility, NB2 was used to prepare an unprecedented Zn complex containing 7 Zn2+ metal centers connected by a network of bridging atoms, as confirmed by a single crystal X-ray diffraction analysis. To the best of our knowledge, this is the first example of a belt-like molecular system that can coordinate multiple metal ions both along the backbone and within its central cavity.
Collapse
Affiliation(s)
- Yuying Wang
- Department of Chemistry, The University of Texas, 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
| | - Xian-Sheng Ke
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Seokwon Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Seongsoo Kang
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Vincent M Lynch
- Department of Chemistry, The University of Texas, 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
| | - Dongho Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas, 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|
24
|
Li P, Shimoyama D, Zhang N, Jia Y, Hu G, Li C, Yin X, Wang N, Jäkle F, Chen P. A New Platform of B/N‐Doped Cyclophanes: Access to a π‐Conjugated Block‐Type B
3
N
3
Macrocycle with Strong Dipole Moment and Unique Optoelectronic Properties. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pengfei Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Daisuke Shimoyama
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Niu Zhang
- Analysis & Testing Centers Beijing Institute of Technology of China Beijing 102488 China
| | - Yawei Jia
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Guofei Hu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Chenglong Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Frieder Jäkle
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| |
Collapse
|
25
|
Peterson E, Maust RL, Jasti R, Kertesz M, Tovar JD. Splitting the Ring: Impact of Ortho and Meta Pi Conjugation Pathways through Disjointed [8]Cycloparaphenylene Electronic Materials. J Am Chem Soc 2022; 144:4611-4622. [PMID: 35245032 DOI: 10.1021/jacs.2c00419] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this report, we describe the synthesis and electronic properties of small-molecule and polymeric [8]cycloparaphenylenes ([8]CPPs) with disjointed pi-conjugated substituents. Arylene-ethynylene linkers were installed on opposite sides of the [8]CPP nanohoop as separated by three phenyl units on either side such that the monomer systems have syn (C2 symmetry) and anti (C1 symmetry) conformers with a small energy gap (0.1-0.6 kcal/mol). This disjoined substitution pattern necessarily forces delocalization through and around the CPP radial structure. We demonstrate new electronic states from this radial/linear mixing in both the small molecules and the pi extended polymers. Quantum chemical calculations reveal that these electronic processes arise from multiple operative radial/linear conjugation pathways, as the disjoint pattern results in both ortho and meta connections to the CPP ring. These results affirm the unique nature of hybrid radial and linear pi electron delocalization operative in these new conjugation pathways.
Collapse
Affiliation(s)
- Eric Peterson
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Ruth L Maust
- Department of Chemistry and Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Ramesh Jasti
- Department of Chemistry and Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Miklos Kertesz
- Chemistry Department and Institute of Soft Matter, Georgetown University, 37th and O Streets, NW, Washington, D.C. 20057, United States
| | - John D Tovar
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States.,Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
26
|
Song J, Wu Y, Zhao T, Zhou M, Rong J, Yin B, Ni X, Osuka A, Xu L, Rao Y. Low‐Valent Zirconocene‐mediated Synthesis of Porphyrin(2.1.2.1)s and Its Extension to Synthesis of a Porphyrin(2.1.2.1) Nanobarrel. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jianxin Song
- Hunan Normal University Chemistry Yue Lu Qu Lushan Road 36 410081 Changsha CHINA
| | - Yidan Wu
- Hunan Normal University - Erliban Campus: Hunan Normal University Chemistry CHINA
| | - Tingting Zhao
- Hunan Normal University - Erliban Campus: Hunan Normal University Chemistry CHINA
| | - Mingbo Zhou
- Hunan Normal University - Erliban Campus: Hunan Normal University Chemistry CHINA
| | - Jian Rong
- Hunan Normal University - Erliban Campus: Hunan Normal University Chemistry CHINA
| | - Bangshao Yin
- Hunan Normal University - Erliban Campus: Hunan Normal University Chemistry CHINA
| | - xinlong Ni
- Hunan Normal University - Erliban Campus: Hunan Normal University Chemistry CHINA
| | - Atsuhiro Osuka
- Hunan Normal University - Erliban Campus: Hunan Normal University Chemistry CHINA
| | - Ling Xu
- Hunan Normal University - Erliban Campus: Hunan Normal University Chemistry CHINA
| | - Yutao Rao
- Hunan Normal University - Erliban Campus: Hunan Normal University Chemistry CHINA
| |
Collapse
|
27
|
Zhan L, Dai C, Zhang G, Zhu J, Zhang S, Wang H, Zeng Y, Tung C, Wu L, Cong H. A Conjugated Figure‐of‐Eight Oligoparaphenylene Nanohoop with Adaptive Cavities Derived from Cyclooctatetrathiophene Core. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Lijie Zhan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Chenshu Dai
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Guohui Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Shaoguang Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Hua Wang
- Engineering Research Center for Nanomaterials Henan University Kaifeng 475004 China
| | - Yi Zeng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
28
|
He H, Li JA, Zhang Y, Idrees S, Cai J, Li Y, Osuka A, Xu B, Jiang HW. Synthesis, Structures and Fluorescence Properties of gem-Linked Cyclic Tetraphenylethylenes and Cyclic hexaphenylethylenes. Org Chem Front 2022. [DOI: 10.1039/d2qo00395c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rigid cyclic molecules are of great interest due to their intriguing structures and unique properties. Here, we report the facile synthesis of gem-linked cyclic tetraphenylethylenes and cyclic hexaphenylethylenes, namely [n]CTPEs...
