1
|
Comparini LM, Gallorini G, Favero L, Sardelli F, Di Bussolo V, Di Pietro S, Pineschi M. Ring-Opening Reactions of Imidazolidines and Hexahydropyrimidines with Grignard Reagents. J Org Chem 2024; 89:15652-15664. [PMID: 39415746 DOI: 10.1021/acs.joc.4c01769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
We herein report an unprecedented ring-opening of unstrained cyclic aminals such as imidazolidines and hexahydropyrimidines by the use of Grignard and cuprate reagents to give secondary sulfonamides bearing diversely substituted tertiary amines in the β- or γ-position. This synthetic procedure can be carried out in a one-pot fashion without collateral reactions that are commonly associated with sp3-organometallic multicomponent Mannich-type reactions, indicating the fundamental role of sulfonamide protection of the second nitrogen atom in the generation of the cyclic aminal and in the ring-opening process. Computational density functional theory (DFT) data point to the formation of a transient iminium ion intermediate, in which the Lewis acidity of the cationic component of the organometallic reagent triggers the ring-opening process by coordination. The presented method allows the nucleophilic decoration of diamines including those bearing an adjacent chiral center to the tertiary amine not easily achievable by means of alternative standard synthetic procedures.
Collapse
Affiliation(s)
| | - Giulio Gallorini
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Lucilla Favero
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Francesca Sardelli
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Valeria Di Bussolo
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | | | - Mauro Pineschi
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| |
Collapse
|
2
|
Yang S, Fang X. Copper-catalyzed yne-allylic substitutions: concept and recent developments. Beilstein J Org Chem 2024; 20:2739-2775. [PMID: 39498447 PMCID: PMC11533123 DOI: 10.3762/bjoc.20.232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
The catalytic (asymmetric) allylation and propargylation have been established as powerful strategies allowing access to enantioenriched α-chiral alkenes and alkynes. In this context, combining allylic and propargylic substitutions offers new opportunities to expand the scope of transition metal-catalyzed substitution reactions. Since its discovery in 2022, copper-catalyzed yne-allylic substitution has undergone rapid development and significant progress has been made using the key copper vinyl allenylidene intermediates. This review summarizes the developments and illustrates the influences of copper salt, ligand, and substitution pattern of the substrate on the regioselectivity and stereoselectivity.
Collapse
Affiliation(s)
- Shuang Yang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
3
|
Zimmer B, Havenith RWA, Klein JEMN, Koszinowski K. Reductive Elimination From Tetra-Alkyl Cuprates [Me nCu(CF 3) 4-n] - (n=0-4): Beyond Simple Oxidation States. Angew Chem Int Ed Engl 2024; 63:e202409315. [PMID: 39072869 DOI: 10.1002/anie.202409315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/30/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024]
Abstract
In recent years, the electronic structures of organocuprates in general and the complex [Cu(CF3)4]- in particular have attracted significant interest. A possible key indicator in this context is the reactivity of these species. Nonetheless, this aspect has received only limited attention. Here, we systematically study the series of tetra-alkyl cuprates [MenCu(CF3)4-n]- and their unimolecular reactivity in the gas phase, which includes concerted formal reductive eliminations as well as radical losses. Through computational studies, we characterize the electronic structures of the complexes and show how these are connected to their reactivity. We find that all [MenCu(CF3)4-n]- ions feature inverted ligand fields and that the distinct reactivity patterns of the individual complexes arise from the interplay of different effects.
Collapse
Affiliation(s)
- Bastian Zimmer
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Remco W A Havenith
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, 9747 AG, Groningen, The Netherlands
- Zernike Institute of Advanced Materials, University of Groningen, Nijenborgh 3, 9747 AG, Groningen, The Netherlands
- Department of Chemistry, Ghent University, Krijgslaan 281 (S3), B-9000, Gent, Belgium
| | - Johannes E M N Klein
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, 9747 AG, Groningen, The Netherlands
| | - Konrad Koszinowski
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| |
Collapse
|
4
|
Ng S, Howshall C, Ho TN, Mai BK, Zhou Y, Qin C, Tee KZ, Liu P, Romiti F, Hoveyda AH. Catalytic prenyl conjugate additions for synthesis of enantiomerically enriched PPAPs. Science 2024; 386:167-175. [PMID: 39388539 DOI: 10.1126/science.adr8612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
Polycyclic polyprenylated acylphloroglucinols (PPAPs) are a class of >400 natural products with a broad spectrum of bioactivity, ranging from antidepressant and antimicrobial to anti-obesity and anticancer activity. Here, we present a scalable, regio-, site-, and enantioselective catalytic method for synthesis of cyclic β-prenyl ketones, compounds that can be used for efficient syntheses of many PPAPs in high enantiomeric purity. The transformation is prenyl conjugate addition to cyclic β-ketoesters promoted by a readily accessible chiral copper catalyst and involving an easy-to-prepare and isolable organoborate reagent. Reactions reach completion in just a few minutes at room temperature. The importance of this advance is highlighted by the enantioselective preparation of intermediates previously used to generate racemic PPAPs. We also present the enantioselective synthesis of nemorosonol (14 steps, 20% yield) and its one-step conversion to another PPAP, garcibracteatone (52% yield).
Collapse
Affiliation(s)
- Shawn Ng
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | - Casey Howshall
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | - Thanh Nhat Ho
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yuebiao Zhou
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | - Can Qin
- Supramolecular Science and Engineering Institute, University of Strasbourg, 67000 Strasbourg, France
| | - Kai Ze Tee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Filippo Romiti
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
- Supramolecular Science and Engineering Institute, University of Strasbourg, 67000 Strasbourg, France
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Amir H Hoveyda
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
- Supramolecular Science and Engineering Institute, University of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
5
|
Kobayakawa T, Tsuji K, Tamamura H. Design, synthesis and evaluation of bioactivity of peptidomimetics based on chloroalkene dipeptide isosteres. Bioorg Med Chem 2024; 110:117811. [PMID: 38959684 DOI: 10.1016/j.bmc.2024.117811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024]
Abstract
Ample biologically active peptides have been found, identified and modified for use in drug discovery to date. However, several factors, such as low metabolic stability due to proteolysis and non-specific interactions with multiple off-target molecules, might limit the therapeutic use of peptides. To enhance the stability and/or bioactivity of peptides, the development of "peptidomimetics," which mimick peptide molecules, is considered to be idealistic. Hence, chloroalkene dipeptide isosteres (CADIs) was designed, and their synthetic methods have been developed by us. Briefly, in a CADI an amide bond in peptides is replaced with a chloroalkene structure. CADIs might be superior mimetics of amide bonds because the Van der Waals radii (VDR) and the electronegativity value of a chlorine atom are close to those of the replaced oxygen atom. By a developed method of the "liner synthesis", N-tert-butylsulfonyl protected CADIs can be synthesized via a key reaction involving diastereoselective allylic alkylation using organocopper reagents. On the other hand, by a developed method of the "convergent synthesis", N-fluorenylmethoxycarbonyl (Fmoc)-protected carboxylic acids can be also constructed based on N- and C-terminal analogues from corresponding amino acid starting materials via an Evans syn aldol reaction and the Ichikawa allylcyanate rearrangement reaction involving a [3.3] sigmatropic rearrangement. Notably, CADIs can also be applied for Fmoc-based solid-phase peptide synthesis and therefore introduced into bioactive peptides including as the Arg-Gly-Asp (RGD) peptide and the amyloid β fragment Lys-Leu-Val-Phe-Phe (KLVFF) peptide, which are correlated with cell attachment and Alzheimer's disease (AD), respectively. These CADI-containing peptidomimetics stabilized the conformation and enhanced the potency of the cyclic RGD peptide and the cyclic KLVFF peptide.
Collapse
Affiliation(s)
- Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kohei Tsuji
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
6
|
Yamamoto T, Asakura M, Yamanomoto K, Shibata T, Endo K. Creation of a Chiral All-Carbon Quaternary Center Induced by CF 3 and CH 3 Substituents via Cu-Catalyzed Asymmetric Conjugate Addition. Org Lett 2024; 26:5312-5317. [PMID: 38869935 PMCID: PMC11217942 DOI: 10.1021/acs.orglett.4c01691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024]
Abstract
Cu-catalyzed asymmetric construction of a chiral quaternary center bearing CH3 and CF3 groups was achieved with high to excellent enantioselectivity using our originally developed ligands. The asymmetric conjugate addition of Me3Al to β-CF3-substituted enones and unsaturated ketoesters proceeded efficiently. The use of unsaturated ketoesters gives optically active furanones in high yields with high enantioselectivities. The perfluoroalkyl-substituted enone does not seem to be favorable in the present reaction.
