1
|
Suzuki W, Takahata R, Mizuhata Y, Tokitoh N, Xue S, Teranishi T. Quantitative analysis of air-oxidation reactions of thiolate-protected gold nanoclusters. Chem Sci 2024:d4sc02995j. [PMID: 39464616 PMCID: PMC11503621 DOI: 10.1039/d4sc02995j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024] Open
Abstract
The interaction of dioxygen (O2) with inorganic nanomaterials is one of the most essential steps to understanding the reaction mechanism of O2-related reactions. However, quantitative analyses for O2-binding processes and subsequent oxidation reactions on the surface are still elusive, whereas the reaction of O2 with molecules such as transition metal complexes has been widely explored. Herein, we have quantitatively evaluated reaction processes of air-oxidation reactions of atomically precise thiolate-protected Au25 nanoclusters ([Au25(SR)18]-) as a model of O2 activation by inorganic nanomaterials. Kinetic analyses on the air-oxidation reaction of [Au25(SR)18]- revealed a controlling factor for O2-activation processes, which could be finely tunable by the protecting thiolate ligands.
Collapse
Affiliation(s)
- Wataru Suzuki
- Institute for Chemical Research, Kyoto University Uji Kyoto 611-0011 Japan
| | - Ryo Takahata
- Institute for Chemical Research, Kyoto University Uji Kyoto 611-0011 Japan
- Graduate School for Science, Kyoto University Uji Kyoto 611-0011 Japan
| | - Yoshiyuki Mizuhata
- Institute for Chemical Research, Kyoto University Uji Kyoto 611-0011 Japan
- Graduate School for Science, Kyoto University Uji Kyoto 611-0011 Japan
- Integrated Research Consortium on Chemical Sciences Uji Kyoto 611-0011 Japan
| | - Norihiro Tokitoh
- Institute for Chemical Research, Kyoto University Uji Kyoto 611-0011 Japan
- Graduate School for Science, Kyoto University Uji Kyoto 611-0011 Japan
- Integrated Research Consortium on Chemical Sciences Uji Kyoto 611-0011 Japan
| | - Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University 301 Xuefu Road Zhenjiang 212013 China
| | - Toshiharu Teranishi
- Institute for Chemical Research, Kyoto University Uji Kyoto 611-0011 Japan
- Graduate School for Science, Kyoto University Uji Kyoto 611-0011 Japan
| |
Collapse
|
2
|
Emeji IC, Kumi M, Meijboom R. Performance Evaluation of Benzyl Alcohol Oxidation with tert-Butyl Hydroperoxide to Benzaldehyde Using the Response Surface Methodology, Artificial Neural Network, and Adaptive Neuro-Fuzzy Inference System Model. ACS OMEGA 2024; 9:34464-34481. [PMID: 39157154 PMCID: PMC11325411 DOI: 10.1021/acsomega.4c02174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 08/20/2024]
Abstract
The adaptive neuro-fuzzy inference system (ANFIS), central composite experimental design (CCD)-response surface methodology (RSM), and artificial neural network (ANN) are used to model the oxidation of benzyl alcohol using the tert-butyl hydroperoxide (TBHP) oxidant to selectively yield benzaldehyde over a mesoporous ceria-zirconia catalyst. Characterization reveals that the produced catalyst has hysteresis loops, a sponge-like structure, and structurally induced reactivity. Three independent variables were taken into consideration while analyzing the ANN, RSM, and ANFIS models: the amount of catalyst (A), reaction temperature (B), and reaction time (C). With the application of optimum conditions, along with a constant (45 mmol) TBHP oxidant amount, (30 mmol) benzyl alcohol amount, and rigorous refluxing of 450 rpm, a maximum optimal benzaldehyde yield of 98.4% was obtained. To examine the acceptability of the models, further sensitivity studies including statistical error functions, analysis of variance (ANOVA) results, and the lack-of-fit test, among others, were employed. The obtained results show that the ANFIS model is the most suited to predicting benzaldehyde yield, followed by RSM. Green chemistry matrix calculations for the reaction reveal lower values of the E-factor (1.57), mass intensity (MI, 2.57), and mass productivity (MP, 38%), which are highly desirable for green and sustainable reactions. Therefore, utilizing a ceria-zirconia catalyst synthesized via the inverse micelle method for the oxidation of benzyl alcohol provides a green and sustainable methodology for the synthesis of benzaldehyde under mild conditions.
Collapse
Affiliation(s)
- Ikenna Chibuzor Emeji
- Faculty
of Science, Department of Chemical Sciences-APK, University of Johannesburg. P.O. Box 524, Auckland Park 2600 Johannesburg 2006, South Africa
| | - Michael Kumi
- CSIR
- Water Research Institute, P.O. Box
M32, Accra, Ghana
| | - Reinout Meijboom
- Faculty
of Science, Department of Chemical Sciences-APK, University of Johannesburg. P.O. Box 524, Auckland Park 2600 Johannesburg 2006, South Africa
| |
Collapse
|
3
|
Xia K, Yatabe T, Yonesato K, Kikkawa S, Yamazoe S, Nakata A, Ishikawa R, Shibata N, Ikuhara Y, Yamaguchi K, Suzuki K. Ultra-stable and highly reactive colloidal gold nanoparticle catalysts protected using multi-dentate metal oxide nanoclusters. Nat Commun 2024; 15:851. [PMID: 38321026 PMCID: PMC10847421 DOI: 10.1038/s41467-024-45066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Owing to their remarkable properties, gold nanoparticles are applied in diverse fields, including catalysis, electronics, energy conversion and sensors. However, for catalytic applications of colloidal gold nanoparticles, the trade-off between their reactivity and stability is a significant concern. Here we report a universal approach for preparing stable and reactive colloidal small (~3 nm) gold nanoparticles by using multi-dentate polyoxometalates as protecting agents in non-polar solvents. These nanoparticles exhibit exceptional stability even under conditions of high concentration, long-term storage, heating and addition of bases. Moreover, they display excellent catalytic performance in various oxidation reactions of organic substrates using molecular oxygen as the sole oxidant. Our findings highlight the ability of inorganic multi-dentate ligands with structural stability and robust steric and electronic effects to confer stability and reactivity upon gold nanoparticles. This approach can be extended to prepare metal nanoparticles other than gold, enabling the design of novel nanomaterials with promising applications.
Collapse
Affiliation(s)
- Kang Xia
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Takafumi Yatabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kentaro Yonesato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Soichi Kikkawa
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Ayako Nakata
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - Ryo Ishikawa
- Institute of Engineering Innovation, The University of Tokyo, Tokyo, Japan
| | - Naoya Shibata
- Institute of Engineering Innovation, The University of Tokyo, Tokyo, Japan
| | - Yuichi Ikuhara
- Institute of Engineering Innovation, The University of Tokyo, Tokyo, Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
4
|
Chen W, Zuo J, Sang K, Qian G, Zhang J, Chen D, Zhou X, Yuan W, Duan X. Leveraging the Proximity and Distribution of Cu-Cs Sites for Direct Conversion of Methanol to Esters/Aldehydes. Angew Chem Int Ed Engl 2024; 63:e202314288. [PMID: 37988201 DOI: 10.1002/anie.202314288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
Methanol serves as a versatile building-block for various commodity chemicals, and the development of industrially promising strategies for its conversion remains the ultimate goal in methanol chemistry. In this study, we design a dual Cu-Cs catalytic system that enables a one-step direct conversion of methanol and methyl acetate/ethanol into high value-added esters/aldehydes, with customized chain length and saturation by leveraging the proximity and distribution of Cu-Cs sites. Cu-Cs at a millimeter-scale intimacy triggers methanol dehydrogenation and condensation, involving proton transfer, aldol formation, and aldol condensation, to obtain unsaturated esters and aldehydes with selectivities of 76.3 % and 31.1 %, respectively. Cu-Cs at a micrometer-scale intimacy significantly promotes mass transfer of intermediates across catalyst interfaces and their subsequent hydrogenation to saturated esters and aldehydes with selectivities of 67.6 % and 93.1 %, respectively. Conversely, Cu-Cs at a nanometer-scale intimacy alters reaction pathway with a similar energy barrier for the rate-determining step, but blocks the acidic-basic sites and diverts the reaction to byproducts. More importantly, an unprecedented quadruple tandem catalytic production of methyl methacrylate (MMA) is achieved by further tailoring Cu and Cs distribution across the reaction bed in the configuration of Cu-Cs||Cs, outperforming the existing industrial processes and saving at least 15 % of production costs.
