1
|
Bresinsky M, Goepferich A. Control of biomedical nanoparticle distribution and drug release in vivo by complex particle design strategies. Eur J Pharm Biopharm 2025; 208:114634. [PMID: 39826847 DOI: 10.1016/j.ejpb.2025.114634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
The utilization of targeted nanoparticles as a selective drug delivery system is a powerful tool to increase the amount of active substance reaching the target site. This can increase therapeutic efficacy while reducing adverse drug effects. However, nanoparticles face several challenges: upon injection, the immediate adhesion of plasma proteins may mask targeting ligands, thereby diminishing the target cell selectivity. In addition, opsonization can lead to premature clearance and the widespread presence of receptors or enzymes limits the accuracy of target cell recognition. Nanoparticles may also suffer from endosomal entrapment, and controlled drug release can be hindered by premature burst release or insufficient particle retention at the target site. Various strategies have been developed to address these adverse events, such as the implementation of switchable particle properties, regulating the composition of the formed protein corona, or using click-chemistry based targeting approaches. This has resulted in increasingly complex particle designs, raising the question of whether this development actually improves the therapeutic efficacy in vivo. This review provides an overview of the challenges in targeted drug delivery and explores potential solutions described in the literature. Subsequently, appropriate strategies for the development of nanoparticular drug delivery concepts are discussed.
Collapse
Affiliation(s)
- Melanie Bresinsky
- Department of Pharmaceutical Technology, University of Regensburg 93053 Regensburg, Bavaria, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg 93053 Regensburg, Bavaria, Germany.
| |
Collapse
|
2
|
Schauenburg D, Weil T. Not So Bioorthogonal Chemistry. J Am Chem Soc 2025. [PMID: 40017419 DOI: 10.1021/jacs.4c15986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
The advent of bioorthogonal chemistry has transformed scientific research, offering a powerful tool for selective and noninvasive labeling of (bio)molecules within complex biological environments. This innovative approach has facilitated the study of intricate cellular processes, protein dynamics, and interactions. Nevertheless, a number of challenges remain to be addressed, including the need for improved reaction kinetics, enhanced biocompatibility, and the development of a more diverse and orthogonal set of reactions. While scientists continue to search for veritable solutions, bioorthogonal chemistry remains a transformative tool with a vast potential for advancing our understanding of biology and medicine. This Perspective offers insights into reactions commonly classified as "bioorthogonal", which, however, may not always demonstrate the desired selectivity regarding the interactions between their components and the additives or catalysts used under the reaction conditions.
Collapse
Affiliation(s)
- Dominik Schauenburg
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
3
|
Xu S, Long K, Wang T, Zhu Y, Zhang Y, Wang W. Opto-Epigenetic Regulation of Histone Arginine Asymmetric Dimethylation via Type I Protein Arginine Methyltransferase Inhibition. J Med Chem 2025; 68:4373-4381. [PMID: 39961800 PMCID: PMC11873949 DOI: 10.1021/acs.jmedchem.4c02199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/12/2024] [Accepted: 02/04/2025] [Indexed: 02/28/2025]
Abstract
Histone arginine asymmetric dimethylation, which is mainly catalyzed by type I protein arginine methyltransferases (PRMTs), is involved in broad biological and pathological processes. Recently, several type I PRMT inhibitors, such as MS023, have been developed to reverse the histone arginine dimethylation status in tumor cells, but extensive inhibition of type I PRMTs may cause side effects in normal tissues. Herein, we designed a photoactivatable MS023 prodrug (C-MS023) to achieve spatiotemporal inhibition of histone arginine asymmetric dimethylation. In vitro studies showed that C-MS023 exhibited reduced potency in inhibiting type I PRMTs. Importantly, visible light irradiation at 420 nm could trigger the photolysis of the prodrug, thereby liberating MS023 for effective downregulation of histone arginine asymmetric dimethylation and DNA replication-related transcriptomic activities. This opto-epigenetic small-molecule prodrug potentially aids in further research into the pathophysiological functions of type I PRMTs and the development of targeted epigenetic therapeutics.
Collapse
Affiliation(s)
- Shuting Xu
- State
Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong 999077, China
- Department
of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
- Laboratory
of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research
Centre, The University of Hong Kong, Hong Kong 999077, China
| | - Kaiqi Long
- State
Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong 999077, China
- Department
of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
- Laboratory
of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research
Centre, The University of Hong Kong, Hong Kong 999077, China
| | - Tianyi Wang
- State
Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong 999077, China
- Department
of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
- Laboratory
of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research
Centre, The University of Hong Kong, Hong Kong 999077, China
| | - Yangyang Zhu
- The
Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China
- School
of Biomedical Sciences and Engineering, National Engineering Research
Center for Tissue Restoration and Reconstruction and Key Laboratory
of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yunjiao Zhang
- The
Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China
- School
of Biomedical Sciences and Engineering, National Engineering Research
Center for Tissue Restoration and Reconstruction and Key Laboratory
of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
| | - Weiping Wang
- State
Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong 999077, China
- Department
of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
- Laboratory
of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research
Centre, The University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
4
|
Charette M, Rosenblum C, Shade O, Deiters A. Optogenetics with Atomic Precision─A Comprehensive Review of Optical Control of Protein Function through Genetic Code Expansion. Chem Rev 2025; 125:1663-1717. [PMID: 39928721 PMCID: PMC11869211 DOI: 10.1021/acs.chemrev.4c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 02/12/2025]
Abstract
Conditional control of protein activity is important in order to elucidate the particular functions and interactions of proteins, their regulators, and their substrates, as well as their impact on the behavior of a cell or organism. Optical control provides a perhaps optimal means of introducing spatiotemporal control over protein function as it allows for tunable, rapid, and noninvasive activation of protein activity in its native environment. One method of introducing optical control over protein activity is through the introduction of photocaged and photoswitchable noncanonical amino acids (ncAAs) through genetic code expansion in cells and animals. Genetic incorporation of photoactive ncAAs at key residues in a protein provides a tool for optical activation, or sometimes deactivation, of protein activity. Importantly, the incorporation site can typically be rationally selected based on structural, mechanistic, or computational information. In this review, we comprehensively summarize the applications of photocaged lysine, tyrosine, cysteine, serine, histidine, glutamate, and aspartate derivatives, as well as photoswitchable phenylalanine analogues. The extensive and diverse list of proteins that have been placed under optical control demonstrates the broad applicability of this methodology.
Collapse
Affiliation(s)
- Maura Charette
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Carolyn Rosenblum
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Olivia Shade
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
5
|
Ojha M, Trivedi P, Banerjee M, Bera M, Dey S, Singh AK, Jana A, Singh NDP. A near infrared light activated phenothiazine based cancer cell specific phototherapeutic system: a synergistic approach to chemo-photothermal therapy. Biomater Sci 2025. [PMID: 39998892 DOI: 10.1039/d4bm01288g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
In the pursuit of more effective cancer therapies, phototherapy has emerged as a promising approach due to its non-invasive nature and high precision. This study presents the development of a near-infrared (NIR) light-responsive phenothiazine (PTZ) based phototherapeutic system designed for targeted cancer treatment. This phototherapeutic system integrates four crucial elements for enhanced therapeutic efficacy: cancer cell-specific activity, mitochondrial targeting, photothermal conversion, and controlled drug release. The PTZ system utilizes the acidochromic 1,3-oxazine ring, which opens in the acidic tumor microenvironment, forming a positive iminium ion (CN+). This ionic species targets cancer cell mitochondria, ensuring precise localization. Under NIR light irradiation (640 nm), the phototherapeutic system undergoes a red shift in the absorption and reduction in the fluorescence intensity, demonstrating a significant photothermal effect that converts light to heat, thereby inducing tumor cell apoptosis. Furthermore, NIR light triggers the controlled release of the anticancer drug chlorambucil, enabling precise spatiotemporal drug delivery. The closed form of the phototherapeutic system also facilitates drug release upon visible light irradiation (≥410 nm) with high photochemical efficiency. This dual-mode photothermal and photocontrolled drug delivery offers a synergistic approach to cancer therapy, maximizing therapeutic outcomes while minimizing side effects. Our findings underscore the potential of this innovative phototherapeutic system to advance cancer treatment through targeted, controlled, and effective drug delivery.