Collapse
Affiliation(s)
- Taiyo Yamamoto
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, Shinjuku, Tokyo 162-8601, Japan
| | - Masayuki Asakura
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, Shinjuku, Tokyo 162-8601, Japan
| | - Ken Yamanomoto
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, Shinjuku, Tokyo 162-8601, Japan
| | - Takanori Shibata
- Department
of Chemistry and Biochemistry, Graduate School of Science and Technology, Waseda University, Shinjuku, Tokyo 169-8555, Japan
| | - Kohei Endo
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, Shinjuku, Tokyo 162-8601, Japan
| |
Collapse
|
7
|
Baumann JE, Chung CP, Lalic G. Stereoselective Copper-Catalyzed Olefination of Imines. Angew Chem Int Ed Engl 2024; 63:e202316521. [PMID: 38100274 PMCID: PMC10977923 DOI: 10.1002/anie.202316521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Alkenes are an important class of organic molecules found among synthetic intermediates and bioactive compounds. They are commonly synthesized through stoichiometric Wittig-type olefination of carbonyls and imines, using ylides or their equivalents. Despite the importance of Wittig-type olefination reactions, their catalytic variants remain underdeveloped. We explored the use of transition metal catalysis to form ylide equivalents from readily available starting materials. Our investigation led to a new copper-catalyzed olefination of imines with alkenyl boronate esters as coupling partners. We identified a heterobimetallic complex, obtained by hydrocupration of the alkenyl boronate esters, as the key catalytic intermediate that serves as an ylide equivalent. The high E-selectivity observed in the reaction is due to the stereoselective addition of this intermediate to an imine, followed by stereospecific anti-elimination.
Collapse
Affiliation(s)
- James E Baumann
- Department of Chemistry, University of Washington, 109 Bagley Hall, 98195, Seattle, WA, USA
| | - Crystal P Chung
- Department of Chemistry, University of Washington, 109 Bagley Hall, 98195, Seattle, WA, USA
| | - Gojko Lalic
- Department of Chemistry, University of Washington, 109 Bagley Hall, 98195, Seattle, WA, USA
| |
Collapse
|
8
|
Luo Y, Li Y, Wu J, Xue XS, Hartwig JF, Shen Q. Oxidative addition of an alkyl halide to form a stable Cu(III) product. Science 2023; 381:1072-1079. [PMID: 37676952 PMCID: PMC10658983 DOI: 10.1126/science.adg9232] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023]
Abstract
The step that cleaves the carbon-halogen bond in copper-catalyzed cross-coupling reactions remains ill defined because of the multiple redox manifolds available to copper and the instability of the high-valent copper product formed. We report the oxidative addition of α-haloacetonitrile to ionic and neutral copper(I) complexes to form previously elusive but here fully characterized copper(III) complexes. The stability of these complexes stems from the strong Cu-CF3 bond and the high barrier for C(CF3)-C(CH2CN) bond-forming reductive elimination. The mechanistic studies we performed suggest that oxidative addition to ionic and neutral copper(I) complexes proceeds by means of two different pathways: an SN2-type substitution to the ionic complex and a halogen-atom transfer to the neutral complex. We observed a pronounced ligand acceleration of the oxidative addition, which correlates with that observed in the copper-catalyzed couplings of azoles, amines, or alkynes with alkyl electrophiles.
Collapse
Affiliation(s)
- Yongrui Luo
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Yuli Li
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Jian Wu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Xiao-Song Xue
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - John F. Hartwig
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Qilong Shen
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| |
Collapse
|
9
|
Manna MS, Yoo SY, Sharique M, Choi H, Pudasaini B, Baik MH, Tambar UK. Copper-Catalyzed Regiodivergent Internal Allylic Alkylations. Angew Chem Int Ed Engl 2023; 62:e202304848. [PMID: 37327025 PMCID: PMC10528884 DOI: 10.1002/anie.202304848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
We report a copper-catalyzed, regioselective, and stereospecific alkylation of unbiased internal allylic carbonates with functionalized alkyl and aryl Grignard reagents. The reactions exhibit high stereospecificity and regioselectivity for either SN 2 or SN 2' products under two sets of copper-catalyzed conditions, which enables the preparation of a broad range of products with E-alkene selectivity. Density functional theory calculations reveal the origins of the regioselectivity based on the different behaviors of homo- and heterocuprates.
Collapse
Affiliation(s)
- Madhu Sudan Manna
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| | - Seok Yeol Yoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Mohammed Sharique
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| | - Hyoju Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Bimal Pudasaini
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Uttam K. Tambar
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| |
Collapse
|
10
|
Yisimayili N, Zhu CL, Liu T, Yao Y, Lu CD. Stereoselective Construction of Acyclic β,β-Disubstituted Enesulfinamides via Conjugate Addition of Organocuprates to α-Substituted α,β-Unsaturated N-Sulfinyl Ketimines. Org Lett 2023; 25:5536-5541. [PMID: 37458358 DOI: 10.1021/acs.orglett.3c02060] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
In the presence of boron trifluoride, conjugate addition of organocuprates to α-substituted α,β-unsaturated N-tert-butanesulfinyl ketimines provides facile access to acyclic β,β-disubstituted enesulfinamides with high ratios of geometric isomers. Diverse and challenging to synthesize, multisubstituted aza-enolates bearing two electronically and sterically similar β-substituents, which are important precursors for asymmetric construction of the less accessible acyclic quaternary or tetrasubstituted stereocenters at the α-position of ketimines, can be efficiently prepared in good yields with high stereocontrol.
Collapse
Affiliation(s)
| | - Chong-Lin Zhu
- School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, China
- Southwest United Graduate School, Kunming, Yunnan 650092, China
| | - Tao Liu
- School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, China
| | - Yun Yao
- School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, China
| | - Chong-Dao Lu
- School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, China
- Southwest United Graduate School, Kunming, Yunnan 650092, China
| |
Collapse
|
11
|
Somprasong S, Reis MC, Harutyunyan SR. Catalytic Access to Chiral δ-Lactams via Nucleophilic Dearomatization of Pyridine Derivatives. Angew Chem Int Ed Engl 2023; 62:e202217328. [PMID: 36522289 DOI: 10.1002/anie.202217328] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Nitrogen-bearing rings are common features in the molecular structures of modern drugs, with chiral δ-lactams being an important subclass due to their known pharmacological properties. Catalytic dearomatization of preactivated pyridinium ion derivatives emerged as a powerful method for the rapid construction of chiral N-heterocycles. However, direct catalytic dearomatization of simple pyridine derivatives are scarce and methodologies yielding chiral δ-lactams are yet to be developed. Herein, we describe an enantioselective C4-dearomatization of methoxypyridine derivatives for the preparation of functionalised enantioenriched δ-lactams using chiral copper catalysis. Experimental 13 C kinetic isotope effects and density functional theory calculations shed light on the reaction mechanism and the origin of enantioselectivity.
Collapse
Affiliation(s)
- Siriphong Somprasong
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Marta Castiñeira Reis
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Syuzanna R Harutyunyan
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
12
|
Qiu K, Li J, Ma H, Zhou W, Cai Q. Recent Advances in the Construction of Nitrogen-Containing Heterocycles via Trapping Organocopper(I) Intermediates. ACTA CHIMICA SINICA 2023. [DOI: 10.6023/a22100419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
13
|
Shearer J, Vasiliauskas D, Lancaster KM. Bonding and the role of electrostatics in driving C-C bond formation in high valent organocopper compounds. Chem Commun (Camb) 2022; 59:98-101. [PMID: 36472142 PMCID: PMC10173383 DOI: 10.1039/d2cc05865k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The electronic structures and contrasting reactivity of [Cu(CF3)4]- and [Cu(CF3)3(CH3)]- were probed using coupled cluster and ab initio valence bond calculations. The Cu-C bonds in these complexes were found to be charge shift bonds. A key finding is that electrostatics likely prevent [Cu(CF3)4]- from accessing a productive transition state for C-C bond formation while promote one for [Cu(CF3)3(CH3)]-. These results therefore highlight essential design criteria for Cu-mediated C-C/C-heteroatom bond formation.