Collapse
|
29
|
Yao B, Liu X, Guo T, Sun H, Wang W. Molecular Möbius Strips: Twist for A Bright Future. Org Chem Front 2022. [DOI: 10.1039/d2qo00829g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Attributed to their unique structural features and associated intriguing properties, molecular Möbius strips have attracted considerable attention. However, the precise synthesis of such attractive molecules remains a great challenge. Recently,...
Collapse
|
30
|
Takagi K, Miyamoto D, Yamaguchi H, Azumaya I. Toward the synthesis of a belt-shaped cyclic π-conjugated system comprising para-phenylene framework and amide bridging unit. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Koji Takagi
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Daiki Miyamoto
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Hinako Yamaguchi
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Isao Azumaya
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
31
|
Zhan L, Dai C, Zhang G, Zhu J, Zhang S, Wang H, Zeng Y, Tung CH, Wu LZ, Cong H. A Conjugated Figure-of-Eight Oligoparaphenylene Nanohoop with Adaptive Cavities Derived from Cyclooctatetrathiophene Core. Angew Chem Int Ed Engl 2021; 61:e202113334. [PMID: 34817926 DOI: 10.1002/anie.202113334] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/09/2021] [Indexed: 11/06/2022]
Abstract
A fully conjugated figure-of-eight nanohoop is presented with facile synthesis. The molecule's lemniscular skeleton features the combination of two strained oligoparaphenylene loops and a flexible cyclooctatetrathiophene core. Its rigid yet guest-adaptive cavities enable the formation of the peanut-like 1:2 host-guest complexes with C60 or C70 , which have been confirmed by X-ray crystallography and characterized in solution. Further computational studies suggest notable geometric variations and non-covalent interactions of the cavities upon binding with different fullerenes, as well as overall conjugation comparable to cycloparaphenylenes.
Collapse
Affiliation(s)
- Lijie Zhan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chenshu Dai
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Guohui Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shaoguang Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hua Wang
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China
| | - Yi Zeng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
32
|
Gong L, Ma C, Zhang J, Zhang X, Jin K. Optical and NLO properties of zigzag carbon nanobelt compounds. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Huang P, Zhuang G, Wang S, Zhang X, Du P. Synthesis and Physical Properties of a Phenanthrene-Based [6,6] Hollow Bilayer Cylindrical Nanoring. Org Lett 2021; 23:7976-7980. [PMID: 34612035 DOI: 10.1021/acs.orglett.1c02973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we report the synthesis and properties of a [6,6] hollow bilayer cylindrical nanoring (HBCNR) from a planar macrocycle via a Diels-Alder and Yamamoto coupling reaction. The fluorescence quantum yield of HBCNR was determined to be ΦF = 52%, which is four times higher than its precursor. In addition, its hollow nanoring configuration was also simulated by theoretical studies, and the tension energy was estimated to be 47.1 kcal/mol.