Collapse
Affiliation(s)
- Mamata Ojha
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Pragya Trivedi
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Moumita Banerjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Malabika Bera
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Susmita Dey
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Amit Kumar Singh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Avijit Jana
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - N D Pradeep Singh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
6
|
Caldwell SE, Demyan IR, Falcone GN, Parikh A, Lohmueller J, Deiters A. Conditional Control of Benzylguanine Reaction with the Self-Labeling SNAP-tag Protein. Bioconjug Chem 2025. [PMID: 39977950 DOI: 10.1021/acs.bioconjchem.5c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
SNAP-tag, a mutant of the O6-alkylguanine-DNA-alkyltransferase, self-labels by reacting with benzylguanine (BG) substrates, thereby forming a thioether bond. SNAP-tag has been genetically fused to a wide range of proteins of interest in order to covalently modify them. In the context of both diagnostic and therapeutic applications, as well as use as a biological recording device, precise control in a spatial and temporal fashion over the covalent bond-forming reaction is desired to direct inputs, readouts, or therapeutic actions to specific locations, at specific time points, in cells and organisms. Here, we introduce a comprehensive suite of six caged BG molecules: one light-triggered and five others that can be activated through various chemical and biochemical stimuli, such as small molecules, transition metal catalysts, reactive oxygen species, and enzymes. These molecules are unable to react with SNAP-tag until the trigger is present, which leads to near complete SNAP-tag conjugation, as illustrated both in biochemical assays and on human cell surfaces. This approach holds promise for targeted therapeutic assembly at disease sites, offering the potential to reduce off-target effects and toxicity through precise trigger titration.
Collapse
Affiliation(s)
- Steven E Caldwell
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Isabella R Demyan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Gianna N Falcone
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Avani Parikh
- Department of Surgery, Division of Surgical Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Jason Lohmueller
- Department of Surgery, Division of Surgical Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
7
|
Huang X, Shi Y, Jiang L, Chen W, Bao B, Liu T, Zhou Q, Li J, Lin Q, Zhu L. Precise photorelease in living cells by high-viscosity activatable coumarin-based photocages. Chem Sci 2025; 16:3611-3619. [PMID: 39877819 PMCID: PMC11770380 DOI: 10.1039/d4sc06578f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Abstract
Intracellular viscosity is a critical microenvironmental factor in various biological systems, and its abnormal increase is closely linked to the progression of many diseases. Therefore, precisely controlling the release of bioactive molecules in high-viscosity regions is vital for understanding disease mechanisms and advancing their diagnosis and treatment. However, viscosity alone cannot directly trigger chemical reactions. Inspired by molecular rotor fluorophores, we have developed a series of high-viscosity activated photocages by modifying the C3 position of the coumarin scaffold with electron-withdrawing groups. In low-viscosity environments, both fluorescence and photocleavage of the photocages are inhibited by nonradiative decay caused by intramolecular free rotation. In contrast, in high-viscosity environments, the restriction of this intramolecular rotation restores fluorescence and photocleavage. These unique photolysis properties enable the selective photorelease of these photocages in high-viscosity conditions. As a proof of concept, we have developed a drug delivery system that targets abnormal mitochondria with high viscosity. This system demonstrates enhanced photolysis efficiency in abnormal mitochondria compared to normal ones, allowing for precise drug release in diseased mitochondria while ensuring excellent biological safety in healthy mitochondria. We anticipate that these photocages will serve as convenient and efficient tools for the precise release of active molecules in high-viscosity environments.
Collapse
Affiliation(s)
- Xinyi Huang
- School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Yajie Shi
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Li Jiang
- School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Wanqi Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Bingkun Bao
- School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Tuan Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Qinghai Zhou
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University Shanghai 200234 China
| | - Jiaxin Li
- School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Qiuning Lin
- School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Linyong Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
8
|
von Glasenapp V, C Almeida A, Chang D, Gasic I, Winssinger N, Gotta M. Spatio-temporal control of mitosis using light via a Plk1 inhibitor caged for activity and cellular permeability. Nat Commun 2025; 16:1599. [PMID: 39971898 PMCID: PMC11840123 DOI: 10.1038/s41467-025-56746-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 01/28/2025] [Indexed: 02/21/2025] Open
Abstract
The ability to control the activity of kinases spatially and temporally is essential to elucidate the role of signalling pathways in development and physiology. Progress in this direction has been hampered by the lack of tools to manipulate kinase activity in a highly controlled manner in vivo. Here we report a strategy to modify BI2536, the well characterized inhibitor of the conserved and essential mitotic kinase Polo-like kinase 1 (Plk1). We introduce the same coumarin photolabile protecting group (PPG) at two positions of the inhibitor. At one position, the coumarin prevents the interaction with Plk1, at the second it masks an added carboxylic acid, important for cellular retention. Exposure to light results in removal of both PPGs, leading to the activation of the inhibitor and its trapping inside cells. We demonstrate the efficacy of the caged inhibitor in three-dimensional spheroid cultures: by uncaging it with a single light pulse, we can inhibit Plk1 and arrest cell division, a highly dynamic process, with spatio-temporal control. Our design can be applied to other small molecules, providing a solution to control their activity in living cells with unprecedented precision.
Collapse
Affiliation(s)
- Victoria von Glasenapp
- Department of Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Ana C Almeida
- Department of Molecular and Cellular Biology, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Dalu Chang
- NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
- Department of Organic Chemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Ivana Gasic
- Department of Molecular and Cellular Biology, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Nicolas Winssinger
- NCCR Chemical Biology, University of Geneva, Geneva, Switzerland.
- Department of Organic Chemistry, Faculty of Science, University of Geneva, Geneva, Switzerland.
| | - Monica Gotta
- Department of Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- NCCR Chemical Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
9
|
Yu A, He X, Shen T, Yu X, Mao W, Chi W, Liu X, Wu H. Design strategies for tetrazine fluorogenic probes for bioorthogonal imaging. Chem Soc Rev 2025. [PMID: 39936362 DOI: 10.1039/d3cs00520h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Tetrazine fluorogenic probes play a critical role in bioorthogonal chemistry, selectively activating fluorescence upon reaction to enhance precision in imaging and sensing within complex biological environments. Recent structural innovations-such as varied fluorophore choices, spacer optimization, and direct tetrazine integration within a fluorophore's π-conjugated system-have expanded their spectral range from visible to NIR, enhancing adaptability across various applications. This review examines advancements in the rational design and synthesis of these probes. We examine key fluorogenic mechanisms, such as energy transfer, internal conversion, and electron/charge transfer, that significantly influence fluorescence activation. We also highlight representative applications in live-cell imaging, super-resolution microscopy, and therapeutic monitoring, underscoring the expanding role of tetrazine probes in biomedical research and diagnostics. Collectively, these insights provide a strategic foundation for developing next-generation tetrazine probes with tailored properties to address evolving diagnostic and therapeutic challenges.
Collapse
Affiliation(s)
- Aiwen Yu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xinyu He
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Tianruo Shen
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Xinyu Yu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Wuyu Mao
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Weijie Chi
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Xiaogang Liu
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Haoxing Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China.
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
10
|
Lippold T, Kosolapova J, Flosbach NT, Herzhoff R, Griesbeck AG, Wickleder M. Thiolate-CLPG (chemiluminescent protecting groups) based on coumaranone thiolcarbamates. Chem Commun (Camb) 2025. [PMID: 39936236 DOI: 10.1039/d4cc06150k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The base-induced oxidative release of aromatic and aliphatic thiols from novel coumaranone-thiolurethanes 3a-3e is accompanied by long-lasting blue or green chemiluminescence. Thus, these compounds serve as base/oxidation-labile protecting groups that decompose with strong visible luminescence and subsequent quantitative release of the protected thiolate as leaving group.
Collapse
Affiliation(s)
- Tim Lippold
- Faculty of Mathematics and Natural Sciences, Department of Chemistry and Biochemistry, Institute of Organic Chemistry, University of Cologne, Greinstr. 4, 50939 Köln, Germany.
| | - Julia Kosolapova
- Faculty of Mathematics and Natural Sciences, Department of Chemistry and Biochemistry, Institute of Inorganic and Materials Chemistry, University of Cologne, Greinstr. 6, 50939 Köln, Germany
| | - Niko T Flosbach
- Faculty of Mathematics and Natural Sciences, Department of Chemistry and Biochemistry, Institute of Inorganic and Materials Chemistry, University of Cologne, Greinstr. 6, 50939 Köln, Germany
| | - Robert Herzhoff
- Faculty of Mathematics and Natural Sciences, Department of Chemistry and Biochemistry, Institute of Light and Materials, University of Cologne, Greinstr. 4-6, 50939 Köln, Germany
| | - Axel G Griesbeck
- Faculty of Mathematics and Natural Sciences, Department of Chemistry and Biochemistry, Institute of Organic Chemistry, University of Cologne, Greinstr. 4, 50939 Köln, Germany.
| | - Mathias Wickleder
- Faculty of Mathematics and Natural Sciences, Department of Chemistry and Biochemistry, Institute of Inorganic and Materials Chemistry, University of Cologne, Greinstr. 6, 50939 Köln, Germany
| |
Collapse
|
11
|
Fortier L, Lefebvre C, Hoffmann N. Red light excitation: illuminating photocatalysis in a new spectrum. Beilstein J Org Chem 2025; 21:296-326. [PMID: 39931681 PMCID: PMC11809576 DOI: 10.3762/bjoc.21.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
Red-light-activated photocatalysis has become a powerful approach for achieving sustainable chemical transformations, combining high efficiency with energy-saving, mild conditions. By harnessing the deeper penetration and selectivity of red and near-infrared light, this method minimizes the side reactions typical of higher-energy sources, making it particularly suited for large-scale applications. Recent advances highlight the unique advantages of both metal-based and metal-free catalysts under red-light irradiation, broadening the range of possible reactions, from selective oxidations to complex polymerizations. In biological contexts, red-light photocatalysis enables innovative applications in phototherapy and controlled drug release, exploiting its tissue penetration and low cytotoxicity. Together, these developments underscore the versatility and impact of red-light photocatalysis, positioning it as a cornerstone of green organic chemistry with significant potential in synthetic and biomedical fields.