Collapse
Affiliation(s)
- Jason Shearer
- Department of Chemistry, Trinity University, San Antonio, Texas 78212-7200, USA.
| | - Dovydas Vasiliauskas
- Department of Chemistry, Trinity University, San Antonio, Texas 78212-7200, USA.
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, 162 Sciences Drive, Ithaca, NY 14853, USA.
| |
Collapse
|
14
|
Abstract
Cross-coupling of alkyl fluorides and organocuprates is accomplished via aluminum halide mediated C-F bond activation and subsequent Csp2-Csp3 and Csp3-Csp3 bond formation. Relatively mild conditions allow for smooth activation of notoriously challenging primary and secondary alkyl fluorides while competing alkyl chain rearrangement, HF elimination, and homocoupling reactions are effectively controlled. The utility and functional group tolerance are demonstrated with 23 examples and a variety of coupling products obtained in up to 88% yield.
Collapse
Affiliation(s)
- Bryan C Figula
- Chemistry Department, Georgetown University, Washington, DC 20057, United States
| | - D Lucas Kane
- Chemistry Department, Georgetown University, Washington, DC 20057, United States
| | - Kaluvu Balaraman
- Chemistry Department, Georgetown University, Washington, DC 20057, United States
| | - Christian Wolf
- Chemistry Department, Georgetown University, Washington, DC 20057, United States
| |
Collapse
|
15
|
Ando S, Kono Y, Ishizuka T. N-heterocyclic Carbene Ligands with a Bicyclic Framework Fused with either Naphthalene or Anthracene. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Zhang H, Feng C, Chen N, Zhang S. Direct Arene Trifluoromethylation Enabled by a High‐Valent Cu
III
−CF
3
Compound. Angew Chem Int Ed Engl 2022; 61:e202209029. [DOI: 10.1002/anie.202209029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Hao‐Ran Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University 1800 Lihu Road Wuxi 214122, Jiangsu China
| | - Cong‐Cong Feng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University 1800 Lihu Road Wuxi 214122, Jiangsu China
| | - Ning Chen
- School of Chemistry and Chemical Engineering Xinjiang Agricultural University 311 Nongda East Road Urumqi 830052, Xinjiang China
| | - Song‐Lin Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University 1800 Lihu Road Wuxi 214122, Jiangsu China
- School of Chemistry and Chemical Engineering Xinjiang Agricultural University 311 Nongda East Road Urumqi 830052, Xinjiang China
| |
Collapse
|
17
|
Zhang Q, Tong S, Wang MX. Unraveling the Chemistry of High Valent Arylcopper Compounds and Their Roles in Copper-Catalyzed Arene C-H Bond Transformations Using Synthetic Macrocycles. Acc Chem Res 2022; 55:2796-2810. [PMID: 35994690 DOI: 10.1021/acs.accounts.2c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recent decades have witnessed a resurgence of the study of copper-catalyzed organic reactions. As the surrogate of noble metal catalysts, copper salts have been shown to exhibit remarkable versatility in activating various C-H bonds enabling the construction of diverse carbon-carbon and carbon-heteroatom bonds. Advantageously, copper salts are also naturally abundant, inexpensive, and less toxic in comparison to precious metals. Despite significant developments in synthesis, the mechanism of copper catalysis remains elusive. Hypothetical pathways such as the two-electron Cu(III)/Cu(I) and Cu(II)/Cu(0) catalytic cycles and the one-electron Cu(II)/Cu(I) catalytic cycle have been invoked to diagram C-H bond transformations because of the formidable challenges to isolate and characterize transient high valent organocopper intermediates. In fact, organocopper chemistry has been dominated for a long time by the acknowledged nucleophilic organocopper(I) compounds. Since the beginning of the new millennium, we have been systematically studying the supramolecular chemistry of heteracalix[n]aromatics. Owing to the ease of their synthesis and selective functionalizations, self-tunable conformation and cavity structures resulting from the interplay of heteroatoms with aromatic subunits, and outstanding properties in molecular recognition and self-assembly, heteracalix[n]aromatics have become a class of privileged synthetic macrocyclic hosts. Our journey to the chemistry of high valent organocopper compounds started with a serendipitous discovery of the facile formation of a stable organocopper compound, which contains astonishingly a Ph-Cu(III) σ-bond under very mild aerobic conditions. When we examined routinely the effect of the macrocyclic structures on noncovalent complexation properties, titration of tetraazacalix[1]arene[3]pyridine with Cu(ClO4)2·6H2O resulted in the precipitation of dark-purple crystals of phenylcopper(III) diperchlorate. Our curiosity about the transformation of an arene C-H bond into an Ar-Cu(III) bond prompted us to conduct an in-depth investigation of the reaction of macrocyclic arenes with copper(II) salts, leading to the isolation of arylcopper(II) compounds which are unprecedented and the missing link in organocopper chemistry. With structurally well-defined organometallics in hand, we have explored extensively the reactivities of both arylcopper(II) and arylcopper(III) compounds, demonstrating their versatility and uniqueness in chemical synthesis. Novel and fascinating arene C-H transformations under copper catalysis have been developed. Using acquired high valent arylcopper compounds as molecular probes, and employing the functionalizations of tetraazacalix[1]arene[3]pyridines as model reactions, we have revealed the diverse mechanisms of copper-promoted arene C-H bond reactions. Elusive reaction pathways of some copper-catalyzed C-X bond activations have also been unraveled. In the meantime, we have also witnessed pleasingly the rapid development of field with the advent of new high valent organocopper compounds. Without any doubt, studies of the synthesis, reactivity, and catalysis of high valent organocopper compounds have been reshaping the field of organocopper chemistry. This Account summarizes our endeavors to explore the chemistry of structurally well-defined arylcopper(II) and arylcopper(III) compounds and the mechanisms of copper-catalyzed arene C-H and C-X bond transformations. We hope this Account will inspire chemists to study thoroughly the fundamentals and the cutting-edge catalysis of high valent organocopper compounds advancing and redefining the discipline of organocopper chemistry.
Collapse
Affiliation(s)
- Qian Zhang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Qing Hua Yuan, Haidian District, Beijing 100084, China
| | - Shuo Tong
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Qing Hua Yuan, Haidian District, Beijing 100084, China
| | - Mei-Xiang Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Qing Hua Yuan, Haidian District, Beijing 100084, China
| |
Collapse
|
18
|
Martínez-Balart P, Tóth BL, Velasco-Rubio Á, Fañanás-Mastral M. Direct C-H Allylation of Unactivated Alkanes by Cooperative W/Cu Photocatalysis. Org Lett 2022; 24:6874-6879. [PMID: 36098628 PMCID: PMC9513794 DOI: 10.1021/acs.orglett.2c02887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Here we report a photocatalytic methodology that enables the direct allylation of strong aliphatic C-H bonds with simple allylic chlorides. The method relies on a cooperative interaction of two metal catalysts in which the decatungstate anion acts as a hydrogen-atom abstractor generating a nucleophilic carbon-centered radical that engages in an SH2' reaction with an activated allylic π-olefin-copper complex. Because of this dual catalysis, the protocol allows for the functionalization of a range of chemical feedstocks and natural products under mild conditions in short reaction times.
Collapse
|
19
|
Jin S, Zhao X, Ma D. Divergent Total Syntheses of Napelline-Type C20-Diterpenoid Alkaloids: (-)-Napelline, (+)-Dehydronapelline, (-)-Songorine, (-)-Songoramine, (-)-Acoapetaldine D, and (-)-Liangshanone. J Am Chem Soc 2022; 144:15355-15362. [PMID: 35948501 DOI: 10.1021/jacs.2c06738] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The napelline-type alkaloids possess an azabicyclo[3.2.1]octane moiety and an ent-kaurane-type tetracyclic skeleton (6/6/6/5) along with varied oxidation patterns embedded in the compact hexacyclic framework. Herein, we disclose a divergent entry to napelline-type alkaloids that hinges on convergent assembly of the ent-kaurane core using a diastereoselective intermolecular Cu-mediated conjugate addition and subsequent intramolecular Michael addition reaction as well as rapid construction of the azabicyclo[3.2.1]octane motif via an intramolecular Mannich cyclization. The power of this strategy has been demonstrated through efficient asymmetric total syntheses of eight napelline-type alkaloids, including (-)-napelline, (-)-12-epi-napelline, (+)-dehydronapelline, (+)-12-epi-dehydronapelline, (-)-songorine, (-)-songoramine, (-)-acoapetaldine D, and (-)-liangshanone.