Collapse
Affiliation(s)
- Wenyao Chen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ji Zuo
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Keng Sang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Gang Qian
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jing Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - De Chen
- Department of Chemical Engineering, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weikang Yuan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
5
|
Wu F, Wang Y, Fei S, Zhu G. Co-Promoted CoNi Bimetallic Nanocatalyst for the Highly Efficient Catalytic Hydrogenation of Olefins. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1939. [PMID: 37446455 DOI: 10.3390/nano13131939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 07/15/2023]
Abstract
Bimetallic catalysts, especially non-noble metals, hold great potential for substituting for noble metals in catalytic hydrogenation. In present study, a series of CoxNiy (x + y = 6) bimetallic catalysts were prepared through the impregnation-reduction method and cyclohexene was chosen as probe-molecule to study the promotion effect of Co on the catalytic olefin hydrogenation reactions. Meanwhile, density functional theory (DFT) was utilized to investigate the formation energies and the charge distribution of CoNi bimetals, as well as the transition state (TS) searches for hydrogen dissociation and migration. The results suggest that bimetals tend to have superior catalytic performance than pure metals, and Co3Ni3 shows the highest catalytic activity on the cyclohexene hydrogenation. It was found that the charge transfer from Co to Ni and the alloying give rise to the refinement of CoNi grains and the improvement of its catalytic activity and stability. Thus, it may be possible to obtain better catalytic performance by tuning the metal/metal atomic ratio of bimetals.
Collapse
Affiliation(s)
- Fei Wu
- Wuhan Institute of Marine Electric Propulsion, Wuhan 430064, China
| | - Yueying Wang
- School of Materials Science & Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Shunxin Fei
- School of Materials Science & Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Gang Zhu
- Wuhan Institute of Marine Electric Propulsion, Wuhan 430064, China
| |
Collapse
|
6
|
Gregory JW, Gong Y, Han Y, Huband S, Walton RI, Hessel V, Rebrov EV. Au/TiO2 coatings for photocatalytic reduction of 4-nitrophenol to 4-aminophenol with green light. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
7
|
Gao P, Xu J, Zhou T, Liu Y, Bisz E, Dziuk B, Lalancette R, Szostak R, Zhang D, Szostak M. L-Shaped Heterobidentate Imidazo[1,5-a]pyridin-3-ylidene (N,C)-Ligands for Oxidant-Free Au I /Au III Catalysis. Angew Chem Int Ed Engl 2023; 62:e202218427. [PMID: 36696514 PMCID: PMC9992098 DOI: 10.1002/anie.202218427] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 01/26/2023]
Abstract
In the last decade, major advances have been made in homogeneous gold catalysis. However, AuI /AuIII catalytic cycle remains much less explored due to the reluctance of AuI to undergo oxidative addition and the stability of the AuIII intermediate. Herein, we report activation of aryl halides at gold(I) enabled by NHC (NHC=N-heterocyclic carbene) ligands through the development of a new class of L-shaped heterobidentate ImPy (ImPy=imidazo[1,5-a]pyridin-3-ylidene) N,C ligands that feature hemilabile character of the amino group in combination with strong σ-donation of the carbene center in a rigid conformation, imposed by the ligand architecture. Detailed characterization and control studies reveal key ligand features for AuI /AuIII redox cycle, wherein the hemilabile nitrogen is placed at the coordinating position of a rigid framework. Given the tremendous significance of homogeneous gold catalysis, we anticipate that this ligand platform will find widespread application.
Collapse
Affiliation(s)
- Pengcheng Gao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102 (United States)
| | - Jihong Xu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)
| | - Tongliang Zhou
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102 (United States)
| | - Yanhong Liu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)
| | - Elwira Bisz
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052 (Poland)
| | - Błażej Dziuk
- Department of Chemistry, University of Science and Technology, Norwida 4/6, Wroclaw 50-373 (Poland)
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102 (United States)
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383 (Poland)
| | - Dongju Zhang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102 (United States)
| |
Collapse
|
8
|
Zhong Y, Liao P, Kang J, Liu Q, Wang S, Li S, Liu X, Li G. Locking Effect in Metal@MOF with Superior Stability for Highly Chemoselective Catalysis. J Am Chem Soc 2023; 145:4659-4666. [PMID: 36791392 DOI: 10.1021/jacs.2c12590] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Ultrasmall metal nanoparticles (NPs) show high catalytic activity in heterogeneous catalysis but are prone to reunion and loss during the catalytic process, resulting in low chemoselectivity and poor efficiency. Herein, a locking effect strategy is proposed to synthesize high-loading and ultrafine metal NPs in metal-organic frameworks (MOFs) for efficient chemoselective catalysis with high stability. Briefly, the MOF ZIF-90 with aldehyde groups cooperating with diamine chains via aldimine condensation was interlocked, which was employed to confine in situ formation of Au NPs, denoted as Au@L-ZIF-90. The optimized Au@La-ZIF-90 has highly dispersed Au NPs (2.60 ± 0.81 nm) with a loading amount around 22 wt % and shows a great performance toward 3-aminophenylacetylene (3-APA) from the selective hydrogenation of 3-nitrophenylacetylene (3-NPA) with a high yield (99%) and excellent durability (over 20 cycles), far superior to contrast catalysts without chains locking and other reported catalysts. In addition, experimental characterization and systematic density functional theory calculations further demonstrate that the locked MOF modulates the charge of Au nanoparticles, making them highly specific for nitro group hydrogenation to obtain 3-APA with high selectivity (99%). Furthermore, this locking effect strategy is also applicable to other metal nanoparticles confined in a variety of MOFs, and all of these catalysts locked with chains show great selectivity (≥90%) of 3-APA. The proposed strategy in this work provides a novel and universal method for precise control of the inherent activity of accessible metal nanoparticles with a programmable MOF microenvironment toward highly specific catalysis.
Collapse
Affiliation(s)
- Yicheng Zhong
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Peisen Liao
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Jiawei Kang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Qinglin Liu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Shihan Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Suisheng Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Xianlong Liu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Guangqin Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| |
Collapse
|
9
|
Abed AS, Khalaf YH, Mishaal Mohammed A. Green Synthesis of Gold Nanoparticles as an Effective Opportunity for Cancer Treatment. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023] Open
|
10
|
Wang Y, Xu P, Xie W, Wang S, Chen Y, Yu N, Zhang S. Exploration of active sites of ethyl alcohol electro-oxidation on porous gold nanoparticles with enhanced Raman spectroscopy. RSC Adv 2023; 13:1333-1338. [PMID: 36686900 PMCID: PMC9811239 DOI: 10.1039/d2ra03863c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Novel porous gold nanospheres are prepared by calcination of the gold-urea complexes. The enhanced Raman spectra of ethanol catalyzed by different doses of porous gold nanospheres are measured with a 532 nm laser as the excitation source, and an enhanced charge coupled device served in spectral detection and microscopic imaging. The electrochemical experiments show that the catalytic oxidation products of ethanol with porous gold nanoparticles are acetaldehyde, acetic acid, and water, which further proved that the porous gold nanoparticles can activate the -CH2 of ethanol.