Collapse
Affiliation(s)
- Lucas Fortier
- Unité de Catalyse et de Chimie du Solide (UCCS), University of Lille, CNRS, University of Artois UMR 8181, Avenue Mendeleiev, 59655 Villeneuve d’Ascq CEDEX, France
| | - Corentin Lefebvre
- Laboratory of Glycochemistry and Agroressources of Amiens (LG2A), University of Picardie Jules Verne UR 7378, 10 rue Baudelocque, 80000 Amiens, France
| | - Norbert Hoffmann
- Institute of Physics and Chemistry of Materials of Strasbourg (IPCMS), University of Strasbourg UMR 7504, 23 rue du Loess, BP 43, 67034 Strasbourg CEDEX 2, France
| |
Collapse
|
12
|
Nagano T, Shimazu T, Ono Y, Kaneko K, Matsubara S, Yamanaka M, Uraguchi D, Asano K. Mechanism-Guided Development of Bifunctional Cyclooctenes as Active, Practical, and Light-Gated Bromination Catalysts. Chemistry 2025; 31:e202404011. [PMID: 39680424 DOI: 10.1002/chem.202404011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/17/2024]
Abstract
Most molecular catalysts have been developed employing polar functional groups as catalytic sites. However, the use of non-polar functional groups for catalysis has received less attention due to their modest molecular interactions while the bioorthogonal reactivity of non-polar alkenes as substrates is frequently used in click chemistry. In this study, we conducted mechanistic studies on the catalysis of trans-cyclooctene (TCO) derivatives with the strained olefin as the catalytic site using kinetic and computational analyses to aid the design of more active olefin catalysts. The analysis reveals the significant role of the benzyl substituents in accelerating the generation of bromonium species through dispersion interaction in the rate-determining step. Guided by the mechanistic insights, we developed bifunctional TCO catalysts bearing a functionalized benzyl group, taking advantage of the remarkable substituent effects. Experimental studies confirmed the theoretical model and revealed that TCO with a para-hydroxybenzyl group provided excellent catalytic activity. Furthermore, inclusion of the functionalized benzyl groups allowed more readily available and robust cis-cyclooctenes to be used as active catalysts, expanding the practical utility of the olefin catalysts. By using a photochemically labile masking group on the para-hydroxybenzyl substituent, the first light-gated bromination catalyst was developed, enabling spatiotemporal control of the transformation.
Collapse
Affiliation(s)
- Tagui Nagano
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Takuto Shimazu
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Yusuke Ono
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Kazuma Kaneko
- Department of Chemistry, Faculty of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Seijiro Matsubara
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Masahiro Yamanaka
- Department of Chemistry, Faculty of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Daisuke Uraguchi
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
- List Sustainable Digital Transformation Catalyst Collaboration Research Platform, Institute for Chemical Reaction Design and Discovery (ICReDD List-PF), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Keisuke Asano
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
13
|
Varady A, Grissenberger S, Wenninger-Weinzierl A, Poplimont H, Sturtzel C, Schmitner N, Gao L, Kimmel RA, Distel M. Precise photopharmacological eradication of metastatic tumor cells. Dis Model Mech 2025; 18:DMM052016. [PMID: 40014051 DOI: 10.1242/dmm.052016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/24/2025] [Indexed: 02/28/2025] Open
Abstract
Owing to their high efficacy, antimitotic chemotherapeutics are the mainstay for most cancer treatments. However, these drugs do not discriminate between tumor and healthy cells, thus show dose-limiting toxicity and severe adverse effects. To improve treatments, rendering chemotherapeutics tumor-cell specific is highly desirable. Although various strategies, such as targeted antibody-drug conjugates, aim to achieve this goal, the identification of a tumor-specific 'Achilles' heel' remains a challenge. Here, we followed an alternative approach, which does not rely on tumor-specific characteristics, but rather uses spatially confined illumination of the light-activatable microtubule inhibitor SBTubA4P to target its cytotoxic activity to tumor cells. We demonstrate that localized illumination of SBTubA4P allows for precise eradication of disseminated sarcoma cells in zebrafish xenografts without inducing systemic toxicity. In addition to the already-described light-dependent inhibition of microtubule dynamics by SBTubA4P, our data indicate that this molecule creates reactive oxygen species upon UV illumination, which significantly increases its cytotoxic effects. SBTubA4P is a valuable addition to the precision oncology toolbox, and zebrafish xenografts constitute a well-suited model to investigate photoactivatable compounds in vivo.
Collapse
Affiliation(s)
- Adam Varady
- St. Anna Children's Cancer Research Institute, 1090 Vienna, Austria
| | | | | | - Hugo Poplimont
- St. Anna Children's Cancer Research Institute, 1090 Vienna, Austria
| | | | - Nicole Schmitner
- Institute of Molecular Biology/CMBI, University of Innsbruck, 6020 Innsbruck, Austria
| | - Li Gao
- Ludwig Maximilian University of Munich, 80539 Munich, Germany
| | - Robin A Kimmel
- Institute of Molecular Biology/CMBI, University of Innsbruck, 6020 Innsbruck, Austria
| | - Martin Distel
- St. Anna Children's Cancer Research Institute, 1090 Vienna, Austria
| |
Collapse
|
14
|
Roy B, Kojima R, Shah O, Shieh M, Das E, Ezzatpour S, Sato E, Hirata Y, Lindahl S, Matsuzawa A, Aguilar HC, Xian M. Generation of thiyl radicals in a spatiotemporal controlled manner by light: Applied for the cis to trans isomerization of unsaturated fatty acids/phospholipids. Redox Biol 2025; 79:103475. [PMID: 39721494 PMCID: PMC11732231 DOI: 10.1016/j.redox.2024.103475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Thiyl radicals are important reactive sulfur species and can cause cis to trans isomerization on unsaturated fatty acids. However, biocompatible strategies for the controlled generation of thiyl radicals are still lacking. In this work, we report the study of a series of naphthacyl-derived thioethers as photo-triggered thiyl radical precursors. Tertiary naphthacyl thioether was identified to be a suitable template that could be used to produce both aryl and alkyl thiyl radicals under ultraviolet (UV) light or sunlight. The effective cis-to trans-isomerization of unsaturated fatty acid models (methyl oleate, methyl linoleate) and a natural phospholipid (cardiolipin) using these photo-triggered substrates was demonstrated. This reaction was also proved to proceed effectively in cells to produce thiyl radicals and subsequent fatty acid isomerization. Additionally, the most promising thiyl radical precursor showed antiviral activity in a pseudotyped virus model, likely due to disrupting viral lipid membranes upon UV activation. These findings highlight the potential of thiyl radicals for both biochemical and antiviral applications.
Collapse
Affiliation(s)
- Biswajit Roy
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Ryota Kojima
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Obaed Shah
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, 14853, USA
| | - Meg Shieh
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Eshani Das
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Shahrzad Ezzatpour
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, 14853, USA
| | - Emiko Sato
- Division of Clinical Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Stephen Lindahl
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Hector C Aguilar
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, 14853, USA
| | - Ming Xian
- Department of Chemistry, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
15
|
Tanioka M, Kanayama S, Kitamura F, Takano A, Ikeda Y, Kohyama A, Yamada T, Matsuya Y. Water-Compatible Staudinger-Diels-Alder Ligation. J Org Chem 2025; 90:1501-1506. [PMID: 39801043 DOI: 10.1021/acs.joc.4c02306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
The development of bioorthogonal reactions is expected to propel further advances in chemical biology. In this study, we demonstrate Staudinger-Diels-Alder (SDA) ligation as a candidate for a new bioorthogonal reaction. This reaction ligates two molecules via strong C-C bonds at room temperature. We found that the aryl substituent of azide-benzocyclobutene (azide-BCB) had a strong influence on the molecule's tolerance to water. In particular, Cl-substituted azide-BCBs generated the ligated product in high yield, even in the presence of water. Mechanistic investigations using DFT methods revealed that hydrophobic electron-withdrawing substituents suppressed the side reactions of SDA ligation.