Collapse
Affiliation(s)
- Shicheng Jin
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xiangbo Zhao
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Dawei Ma
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
20
|
Zhang HR, Feng CC, Chen N, Zhang SL. Direct Arene Trifluoromethylation Enabled by a High‐Valent Cu(III)‐CF3 Compound. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hao-Ran Zhang
- Jiangnan University School of Chemical and Material Engineering 214122 Wuxi CHINA
| | - Cong-Cong Feng
- Jiangnan University School of Chemical and Material Engineering 214122 Wuxi CHINA
| | - Ning Chen
- Xinjiang Agricultural University School of Chemistry and Chemical Engineering Urumqi CHINA
| | - Song-Lin Zhang
- Jiangnan University School of Chemical and Material Engineering 1800 Lihu Road 214122 Wuxi CHINA
| |
Collapse
|
21
|
Corpas J, Kim-Lee SH, Mauleón P, Arrayás RG, Carretero JC. Beyond classical sulfone chemistry: metal- and photocatalytic approaches for C-S bond functionalization of sulfones. Chem Soc Rev 2022; 51:6774-6823. [PMID: 35838659 DOI: 10.1039/d0cs00535e] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The exceptional versatility of sulfones has been extensively exploited in organic synthesis across several decades. Since the first demonstration in 2005 that sulfones can participate in Pd-catalysed Suzuki-Miyaura type reactions, tremendous advances in catalytic desulfitative functionalizations have opened a new area of research with burgeoning activity in recent years. This emerging field is displaying sulfone derivatives as a new class of substrates enabling catalytic C-C and C-X bond construction. In this review, we will discuss new facets of sulfone reactivity toward further expanding the flexibility of C-S bonds, with an emphasis on key mechanistic features. The inherent challenges confronting the development of these strategies will be presented, along with the potential application of this chemistry for the synthesis of natural products. Taken together, this knowledge should stimulate impactful improvements on the use of sulfones in catalytic desulfitative C-C and C-X bond formation. A main goal of this article is to bring this technology to the mainstream catalysis practice and to serve as inspiration for new perspectives in catalytic transformations.
Collapse
Affiliation(s)
- Javier Corpas
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain.
| | - Shin-Ho Kim-Lee
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain.
| | - Pablo Mauleón
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
| | - Ramón Gómez Arrayás
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
| | - Juan C Carretero
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
| |
Collapse
|
22
|
Chaves-Pouso A, Álvarez-Constantino AM, Fañanás-Mastral M. Enantio- and Diastereoselective Copper-Catalyzed Allylboration of Alkynes with Allylic gem-Dichlorides. Angew Chem Int Ed Engl 2022; 61:e202117696. [PMID: 35263483 PMCID: PMC9314970 DOI: 10.1002/anie.202117696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 11/06/2022]
Abstract
Allylic gem-dichlorides are shown to be efficient substrates for catalytic asymmetric allylboration of alkynes. The method employs a chiral NHC-Cu catalyst capable of generating in a single step chiral skipped dienes bearing a Z-alkenyl chloride, a trisubstituted E-alkenyl boronate and a bis-allylic stereocenter with excellent levels of chemo-, regio- enantio- and diastereoselectivity. This high degree of functionalization makes these products versatile building blocks as illustrated with the synthesis of several optically active compounds. DFT calculations support the key presence of a metal cation bridge ligand-substrate interaction and account for the stereoselectivity outcome.
Collapse
Affiliation(s)
- Andrea Chaves-Pouso
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Andrés M Álvarez-Constantino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Martín Fañanás-Mastral
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
23
|
Niu S, Luo Y, Xu C, Liu J, Yang S, Fang X. Copper-Catalyzed Yne-Allylic Substitutions Using Stabilized Nucleophiles. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Shengtong Niu
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Yingkun Luo
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Chao Xu
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
24
|
Kato D, Murase T, Talode J, Nagae H, Tsurugi H, Seki M, Mashima K. Diarylcuprates for Selective Syntheses of Multifunctionalized Ketones from Thioesters under Mild Conditions. Chemistry 2022; 28:e202200474. [DOI: 10.1002/chem.202200474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Daiki Kato
- Department of Chemistry Graduate School of Engineering Science Osaka University 560-8531 Toyonaka Osaka Japan
| | - Tomoya Murase
- Department of Chemistry Graduate School of Engineering Science Osaka University 560-8531 Toyonaka Osaka Japan
| | - Jalindar Talode
- Department of Chemistry Graduate School of Engineering Science Osaka University 560-8531 Toyonaka Osaka Japan
| | - Haruki Nagae
- Department of Chemistry Graduate School of Engineering Science Osaka University 560-8531 Toyonaka Osaka Japan
| | - Hayato Tsurugi
- Department of Chemistry Graduate School of Engineering Science Osaka University 560-8531 Toyonaka Osaka Japan
| | - Masahiko Seki
- Marketing Group Research & Development Division Tokuyama Corporation 300-4247 Tsukuba Ibaraki Japan
| | - Kazushi Mashima
- Department of Chemistry Graduate School of Engineering Science Osaka University 560-8531 Toyonaka Osaka Japan
| |
Collapse
|
25
|
Chaves‐Pouso A, Álvarez‐Constantino AM, Fañanás‐Mastral M. Enantio‐ and Diastereoselective Copper‐Catalyzed Allylboration of Alkynes with Allylic
gem
‐Dichlorides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Andrea Chaves‐Pouso
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Andrés M. Álvarez‐Constantino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Martín Fañanás‐Mastral
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
26
|
Battula S, Desai AA, Soni JY, Mehta DP. Accessing Grignard Reluctant Aldehyde in 2-Oxoaldehyde by Organocuprates to Give [1,2] Addition and Oxidative Coupling Reactions. ACS OMEGA 2022; 7:5069-5078. [PMID: 35187323 PMCID: PMC8851654 DOI: 10.1021/acsomega.1c06031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Novel finding of aldehyde in 2-oxoaldehyde (2OA) is presented as it unprecedentedly disinclines to react with Grignard reagents but reacts with moderate organocuprate reagents in anaerobic condition to give [1,2] addition (α-hydroxyketones) reaction. In the presence of air, the reaction produces an efficient protocol for the synthesis of 1,2-diones through a copper-catalyzed oxidative cross-coupling reaction at room temperature. Mechanistic studies indicate that α-hydroxy ketone perhaps is generated before the hydrolysis step/acid work-up process. The α-keto group of 2OA causes to exhibit this peculiar aldehyde behavior toward these organometallic reagents.
Collapse
Affiliation(s)
- Satyanarayana Battula
- Tarsadia
Institute of Chemical Sciences, Uka Tarsadia
University, Bardoli, Gujarat 394350, India
| | - Aman A. Desai
- Aether
Industries Pvt. Ltd., Sachin, Surat, Gujarat 394230, India
| | - Jigar Y. Soni
- Department
of Chemistry, Madhav University, Abu Road, Sirohi, Rajasthan 307026, India
| | - Dhruv P. Mehta
- Aether
Industries Pvt. Ltd., Sachin, Surat, Gujarat 394230, India
| |
Collapse
|
27
|
Jia Z, Wen H, Huang S, Luo Y, Gao J, Wang R, Wan K, Xue W. “Click” assembly of novel dual inhibitors of AChE and MAO-B from pyridoxine derivatives for the treatment of Alzheimer’s disease. HETEROCYCL COMMUN 2022. [DOI: 10.1515/hc-2022-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
This study fast synthesizes numerous functionalized pyridoxines using click chemistry and assayed in vitro as inhibitors of the acetylcholinesterase (AChE), butyrylcholinesterase, and two monoamine oxidase (MAO) isoforms, MAO-A and MAO-B. Most of the obtained compounds demonstrate good AChE and selective MAO-B inhibitory activities in the micromolar range, especially one compound, called 4k5, exhibits excellent inhibitory performance against AChE (IC50 = 0.0816 ± 0.075 μM) and MAO-B (IC50 = 0.039 ± 0.003 μM). Finally, a docking study is carried out, demonstrating potential binding orientations and interactions of the compounds in terms of the AChE and MAO-B active sites.