Collapse
Affiliation(s)
- Yusong Wang
- AnHui Provincial Engineering Research Center for Polysaccharide Drugs and Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical CollegeWuhu 241002P.R. China
| | - Peng Xu
- Anhui Normal UniversityWuhu 241002P. R. China
| | - Wenjie Xie
- AnHui Provincial Engineering Research Center for Polysaccharide Drugs and Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical CollegeWuhu 241002P.R. China
| | - Shaozhen Wang
- AnHui Provincial Engineering Research Center for Polysaccharide Drugs and Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical CollegeWuhu 241002P.R. China
| | - Yunyan Chen
- AnHui Provincial Engineering Research Center for Polysaccharide Drugs and Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical CollegeWuhu 241002P.R. China
| | - Nan Yu
- Anhui Normal UniversityWuhu 241002P. R. China
| | - Shengpeng Zhang
- AnHui Provincial Engineering Research Center for Polysaccharide Drugs and Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical CollegeWuhu 241002P.R. China
| |
Collapse
|
11
|
Gold nanoparticles supported on carbon coated magnetic nanoparticles; a robustness and effective catalyst for aerobic alcohols oxidation in water. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Guan ZJ, Li JJ, Hu F, Wang QM. Structural Engineering toward Gold Nanocluster Catalysis. Angew Chem Int Ed Engl 2022; 61:e202209725. [PMID: 36169269 DOI: 10.1002/anie.202209725] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Indexed: 12/14/2022]
Abstract
Atomically precise gold nanoclusters provide great opportunities to explore the relationship between the structure and properties of nanogold catalysts. A nanocluster consists of a metal core and a surface ligand shell, and both the core and shell have significant effects on the catalytic properties. Thanks to their precise structures, the active metal site of the clusters can be readily identified and the effects of ligands on catalysis can be disclosed. In this Minireview, we summarize recent advances in catalytic research of gold nanoclusters, emphasizing four strategies for constructing open metal sites, including by post-treatment, the bulky ligands strategy, the surface geometric mismatch method, and heteroatom doping procedures. We also discuss the effects of ligands on the catalytic activity, selectivity, and stability of gold cluster catalysts. Finally, we present future challenges relating to gold cluster catalysis.
Collapse
Affiliation(s)
- Zong-Jie Guan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P.R. China.,Department of Chemistry, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Jiao-Jiao Li
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P.R. China
| | - Feng Hu
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P.R. China
| | - Quan-Ming Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|
13
|
Hasegawa S, Masuda S, Takano S, Harano K, Kikkawa J, Tsukuda T. Synergistically Activated Pd Atom in Polymer-Stabilized Au 23Pd 1 Cluster. ACS NANO 2022; 16:16932-16940. [PMID: 36191255 DOI: 10.1021/acsnano.2c06996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Single Pd atom doped Au23Pd1 clusters stabilized by polyvinylpyrrolidone (Au23Pd1:PVP) were selectively synthesized by kinetically controlled coreduction of the Au and Pd precursor ions. The geometric structure of Au23Pd1:PVP was investigated by density functional theory calculation, aberration-corrected transmission electron microscopy, extended X-ray absorption fine structure analysis, Fourier transform infrared spectroscopy of adsorbed CO, and hydrogenation catalysis. These results showed that Au23Pd1:PVP takes polydisperse but the same atomic arrangements as undoped Au24:PVP while exposing all the atoms including the Pd atom on the surface. Au23Pd1:PVP exhibited a significantly higher catalytic activity than Au24:PVP for the aerobic oxidation of p-substituted benzyl alcohols. The kinetic studies showed that the rate-determining step was the hydride abstraction from the α-carbon of the alkoxides for both systems. The activation energy for hydride abstraction by Au23Pd1:PVP was lower than that by Au24:PVP, indicating that the doped Pd atom acts as the active center.
Collapse
Affiliation(s)
- Shingo Hasegawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Shinya Masuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Shinjiro Takano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Koji Harano
- Research Center for Advanced Measurement and Characterization, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki305-0044, Japan
| | - Jun Kikkawa
- Research Center for Advanced Measurement and Characterization, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki305-0044, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-0033, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto615-8520, Japan
| |
Collapse
|
14
|
Monti E, Ventimiglia A, Soto CAG, Martelli F, Rodríguez-Aguado E, Cecilia JA, Maireles-Torres P, Ospitali F, Tabanelli T, Albonetti S, Cavani F, Dimitratos N. Oxidative condensation/esterification of furfural with ethanol using preformed Au colloidal nanoparticles. Impact of stabilizer and heat treatment protocols on catalytic activity and stability. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Yamaguchi K, Jin X, Yatabe T, Suzuki K. Development of Environmentally Friendly Dehydrogenative Oxidation Reactions Using Multifunctional Heterogeneous Catalysts. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656
| | - Xiongjie Jin
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656
| | - Takafumi Yatabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656
| |
Collapse
|
16
|
Iordanidou D, Kallitsakis MG, Tzani MA, Ioannou DI, Zarganes-Tzitzikas T, Neochoritis CG, Dömling A, Terzidis MA, Lykakis IN. Supported Gold Nanoparticle-Catalyzed Selective Reduction of Multifunctional, Aromatic Nitro Precursors into Amines and Synthesis of 3,4-Dihydroquinoxalin-2-Ones. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144395. [PMID: 35889270 PMCID: PMC9323044 DOI: 10.3390/molecules27144395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022]
Abstract
The synthesis of 3,4-dihydroquinoxalin-2-ones via the selective reduction of aromatic, multifunctional nitro precursors catalyzed by supported gold nanoparticles is reported. The reaction proceeds through the in situ formation of the corresponding amines under heterogeneous transfer hydrogenation of the initial nitro compounds catalyzed by the commercially available Au/TiO2-Et3SiH catalytic system, followed by an intramolecular C-N transamidation upon treatment with silica acting as a mild acid. Under the present conditions, the Au/TiO2-TMDS system was also found to catalyze efficiently the present selective reduction process. Both transfer hydrogenation processes showed very good functional-group tolerance and were successfully applied to access more structurally demanding products bearing other reducible moieties such as chloro, aldehyde or methyl ketone. An easily scalable (up to 1 mmol), low catalyst loading (0.6 mol%) synthetic protocol was realized, providing access to this important scaffold. Under these mild catalytic conditions, the desired products were isolated in good to high yields and with a TON of 130. A library analysis was also performed to demonstrate the usefulness of our synthetic strategy and the physicochemical profile of the derivatives.
Collapse
Affiliation(s)
- Domna Iordanidou
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (D.I.); (M.G.K.); (M.A.T.); (D.I.I.)
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos Campus, 57400 Thessaloniki, Greece
| | - Michael G. Kallitsakis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (D.I.); (M.G.K.); (M.A.T.); (D.I.I.)
| | - Marina A. Tzani
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (D.I.); (M.G.K.); (M.A.T.); (D.I.I.)
| | - Dimitris I. Ioannou
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (D.I.); (M.G.K.); (M.A.T.); (D.I.I.)
| | | | | | - Alexander Dömling
- Department of Pharmacy, University of Groningen, A. Deusinglaan 1, 9700 AV Groningen, The Netherlands;
| | - Michael A. Terzidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos Campus, 57400 Thessaloniki, Greece
- Correspondence: (M.A.T.); (I.N.L.)
| | - Ioannis N. Lykakis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (D.I.); (M.G.K.); (M.A.T.); (D.I.I.)