Collapse
Affiliation(s)
- Masaru Tanioka
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Shohei Kanayama
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Fumino Kitamura
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Akinari Takano
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yukiko Ikeda
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Aki Kohyama
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Tsuyoshi Yamada
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yuji Matsuya
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
16
|
Jacobson K, Ellis-Davies GCR. Abraham Patchornik: The Contemporary Relevance of His Work for Chemistry and Biology. JACS AU 2025; 5:3-16. [PMID: 39886589 PMCID: PMC11775701 DOI: 10.1021/jacsau.4c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 02/01/2025]
Abstract
Abraham Patchornik was born in 1926 in Ness Ziona, a town in Palestine founded by his great-grandfather Reuben Lehrer in 1883. He started to study chemistry as an undergraduate at the Hebrew University. However, this was interrupted by the war, and he completed his studies in various locations in West Jerusalem. From 1952 to 1956 Patchornik completed his PhD at the (new) Weizmann Institute of Science with Ephraim Katchalski. After a postdoc at the NIH, he returned to the Weizmann in 1958, when he joined the Department of Biophysics. In 1972-1979, he became chairman of the new Department of Organic Chemistry at the Weizmann, and his own research was geared toward applying creative chemistry to solve biological problems. Patchornik passed away in his hometown of Ness Ziona in 2014. Patchornik was a conceptual leader in peptide and polymer chemistry. Given the importance of selective functional group protection for the construction of oligomeric molecules, he became interested in using "nonstandard", orthogonal chemistry for this purpose, i.e. photosensitive protecting groups (PPGs) in place of thermal reactions. It was R.B. Woodward who suggested this strategy to Patchornik in 1965, while Patchornik was on sabbatical leave at Harvard. However, it was not until Patchornik returned to the Weizmann that this idea of a versatile PPG to enable multistep synthesis was realized. Here, we provide an account of the early photosensitive protecting groups that Patchornik and co-workers developed, and the immense impact they have had on various fields. In particular, we survey the use of PPGs in live cell physiology (i.e., caged compounds), and the development of gene chips via light-directed solid-phase synthesis. Further, we highlight recent work applying new PPGs for "photochemical delivery" of drugs, otherwise termed photopharmacology. Finally, we discuss the relationship between caged compounds and how contemporary neuroscience uses genetically encoded chromophores to control cell function.
Collapse
Affiliation(s)
- Kenneth
A. Jacobson
- Laboratory
of Bioorganic Chemistry, National Institute of Diabetes & Digestive
& Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| | - Graham C. R. Ellis-Davies
- Department
of Neuroscience, Icahn School of Medicine
at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
17
|
Boyet M, Colin B, Michaud G, Genin E, Pinet S, Chabaud L, Pucheault M. Photoinduced Deprotection of 2-Nitrophenylneopentyl Glycol Boronates Enables Light-Triggered Polycondensation of Siloxanes. Chemistry 2025; 31:e202404577. [PMID: 39715017 DOI: 10.1002/chem.202404577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Various protecting groups have been developed for boronic acids, mostly based on diols. Alternatives include trifluoroborates and amine complexes, which offer easier synthesis and release under milder conditions. We present here a new strategy involving photocleavable protecting groups for boronic and borinic acids, based on the 2-nitrobenzyl motif. A screening of several 1,2- and 1,3-diols bearing a 2-nitrobenzyl group led us to identify 1-(2-nitrophenyl)neopentyl glycol (npnp) for the protection of boronic acid derivatives. This diol is easily prepared in a single step on gram scale, and the corresponding npnp boronates are stable in wet acetonitrile at 90 °C for several days, and under under acidic conditions. Irradiation at 365 nm in acetonitrile allows for the controlled liberation of boronic acids in good to excellent yields, a method also applied to a dimesitylborinic ester bearing a 2-nitrobenzylalcohol moiety. 1-(2-Nitrophenyl)neopentyl glycol boronates ArB(npnp) demonstrated their utility in light-triggered siloxane crosslinking. We showed that catalysts incorporated into a polymer matrix, irradiated, and then incubated at 50 °C for 7 days resulted in efficient polymerization, forming solid materials in some cases.
Collapse
Affiliation(s)
- Marion Boyet
- Institut des Sciences Moléculaires, UMR 5255, Université de Bordeaux, CNRS, Bordeaux INP, 351 Cours de la libération, 33405, Talence cedex, France
| | - Boris Colin
- Centre de recherche Bostik ZAC du Bois de Plaisance, 101 rue du Champ Cailloux, 60280, Venette, France
| | - Guillaume Michaud
- Centre de recherche Bostik ZAC du Bois de Plaisance, 101 rue du Champ Cailloux, 60280, Venette, France
| | - Emilie Genin
- Institut des Sciences Moléculaires, UMR 5255, Université de Bordeaux, CNRS, Bordeaux INP, 351 Cours de la libération, 33405, Talence cedex, France
| | - Sandra Pinet
- Institut des Sciences Moléculaires, UMR 5255, Université de Bordeaux, CNRS, Bordeaux INP, 351 Cours de la libération, 33405, Talence cedex, France
| | - Laurent Chabaud
- Institut des Sciences Moléculaires, UMR 5255, Université de Bordeaux, CNRS, Bordeaux INP, 351 Cours de la libération, 33405, Talence cedex, France
| | - Mathieu Pucheault
- Institut des Sciences Moléculaires, UMR 5255, Université de Bordeaux, CNRS, Bordeaux INP, 351 Cours de la libération, 33405, Talence cedex, France
| |
Collapse
|
18
|
Janeková H, Fisher S, Šolomek T, Štacko P. Surfing the limits of cyanine photocages one step at a time. Chem Sci 2025; 16:1677-1683. [PMID: 39568875 PMCID: PMC11575602 DOI: 10.1039/d4sc07165d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/09/2024] [Indexed: 11/22/2024] Open
Abstract
Near-infrared light-activated photocages enable controlling molecules with tissue penetrating light. Understanding the structural aspects that govern the photouncaging process is essential to enhancing their efficacy, crucial for practical applications. Here we explore the impact of thermodynamic stabilization on contact ion pairs in cyanine photocages by quaternarization of the carbon reaction centers. This strategy enables the first direct uncaging of carboxylate payloads independent of oxygen, resulting in a remarkable two-orders-of-magnitude enhancement in uncaging efficiency. Our computational analyses reveal that these modifications confer a kinetic instead of thermodynamic effect, reducing ion-ion interactions and allowing complete separation of free ions while inhibiting recombination. We demonstrate that, while thermodynamic stabilization is effective in traditional chromophores operating at shorter wavelengths, it rapidly reaches its thermodynamic limitations in NIR photocages by compromising the photocage stability in the dark. Thanks to these findings, we establish that activation of cyanine photocages is limited to wavelengths of light below 1000 nm. Our work illuminates the path to improving uncaging cross-sections in NIR photocages by prioritizing kinetic trapping and separation of ions.
Collapse
Affiliation(s)
- Hana Janeková
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Sergey Fisher
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Tomáš Šolomek
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Peter Štacko
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| |
Collapse
|
19
|
Okamoto K, Hatano S, Abe M. Impact of Transition-State Aromaticity on Selective Radical-Radical Coupling of Triarylimidazolyl Radicals. J Am Chem Soc 2025; 147:2559-2570. [PMID: 39604257 PMCID: PMC11760180 DOI: 10.1021/jacs.4c14095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Radical coupling reactions are generally known to have a low selectivity due to the high reactivity of radicals. In this study, high regio and substrate selectivity was discovered in the dimerization of triarylimidazolyl radicals (TAIR), a versatile photochromic reaction. When two different radicals, 2-(4-cyanophenyl)-4,5-diphenyl-1H-imidazolyl radical (CN-TAIR) and 2-(4-methoxyphenyl)-4,5-diphenyl-1H-imidazolyl radical (OMe-TAIR), were simultaneously generated in situ, a hexaarylbiimidazole, formed by selective coupling at the nitrogen atom at position 1 of CN-TAIR and the carbon atom at position 2 of OMe-TAIR, was isolated with high selectivity as the main product among 24 possible radical dimer hexaarylbiimidazole derivatives. This high regio and substrate selectivity cannot be explained solely by the stability of the product and/or the electrophilicity and nucleophilicity of the radicals but originates from the aromaticity of the transition state in the radical-radical coupling reaction. To date, the selectivity of radical coupling reactions has been thought to be controlled by steric hindrance and radical spin density, but this study revealed a new factor for controlling radical coupling, that is, transition-state aromaticity. Aromaticity has been reported to have an important effect not only in the reactivity and structure of ground-state molecules but also on the electronically excited states and transition states in pericyclic reactions such as the Diels-Alder reaction and the Cope-Claisen rearrangement. This study demonstrated for the first time that radical coupling reactions can also be controlled by transition-state aromaticity.