Collapse
Affiliation(s)
- Zhao Jia
- School of Chemical Engineering, Northwest University , Xi’an , 710069 , People’s Republic of China
- Shangluo University, Shangluo , Shaanxi , 726000 , People’s Republic of China
| | - Huiyun Wen
- School of Chemical Engineering, Northwest University , Xi’an , 710069 , People’s Republic of China
| | - Saipeng Huang
- School of Chemical Engineering, Northwest University , Xi’an , 710069 , People’s Republic of China
| | - Yane Luo
- College of Food Science and Technology, Northwest University , Xi’an 710069 , People’s Republic of China
| | - Juanjuan Gao
- School of Chemical Engineering, Northwest University , Xi’an , 710069 , People’s Republic of China
| | - Ruijie Wang
- School of Chemical Engineering, Northwest University , Xi’an , 710069 , People’s Republic of China
| | - Kaikai Wan
- School of Chemical Engineering, Northwest University , Xi’an , 710069 , People’s Republic of China
| | - Weiming Xue
- School of Chemical Engineering, Northwest University , Xi’an , 710069 , People’s Republic of China
| |
Collapse
|
28
|
Jadhav SB, Dash SR, Maurya S, Nanubolu JB, Vanka K, Chegondi R. Enantioselective Cu(I)-catalyzed borylative cyclization of enone-tethered cyclohexadienones and mechanistic insights. Nat Commun 2022; 13:854. [PMID: 35165287 PMCID: PMC8844005 DOI: 10.1038/s41467-022-28288-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
The catalytic asymmetric borylation of conjugated carbonyls followed by stereoselective intramolecular cascade cyclizations with in situ generated chiral enolates are extremely rare. Herein, we report the enantioselective Cu(I)-catalyzed β-borylation/Michael addition on prochiral enone-tethered 2,5-cyclohexadienones. This asymmetric desymmetrization strategy has a broad range of substrate scope to generate densely functionalized bicyclic enones bearing four contiguous stereocenters with excellent yield, enantioselectivity, and diastereoselectivity. One-pot borylation/cyclization/oxidation via the sequential addition of sodium perborate reagent affords the corresponding alcohols without affecting yield and enantioselectivity. The synthetic potential of this reaction is explored through gram-scale reactions and further chemoselective transformations on products. DFT calculations explain the requirement of the base in an equimolar ratio in the reaction, as it leads to the formation of a lithium-enolate complex to undergo C-C bond formation via a chair-like transition state, with a barrier that is 22.5 kcal/mol more favourable than that of the copper-enolate complex. Rapidly building molecular structures with both elements of complexity and flexibility is a key goal of organic synthesis. Here the authors show a tandem copper-catalyzed β-borylation/Michael addition on prochiral enone-tethered 2,5-cyclohexadienones, to generate bicyclic borylated products in high yield and enantioselectivity.
Collapse
|
29
|
Auth T, Stein CJ, O'Hair RAJ, Koszinowski K. Origin of the different reactivity of the high-valent coinage-metal complexes [RCu iii Me 3 ] - and [RAg iii Me 3 ] - (R=allyl). Chemistry 2022; 28:e202103130. [PMID: 34773654 PMCID: PMC9304237 DOI: 10.1002/chem.202103130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Indexed: 11/27/2022]
Abstract
High-valent tetraalkylcuprates(iii) and -argentates(iii) are key intermediates of copper- and silver-mediated C-C coupling reactions. Here, we investigate the previously reported contrasting reactivity of [RMiii Me3 ]- complexes (M=Cu, Ag and R=allyl) with energy-dependent collision-induced dissociation experiments, advanced quantum-chemical calculations and kinetic computations. The gas-phase fragmentation experiments confirmed the preferred formation of the [RCuMe]- anion upon collisional activation of the cuprate(iii) species, consistent with a homo-coupling reaction, whereas the silver analogue primarily yielded [AgMe2 ]- , consistent with a cross-coupling reaction. For both complexes, density functional theory calculations identified one mechanism for homo coupling and four different ones for cross coupling. Of these pathways, an unprecedented concerted outer-sphere cross coupling is of particular interest, because it can explain the formation of [AgMe2 ]- from the argentate(iii) species. Remarkably, the different C-C coupling propensities of the two [RMiii Me3 ]- complexes become only apparent when properly accounting for the multi-configurational character of the wave function for the key transition state of [RAgMe3 ]- . Backed by the obtained detailed mechanistic insight for the gas-phase reactions, we propose that the previously observed cross-coupling reaction of the silver complex in solution proceeds via the outer-sphere mechanism.
Collapse
Affiliation(s)
- Thomas Auth
- Institut für Organische und Biomolekulare ChemieUniversität GöttingenTammannstr. 237077GöttingenGermany
| | - Christopher J. Stein
- Theoretical Physics and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-Essen47048DuisburgGermany
| | - Richard A. J. O'Hair
- School of Chemistry and Bio21 Molecular Science and Biotechnology InstituteUniversity of Melbourne30 Flemington RdParkvilleVictoria3010Australia
| | - Konrad Koszinowski
- Institut für Organische und Biomolekulare ChemieUniversität GöttingenTammannstr. 237077GöttingenGermany
| |
Collapse
|
30
|
Taeschler C, Kirchner E, Păunescu E, Mayerhöffer U. Copper-Free Alternatives to Access Ketone Building Blocks from Grignard Reagents. ACS OMEGA 2022; 7:3613-3617. [PMID: 35128268 PMCID: PMC8811905 DOI: 10.1021/acsomega.1c06202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Grignard reactions are an efficient way to form carbon-carbon bonds with widespread applications in large-scale processes. Classically, the electrophiles of choice to form ketones from Grignard reagents are acid chlorides. The reactions are typically catalyzed by additives such as CuCl to increase selectivity and yields. This work was focused on the use of acetic anhydride as an alternative to acetic chloride in the synthesis of 4-fluoro-2-(trifluoromethyl)acetophenone (3), a useful intermediate for the synthesis of active agricultural ingredients. The use of acetic anhydride as an electrophile not only equals but also surpasses acetic chloride in yield and selectivity, while also being more tolerable toward higher reaction temperatures. Furthermore, the reaction was performed in the absence of any additive, making it a highly attractive process for large-scale production. Computational mechanistic studies suggest that this advantageous behavior can be ascribed to the superior complexation of carboxylic acid anhydrides in the transition state.
Collapse
Affiliation(s)
| | - Eva Kirchner
- Arxada Ltd, Lonzastrasse CH-3930 Visp, Switzerland
| | | | | |
Collapse
|
31
|
Halbert S, Gérard H. Cu(I)-Assisted Addition of Li- or Zn-Organometallics to Carbonyl Compounds: Learning from Analogies and Differences Between Intermediates and Transition States. Top Catal 2022. [DOI: 10.1007/s11244-021-01551-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Gonzálvez MA, Su C, Williams CM, Bernhardt PV. Organocopper( ii) complexes: new catalysts for carbon–carbon bond formation via electrochemical atom transfer radical addition ( eATRA). Chem Sci 2022; 13:10506-10511. [PMID: 36277651 PMCID: PMC9473645 DOI: 10.1039/d2sc03418b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
Electrochemical generation of a novel organocopper(ii) complex offers a new way to carry out atom transfer radical addition to alkenes under mild conditions with high yields and low catalyst loadings.
Collapse
Affiliation(s)
- Miguel A. Gonzálvez
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Chuyi Su
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Craig M. Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Paul V. Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
33
|
McManus C, Crumpton A, Aldridge S. Alkyne insertion into Cu-Al bonds and selective functionalization to form copper acyl compounds. Chem Commun (Camb) 2022; 58:8274-8277. [DOI: 10.1039/d2cc02578g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on the insertion of alkynes into heterometallic M–M' bonds, producing (aluminylalkenyl)copper compounds which possess differential reactivity at the two derived M–C functions. Uniquely, this system is capable of...