- Correspondence: (M.A.T.); (I.N.L.)
| |
Collapse
|
17
|
Han Q, Zhang XY, Wu HB, Zhou XT, Ji HB. Different efficiency toward the biomimetic aerobic oxidation of benzyl alcohol in microchannel and bubble column reactors: Hydrodynamic characteristics and gas-liquid mass transfer. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Weissenberger T, Kapil N, Trogadas P, Coppens MO. One‐pot synthesis of hierarchical, micro‐macroporous zeolites with encapsulated metal particles as sinter‐resistant, bifunctional catalysts. ChemCatChem 2022. [DOI: 10.1002/cctc.202200268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tobias Weissenberger
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute of Chemical Reaction Engineering Egerlandstr. 3 91058 Erlangen GERMANY
| | - Nidhi Kapil
- University College London Department of Chemical Engineering Torrington Place WC1E 7JE London UNITED KINGDOM
| | - Panagiotis Trogadas
- University College London Department of Chemical Engineering Torrington Place WC1E 7JE London UNITED KINGDOM
| | - Marc-Olivier Coppens
- University College London Department of Chemical Engineering Torrington Place WC1E 7JE London GERMANY
| |
Collapse
|
19
|
Buonerba A, Noschese A, Capacchione C, Grassi A. Gold nanoparticles supported on poly(2,6‐dimethyl‐1,4‐phenylene oxide) as robust, selective and cost‐effective catalyst for aerobic oxidation and direct esterification of alcohols. ChemCatChem 2022. [DOI: 10.1002/cctc.202200338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Antonio Buonerba
- University of Salerno Department of Chemistry and Biology: Universita degli Studi di Salerno Dipartimento di Chimica e Biologia A Zambelli Chemistry and Biology via Giovanni Paolo II 84084 Fisciano ITALY
| | - Annarita Noschese
- University of Salerno Department of Chemistry and Biology: Universita degli Studi di Salerno Dipartimento di Chimica e Biologia A Zambelli Chemistry and Biology ITALY
| | - Carmine Capacchione
- University of Salerno Department of Chemistry and Biology: Universita degli Studi di Salerno Dipartimento di Chimica e Biologia A Zambelli Chemistry and Biology ITALY
| | - Alfonso Grassi
- University of Salerno Department of Chemistry and Biology: Universita degli Studi di Salerno Dipartimento di Chimica e Biologia A Zambelli Chemistry and Biology ITALY
| |
Collapse
|
20
|
Martínez-Laguna J, Mollar-Cuni A, Ventura-Espinosa D, Martín S, Caballero A, Mata JA, Pérez PJ. Gold nanoparticle-catalysed functionalization of carbon-hydrogen bonds by carbene transfer reactions. Dalton Trans 2022; 51:5250-5256. [PMID: 35285846 DOI: 10.1039/d1dt04351j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gold nanoparticles stabilized by NHC ligands and supported onto reduced graphene oxide (rGO) catalyse the functionalization of cyclohexane and benzene C-H bonds upon insertion of carbene CHCO2Et (from N2CHCO2Et) groups. This is the first example in which such Csp3-H or Csp2-H bonds are functionalized with this strategy with nanoparticulated gold. This Au-NP@rGO material shows an exceptional activity, providing TON values 5-10 times higher than those already reported for molecular gold catalysts. Recyclability is also effective, reaching an accumulated TON value of 1400 after six consecutive uses.
Collapse
Affiliation(s)
- Jonathan Martínez-Laguna
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química. Universidad de Huelva, Campus de El Carmen s/n, 21007-Huelva, Spain.
| | - Andrés Mollar-Cuni
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINCA). Universitat Jaume I, Avda. Sos Baynat s/n, 12006-Castellón, Spain.
| | - David Ventura-Espinosa
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINCA). Universitat Jaume I, Avda. Sos Baynat s/n, 12006-Castellón, Spain.
| | - Santiago Martín
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.,Departamento de Química Física, Universidad de Zaragoza, 50009, Zaragoza (Spain) and Laboratorio de Microscopias Avanzadas (LMA). Universidad de Zaragoza, Edificio I+D+i. 50018, Zaragoza, Spain
| | - Ana Caballero
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química. Universidad de Huelva, Campus de El Carmen s/n, 21007-Huelva, Spain.
| | - Jose A Mata
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINCA). Universitat Jaume I, Avda. Sos Baynat s/n, 12006-Castellón, Spain.
| | - Pedro J Pérez
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química. Universidad de Huelva, Campus de El Carmen s/n, 21007-Huelva, Spain.
| |
Collapse
|
21
|
Shao K, Tian Y, Zhang J. A Mechanistic Study of Thermal Decomposition of 1,1,2,2-Tetramethyldisilane Using Vacuum Ultraviolet Photoionization Time-of-Flight Mass Spectrometry. J Phys Chem A 2022; 126:1085-1093. [PMID: 35138857 DOI: 10.1021/acs.jpca.1c07661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thermal decomposition of 1,1,2,2-tetramethyldisilane was performed by flash pyrolysis in a SiC microreactor in the temperature range from 295 to 1340 K, followed by molecular beam sampling and vacuum ultraviolet photoionization mass spectrometry analysis. Density functional theory investigations on the energetics of reactants, intermediates, and products were carried out to support the experimental observations. Energetics for 1,1,2,2-tetramethyldisilane initiation decomposition reactions and important secondary reactions were calculated. Dimethylsilane, dimethylsilyl radicals, dimethylsilylene, trimethylsilane, and tetramethyldisilene were determined as the primary reaction products in the initiation thermal decompositions of 1,1,2,2-tetramethyldisilane. Further decomposition reactions of tetramethyldisilene, such as production of dimethylsilene (m/z = 72) and eventually SiC3H4 (m/z = 68) fragments, were examined. Other products from secondary reactions of dimethylsilane and dimethylsilylene such as SiC2H2-6 and SiCH0-4 were also observed. The comprehensive pyrolysis mechanism of 1,1,2,2-tetramethyldisilane was proposed.
Collapse
Affiliation(s)
- Kuanliang Shao
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yi Tian
- Department of Chemistry, Stony Brook University, New York, NY 11794, United States
| | - Jingsong Zhang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
22
|
Muddapur UM, Alshehri S, Ghoneim MM, Mahnashi MH, Alshahrani MA, Khan AA, Iqubal SMS, Bahafi A, More SS, Shaikh IA, Mannasaheb BA, Othman N, Maqbul MS, Ahmad MZ. Plant-Based Synthesis of Gold Nanoparticles and Theranostic Applications: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041391. [PMID: 35209180 PMCID: PMC8875495 DOI: 10.3390/molecules27041391] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023]
Abstract
Bionanotechnology is a branch of science that has revolutionized modern science and technology. Nanomaterials, especially noble metals, have attracted researchers due to their size and application in different branches of sciences that benefit humanity. Metal nanoparticles can be synthesized using green methods, which are good for the environment, economically viable, and facilitate synthesis. Due to their size and form, gold nanoparticles have become significant. Plant materials are of particular interest in the synthesis and manufacture of theranostic gold nanoparticles (NPs), which have been generated using various materials. On the other hand, chemically produced nanoparticles have several drawbacks in terms of cost, toxicity, and effectiveness. A plant-mediated integration of metallic nanoparticles has been developed in the field of nanotechnology to overcome the drawbacks of traditional synthesis, such as physical and synthetic strategies. Nanomaterials′ tunable features make them sophisticated tools in the biomedical platform, especially for developing new diagnostics and therapeutics for malignancy, neurodegenerative, and other chronic disorders. Therefore, this review outlines the theranostic approach, the different plant materials utilized in theranostic applications, and future directions based on current breakthroughs in these fields.
Collapse
Affiliation(s)
- Uday M. Muddapur
- Department of Biotechnology, KLE Technological University, Hubbali 580031, India
- Correspondence: (U.M.M.); (S.M.S.I.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Dariyah 13713, Saudi Arabia; (M.M.G.); (B.A.M.)