Collapse
Affiliation(s)
- Kazunori Okamoto
- Department of Chemistry,
Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Sayaka Hatano
- Department of Chemistry,
Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Manabu Abe
- Department of Chemistry,
Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
20
|
Nonomura T, Minoshima M, Kikuchi K. Light-Activated Gene Expression System Using a Caging-Group-Free Photoactivatable Dye. Angew Chem Int Ed Engl 2025; 64:e202416420. [PMID: 39444190 PMCID: PMC11753602 DOI: 10.1002/anie.202416420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 10/25/2024]
Abstract
Optical regulation of transcription using chemical compounds is an effective strategy to manipulate gene expression spatiotemporally. Conventional caging approaches with photoremovable protecting groups may require intense UV-light exposure and release potentially toxic byproducts. To address these problems, here we developed a light-mediated transcriptional regulation system by combining a caging-group-free photoactivatable dye PaX560 and a multidrug-binding transcriptional regulator QacR. The cationic dye generated from PaX560 through traceless photoconversion bound QacR and reduced its repressor function, resulting in transcriptional activation. Importantly, this system allowed transcriptional activation with a large dynamic range under mild visible light exposure and simultaneous detection of the state of the photoactivated effector. This module was integrated into the T7 RNA polymerase expression system to demonstrate light-activated transcription in vitro and in living cells.
Collapse
Affiliation(s)
- Tatsuki Nonomura
- Department of Applied ChemistryGraduate School of EngineeringOsaka University2-1, YamadaokaSuitaOsaka5650871Japan
- Present address: Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M University2121W Holcombe BlvdHoustonTX-77030USA
| | - Masafumi Minoshima
- Department of Applied ChemistryGraduate School of EngineeringOsaka University2-1, YamadaokaSuitaOsaka5650871Japan
- JST, PRESTO2-1, YamadaokaSuitaOsaka5650871Japan
| | - Kazuya Kikuchi
- Department of Applied ChemistryGraduate School of EngineeringOsaka University2-1, YamadaokaSuitaOsaka5650871Japan
- Immunology Frontier Research Center (IFReC)Osaka University2-1, YamadaokaSuitaOsaka5650871Japan
| |
Collapse
|
21
|
Dai SY, Xiao Z, Shen F, Lim I, Rao J. Light-Controlled Intracellular Synthesis of Poly(luciferin) Polymers Induces Cell Paraptosis. J Am Chem Soc 2025; 147:2037-2048. [PMID: 39757486 DOI: 10.1021/jacs.4c15644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Accumulation of misfolded proteins challenges cellular proteostasis and is implicated in aging and chronic disorders. Cancer cells, moreover, face an elevated level of basal proteotoxic stress; hence, exacerbating endoplasmic reticulum (ER) stress has been shown to induce programmed cell death while enhancing anticancer immunogenicity. We hypothesize that hydrophobic abiotic macromolecules can trigger a similar stress response. Most polymers and nanoparticles, however, are sequestered in endo/lysosomes after endocytosis, which prevents their interaction with the proteostasis machinery. We adopted an in situ polymerization approach to synthesize polymers in cells with cell-permeable monomers. Specifically, we developed a biocompatible polycondensation between l-cysteine and 2-cyanobenzothiazole (CBT) with photochemical control to form insoluble poly(luciferin) aggregates. We identified that in situ polymerization activates the BiP-PERK-CHOP pathway of the unfolded protein response and that the unresolved ER stress initiates a form of regulated cell death consistent with paraptosis. In addition, the dying cells emit damage-associated molecular patterns (DAMPs), indicating an immunogenic cell death that could potentiate antitumor immunity. Our results show that in situ polymerization mimics misfolded protein aggregates to induce proteotoxic stress and cancer cell death, offering a novel therapeutic strategy to exploit cancer vulnerability.
Collapse
Affiliation(s)
- Sheng-Yao Dai
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Zhen Xiao
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Fangfang Shen
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Irene Lim
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Jianghong Rao
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94305, United States
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
22
|
Ljubić I, Sviben I, Brusar V, Zlatić K, Vdović S, Basarić N. Competing Photocleavage on Boron and at the meso-Position in BODIPY Photocages. J Org Chem 2025; 90:259-274. [PMID: 39700337 DOI: 10.1021/acs.joc.4c02226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
BODIPY photocages (photocleavable protective groups) have stirred interest because they can release biologically active cargo upon visible light excitation. We conducted combined theoretical and experimental investigations on selected BODIPY photocages to elucidate the mechanism of the competing photocleavage at the boron and meso-position. Based on the computations, the former reaction involves elongation of the B-C bond, yielding a tight borenium cation and methyl anion. These ions are intercepted by CH3OH, enabling an efficient proton-coupled electron transfer (PCET) to produce the methane and isolated ether photoproducts. Singlet and triplet excited-state lifetimes were measured in CH3OH and CD3OD to probe the kinetic isotope effects (KIEs). The resulting KIEs are small, implying that the kinetic bottleneck is due to the C-B bond scission rather than the subsequent PCET. The introduction of a methoxy group in the meso-phenoxy substituent redirects the photosubstitution toward the meso-position. The corresponding regiochemistry was explained computationally. On elongating the C-O bonds in the S1 state, it is found that the unproductive conical intersection is encountered much earlier for the alkyl-O bond than for the phenyl-O bond. The current findings are valuable for the rational design of new BODIPY photocages with tailored biological applications.
Collapse
Affiliation(s)
- Ivan Ljubić
- Department of Physical Chemistry, Rud̵er Bošković Institute, Bijenička Cesta 54, Zagreb 10 000, Croatia
| | - Igor Sviben
- Department of Organic Chemistry and Biochemistry, Rud̵er Bošković Institute, Bijenička Cesta 54, Zagreb 10 000, Croatia
| | - Vedran Brusar
- Centre for Advanced Laser Techniques, Institute of Physics, Bijenička Cesta 46, Zagreb 10 000, Croatia
| | - Katarina Zlatić
- Department of Organic Chemistry and Biochemistry, Rud̵er Bošković Institute, Bijenička Cesta 54, Zagreb 10 000, Croatia
| | - Silvije Vdović
- Centre for Advanced Laser Techniques, Institute of Physics, Bijenička Cesta 46, Zagreb 10 000, Croatia
| | - Nikola Basarić
- Department of Organic Chemistry and Biochemistry, Rud̵er Bošković Institute, Bijenička Cesta 54, Zagreb 10 000, Croatia
| |
Collapse
|
23
|
Anees P, Saranya G, Sreejith S, Ajayaghosh A. Distinguishing the Bimodal Interaction of a Squaraine Dye with a Protein by a Functional Group Photodeprotection Strategy. Chem Asian J 2025:e202401517. [PMID: 39780657 DOI: 10.1002/asia.202401517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/11/2025]
Abstract
In this study, we present a protecting group photocleavage method to investigate both covalent and noncovalent interactions between a squaraine dye (PSq) and Bovine Serum Albumin (BSA). This approach allows for the photoinduced activation and deactivation of PSq fluorescence, providing valuable insights into the dual-mode interaction of the dye with the protein.
Collapse
Affiliation(s)
- Palapuravan Anees
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, Andhra Pradesh, 517619, India
| | - Giridharan Saranya
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
| | - Sivaramapanicker Sreejith
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Ayyappanpillai Ajayaghosh
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| |
Collapse
|
24
|
Kim J, Xu Y, Lim JH, Lee JY, Li M, Fox JM, Vendrell M, Kim JS. Bioorthogonal Activation of Deep Red Photoredox Catalysis Inducing Pyroptosis. J Am Chem Soc 2025; 147:701-712. [PMID: 39614812 DOI: 10.1021/jacs.4c13131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The revolutionary impact of photoredox catalytic processes has ignited novel avenues for exploration, empowering us to delve into nature in unprecedented ways and to pioneer innovative biotechnologies for therapy and diagnosis. However, integrating artificial photoredox catalysis into living systems presents significant challenges, primarily due to concerns over low targetability, low compatibility with complex biological environments, and the safety risks associated with photocatalyst toxicity. To address these challenges, herein, we present a novel bioorthogonally activatable photoredox catalysis approach. In this approach, potent photocatalyst selection via atom replacement of the rhodamine core yielded the bioorthogonally activatable photocatalyst (PC-Tz). The introduction of 1,2,4,5-tetrazine quenched its photocatalytic properties, which were restored upon an intracellular inverse electron-demand Diels-Alder (iEDDA) reaction with trans-cyclooctene (TCO) localized in mitochondria. This reaction led to remarkable photocatalytic oxidation of nicotinamide adenine dinucleotide (NADH), effectively manipulating the mitochondrial electron transport chain (ETC) under hypoxic conditions in cancer cells. Additionally, photocatalytic pyroptotic cell death was observed through a caspase-3/gasdermin E (GSDME) pathway, achieving notable antitumor efficacy and adenosine triphosphate (ATP) reduction in tumor cells. To the best of our knowledge, this represents the first example of bioorthogonally activatable photoredox catalysis, opening new avenues for chemists to spatiotemporally control activity in specific cell organelles without disrupting other native biological processes.