Collapse
Affiliation(s)
- Pingsen Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province 230026, China
| | - Guilin Zhuang
- College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang Province 310032, China
| | - Shengda Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province 230026, China
| | - Xinyu Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province 230026, China
| | - Pingwu Du
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province 230026, China
| |
Collapse
|
34
|
Hasegawa M, Nojima Y, Mazaki Y. Circularly Polarized Luminescence in Chiral π‐Conjugated Macrocycles. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100162] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Masashi Hasegawa
- Department of Chemistry Graduate School of Science Kitasato University Sagamihara, Kanagawa 252-0373 Japan
| | - Yuki Nojima
- Department of Chemistry Graduate School of Science Kitasato University Sagamihara, Kanagawa 252-0373 Japan
| | - Yasuhiro Mazaki
- Department of Chemistry Graduate School of Science Kitasato University Sagamihara, Kanagawa 252-0373 Japan
| |
Collapse
|
35
|
Seenithurai S, Chai JD. Electronic Properties of Carbon Nanobelts Predicted by Thermally-Assisted-Occupation DFT. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2224. [PMID: 34578540 PMCID: PMC8465987 DOI: 10.3390/nano11092224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022]
Abstract
Accurate prediction of properties of large-scale multi-reference (MR) electronic systems remains difficult for traditional computational methods (e.g., the Hartree-Fock theory and Kohn-Sham density functional theory (DFT)). Recently, thermally-assisted-occupation (TAO)-DFT has been demonstrated to offer reliable description of electronic properties of various large-scale MR electronic systems. Consequently, in this work, TAO-DFT is used to unlock the electronic properties associated with C-Belt[n] (i.e., the carbon nanobelts containing n fused 12-membered carbon rings). Our calculations show that for all the system sizes reported (n = 4-24), C-Belt[n] have singlet ground states. In general, the larger the size of C-Belt[n], the more pronounced the MR character of ground-state C-Belt[n], as evident from the symmetrized von Neumann entropy and the occupation numbers of active TAO-orbitals. Furthermore, the active TAO-orbitals are delocalized along the circumference of C-Belt[n], as evident from the visualization of active TAO-orbitals.
Collapse
Affiliation(s)
- Sonai Seenithurai
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan;
| | - Jeng-Da Chai
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan;
- Center for Theoretical Physics and Center for Quantum Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan
| |
Collapse
|
36
|
Wang S, Yuan J, Xie J, Lu Z, Jiang L, Mu Y, Huo Y, Tsuchido Y, Zhu K. Sulphur‐Embedded Hydrocarbon Belts: Synthesis, Structure and Redox Chemistry of Cyclothianthrenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shenghua Wang
- School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Jun Yuan
- School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Jialin Xie
- School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Zonghuan Lu
- School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Long Jiang
- School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Yingxiao Mu
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 China
| | - Yoshitaka Tsuchido
- Department of Chemistry Faculty of Science Tokyo University of Science, Kagurazaka 1–3 Shinjuku-ku Tokyo 162-8601 Japan
| | - Kelong Zhu
- School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| |
Collapse
|
37
|
Wang S, Yuan J, Xie J, Lu Z, Jiang L, Mu Y, Huo Y, Tsuchido Y, Zhu K. Sulphur-Embedded Hydrocarbon Belts: Synthesis, Structure and Redox Chemistry of Cyclothianthrenes. Angew Chem Int Ed Engl 2021; 60:18443-18447. [PMID: 34110693 DOI: 10.1002/anie.202104054] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/07/2021] [Indexed: 11/06/2022]
Abstract
Cyclothianthrenes, a series of sulphur-embedded hydrocarbon belts proposed a decade ago, were successfully constructed through a stepwise bottom-up synthesis. The belt [6]cyclothianthrene ([6]CT) is the smallest and most strained member of the family yet reported. Both [6]CT and [8]CT are the first examples of cyclothianthrene characterized by single crystal X-ray diffraction. An unprecedented chiral belt [7]CT and a Möbius-shaped [9]CT were also achieved via modular synthesis. Crystallographic and computational studies show that belts [6]CT-[8]CT have prism-like conformations with well-defined tubular cavities which have potential for guest molecule inclusion. Cyclic voltammograms further revealed that these belts are redox-active. The success of constructing sulphur-embedded hydrocarbon belts, that is, cyclothianthrenes, greatly enriches the chemistry of heteroatom-doped molecular belts and tubes.