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 66462, Saudi Arabia;
| | - Mohammed Abdulrahman Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 66462, Saudi Arabia;
| | - Aejaz Abdullatif Khan
- Department of General Science, Ibn Sina National College for Medical Studies, Al Mahajar Street, P.O. Box 31906, Jeddah 21418, Saudi Arabia;
| | - S. M. Shakeel Iqubal
- Department of General Science, Ibn Sina National College for Medical Studies, Al Mahajar Street, P.O. Box 31906, Jeddah 21418, Saudi Arabia;
- Correspondence: (U.M.M.); (S.M.S.I.)
| | - Amal Bahafi
- Department of Pharmaceutical Chemistry, Ibn Sina National College for Medical Studies, Al Mahajar Street, P.O. Box 31906, Jeddah 21418, Saudi Arabia;
| | - Sunil S. More
- School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore 560078, Karnataka, India;
| | - Ibrahim Ahmed Shaikh
- Department of Pharmacology, College of Pharmacy, Najran University, Najran 66462, Saudi Arabia;
| | | | - Noordin Othman
- Clinical and Hospital Pharmacy Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah 41311, Saudi Arabia;
- Department of Clinical Pharmacy, School of Pharmacy, Management and Science University, University Drive, Off Persiaran Olahraga, Shah Alam 40100, Selangor, Malaysia
| | - Muazzam Sheriff Maqbul
- Department of Microbiology and Immunology, Ibn Sina National College for Medical Studies, Jeddah 21418, Saudi Arabia;
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 66462, Saudi Arabia;
| |
Collapse
|
23
|
Tiwari M, Ramachandran C. Clustering of Auro-acetylenes via C-Au… π Interactions: Gold-Hydrogen Analogy. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Hou D, Heard CJ. Migration of zeolite-encapsulated Pt and Au under reducing environments. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02270a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Simulations reveal accelerated migration of Pt@zeolite by reducing adsorbates and the importance of PtCO in early stages of particle growth.
Collapse
Affiliation(s)
- Dianwei Hou
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, 128 43 Prague 2, Czech Republic
| | - Christopher J. Heard
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, 128 43 Prague 2, Czech Republic
| |
Collapse
|
25
|
Lin P, Shang R, Zhang Q, Gu B, Tang Q, Jing F, Cao Q, Fang W. One-pot synthesis of finely-dispersed Au nanoparticles on ZnO hexagonal sheets for base-free aerobic oxidation of vanillyl alcohol. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00837h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Highly-dispersed and small-sized Au (2.2 nm)/ZnO catalyst was prepared using metal ions and 2-methylimidazole by one-pot coordination–calcination method, and showed superior performances for vanillin synthesis via base-free oxidation.
Collapse
Affiliation(s)
- Peng Lin
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, 2 North Cuihu Road, 650091 Kunming, China
| | - Rong Shang
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, 2 North Cuihu Road, 650091 Kunming, China
| | - Qizhao Zhang
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, 2 North Cuihu Road, 650091 Kunming, China
| | - Bang Gu
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, 2 North Cuihu Road, 650091 Kunming, China
| | - Qinghu Tang
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, 453007 Xinxiang, China
| | - Fangli Jing
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, 610500 Chengdu, China
| | - Qiue Cao
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, 2 North Cuihu Road, 650091 Kunming, China
| | - Wenhao Fang
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, 2 North Cuihu Road, 650091 Kunming, China
| |
Collapse
|
26
|
Louka A, Stratakis M. Deoxygenation of Epoxides with Hexamethyldigermane Catalyzed by Au Nanoparticles on TiO
2. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anastasia Louka
- Department of Chemistry University of Crete Voutes 71003 Heraklion Greece
| | - Manolis Stratakis
- Department of Chemistry University of Crete Voutes 71003 Heraklion Greece
| |
Collapse
|
27
|
Anand S, Pinheiro D, Sunaja Devi KR. Recent Advances in Hydrogenation Reactions Using Bimetallic Nanocatalysts: A Review. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Samika Anand
- Department of Chemistry CHRIST (Deemed to be University) Bangalore 560029 Karnataka India
| | - Dephan Pinheiro
- Department of Chemistry CHRIST (Deemed to be University) Bangalore 560029 Karnataka India
| | - K. R. Sunaja Devi
- Department of Chemistry CHRIST (Deemed to be University) Bangalore 560029 Karnataka India
| |
Collapse
|
28
|
Han Q, Zhou XT, He XQ, Ji HB. Mechanism and kinetics of the aerobic oxidation of benzyl alcohol to benzaldehyde catalyzed by cobalt porphyrin in a membrane microchannel reactor. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Dash SS, Sen IK, Dash SK. A review on the plant extract mediated green syntheses of gold nanoparticles and its anti-microbial, anti-cancer and catalytic applications. INTERNATIONAL NANO LETTERS 2021. [DOI: 10.1007/s40089-021-00358-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Nagano K, Terada Y, Araki A, Osaki S, Saito M, Tamiya E. Gold Nanocatalysts Towards Digital Sensing Probes with Electrochemiluminescence Based Micro Electrodes Array. ELECTROANAL 2021. [DOI: 10.1002/elan.202100312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Kohei Nagano
- Department of Applied Physics, Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Yuhei Terada
- Advanced Photonics and Biosensing Open Innovation Laboratory National Institute of Advanced Industrial Science and Technology Photonics Center Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Akiko Araki
- Department of Applied Physics, Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Shuto Osaki
- Department of Applied Physics, Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Masato Saito
- Department of Applied Physics, Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Eiichi Tamiya
- Advanced Photonics and Biosensing Open Innovation Laboratory National Institute of Advanced Industrial Science and Technology Photonics Center Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
- Institute of Scientific and Industrial Research Osaka University 8-1 Mihogaoka Ibaraki Osaka 567-0047 Japan
| |
Collapse
|
31
|
Daikopoulou V, Skliri E, Koutsouroubi ED, Armatas GS, Lykakis IN. Selective Mild Oxidation of Anilines into Nitroarenes by Catalytic Activation of Mesoporous Frameworks Linked with Gold-Loaded Mn 3 O 4 Nanoparticles. Chempluschem 2021; 87:e202100413. [PMID: 34709733 DOI: 10.1002/cplu.202100413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/13/2021] [Indexed: 11/10/2022]
Abstract
This work reports the synthesis and catalytic application of mesoporous Au-loaded Mn3 O4 nanoparticle assemblies (MNAs) with different Au contents, i. e., 0.2, 0.5 and 1 wt %, towards the selective oxidation of anilines into the corresponding nitroarenes. Among common oxidants, as well as several supported gold nanoparticle platforms, Au/Mn3 O4 MNAs containing 0.5 wt % Au with an average particle size of 3-4 nm show the best catalytic performance in the presence of tert-butyl hydroperoxide (TBHP) as a mild oxidant. In all cases, the corresponding nitroarenes were isolated in high to excellent yields (85-97 %) and selectivity (>98 %) from acetonitrile or greener solvents, such as ethyl acetate, after simple flash chromatography purification. The 0.5 % Au/Mn3 O4 catalyst can be isolated and reused four times without a significant loss of its activity and can be applied successfully to a lab-scale reaction of p-toluidine (1 mmol) leading to the p-nitrotulene in 83 % yield. The presence of AuNPs on the Mn3 O4 surface enhances the catalytic activity for the formation of the desired nitroarene. A reasonable mechanism was proposed including the plausible formation of two intermediates, the corresponding N-aryl hydroxylamine and the nitrosoarene.