Collapse
Affiliation(s)
- Jungryun Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Yunjie Xu
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Jong Hyeon Lim
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Mingle Li
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Joseph M Fox
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Marc Vendrell
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
25
|
Yang Z, Liu D, Cheng X, Wang T, Li Z, Yang GX, Chen Z, Hu J, Fu Y, Nie X, Ren Y, Zeng Y, Chen Y, Liu K, Li M, Su SJ. Delocalized Nonbonding Orbitals of Thioxanthone in Polycyclic Aromatic Hydrocarbons for Reduced Energy Gap and Narrowband Emission. Angew Chem Int Ed Engl 2025:e202423602. [PMID: 39779478 DOI: 10.1002/anie.202423602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/11/2025]
Abstract
Chalcogen-containing carbonyls, specifically thioxanthone (TX), hold great potential in organic light-emitting diodes (OLEDs). While the development of narrowband OLEDs with chalcogen-containing carbonyls remains challenging due to difficulties in achieving both high device efficiency and narrow emission spectra. Herein, via a strategic incorporation of the TX moiety, two orange-red narrowband emitters, 2TXBN and BNTXBN, are designed and synthesized for the first time. Both 2TXBN and BNTXBN exhibit bright orange-red emissions with peaks at 582 and 585 nm, respectively, along with narrow full widths at half maxima of 30 and 32 nm. Notably, 2TXBN demonstrates delocalization of the nonbonding orbital within the TX segment, which raises the first triplet energy level and reduces the singlet-triplet energy gap. This electronic structural adjustment effectively shortens the delayed fluorescence lifetime, leading to enhanced device performance. Accordingly, OLED employing 2TXBN as the emitter achieves remarkable performance, with a maximum external quantum efficiency of 31.0 %, a current efficiency of 69.0 cd A-1, and a power efficiency of 76.0 lm W-1, highlighting the efficacy of the nonbonding orbital delocalization strategy in achieving bathochromic-shifted narrowband OLED materials.
Collapse
Affiliation(s)
- Zhihai Yang
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Denghui Liu
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Xiangyi Cheng
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Tong Wang
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Zhizhi Li
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Guo-Xi Yang
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Zijian Chen
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Juntao Hu
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Yu Fu
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Xuewei Nie
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Yongxia Ren
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Yitong Zeng
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Yuling Chen
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Kunkun Liu
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Mengke Li
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Shi-Jian Su
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| |
Collapse
|
26
|
Zhou W, Liu YC, Liu GJ, Zhang Y, Feng GL, Xing GW. Glycosylated AIE-active Red Light-triggered Photocage with Precisely Tumor Targeting Capability for Synergistic Type I Photodynamic Therapy and CPT Chemotherapy. Angew Chem Int Ed Engl 2025; 64:e202413350. [PMID: 39266462 DOI: 10.1002/anie.202413350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/14/2024]
Abstract
Photocaging is an emerging protocol for precisely manipulating spatial and temporal behaviors over biological activity. However, the red/near-infrared light-triggered photolysis process of current photocage is largely singlet oxygen (1O2)-dependent and lack of compatibility with other reactive oxygen species (ROS)-activated techniques, which has proven to be the major bottleneck in achieving efficient and precise treatment. Herein, we reported a lactosylated photocage BT-LRC by covalently incorporating camptothecin (CPT) into hybrid BODIPY-TPE fluorophore via the superoxide anion radical (O2 -⋅)-cleavable thioketal bond for type I photodynamic therapy (PDT) and anticancer drug release. Amphiphilic BT-LRC could be self-assembled into aggregation-induced emission (AIE)-active nanoparticles (BT-LRCs) owing to the regulation of carbohydrate-carbohydrate interactions (CCIs) among neighboring lactose units in the nanoaggregates. BT-LRCs could simultaneously generate abundant O2 -⋅ through the aggregation modulated by lactose interactions, and DNA-damaging agent CPT was subsequently and effectively released. Notably, the type I PDT and CPT chemotherapy collaboratively amplified the therapeutic efficacy in HepG2 cells and tumor-bearing mice. Furthermore, the inherent AIE property of BT-LRCs endowed the photocaged prodrug with superior bioimaging capability, which provided a powerful tool for real-time tracking and finely tuning the PDT and photoactivated drug release behavior in tumor therapy.
Collapse
Affiliation(s)
- Wei Zhou
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yi-Chen Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Guang-Jian Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yuan Zhang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Gai-Li Feng
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Guo-Wen Xing
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
27
|
Lin WY, Wen HP, Li JY, Wang JM, Feng HJ, Huang Z, Li R, Zeng L, Huang L. Compact Molecular Conformation of Prodrugs Enhances Photocleaving Performance for Tumor Vascular Growth Inhibition. Adv Healthc Mater 2025; 14:e2402690. [PMID: 39460488 DOI: 10.1002/adhm.202402690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/06/2024] [Indexed: 10/28/2024]
Abstract
Highly spatiotemporal-resolved photomodulation demonstrates promise for investigating key biological events in vivo and in vitro, such as cell signaling pathways, neuromodulation, and tumor treatment without side effects. However, enhancing the performance of photomodulation tools remains challenging due to the limitations of the physicochemical properties of the photoactive molecules. Here, a compact, stable intramolecular π-π stacking conformation forming between the target molecule (naproxen) and the perylene-based photoremovable protecting group is discovered to confine the motion of the photolabile bond and then enhance the photocleavage quantum yield. In conjunction with a red-absorbing photosensitizer, the photocleavage wavelength is extended to the red region via triplet-triplet annihilation. In particular, the triplet lifetime of the prodrug can be extended via the linked steric hindrance to improve the conversion yield via TTA. Using the new photomodulation tool, it is precisely photoreleased cyclooxygenase-2 inhibitors for tumor vascular growth suppression in vivo. In combination with cisplatin, over 90% efficient inhibition of malignant breast tumors is observed via the synergistic tumor treatment strategy. These findings provide a new concept for the rational design of efficient photocleavage and have implications for photomodulating cell signaling pathways in tumor therapy, as well as laying a solid foundation for the development of phototherapeutic approaches.
Collapse
Affiliation(s)
- Wen-Yue Lin
- Department Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Hui-Ping Wen
- Department Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jia-Yao Li
- Department Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Juan-Mei Wang
- Department Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Hong-Juan Feng
- Department Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zhi Huang
- Department Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Ran Li
- Department Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Le Zeng
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Ling Huang
- Department Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
28
|
O'Connell RJ, Dolphin NJ, Ferraudi G, Lee M, Stauffacher CV, Helquist P, Wiest O. Synthesis of Caged HMG-CoA Reductase Substrates for the Elucidation of Cellular Pathways. J Org Chem 2024; 89:18739-18745. [PMID: 39642078 PMCID: PMC11729377 DOI: 10.1021/acs.joc.4c02403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
The synthesis of photocaged substrates of the biologically important enzyme HMG-CoA reductase is reported. HMG-CoA bearing a p-hydroxyphenacyl (pHP) photocage moiety was synthesized in an overall yield of 14% over seven steps in addition to caged forms of mevalonate and mevaldehyde. The absorption maximum and quantum yield for the decaging of the photocaged compounds are dependent on pH with a λmax of 330 nm and a ϕ of 5%, respectively, at pH 9.1 but a λmax of 290 nm and a ϕ of 16%, respectively, at pH 6.7.
Collapse
Affiliation(s)
- Ryan J O'Connell
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Nicholas J Dolphin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Guillermo Ferraudi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Mijoon Lee
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Cynthia V Stauffacher
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Paul Helquist
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Olaf Wiest
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
29
|
Rizzo R, Barber DM, Wilt JK, Ainscough AJ, Lewis JA. Photoinitiator-free light-mediated crosslinking of dynamic polymer and pristine protein networks. Biomater Sci 2024; 13:210-222. [PMID: 39531000 PMCID: PMC11562384 DOI: 10.1039/d4bm00849a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Light-based patterning of synthetic and biological hydrogels enables precise spatial and temporal control over the formation of chemical bonds. However, photoinitiators are typically used to generate free radicals, which are detrimental to human cells. Here, we report a photoinitiator- and radical-free method based on ortho-nitrobenzyl alcohol (oNBA) photolysis, which gives rise to highly reactive nitroso and benzaldehyde groups. Synthetic hydrogel and pristine protein networks can rapidly form in the presence of these photo-generated reactive species. Thiol -oNBA bonds yield dynamic hydrogel networks (DHNs) via N-semimercaptal linkages that exhibit thixotropy, stress relaxation, and on-demand reversible gel-to-liquid transitions, while amine-oNBA bonds can be exploited to crosslink pristine proteins, such as gelatin and fibrinogen, by targeting their primary amines. Since this approach does not require incorporation of photoreactive moieties along the backbone, the resulting crosslinked proteins are well suited for bioadhesives. Our photoinitiator-free platform provides a versatile approach for rapidly creating synthetic and biological hydrogels for applications ranging from tissue engineering to biomedical devices.