Collapse
Affiliation(s)
- Shenghua Wang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jun Yuan
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jialin Xie
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zonghuan Lu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Long Jiang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yingxiao Mu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yoshitaka Tsuchido
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Kelong Zhu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
38
|
Hermann M, Wassy D, Esser B. Conjugated Nanohoops Incorporating Donor, Acceptor, Hetero- or Polycyclic Aromatics. Angew Chem Int Ed Engl 2021; 60:15743-15766. [PMID: 32902109 PMCID: PMC9542246 DOI: 10.1002/anie.202007024] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/05/2020] [Indexed: 12/20/2022]
Abstract
In the last 13 years several synthetic strategies were developed that provide access to [n]cycloparaphenylenes ([n]CPPs) and related conjugated nanohoops. A number of potential applications emerged, including optoelectronic devices, and their use as templates for carbon nanomaterials and in supramolecular chemistry. To tune the structural or optoelectronic properties of carbon nanohoops beyond the size-dependent effect known for [n]CPPs, a variety of aromatic rings other than benzene were introduced. In this Review, we provide an overview of the syntheses, properties, and applications of conjugated nanohoops beyond [n]CPPs with intrinsic donor/acceptor structure or such that contain acceptor, donor, heteroaromatic or polycyclic aromatic units within the hoop as well as conjugated nanobelts.
Collapse
Affiliation(s)
- Mathias Hermann
- Institute for Organic ChemistryUniversity of FreiburgAlbertstr. 2179104FreiburgGermany
| | - Daniel Wassy
- Institute for Organic ChemistryUniversity of FreiburgAlbertstr. 2179104FreiburgGermany
| | - Birgit Esser
- Institute for Organic ChemistryUniversity of FreiburgAlbertstr. 2179104FreiburgGermany
- Freiburg Materials Research CenterUniversity of FreiburgStefan-Meier-Str. 2179104FreiburgGermany
- Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| |
Collapse
|
39
|
Wassy D, Hermann M, Wössner JS, Frédéric L, Pieters G, Esser B. Enantiopure nanohoops through racemic resolution of diketo[ n]CPPs by chiral derivatization as precursors to DBP[ n]CPPs. Chem Sci 2021; 12:10150-10158. [PMID: 34377404 PMCID: PMC8336472 DOI: 10.1039/d1sc02718b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/19/2021] [Indexed: 12/21/2022] Open
Abstract
Strained conjugated nanohoops are attractive synthetic targets due to the bending of their π-system, which leads to intriguing optoelectronic properties, among others. By incorporating non-mirror-symmetric aromatic panels, chiral nanohoops can be obtained. We herein present a strategy to enantiopure nanohoops by racemic resolution through chiral derivatization of diketone-embedded hoops. The resulting diketo[n]CPPs (n = 6, 7) contain two stereogenic carbon atoms each and possess high fluorescence quantum yields paired with circularly polarized luminescence. These are versatile precursors to chiral dibenzo[a,e]pentalene-based nanohoops DBP[n]CPPs with antiaromatic character and ambipolar electrochemical behavior. Due to their strained structures the DBP[n]CPPs do not racemize at room temperature, which is supported by high calculated isomerization barriers. X-ray crystallographic investigations on the DBP[n]CPPs and their precursors as well as DFT calculations provide insight into the build-up of strain energy during the synthetic transformations. Racemic resolution of diketone-embedded cycloparaphenylenes by derivatization with a chiral auxiliary provides scalable access to enantiopure hoops with chiroptical properties.![]()
Collapse
Affiliation(s)
- Daniel Wassy
- Institute for Organic Chemistry, University of Freiburg Albertstraße 21 79104 Freiburg Germany https://www.esser-lab.uni-freiburg.de
| | - Mathias Hermann
- Institute for Organic Chemistry, University of Freiburg Albertstraße 21 79104 Freiburg Germany https://www.esser-lab.uni-freiburg.de
| | - Jan S Wössner
- Institute for Organic Chemistry, University of Freiburg Albertstraße 21 79104 Freiburg Germany https://www.esser-lab.uni-freiburg.de
| | - Lucas Frédéric
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM 91191 Gif-sur-Yvette France
| | - Grégory Pieters
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM 91191 Gif-sur-Yvette France
| | - Birgit Esser
- Institute for Organic Chemistry, University of Freiburg Albertstraße 21 79104 Freiburg Germany https://www.esser-lab.uni-freiburg.de.,Freiburg Materials Research Center, University of Freiburg Stefan-Meier-Str. 21 79104 Freiburg Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
| |
Collapse
|
40
|
Yang Y, Blacque O, Sato S, Juríček M. Cycloparaphenylene-Phenalenyl Radical and Its Dimeric Double Nanohoop*. Angew Chem Int Ed Engl 2021; 60:13529-13535. [PMID: 33635576 PMCID: PMC8252656 DOI: 10.1002/anie.202101792] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 12/17/2022]
Abstract
The first example of a neutral spin-delocalized carbon-nanoring radical was achieved by integration of the open-shell phenalenyl unit into cycloparaphenylene (CPP). Spin distribution in this hydrocarbon is localized primarily on the phenalenyl segment and partially on the CPP segment as a consequence of steric and electronic effects. The resulting geometry is reminiscent of a diamond ring, with pseudo-perpendicular arrangement of the radial and the planar π-surface. The phenylene rings attached directly to the phenalenyl unit give rise to a steric effect that governs a highly selective dimerization pathway, yielding a giant double nanohoop. Its π-framework made of 158 sp2 -carbon atoms was elucidated by single-crystal X-ray diffraction, which revealed a three-segment CPP-peropyrene-CPP structure. This nanocarbon shows a fluorescence profile characteristic of peropyrene, regardless of which segment gets excited. These results in conjunction with DFT suggest that adjusting the size of the CPP segments in this double nanohoop could deliver donor-acceptor systems.