Collapse
Affiliation(s)
- Vassiliki Daikopoulou
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | - Euaggelia Skliri
- Department of Materials Science and Technology, University of Crete, Vassilika Vouton, Heraklion, 70013, Greece
| | - Eirini D Koutsouroubi
- Department of Materials Science and Technology, University of Crete, Vassilika Vouton, Heraklion, 70013, Greece
| | - Gerasimos S Armatas
- Department of Materials Science and Technology, University of Crete, Vassilika Vouton, Heraklion, 70013, Greece
| | - Ioannis N Lykakis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| |
Collapse
|
32
|
Eisen C, Chin JM, Reithofer MR. Catalytically Active Gold Nanomaterials Stabilized by N-heterocyclic Carbenes. Chem Asian J 2021; 16:3026-3037. [PMID: 34399027 PMCID: PMC8597167 DOI: 10.1002/asia.202100731] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Indexed: 12/04/2022]
Abstract
Solid supported or ligand capped gold nanomaterials (AuNMs) emerged as versatile and recyclable heterogeneous catalysts for a broad variety of conversions in the ongoing catalytic 'gold rush'. Existing at the border of homogeneous and heterogeneous catalysis, AuNMs offer the potential to merge high catalytic activity with significant substrate selectivity. Owing to their strong binding towards the surface atoms of AuMNs, NHCs offer tunable activation of surface atoms while maintaining selectivity and stability of the NM even under challenging conditions. This work summarizes well-defined catalytically active NHC capped AuNMs including spherical nanoparticles and atom-precise nanoclusters as well as the important NHC design choices towards activity and (stereo-)selectivity enhancements.
Collapse
Affiliation(s)
- Constantin Eisen
- Department of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaWähringer Straße 421090ViennaAustria
| | - Jia Min Chin
- Department of Physical ChemistryFaculty of ChemistryUniversity of ViennaWähringer Straße 421090ViennaAustria
| | - Michael R. Reithofer
- Department of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaWähringer Straße 421090ViennaAustria
| |
Collapse
|
33
|
Synthesis of Gold Nanoparticles Using Tannin-Rich Extract and Coating onto Cotton Textiles for Catalytic Degradation of Congo Red. JOURNAL OF NANOTECHNOLOGY 2021. [DOI: 10.1155/2021/6380283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Gold nanoparticles (AuNPs) were synthesized under ambient conditions from chloroauric acid in aqueous solution at pH 4. Tannin-rich extract from Xylocarpus granatum bark was used as both reducing and capping agent, rapidly converting Au (I) salt to AuNPs. Transmission electron microscopy showed the as-prepared AuNPs to be predominantly spherical, with an average diameter of 17 nm. The AuNPs were tested for catalytic reduction of Congo red (CR), a carcinogenic azo dye, in aqueous sodium borohydride solution. Cotton samples were coated with the AuNPs, taking on a reddish-purple color. The samples showed significantly reduced tearing strength after coating, though tensile strength was unaffected. UV-visible spectroscopy was used to determine the dye concentration in the water. CR degradation was observed only when AuNPs were present, and the efficiency of degradation was strongly linked to the AuNP loading. The AuNP-coated fabrics left only a 4.7% CR concentration in the solution after 24 h and therefore promise as a heterogeneous catalyst for degradation of CR in aqueous solution.
Collapse
|
34
|
Gao J, Ma R, Feng L, Liu Y, Jackstell R, Jagadeesh RV, Beller M. Ambient Hydrogenation and Deuteration of Alkenes Using a Nanostructured Ni‐Core–Shell Catalyst. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jie Gao
- Leibniz Leibniz-Institut für Katalyse e.V. Albert-Einstein-Strasse 29a 18059 Rostock Germany
| | - Rui Ma
- Leibniz Leibniz-Institut für Katalyse e.V. Albert-Einstein-Strasse 29a 18059 Rostock Germany
| | - Lu Feng
- Dalian National Laboratory for Clean Energy (DNL) Dalian Institute of Chemical Physics Chinese Academy of Science 457 Zhongshan Road 116023 Dalian China
| | - Yuefeng Liu
- Dalian National Laboratory for Clean Energy (DNL) Dalian Institute of Chemical Physics Chinese Academy of Science 457 Zhongshan Road 116023 Dalian China
| | - Ralf Jackstell
- Leibniz Leibniz-Institut für Katalyse e.V. Albert-Einstein-Strasse 29a 18059 Rostock Germany
| | | | - Matthias Beller
- Leibniz Leibniz-Institut für Katalyse e.V. Albert-Einstein-Strasse 29a 18059 Rostock Germany
| |
Collapse
|
35
|
Gao J, Ma R, Feng L, Liu Y, Jackstell R, Jagadeesh RV, Beller M. Ambient Hydrogenation and Deuteration of Alkenes Using a Nanostructured Ni-Core-Shell Catalyst. Angew Chem Int Ed Engl 2021; 60:18591-18598. [PMID: 34076934 PMCID: PMC8453733 DOI: 10.1002/anie.202105492] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Indexed: 11/08/2022]
Abstract
A general protocol for the selective hydrogenation and deuteration of a variety of alkenes is presented. Key to success for these reactions is the use of a specific nickel-graphitic shell-based core-shell-structured catalyst, which is conveniently prepared by impregnation and subsequent calcination of nickel nitrate on carbon at 450 °C under argon. Applying this nanostructured catalyst, both terminal and internal alkenes, which are of industrial and commercial importance, were selectively hydrogenated and deuterated at ambient conditions (room temperature, using 1 bar hydrogen or 1 bar deuterium), giving access to the corresponding alkanes and deuterium-labeled alkanes in good to excellent yields. The synthetic utility and practicability of this Ni-based hydrogenation protocol is demonstrated by gram-scale reactions as well as efficient catalyst recycling experiments.
Collapse
Affiliation(s)
- Jie Gao
- Leibniz Leibniz-Institut für Katalyse e.V.Albert-Einstein-Strasse 29a18059RostockGermany
| | - Rui Ma
- Leibniz Leibniz-Institut für Katalyse e.V.Albert-Einstein-Strasse 29a18059RostockGermany
| | - Lu Feng
- Dalian National Laboratory for Clean Energy (DNL)Dalian Institute of Chemical PhysicsChinese Academy of Science457 Zhongshan Road116023DalianChina
| | - Yuefeng Liu
- Dalian National Laboratory for Clean Energy (DNL)Dalian Institute of Chemical PhysicsChinese Academy of Science457 Zhongshan Road116023DalianChina
| | - Ralf Jackstell
- Leibniz Leibniz-Institut für Katalyse e.V.Albert-Einstein-Strasse 29a18059RostockGermany
| | | | - Matthias Beller
- Leibniz Leibniz-Institut für Katalyse e.V.Albert-Einstein-Strasse 29a18059RostockGermany
| |
Collapse
|
36
|
Liu J, Liang J, Xue J, Liang K. Metal-Organic Frameworks as a Versatile Materials Platform for Unlocking New Potentials in Biocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100300. [PMID: 33949785 DOI: 10.1002/smll.202100300] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Biocatalysts immobilization with nanomaterials has promoted the development of biocatalysis significantly and made it an indispensable part of catalysis industries nowadays. Metal-organic frameworks (MOFs), constructed from organic linkers and metal ions or clusters, have raised significant interests for biocatalysts immobilization in recent years. The diversity of building units, molecular-scale tunability, and modular synthetic routes of MOFs greatly expand its ability as the host to integrate with biocatalysts. In this review, the general synthetic strategies of MOFs with biocatalysts are first summarized. Then, the recent progress of MOFs as a versatile host for a series of biocatalysts, including natural enzymes, nanozymes, and organism-based biocatalysts, followed by the introduction of MOFs themselves as biocatalysts, is discussed. Furthermore, the stimuli-responsive properties of MOFs themselves or the additional functionalization of protein, polymer, and peptide within/on MOF that enable the biocatalysts with the controllable and tunable behavior are also summarized, which could unlock new potentials in biocatalysis. Finally, a perspective of the upcoming challenges, potential impacts, and future directions of biocatalytic MOFs is provided.