Collapse
Affiliation(s)
- Riccardo Rizzo
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Dylan M Barber
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Jackson K Wilt
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Alexander J Ainscough
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Jennifer A Lewis
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
30
|
Gerogiannopoulou ADD, Mountanea OG, Routsi EA, Tzeli D, Kokotos CG, Kokotos G. Electron Donor-Acceptor Complex-Assisted Photochemical Conversion of O-2-Nitrobenzyl Protected Hydroxamates to Amides. Chemistry 2024; 30:e202402984. [PMID: 39343744 DOI: 10.1002/chem.202402984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
The hydroxamic acid functionality is present in various medicinal agents and has attracted special interest for synthetic transformations in both organic and medicinal chemistry. The N-O bond cleavage of hydroxamic acid derivatives provides an interesting transformation for the generation of various products. We demonstrate, herein, that O-benzyl-type protected hydroxamic acids may undergo photochemical N-O bond cleavage, in the presence or absence of a catalyst, leading to amides. Although some O-benzyl protected aromatic hydroxamates may be photochemically converted to amides in the presence of a base and anthracene as the catalyst, employing O-2-nitrobenzyl group allowed the smooth conversion of both aliphatic and aromatic hydroxamates to primary or secondary amides in good to excellent yields in the presence of an amine, bypassing the need of a catalyst. DFT and UV-Vis studies supported the effective generation of an electron donor-acceptor (EDA) complex between O-2-nitrobenzyl hydroxamates and amines, which enabled the successful product formation under these photochemical conditions. An extensive substrate scope was demonstrated, showcasing that both aliphatic and aromatic hydroxamates are compatible with this protocol, affording a wide variety of primary and secondary amides.
Collapse
Affiliation(s)
- Anna-Dimitra D Gerogiannopoulou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15771, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Athens, 15771, Greece
| | - Olga G Mountanea
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15771, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Athens, 15771, Greece
| | - E Alexandros Routsi
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15771, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Athens, 15771, Greece
| | - Demeter Tzeli
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15771, Greece
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece
| | - Christoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15771, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Athens, 15771, Greece
| | - George Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15771, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Athens, 15771, Greece
| |
Collapse
|
31
|
Starodubtseva ES, Karogodina TY, Panfilov MA, Sheven DG, Selyutina OY, Vorob'ev AY, Moskalensky AE. Adrenochrome formation during photochemical decomposition of "caged" epinephrine derivatives. Photochem Photobiol Sci 2024; 23:2265-2268. [PMID: 39612097 DOI: 10.1007/s43630-024-00665-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/15/2024] [Indexed: 11/30/2024]
Abstract
Control of biological activity with light is a fascinating idea. "Caged" compounds, molecules modified with photolabile protecting group, are one of the instruments for this purpose. Adrenergic receptors are essential regulators of neuronal, endocrine, cardiovascular, vegetative, and metabolic functions. These receptors are largely used as pharmacologic targets. Photolabile "caged" analogs of adrenergic receptor agonists has been reported more than 30 years ago. We report that the photolysis of epinephrine analogs, apart from liberation of the epinephrine, is accompanied by a formation of significant amount of adrenochrome, a compound with neuro- and cardiotoxic effect.
Collapse
Affiliation(s)
| | - Tatyana Yu Karogodina
- Novosibirsk State University, Novosibirsk, Russia
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk, Russia
| | - Mikhail A Panfilov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk, Russia
| | - Dmitriy G Sheven
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk, Russia
| | - Olga Yu Selyutina
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Novosibirsk, Russia
| | - Alexey Yu Vorob'ev
- Novosibirsk State University, Novosibirsk, Russia
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk, Russia
| | | |
Collapse
|
32
|
Ma Z, Hou B, Liao A, Tan Y, Tan C, Jiang Y. Light-Activable Inhibitor Overcomes Antimicrobial Resistance and Regulates Antibacterial Activity. J Med Chem 2024; 67:20455-20466. [PMID: 39540544 DOI: 10.1021/acs.jmedchem.4c01923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Overuse of antibiotics and the widespread environmental accumulation of antibiotics drive the evolution and spread of antimicrobial resistance, posing a significant global health threat by reducing the effectiveness of available treatments and increasing the risk of untreatable infections. We designed and synthesized PhoPS, a novel photocaged β-lactamase inhibitor, which incorporates the pharmacophore of sulbactam caged with a photoresponsive moiety of o-nitrobiphenyl derivative. Experimental results demonstrate its rapid photoactivation, good stability in solution, and light-activated β-lactamase inhibition in vitro. PhoPS displays synergy with a cephalosporin antibiotic cefoperazone against both susceptible and resistant strains of Escherichia coli and biofilm formation. Additionally, PhoPS treatment demonstrates the potential to suppress the development of resistance in E. coli. These findings suggest that PhoPS offers a promising approach for restoring the efficacy of existing antibiotics and mitigating the emergence of AMR.
Collapse
Affiliation(s)
- Zhuang Ma
- The State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Boxuan Hou
- The State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Anhui Liao
- The State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Ying Tan
- The State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- Open FIESTA, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Chunyan Tan
- The State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- Open FIESTA, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Yuyang Jiang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
33
|
Shi J, Wang L, Zeng X, Xie C, Meng Z, Campbell A, Wang L, Fan H, Sun H. Precision-engineered PROTACs minimize off-tissue effects in cancer therapy. Front Mol Biosci 2024; 11:1505255. [PMID: 39649701 PMCID: PMC11621628 DOI: 10.3389/fmolb.2024.1505255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 10/28/2024] [Indexed: 12/11/2024] Open
Abstract
Proteolysis-targeting chimeras (PROTACs) offer a groundbreaking approach to selectively degrade disease-related proteins by utilizing the ubiquitin-proteasome system. While this strategy shows great potential in preclinical and clinical settings, off-tissue effects remain a major challenge, leading to toxicity in healthy tissues. This review explores recent advancements aimed at improving PROTAC specificity, including tumor-specific ligand-directed PROTACs, pro-PROTACs activated in tumor environments, and E3 ligase overexpression strategies. Innovations such as PEGylation and nanotechnology also play a role in optimizing PROTAC efficacy. These developments hold promise for safer, more effective cancer therapies, though challenges remain for clinical translation.
Collapse
Affiliation(s)
- Jianghua Shi
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Luo Wang
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, The School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xuanwei Zeng
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, The School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Chengzhi Xie
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, The School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Zhaowei Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Anahit Campbell
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Lulu Wang
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, The School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Heli Fan
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, The School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Huabing Sun
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, The School of Pharmacy, Tianjin Medical University, Tianjin, China
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
34
|
Maller C, Marouda E, Köhn M. Photo-Claisen Rearrangement in a Coumarin-Caged Peptide Leads to a Surprising Enzyme Hyperactivation. Chembiochem 2024; 25:e202400561. [PMID: 39172538 DOI: 10.1002/cbic.202400561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
Protein phosphatase-1 (PP1) is a ubiquitous enzyme that counteracts hundreds of kinases in cells. PP1 interacts with regulatory proteins via an RVxF peptide motif that binds to a hydrophobic groove on the enzyme. PP1-disrupting peptides (PDPs) compete with these regulatory proteins, leading to the release of the active PP1 subunit and promoting substrate dephosphorylation. Building on previous strategies employing the ortho-nitrobenzyl (o-Nb) group as a photocage to control PDP activity, we introduced coumarin derivatives into a PDP via an ether bond to explore their effects on PP1 activity. Surprisingly, our study revealed that the coumarin-caged peptides (PDP-DEACM and PDP-CM) underwent a photo-Claisen rearrangement, resulting in an unexpected hyperactivation of PP1. Our findings underscore the importance of linker design in controlling uncaging efficiency of photocages and highlight the need for comprehensive in vitro analysis before cellular experiments.