Collapse
Affiliation(s)
- Yong Yang
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Olivier Blacque
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Sota Sato
- Department of Applied ChemistryThe University of TokyoHongo, Bunkyo-kuTokyo113-8656Japan
| | - Michal Juríček
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| |
Collapse
|
41
|
Yang X, Zhao X, Liu T, Yang F. Precise Synthesis of Carbon Nanotubes and
One‐Dimensional
Hybrids from Templates
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xusheng Yang
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xin Zhao
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Tianhui Liu
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Feng Yang
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
42
|
Synthesis of the [11]Cyclacene Framework by Repetitive Diels-Alder Cycloadditions. Molecules 2021; 26:molecules26103047. [PMID: 34065279 PMCID: PMC8161356 DOI: 10.3390/molecules26103047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022] Open
Abstract
The Diels–Alder cycloaddition between bisdienes and bisdienophile incorporating the 7-oxa-bicyclo[2.2.1]heptane unit are well known to show high diastereoselectivity that can be exploited for the synthesis of molecular belts. The related bisdiene 5,6,7,8-tetramethylidene-2-bicyclo[2.2.2]octene is a valuable building block for the synthesis of photoprecursors for acenes, but it has not been employed for the synthesis of molecular belts. The present work investigates by computational means the Diels–Alder reaction between these bisdiene building blocks with syn-1,4,5,8-tetrahydro-1,4:5,8-diepoxyanthracene, which shows that the diastereoselectivity of the Diels–Alder reaction of the etheno-bridged bisdiene is lower than that of the epoxy-bridged bisdiene. The reaction of the etheno-bridged bisdiene and syn-1,4,5,8-tetrahydro-1,4:5,8-diepoxyanthracene in 2:1 ratio yields two diastereomers that differ in the orientation of the oxa and etheno bridges based on NMR and X-ray crystallography. The all-syn diastereomer can be transformed into a molecular belt by inter- and intramolecular Diels–Alder reactions with a bifunctional building block. The molecular belt could function as a synthetic intermediate en route to a [11]cyclacene photoprecursor.
Collapse
|
43
|
Qiu ZL, Chen D, Deng Z, Chu KS, Tan YZ, Zhu J. Isolation of a carbon nanohoop with Möbius topology. Sci China Chem 2021. [DOI: 10.1007/s11426-021-9981-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Ishigaki Y, Uchimura Y, Shimajiri T, Suzuki T. Expandability of the Covalent Bond: A New Facet Discovered in Extremely Long Csp3-Csp3 Single Bonds. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yusuke Ishigaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Yasuto Uchimura
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Takuya Shimajiri
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Takanori Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
45
|
Guo QH, Qiu Y, Wang MX, Fraser Stoddart J. Aromatic hydrocarbon belts. Nat Chem 2021; 13:402-419. [DOI: 10.1038/s41557-021-00671-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 02/23/2021] [Indexed: 01/22/2023]
|
46
|
Yang Y, Blacque O, Sato S, Juríček M. Cycloparaphenylene–Phenalenyl Radical and Its Dimeric Double Nanohoop**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yong Yang
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Olivier Blacque
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Sota Sato
- Department of Applied Chemistry The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Michal Juríček
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
47
|
Abstract
Buckybowls have concave and convex surfaces with distinct π-electron cloud distribution, and consequently they show unique structural and electronic features as compared to planar aromatic polycycles. Doping the π-framework of buckybowls with heteroatoms is an efficient scheme to tailor inherent properties, because the nature of heteroatoms plays a pivotal role in the structural and electronic characteristics of the resulting hetera-buckybowls. The design, synthesis, and derivatization of hetera-buckybowls open an avenue for obtaining fascinating organic entities not only of fundamental importance but also of promising applications in optoelectronics. In this review, we summarize the advances in hetera-buckybowl chemistry, particularly the synthetic strategies toward these scaffolds.