Collapse
Affiliation(s)
- Jian Liu
- School of Chemical Engineering and Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jieying Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jueyi Xue
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Kang Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
37
|
Analysis of the Reduction of 4-Nitrophenol Catalyzed by Para-Mercaptobenzoic Acid Capped Magic Number Gold Clusters. Catal Letters 2021. [DOI: 10.1007/s10562-021-03727-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Jouhannet R, Dagorne S, Blanc A, de Frémont P. Chiral Gold(III) Complexes: Synthesis, Structure, and Potential Applications. Chemistry 2021; 27:9218-9240. [PMID: 33780060 DOI: 10.1002/chem.202100415] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Indexed: 11/10/2022]
Abstract
Since the beginning of the 2000's, homogeneous gold catalysis has emerged as a powerful tool to promote the cyclization of unsaturated substrates with excellent regioselectivity allowing the synthesis of elaborated organic scaffolds. An important goal to achieve in gold catalysis is the possibility to induce enantioselective transformations by the assistance of chiral complexes. Unfortunately, the linear geometry of coordination for gold usually encountered in complexes at the +1 oxidation states renders this goal very challenging. In consequence, the interest toward the synthesis of chiral gold(III) complexes is steadily growing. Indeed, the square planar geometry of the gold(III) cation appears more suitable to promote chiral induction. Beside catalysis, gold(III) complexes have also shown promising potential in the field of pharmacology. Herein, syntheses and applications of well-defined gold(III) complexes reported over the last fifteen years are summarized.
Collapse
Affiliation(s)
- Rémi Jouhannet
- Equipe de Synthèse, Réactivité et Catalyse Organométalliques, UMR 7177 CNRS), Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
| | - Samuel Dagorne
- Equipe de Synthèse, Réactivité et Catalyse Organométalliques, UMR 7177 CNRS), Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
| | - Aurélien Blanc
- Laboratoire de Synthèse, Réactivité Organique et Catalyse, UMR 7177 CNRS), Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
| | - Pierre de Frémont
- Equipe de Synthèse, Réactivité et Catalyse Organométalliques, UMR 7177 CNRS), Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
| |
Collapse
|
39
|
Sun F, Deng C, Tian S, Tang Q. Oxygen Electrocatalysis by [Au25(SR)18]: Charge, Doping, and Ligand Removal Effect. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Chaofang Deng
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
- Cooperative Innovation Center of Lipid Resources and Children’s Daily Chemicals, Chongqing University of Education, Chongqing 400067, China
| | - Shufang Tian
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| |
Collapse
|
40
|
Trends in Sustainable Synthesis of Organics by Gold Nanoparticles Embedded in Polymer Matrices. Catalysts 2021. [DOI: 10.3390/catal11060714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Gold nanoparticles (AuNPs) have emerged in recent decades as attractive and selective catalysts for sustainable organic synthesis. Nanostructured gold is indeed environmentally friendly and benign for human health; at the same time, it is active, under different morphologies, in a large variety of oxidation and reduction reactions of interest for the chemical industry. To stabilize the AuNPs and optimize the chemical environment of the catalytic sites, a wide library of natural and synthetic polymers has been proposed. This review describes the main routes for the preparation of AuNPs supported/embedded in synthetic organic polymers and compares the performances of these catalysts with those of the most popular AuNPs supported onto inorganic materials applied in hydrogenation and oxidation reactions. Some examples of cascade coupling reactions are also discussed where the polymer-supported AuNPs allow for the attainment of remarkable activity and selectivity.
Collapse
|
41
|
Biosynthesis of Gold Clusters and Nanoparticles by Using Extracts of Mexican Plants and Evaluation of Their Catalytic Activity in Oxidation Reactions. Catal Letters 2021. [DOI: 10.1007/s10562-020-03416-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Abstract
The hydrogenation features of gold nanoparticles deposited on highly oriented pyrolytic graphite were determined, and composite nanostructures consisting of pure and hydrogenized gold were synthesized. Methods of scanning tunneling microscopy and spectroscopy have been successfully used to probe the bottom of the conductive band and to determine the shape of the electron energy barrier in hydrogenized gold. Considering models of surface and volume hydrogenation, we have shown that no hydrogen dissolution occurred in gold nanoparticles, but all changes in their electronic structure were associated with surface processes. The results of the quantum chemical simulation also corresponded with this conclusion.
Collapse
|
43
|
Cui W, Wang J, Sagala, Jia M. Base-Free Oxidative Coupling of Amines and Aliphatic Alcohols to Imines over Au–Pd/ZrO2 Catalyst under Mild Conditions. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421050307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Wang H, Shi F. Towards Economic and Sustainable Amination with Green and Renewable Feedstocks. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hongli Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou Gansu 730000 China
| | - Feng Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou Gansu 730000 China
| |
Collapse
|
45
|
Cruz SS, Tanygin V, Lear BJ. Asymmetries in the Electronic Properties of Spheroidal Metallic Nanoparticles, Revealed by Conduction Electron Spin Resonance and Surface Plasmon Resonance. ACS NANO 2021; 15:4490-4503. [PMID: 33646754 DOI: 10.1021/acsnano.0c08515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Using electron spin resonance spectroscopy, we demonstrate that the morphological asymmetries present in small spheroidal metallic nanoparticles give rise to asymmetries in the behavior of electrons held in states near the metal's Fermi energy. We find that the effects of morphological asymmetries for these spheroidal systems are more important than the effects of size distributions when explaining the asymmetry in electronic behavior. This is found to be true for all the particles examined, which were made from Cu, Ag, Pd, Ir, Pt, and Au, bearing dodecanethiolate ligands. In the case of the Ag particles, we also demonstrate that the same model used to account for morphological effects in the electron spin resonance spectra can be used to account for small asymmetries present in the plasmon spectrum. This result demonstrates that the electronic properties of even small particles are tunable via morphological changes.
Collapse
Affiliation(s)
- Santina S Cruz
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Vadim Tanygin
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Benjamin J Lear
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
46
|
Nasrallah H, Min Y, Lerayer E, Nguyen TA, Poinsot D, Roger J, Brandès S, Heintz O, Roblin P, Jolibois F, Poteau R, Coppel Y, Kahn ML, Gerber IC, Axet MR, Serp P, Hierso JC. Nanocatalysts for High Selectivity Enyne Cyclization: Oxidative Surface Reorganization of Gold Sub-2-nm Nanoparticle Networks. JACS AU 2021; 1:187-200. [PMID: 34467283 PMCID: PMC8395676 DOI: 10.1021/jacsau.0c00062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Indexed: 05/14/2023]
Abstract
Ultrasmall gold nanoparticles (NPs) stabilized in networks by polymantane ligands (diamondoids) were successfully used as precatalysts for highly selective heterogeneous gold-catalyzed dimethyl allyl(propargyl)malonate cyclization to 5-membered conjugated diene. Such reaction usually suffers from selectivity issues with homogeneous catalysts. This control over selectivity further opened the way to one-pot cascade reaction, as illustrated by the 1,6-enyne cycloisomerization-Diels-Alder reaction of dimethyl allyl propargyl malonate with maleic anhydride. The ability to assemble nanoparticles with controllable sizes and shapes within networks concerns research in sensors, medical diagnostics, information storage, and catalysis applications. Herein, the control of the synthesis of sub-2-nm gold NPs is achieved by the formation of dense networks, which are assembled in a single step reaction by employing ditopic polymantanethiols. By using 1,1'-bisadamantane-3,3'-dithiol (BAd-SH) and diamantane-4,9-dithiol (DAd-SH), serving both as bulky surface stabilizers and short-sized linkers, we provide a simple method to form uniformly small gold NPs (1.3 ± 0.2 nm to 1.6 ± 0.3 nm) embedded in rigid frameworks. These NP arrays are organized alongside short interparticular distances ranging from 1.9 to 2.7 nm. The analysis of gold NP surfaces and their modification were achieved in joint experimental and theoretical studies, using notably XPS, NMR, and DFT modeling. Our experimental studies and DFT analyses highlighted the necessary oxidative surface reorganization of individual nanoparticles for an effective enyne cycloisomerization. The modifications at bulky stabilizing ligands allow surface steric decongestion for the alkyne moiety activation but also result in network alteration by overoxidation of sulfurs. Thus, sub-2-nm nanoparticles originating from networks building create convenient conditions for generating reactive Au(I) surface single-sites-in the absence of silver additives-useful for heterogeneous gold-catalyzed enyne cyclization. These nanocatalysts, which as such ease organic products separation, also provide a convenient access for building further polycyclic complexity, owing to their high reactivity and selectivity.