Collapse
|
34
|
Devonport J, Sully L, Boudalis AK, Hassell-Hart S, Leech MC, Lam K, Abdul-Sada A, Tizzard GJ, Coles SJ, Spencer J, Vargas A, Kostakis GE. Room-Temperature Cu(II) Radical-Triggered Alkyne C-H Activation. JACS AU 2021; 1:1937-1948. [PMID: 34841411 PMCID: PMC8611675 DOI: 10.1021/jacsau.1c00310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Indexed: 06/13/2023]
Abstract
A dimeric Cu(II) complex [Cu(II)2L2(μ2-Cl)Cl] (1) built from an asymmetric tridentate ligand (2-(((2-aminocyclohexyl)imino)methyl)-4,6-di-tert-butylphenol) and weakly coordinating anions has been synthesized and structurally characterized. In dichloromethane solution, 1 exists in a monomeric [Cu(II)LCl] (1') (85%)-dimeric (1) (15%) equilibrium, and cyclic voltammetry (CV) and electron paramagnetic resonance (EPR) studies indicate structural stability and redox retention. Addition of phenylacetylene to the CH2Cl2 solution populates 1' and leads to the formation of a transient radical species. Theoretical studies support this notion and show that the radical initiates an alkyne C-H bond activation process via a four-membered ring (Cu(II)-O···H-Calkyne) intermediate. This unusual C-H activation method is applicable for the efficient synthesis of propargylamines, without additives, within 16 h, at low loadings and in noncoordinating solvents including late-stage functionalization of important bioactive molecules. Single-crystal X-ray diffraction studies, postcatalysis, confirmed the framework's stability and showed that the metal center preserves its oxidation state. The scope and limitations of this unconventional protocol are discussed.
Collapse
Affiliation(s)
- Jack Devonport
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| | - Lauren Sully
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| | - Athanassios K. Boudalis
- Institut
de Chimie de Strasbourg (UMR 7177, CNRS-Unistra), Université
de Strasbourg, 4 rue Blaise Pascal, CS 90032, F-67081 Strasbourg, France
- Université
de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux
de Strasbourg (IPCMS), UMR 7504, F-67000 Strasbourg, France
| | - Storm Hassell-Hart
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| | - Matthew C. Leech
- School
of Science, Department of Pharmaceutical Chemical and Environmental
Sciences, University of Greenwich, Central Avenue, Chatham Maritime ME4 4TB, U.K.
| | - Kevin Lam
- School
of Science, Department of Pharmaceutical Chemical and Environmental
Sciences, University of Greenwich, Central Avenue, Chatham Maritime ME4 4TB, U.K.
| | - Alaa Abdul-Sada
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| | - Graham J. Tizzard
- UK
National Crystallography Service, Chemistry, University of Southampton, Southampton SO1 71BJ, U.K.
| | - Simon J. Coles
- UK
National Crystallography Service, Chemistry, University of Southampton, Southampton SO1 71BJ, U.K.
| | - John Spencer
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| | - Alfredo Vargas
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| | - George E. Kostakis
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| |
Collapse
|
35
|
Baruah B, Deb ML. Alkylation of Electron‐Deficient Olefins through Conjugate Addition of Organozinc Reagents: An Update. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Mohit L. Deb
- Department of Applied Sciences GUIST Gauhati University Guwahati-14 Assam India
| |
Collapse
|
36
|
O'Hair RAJ. ORGANOMETALLIC GAS-PHASE ION CHEMISTRY AND CATALYSIS: INSIGHTS INTO THE USE OF METAL CATALYSTS TO PROMOTE SELECTIVITY IN THE REACTIONS OF CARBOXYLIC ACIDS AND THEIR DERIVATIVES. MASS SPECTROMETRY REVIEWS 2021; 40:782-810. [PMID: 32965774 DOI: 10.1002/mas.21654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Carboxylic acids are valuable organic substrates as they are widely available, easy to handle, and exhibit structural and functional variety. While they are used in many standard synthetic protocols, over the past two decades numerous studies have explored new modes of metal-mediated reactivity of carboxylic acids and their derivatives. Mass spectrometry-based studies can provide fundamental mechanistic insights into these new modes of reactivity. Here gas-phase models for the following catalytic transformations of carboxylic acids and their derivatives are reviewed: protodecarboxylation; dehydration; decarbonylation; reaction as coordinated bases in C-H bond activation; remote functionalization and decarboxylative C-C bond coupling. In each case the catalytic problem is defined, insights from gas-phase studies are highlighted, comparisons with condensed-phase systems are made and perspectives are reached. Finally, the potential role for mechanistic studies that integrate both gas- and condensed-phase studies is highlighted by recent studies on the discovery of new catalysts for the selective decomposition of formic acid and the invention of the new extrusion-insertion class of reactions for the synthesis of amides, thioamides, and amidines. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Richard A J O'Hair
- School of Chemistry, University of Melbourne, Victoria, 3010, Australia
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
37
|
Slyvka Y, Pokhodylo NT, Goreshnik E, Pavlyuk O, Mys’kiv M. Syntheses and crystal structures of two copper(I)-halide π,σ-coordination compounds based on 2-[(prop-2-en-1-yl)sulfan-yl]pyridine. Acta Crystallogr E Crystallogr Commun 2021; 77:1180-1184. [PMID: 34868659 PMCID: PMC8587979 DOI: 10.1107/s2056989021011002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022]
Abstract
The title compounds, di-μ-chlorido-bis-({2-[(η-2,3)-(prop-2-en-1-yl)sulfan-yl]pyridine-κN}copper(I)), [Cu2Cl2(C8H9NS)2], and di-μ-bromido-bis-({2-[(η-2,3)-(prop-2-en-1-yl)sulfan-yl]pyridine-κN}copper(I)), [Cu2Br2(C8H9NS)2], were obtained by alternating-current electrochemical synthesis starting from an ethano-lic solution of 2-[(prop-2-en-1-yl)sulfan-yl]pyridine (Psup) and the copper(II) halide. The isostructural crystals are built up from centrosymmetric [Cu2 Hal 2(Psup)2] dimers, which are formed due to the π,σ-chelating behavior of the organic ligand. In the crystals, the dimers are linked by C-H⋯Hal hydrogen bonds as well as by aromatic π-π stacking inter-actions into a three-dimensional network.
Collapse
Affiliation(s)
- Yurii Slyvka
- Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya, 6, Lviv, 79005, Ukraine
| | - Nazariy T. Pokhodylo
- Department of Organic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya, 6, Lviv, 79005, Ukraine
| | - Evgeny Goreshnik
- Department of Inorganic Chemistry and Technology, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Olexii Pavlyuk
- Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya, 6, Lviv, 79005, Ukraine
| | - Marian Mys’kiv
- Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya, 6, Lviv, 79005, Ukraine
| |
Collapse
|
38
|
Lee Y, Han S, Cho SH. Catalytic Chemo- and Enantioselective Transformations of gem-Diborylalkanes and (Diborylmethyl)metallic Species. Acc Chem Res 2021; 54:3917-3929. [PMID: 34612034 DOI: 10.1021/acs.accounts.1c00455] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chemo- and stereoselective transformations of polyborylalkanes are powerful and efficient methods to access optically active molecules with greater complexity and diversity through programmed synthetic design. Among the various polyborylalkanes, gem-diborylalkanes have attracted much attention in organic chemistry as versatile synthetic handles. The notable advantage of gem-diborylalkanes lies in their ability to generate two key intermediates, α-borylalkyl anions and (gem-diborylalkyl) anions. These two different intermediates can be applied to various enantioselective reactions to rapidly access a diverse set of enantioenriched organoboron compounds, which can be further manipulated to generate various chiral molecule libraries via stereospecific C(sp3)-B bond transformations.In this Account, we summarize our recent contributions to the development of catalytic chemo- and stereoselective reactions using gem-diborylalkanes as versatile nucleophiles, which can be categorized as follows: (1) copper-catalyzed enantioselective coupling of gem-diborylalkanes with electrophiles and (2) the design and synthesis of (diborylmethyl)metallic species and their applications to enantioselective reactions. Since Shibata and Endo reported the Pd-catalyzed chemoselective Suzuki-Miyaura cross-coupling of gem-diborylalkanes with organohalides in 2014, Morken and Hall subsequently developed the first enantioselective analogous reactions using TADDOL-derived chiral phosphoramidite as the supporting ligand of a palladium catalyst. This discovery sparked interest in the catalytic enantioselective coupling of gem-diborylalkanes with electrophiles. Our initial studies focused on generating chiral (α-borylmethyl)copper species by enantiotopic-group-selective transmetalation of gem-diborylalkanes with chiral copper complexes and their reactions with various aldimines and ketimines to afford syn-β-aminoboronate esters with excellent enantio- and diastereoselectivity. Moreover, we developed the enantioselective allylation of gem-diborylalkanes that proceeded by reaction of in situ-generated chiral (α-borylalkyl)copper and allyl bromides. Mechanistic investigations revealed that the enantiotopic-group-selective transmetalation between gem-diborylalkanes and the chiral copper complex occurred through the open transition state rather than the closed transition state, thereby effectively generating chiral (α-borylmethyl)copper species. We also utilized (diborylmethyl)metallic species such as (diborylmethyl)silanes and (diborylmethyl)zinc halides in catalytic enantioselective reactions. We succeeded in developing the enantiotopic-group-selective cross-coupling of (diborylmethyl)silanes with aryl iodides to afford enantioenriched benzylic 1,1-silylboronate esters, which could be used for further consecutive stereospecific transformations to afford various enantioenriched molecules. In addition, we synthesized (diborylmethyl)zinc halides for the first time by the transmetalation of isolated (diborylmethyl)lithium and zinc(II) halides and their utilization to the synthesis of enantioenriched gem-diborylalkanes bearing a chiral center at the β-position via an iridium-catalyzed enantioselective allylic substitution process. In addition to our research efforts, we also include key contributions by other research groups. We hope that this Account will draw the attention of the synthetic community to gem-diboryl compounds and provide guiding principles for the future development of catalytic enantioselective reactions using gem-diboryl compounds.