Collapse
Affiliation(s)
- Wenbo Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, Gansu Province, China.
| | | |
Collapse
|
48
|
Hermann M, Wassy D, Kohn J, Seitz P, Betschart MU, Grimme S, Esser B. Chiral Dibenzopentalene‐Based Conjugated Nanohoops through Stereoselective Synthesis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016968] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mathias Hermann
- Institute for Organic Chemistry University of Freiburg Albertstr. 21 79104 Freiburg Germany
| | - Daniel Wassy
- Institute for Organic Chemistry University of Freiburg Albertstr. 21 79104 Freiburg Germany
| | - Julia Kohn
- Mulliken Center for Theoretical Chemistry University of Bonn Beringstr. 4 53115 Bonn Germany
| | - Philipp Seitz
- Institute for Organic Chemistry University of Freiburg Albertstr. 21 79104 Freiburg Germany
| | - Martin U. Betschart
- Institut für Pharmazeutische Wissenschaften University of Freiburg Albertstr. 25 79104 Freiburg Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry University of Bonn Beringstr. 4 53115 Bonn Germany
| | - Birgit Esser
- Institute for Organic Chemistry University of Freiburg Albertstr. 21 79104 Freiburg Germany
- Freiburg Materials Research Center University of Freiburg Stefan-Meier-Str. 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
| |
Collapse
|
49
|
Hermann M, Wassy D, Kohn J, Seitz P, Betschart MU, Grimme S, Esser B. Chiral Dibenzopentalene-Based Conjugated Nanohoops through Stereoselective Synthesis. Angew Chem Int Ed Engl 2021; 60:10680-10689. [PMID: 33596338 PMCID: PMC8252646 DOI: 10.1002/anie.202016968] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/16/2021] [Indexed: 11/06/2022]
Abstract
Conjugated nanohoops allow to investigate the effect of radial conjugation and bending on the involved π-systems. They can possess unexpected optoelectronic properties and their radially oriented π-system makes them attractive for host-guest chemistry. Bending the π-subsystems can lead to chiral hoops. Herein, we report the stereoselective synthesis of two enantiomers of chiral conjugated nanohoops by incorporating dibenzo[a,e]pentalenes (DBPs), which are generated in the last synthetic step from enantiomerically pure diketone precursors. Owing to its bent shape, this diketone unit was used as the only bent precursor and novel "corner unit" in the synthesis of the hoops. The [6]DBP[4]Ph-hoops contain six antiaromatic DBP units and four bridging phenylene groups. The small HOMO-LUMO gap and ambipolar electrochemical character of the DBP units is reflected in the optoelectronic properties of the hoop. Electronic circular dichroism spectra and MD simulations showed that the chiral hoop did not racemize even when heated to 110 °C. Due to its large diameter, it was able to accommodate two C60 molecules, as binding studies indicate.
Collapse
Affiliation(s)
- Mathias Hermann
- Institute for Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Daniel Wassy
- Institute for Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Julia Kohn
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115, Bonn, Germany
| | - Philipp Seitz
- Institute for Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Martin U Betschart
- Institut für Pharmazeutische Wissenschaften, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115, Bonn, Germany
| | - Birgit Esser
- Institute for Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany.,Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, 79104, Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| |
Collapse
|
50
|
Hermann M, Wassy D, Esser B. Conjugated Nanohoops Incorporating Donor, Acceptor, Hetero‐ or Polycyclic Aromatics. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202007024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Mathias Hermann
- Institute for Organic Chemistry University of Freiburg Albertstr. 21 79104 Freiburg Germany
| | - Daniel Wassy
- Institute for Organic Chemistry University of Freiburg Albertstr. 21 79104 Freiburg Germany
| | - Birgit Esser
- Institute for Organic Chemistry University of Freiburg Albertstr. 21 79104 Freiburg Germany
- Freiburg Materials Research Center University of Freiburg Stefan-Meier-Str. 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
| |
Collapse
|