Collapse
Affiliation(s)
- Houssein
O. Nasrallah
- Institut
de Chimie Moléculaire de l’Université de Bourgogne
(ICMUB - UMR CNRS 6302), Université Bourgogne Franche-Comté
(UBFC), 9 avenue Alain Savary, 21078 Dijon Cedex, France
| | - Yuanyuan Min
- LCC-CNRS,
Université de Toulouse, INPT, UPS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Emmanuel Lerayer
- Institut
de Chimie Moléculaire de l’Université de Bourgogne
(ICMUB - UMR CNRS 6302), Université Bourgogne Franche-Comté
(UBFC), 9 avenue Alain Savary, 21078 Dijon Cedex, France
| | - Tuan-Anh Nguyen
- Institut
de Chimie Moléculaire de l’Université de Bourgogne
(ICMUB - UMR CNRS 6302), Université Bourgogne Franche-Comté
(UBFC), 9 avenue Alain Savary, 21078 Dijon Cedex, France
| | - Didier Poinsot
- Institut
de Chimie Moléculaire de l’Université de Bourgogne
(ICMUB - UMR CNRS 6302), Université Bourgogne Franche-Comté
(UBFC), 9 avenue Alain Savary, 21078 Dijon Cedex, France
| | - Julien Roger
- Institut
de Chimie Moléculaire de l’Université de Bourgogne
(ICMUB - UMR CNRS 6302), Université Bourgogne Franche-Comté
(UBFC), 9 avenue Alain Savary, 21078 Dijon Cedex, France
| | - Stéphane Brandès
- Institut
de Chimie Moléculaire de l’Université de Bourgogne
(ICMUB - UMR CNRS 6302), Université Bourgogne Franche-Comté
(UBFC), 9 avenue Alain Savary, 21078 Dijon Cedex, France
| | - Olivier Heintz
- Laboratoire
Interdisciplinaire Carnot Bourgogne (ICB − UMR CNRS 6303), Université Bourgogne Franche-Comté (UBFC), 9 avenue Alain Savary 21078, Dijon, France
| | - Pierre Roblin
- Laboratoire
de Génie Chimique and Fédération de Recherche
FERMAT, 4 allée Emile Monso, 31030 Toulouse, France
| | - Franck Jolibois
- INSA−CNRS−UPS,
LPCNO, Université Fédérale
de Toulouse Midi-Pyrénées, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Romuald Poteau
- INSA−CNRS−UPS,
LPCNO, Université Fédérale
de Toulouse Midi-Pyrénées, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Yannick Coppel
- LCC-CNRS,
Université de Toulouse, INPT, UPS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Myrtil L. Kahn
- LCC-CNRS,
Université de Toulouse, INPT, UPS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Iann C. Gerber
- INSA−CNRS−UPS,
LPCNO, Université Fédérale
de Toulouse Midi-Pyrénées, 135 Avenue de Rangueil, F-31077 Toulouse, France
- Iann C. Gerber
| | - M. Rosa Axet
- LCC-CNRS,
Université de Toulouse, INPT, UPS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
- M. Rosa Axet
| | - Philippe Serp
- LCC-CNRS,
Université de Toulouse, INPT, UPS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
- Philippe Serp
| | - Jean-Cyrille Hierso
- Institut
de Chimie Moléculaire de l’Université de Bourgogne
(ICMUB - UMR CNRS 6302), Université Bourgogne Franche-Comté
(UBFC), 9 avenue Alain Savary, 21078 Dijon Cedex, France
- Jean-Cyrille Hierso
| |
Collapse
|
47
|
Miura H, Shishido T. Concerted Catalysis of Pd and Au on Alloy Nanoparticles for Efficient Heterogeneous Molecular Transformations. CHEM LETT 2021. [DOI: 10.1246/cl.200713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hiroki Miura
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Tetsuya Shishido
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
48
|
Behravesh E, Melander MM, Wärnå J, Salmi T, Honkala K, Murzin DY. Oxidative dehydrogenation of ethanol on gold: Combination of kinetic experiments and computation approach to unravel the reaction mechanism. J Catal 2021. [DOI: 10.1016/j.jcat.2020.07.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Efficient Synthesis of Methyl Methacrylate by One Step Oxidative Esterification over Zn-Al-Mixed Oxides Supported Gold Nanocatalysts. Catalysts 2021. [DOI: 10.3390/catal11020162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Methyl methacrylate (MMA) is an important monomer in fine chemicals. The synthesis of MMA by one-step oxidative esterification from methacrolein with methanol over a heterogeneous catalyst with high activity, selectivity and stability is highly desirable. Herein, Zn-Al-hydrotalcites (HTs)-supported atomically precise Au25 nanoclusters with different molar ratios of Zn2+/Al3+ were prepared and used as the precursors for this reaction. They exhibited good performances in comparison with the gold catalysts prepared by the deposition precipitation method. The structural and electronic properties were evaluated by various characterization technologies, including X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), in situ diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS) of CO adsorption, X-ray photoelectron spectroscopy (XPS), and CO2 temperature-programmed desorption (TPD). The combined characterization results suggested that the adsorption property of gold and the basicity of the catalyst contributes to their high activities. Substrates extended experiments and stability tests implied the potential application of Zn-Al-mixed oxides supported gold catalysts, which paves a new way for supported gold catalyst in the one-step oxidation esterification reaction.
Collapse
|
50
|
López‐de‐Luzuriaga JM, Monge M, Moreno S, Olmos ME, Rodríguez‐Castillo M. Rational Assembly of Metallophilic Gold(I)–Lead(II) and Gold(I)–Gold(I) Puzzle Pieces. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- José M. López‐de‐Luzuriaga
- Departamento de Química Centro de Investigación en Síntesis Química (CISQ) Universidad de La Rioja Complejo Científico-Tecnológico 26006 Logroño Spain
| | - Miguel Monge
- Departamento de Química Centro de Investigación en Síntesis Química (CISQ) Universidad de La Rioja Complejo Científico-Tecnológico 26006 Logroño Spain
| | - Sonia Moreno
- Departamento de Química Centro de Investigación en Síntesis Química (CISQ) Universidad de La Rioja Complejo Científico-Tecnológico 26006 Logroño Spain
| | - M. Elena Olmos
- Departamento de Química Centro de Investigación en Síntesis Química (CISQ) Universidad de La Rioja Complejo Científico-Tecnológico 26006 Logroño Spain
| | - María Rodríguez‐Castillo
- Departamento de Química Centro de Investigación en Síntesis Química (CISQ) Universidad de La Rioja Complejo Científico-Tecnológico 26006 Logroño Spain
| |
Collapse
|