Collapse
Affiliation(s)
- Yeosan Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seungcheol Han
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seung Hwan Cho
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
39
|
Peng YL, Wang T, Jin C, Deng CH, Zhao Y, Liu W, Forrest KA, Krishna R, Chen Y, Pham T, Space B, Cheng P, Zaworotko MJ, Zhang Z. Efficient propyne/propadiene separation by microporous crystalline physiadsorbents. Nat Commun 2021; 12:5768. [PMID: 34599179 PMCID: PMC8486746 DOI: 10.1038/s41467-021-25980-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/10/2021] [Indexed: 02/08/2023] Open
Abstract
Selective separation of propyne/propadiene mixture to obtain pure propadiene (allene), an essential feedstock for organic synthesis, remains an unsolved challenge in the petrochemical industry, thanks mainly to their similar physicochemical properties. We herein introduce a convenient and energy-efficient physisorptive approach to achieve propyne/propadiene separation using microporous metal-organic frameworks (MOFs). Specifically, HKUST-1, one of the most widely studied high surface area MOFs that is available commercially, is found to exhibit benchmark performance (propadiene production up to 69.6 cm3/g, purity > 99.5%) as verified by dynamic breakthrough experiments. Experimental and modeling studies provide insight into the performance of HKUST-1 and indicate that it can be attributed to a synergy between thermodynamics and kinetics that arises from abundant open metal sites and cage-based molecular traps in HKUST-1.
Collapse
Affiliation(s)
- Yun-Lei Peng
- College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| | - Ting Wang
- College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Chaonan Jin
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, People's Republic of China
| | - Cheng-Hua Deng
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| | - Yanming Zhao
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Wansheng Liu
- College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Katherine A Forrest
- Department of Chemistry, University of South Florida; 4202 East Fowler Avenue, CHE205, Tampa, FL, 33620-5250, USA
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam; Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, People's Republic of China
| | - Tony Pham
- Department of Chemistry, University of South Florida; 4202 East Fowler Avenue, CHE205, Tampa, FL, 33620-5250, USA
| | - Brian Space
- Department of Chemistry, University of South Florida; 4202 East Fowler Avenue, CHE205, Tampa, FL, 33620-5250, USA
| | - Peng Cheng
- College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University, Tianjin, 300071, People's Republic of China
- Renewable Energy Conversion and Storage Center, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, People's Republic of China
| | - Michael J Zaworotko
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| | - Zhenjie Zhang
- College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China.
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University, Tianjin, 300071, People's Republic of China.
- Renewable Energy Conversion and Storage Center, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
40
|
Zhang M, Li H, Zhao J, Li Y, Zhang Q. Copper-catalyzed [3 + 1] cyclization of cyclopropenes/diazo compounds and bromodifluoroacetamides: facile synthesis of α,α-difluoro-β-lactam derivatives. Chem Sci 2021; 12:11805-11809. [PMID: 34659719 PMCID: PMC8442724 DOI: 10.1039/d1sc02930d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/29/2021] [Indexed: 01/10/2023] Open
Abstract
We have developed a novel copper-catalyzed cyclization of cyclopropenes/diazo compounds and bromodifluoroacetamides, efficiently synthesizing a series of α,α-difluoro-β-lactams in moderate to excellent yields under mild reaction conditions. This reaction represents the first example of [3 + 1] cyclization for the synthesis of β-lactams utilizing a metal carbene intermediate as the C1 synthon. A copper-catalyzed [3 + 1] cyclization of cyclopropenes and bromodifluoroacetamides/diazo compounds has been successfully developed, efficiently synthesizing a wide range of α,α-difluoro-β-lactams.![]()
Collapse
Affiliation(s)
- Mengru Zhang
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University Changchun 130024 China
| | - Hexin Li
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University Changchun 130024 China
| | - Jinbo Zhao
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University Changchun 130024 China .,Department of Chemistry, Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology Changchun 130012 China
| | - Yan Li
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University Changchun 130024 China
| | - Qian Zhang
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University Changchun 130024 China .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
41
|
Ispizua-Rodriguez X, Munoz SB, Krishnamurti V, Mathew T, Prakash GKS. Direct Synthesis of Tri-/Difluoromethyl Ketones from Carboxylic Acids by Cross-Coupling with Acyloxyphosphonium Ions. Chemistry 2021; 27:15908-15913. [PMID: 34469605 DOI: 10.1002/chem.202102854] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Indexed: 11/09/2022]
Abstract
A simple and straightforward approach to the synthesis of trifluoromethyl and difluoromethyl ketones from widely available carboxylic acids is disclosed. The transformation utilizes an acyloxyphosphonium ion as the active electrophile, conveniently generated in situ from the carboxylic acid substrate by using commodity chemicals. The utility of the reaction system is exemplified by its chemoselectivity, with tolerance to a variety of important functional groups. The late-stage functionalization of carboxylic acid active pharmaceutical ingredients and pharmaceutically relevant compounds is also discussed.
Collapse
Affiliation(s)
- Xanath Ispizua-Rodriguez
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, 837 Bloom Walk, Los Angeles, CA-90089-1661, USA
| | - Socrates B Munoz
- Department of Chemistry, Kansas State University, 322 CBC Bldg, Manhattan, KS66506-0401, USA
| | - Vinayak Krishnamurti
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, 837 Bloom Walk, Los Angeles, CA-90089-1661, USA
| | - Thomas Mathew
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, 837 Bloom Walk, Los Angeles, CA-90089-1661, USA
| | - G K S Prakash
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, 837 Bloom Walk, Los Angeles, CA-90089-1661, USA
| |
Collapse
|
42
|
Ozawa Y, Endo K, Ito H. Regio- and Stereoselective Synthesis of Multi-Alkylated Allylic Boronates through Three-Component Coupling Reactions between Allenes, Alkyl Halides, and a Diboron Reagent. J Am Chem Soc 2021; 143:13865-13877. [PMID: 34424698 DOI: 10.1021/jacs.1c06538] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multisubstituted allylic boronates are attractive and valuable precursors for the rapid and stereoselective construction of densely substituted carbon skeletons. Herein, we report the first synthetic approach for differentially 2,3,3-trialkyl-substituted allylic boronates that contain a stereodefined tetrasubstituted alkene structure. Copper(I)-catalyzed regio- and stereoselective three-component coupling reactions between gem-dialkylallenes, alkyl halides, and a diboron reagent afforded sterically congested allylic boronates. The allylboration of aldehydes diastereoselectively furnished the corresponding homoallylic alcohols that bear a quaternary carbon. A computational study revealed that the selectivity-determining mechanism was correlated to the coordination of a boryl copper(I) species to the allene substrate as well as the borylcupration step.
Collapse
Affiliation(s)
- Yu Ozawa
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Kohei Endo
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
43
|
Barcellos AM, Sacramento M, da Costa GP, Perin G, João Lenardão E, Alves D. Organoboron compounds as versatile reagents in the transition metal-catalyzed C–S, C–Se and C–Te bond formation. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Chen J, Liang YJ, Wang PZ, Li GQ, Zhang B, Qian H, Huan XD, Guan W, Xiao WJ, Chen JR. Photoinduced Copper-Catalyzed Asymmetric C-O Cross-Coupling. J Am Chem Soc 2021; 143:13382-13392. [PMID: 34376050 DOI: 10.1021/jacs.1c06535] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The construction of carbon-heteroatom bonds is one of the most active areas of research in organic chemistry because the function of organic molecules is often derived from the presence of heteroatoms. Although considerable advances have recently been achieved in radical-involved catalytic asymmetric C-N bond formation, there has been little progress in the corresponding C-O bond-forming processes. Here, we describe a photoinduced copper-catalyzed cross-coupling of readily available oxime esters and 1,3-dienes to generate diversely substituted allylic esters with high regio- and enantioselectivity (>75 examples; up to 95% ee). The reaction proceeds at room temperature under excitation by purple light-emitting diodes (LEDs) and features the use of a single, earth-abundant copper-based chiral catalyst as both the photoredox catalyst for radical generation and the source of asymmetric induction in C-O coupling. Combined experimental and density functional theory (DFT) computational studies suggest the formation of π-allylcopper complexes from redox-active oxime esters as bifunctional reagents and 1,3-dienes through a radical-polar crossover process.
Collapse
Affiliation(s)
- Jun Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, People's Republic of China
| | - Yu-Jie Liang
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Peng-Zi Wang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, People's Republic of China
| | - Guo-Qing Li
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, People's Republic of China
| | - Bin Zhang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, People's Republic of China
| | - Hao Qian
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, People's Republic of China
| | - Xiao-Die Huan
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, People's Republic of China
| | - Wei Guan
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, People's Republic of China
| | - Jia-Rong Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, People's Republic of China
| |
Collapse
|
45
|
Iwasaki T, Hirooka Y, Takaya H, Honma T, Nozaki K. Lithium Hexaphenylrhodate(III) and -Iridate(III): Structure in the Solid State and in Solution. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takanori Iwasaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuko Hirooka
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hikaru Takaya
- Institute of Chemical Research, Kyoto University, Gokashou, Uji, Kyoto 611-0011, Japan
- Department of Photo-Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Tetsuo Honma
- Japan Synchrotron Radiation Research Institute (JASRI, SPring-8), Sayo, Hyogo 679-5198, Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
46
|
Lozano-Lavilla O, Gómez-Orellana P, Lledós A, Casares JA. Transmetalation Reactions Triggered by Electron Transfer between Organocopper Complexes. Inorg Chem 2021; 60:11633-11639. [PMID: 34259512 PMCID: PMC8609523 DOI: 10.1021/acs.inorgchem.1c01595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
![]()
[Cu(bipy)(C6F5)] reacts with most aryl iodides
to form heterobiphenyls by cross-coupling, but when Rf–I is
used (Rf = 3,5-dicholoro-2,4,6-trifluorophenyl), homocoupling products
are also formed. Kinetic studies suggest that, for the homocoupling
reaction, a mechanism based on transmetalation from [Cu(bipy)(C6F5)] to Cu(III) intermediates formed in the oxidative
addition step is at work. Density functional theory calculations show
that the interaction between these Cu(III) species and the starting
Cu(I) complex involves a Cu(I)–Cu(III) electron transfer concerted
with the formation of an iodine bridge between the metals and that
a fast transmetalation takes place in a dimer in a triplet state between
two Cu(II) units. In copper-catalyzed
cross-coupling reactions, electron-transfer
processes between Cu(I) and Cu(III) species are overlooked behind
RDS (C−X activation). Density functional theory studies considering
two molecules of the catalyst and two spin states throughout the course
of the reaction have revealed the feasibility of such a process and
the transmetalation between Cu(II) species, justifying in this way
the formation of homocoupling products.
Collapse
Affiliation(s)
- Olmo Lozano-Lavilla
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid 47011, Spain
| | - Pablo Gómez-Orellana
- Departament de Química, Edifici C.n. Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Agustí Lledós
- Departament de Química, Edifici C.n. Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Juan A Casares
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid 47011, Spain
| |
Collapse
|
47
|
Hu CY, Jiang ZW, Huang CZ, Li YF. Cu 2+-modified MOF as laccase-mimicking material for colorimetric determination and discrimination of phenolic compounds with 4-aminoantipyrine. Mikrochim Acta 2021; 188:272. [PMID: 34302224 DOI: 10.1007/s00604-021-04944-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
Based on the laccase-mimicking activity of Cu2+-modified University of Oslo (UiO) metal-organic framework (UiO-67-Cu2+), we developed a colorimetric sensor array for distinguishing a series of phenols with different number and position of substituted hydroxyl group (-OH) and different substituent group on the benzene ring, including phenol, catechol, quinol, resorcinol, pyrogallol, phloroglucinol, o-chlorophenol, o-aminophenol, and o-nitrophenol. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of phenolic compounds were obtained by theoretical calculation. The results show that the lower the LUMO energy level, the easier the chromogenic reaction occurs. The UiO-67-Cu2+-catalyzed phenol chromogenic reaction showed a good linearity in the range from 0.1 to 200 μM with limit of detection approximately 61 nM. Through the detection of phenol in tap water and river water, the recovery rate and RSD (n = 3) were calculated as 94.1~103% and 1.0~3.3, respectively, showing good recovery, reliable results, and outstanding stability. Therefore, the proposed colorimetric sensor array will have a great potential for the detection of phenols in the environment. Schematic presentation of a simple and sensitive colorimetric strategy based on the laccase-mimicking activity of Cu2+-modified UiO-type metal-organic framework (MOFs, Uio-67-Cu2+) to distinguish phenols with analogous structures.
Collapse
Affiliation(s)
- Cong Yi Hu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Zhong Wei Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, People's Republic of China.
| | - Yuan Fang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
48
|
Dumas A, Li D, Pinet S, Corona-Becerril D, Hanessian S. Divergent reactivities of 2-pyridyl sulfonate esters. Exceptionally mild access to alkyl bromides and 2-substituted pyridines. CAN J CHEM 2021. [DOI: 10.1139/cjc-2020-0510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A series of 2- and 3-pyridyl sulfonate and tosylate esters of primary and secondary alcohols were synthesized and evaluated in the bromination reaction with MgBr2·Et2O. The greater coordinating ability of the 2-pyridyl sulfonate esters accounted for its observed superior reactivity and selectivity. Reaction of neopentyl and phenyl 2-pyridyl sulfonates with a variety of aryl and heteroaryl Li reagents led to 2-substituted pyridines at temperatures as low as −78 °C via an SNAr process. Mechanistic considerations are discussed.
Collapse
Affiliation(s)
- Adrien Dumas
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC, Canada
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC, Canada
| | - Da Li
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC, Canada
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC, Canada
| | - Sonia Pinet
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC, Canada
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC, Canada
| | - David Corona-Becerril
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC, Canada
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC, Canada
| | - Stephen Hanessian
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC, Canada
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC, Canada
| |
Collapse
|
49
|
Goreshnik E. Copper(I) azide and copper(I) cyanate π-complexes. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1938013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Evgeny Goreshnik
- Department of Inorganic Chemistry and Technology, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
50
|
Deng H, Dong Y, Shangguan Y, Yang F, Han S, Wu J, Liang B, Guo H, Zhang C. Copper-Catalyzed Three-Component Carboboronation of Allenes Using Highly Strained Cyclic Ketimines as Electrophiles. Org Lett 2021; 23:4431-4435. [PMID: 33983748 DOI: 10.1021/acs.orglett.1c01372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A diastereoselective copper and NHC-ligand-catalyzed three-component difunctionalization of allenes with bis(pinacolato)diboron and 2H-azirines to afford borylated allylaziridines is described. The reaction exhibits complete diastereoselectivity and good yields, and the further chlorination of the corresponding borylated products was also performed. It is believed that the high ring-strain force of 2H-azirines facilitates the reaction. More chemical transformations of borylated allylaziridines are also reported.
Collapse
Affiliation(s)
- Hao Deng
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Yujie Dong
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Yu Shangguan
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Fazhou Yang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Sheng Han
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Jiaqi Wu
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Bo Liang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Cheng Zhang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| |
Collapse
|