Collapse
Affiliation(s)
- Corina Maller
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 18, Freiburg, 79104, Germany
- Faculty of Chemistry and Pharmacy, Hermann-Staudinger Graduate School, University of Freiburg, Hebelstrasse 27, Freiburg, 79104, Germany
| | - Eirini Marouda
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 18, Freiburg, 79104, Germany
| | - Maja Köhn
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 18, Freiburg, 79104, Germany
| |
Collapse
|
35
|
Schulte AM, Vivien Q, Leene JH, Alachouzos G, Feringa BL, Szymanski W. Photocleavable Protecting Groups Using a Sulfite Self-Immolative Linker for High Uncaging Quantum Yield and Aqueous Solubility. Angew Chem Int Ed Engl 2024; 63:e202411380. [PMID: 39140843 DOI: 10.1002/anie.202411380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/26/2024] [Accepted: 08/11/2024] [Indexed: 08/15/2024]
Abstract
Using light as an external stimulus to control (bio)chemical processes offers many distinct advantages. Most importantly, it allows for spatiotemporal control simply through operating the light source. Photocleavable protecting groups (PPGs) are a cornerstone class of compounds that are used to achieve photocontrol over (bio)chemical processes. PPGs are able to release a payload of interest upon light irradiation. The successful application of PPGs hinges on their efficiency of payload release, captured in the uncaging Quantum Yield (QY). Heterolytic PPGs efficiently release low pKa payloads, but their efficiency drops significantly for payloads with higher pKa values, such as alcohols. For this reason, alcohols are usually attached to PPGs via a carbonate linker. The self-immolative nature of the carbonate linker results in concurrent release of CO2 with the alcohol payload upon irradiation. We introduce herein novel PPGs containing sulfites as self-immolative linkers for photocaged alcohol payloads, for which we discovered that the release of the alcohol proceeds with higher uncaging QY than an identical payload released from a carbonate-linked PPG. Furthermore, we demonstrate that uncaging of the sulfite-linked PPGs results in the release of SO2 and show that the sulfite linker improves water solubility as compared to the carbonate-based systems.
Collapse
Affiliation(s)
- Albert Marten Schulte
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
- Department of Medicinal Chemistry, Photopharmacology and Imaging, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Quentin Vivien
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
- Department of Medicinal Chemistry, Photopharmacology and Imaging, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Julia H Leene
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Georgios Alachouzos
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
- Department of Medicinal Chemistry, Photopharmacology and Imaging, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- Department of Radiology, Medical Imaging Center, University Medical Center, Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
36
|
Yim J, Park J, Kim G, Lee HH, Chung JS, Jo A, Koh M, Park J. Conditional PROTAC: Recent Strategies for Modulating Targeted Protein Degradation. ChemMedChem 2024; 19:e202400326. [PMID: 38993102 PMCID: PMC11581424 DOI: 10.1002/cmdc.202400326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs) have emerged as a promising technology for inducing targeted protein degradation by leveraging the intrinsic ubiquitin-proteasome system (UPS). While the potential druggability of PROTACs toward undruggable proteins has accelerated their rapid development and the wide-range of applications across diverse disease contexts, off-tissue effects and side-effects of PROTACs have recently received attentions to improve their efficacy. To address these issues, spatial or temporal target protein degradation by PROTACs has been spotlighted. In this review, we explore chemical strategies for modulating protein degradation in a cell type-specific (spatio-) and time-specific (temporal-) manner, thereby offering insights for expanding PROTAC applications to overcome the current limitations of target protein degradation strategy.
Collapse
Affiliation(s)
- Junhyeong Yim
- Department of ChemistryKangwon National UniversityChuncheon24341Republic of Korea
- Multidimensional Genomics Research CenterKangwon National UniversityChuncheon24341Republic of Korea
| | - Junyoung Park
- Department of ChemistryKangwon National UniversityChuncheon24341Republic of Korea
- Institute for Molecular Science and Fusion TechnologyKangwon National UniversityChuncheon24341Republic of Korea
| | - Gabin Kim
- Department of Chemistry and ChemistryInstitute for Functional MaterialsPusan National UniversityBusan46241Republic of Korea
| | - Hyung Ho Lee
- Department of UrologyUrological Cancer CenterResearch Institute and Hospital of National Cancer CenterGoyang10408Republic of Korea
| | - Jin Soo Chung
- Department of UrologyUrological Cancer CenterResearch Institute and Hospital of National Cancer CenterGoyang10408Republic of Korea
| | - Ala Jo
- Center for NanomedicineInstitute for Basic ScienceSeoul03722Republic of Korea
| | - Minseob Koh
- Department of Chemistry and ChemistryInstitute for Functional MaterialsPusan National UniversityBusan46241Republic of Korea
| | - Jongmin Park
- Department of ChemistryKangwon National UniversityChuncheon24341Republic of Korea
- Multidimensional Genomics Research CenterKangwon National UniversityChuncheon24341Republic of Korea
- Institute for Molecular Science and Fusion TechnologyKangwon National UniversityChuncheon24341Republic of Korea
| |
Collapse
|
37
|
Stolarek M, Kaminski K, Kaczor-Kamińska M, Obłoza M, Bonarek P, Czaja A, Datta M, Łach W, Brela M, Sikorski A, Rak J, Nowakowska M, Szczubiałka K. Light-Controlled Anticancer Activity and Cellular Uptake of a Photoswitchable Cisplatin Analogue. J Med Chem 2024; 67:19103-19120. [PMID: 39445571 PMCID: PMC11571217 DOI: 10.1021/acs.jmedchem.4c01575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/20/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
A photoactive analogue of cisplatin was synthesized with two arylazopyrazole ligands, able to undergo trans-cis/cis-trans photoisomerizations. The cis photoisomer showed a dark half-life of 9 days. The cytotoxicities of both photoisomers of the complex were determined in several cancer and normal cell lines and compared to that of cisplatin. The trans photoisomer of the complex was much more cytotoxic than both the cis photoisomer and cisplatin, and was more toxic for cancer (4T1) than for normal (NMuMG) murine breast cells. 4T1 cell death occurred through necrosis. Photoisomerization of the trans and cis photoisomers internalized by the 4T1 cells increased and decreased their viability, respectively. The cellular uptake of the trans photoisomer was stronger than that of both the cis photoisomer and cisplatin. Both photoisomers interacted with DNA faster than cisplatin. The trans photoisomer was bound stronger by bovine serum albumin and induced a greater decrease in cellular glutathione levels than the cis photoisomer.
Collapse
Affiliation(s)
- Marta Stolarek
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland
- Jagiellonian
University, Doctoral School
of Exact and Natural Sciences, Łojasiewicza 11, 30-348 Cracow, Poland
| | - Kamil Kaminski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland
| | - Marta Kaczor-Kamińska
- Chair
of Medical Biochemistry, Jagiellonian University, Collegium Medicum, Kopernika 7C, 31-034 Cracow, Poland
| | - Magdalena Obłoza
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland
| | - Piotr Bonarek
- Faculty
of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | - Anna Czaja
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Magdalena Datta
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Wojciech Łach
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland
| | - Mateusz Brela
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland
| | - Artur Sikorski
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Janusz Rak
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Maria Nowakowska
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland
| | - Krzysztof Szczubiałka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland
| |
Collapse
|
38
|
Gagarin AA, Minin AS, Shevyrin VA, Benassi E, Belskaya NP. Photocaging of amino acids and short peptides by arylidenethiazoles: mechanism, photochemical characteristics and biological behaviour. J Mater Chem B 2024; 12:11402-11413. [PMID: 39378025 DOI: 10.1039/d4tb01441c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
A series of fluorophores based on the (5-methyl-4-phenylthiazol-2-yl)-3-phenylacrylonitrile (MPTA) core were designed and synthesised for photocaging of amino acids and peptides. The photophysical characteristics of these compounds and their hybrids with biomolecules were thoroughly investigated through a joint experimental, spectral and computational approach. The photorelease ability of the obtained amino acids-MPTA and peptides-MPTA hybrids was studied under various conditions, including different UV irradiation wavelength and power, and solvents. The main reaction products were identified using high-performance liquid chromatography combined with high-resolution mass spectrometry. Photo uncaging kinetics was quantitatively studied using absorption spectroscopy. The mechanism of photorelease of amino acids and peptides was elucidated through quantum mechanical calculations, which were also used for the exploration of photophysical properties of the excited states, and photodissociation energetics quantification. Relationships between the structure of fluorophores and photodissociation characteristics were estimated, and fluorophores with the good uncaging characteristics (biomolecule photoreleasing yield, uncaging rate, and effectiveness) were identified. Cell viability assays using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide or MTT showed a low cytotoxicity of the hybrids. Confocal microscopy revealed the easy penetration of the hybrids into living cells and their selective accumulation in the endoplasmic reticulum, lipid droplets and mitochondria, depending on their chemical structure.
Collapse
Affiliation(s)
- Aleksey A Gagarin
- Department of Technology for Organic Synthesis, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russia.
| | - Artem S Minin
- Department of Technology for Organic Synthesis, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russia.
- M. N. Mikheev Institute of Metal Physics, Ural Branch of Russian Academy of Science, 18 S. Kovalevskaya Str., Yekaterinburg, 620108, Russia
| | - Vadim A Shevyrin
- Department of Technology for Organic Synthesis, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russia.
| | - Enrico Benassi
- Novosibirsk State University, Pirogova Str. 2, 630090 Novosibirsk, Russia.
| | - Nataliya P Belskaya
- Department of Technology for Organic Synthesis, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russia.
| |
Collapse
|
39
|
Parisi C, Laneri F, Martins TJ, Fraix A, Sortino S. Nitric Oxide-Photodelivering Materials with Multiple Functionalities: From Rational Design to Therapeutic Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59697-59720. [PMID: 39445390 DOI: 10.1021/acsami.4c13478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The achievement of materials that are able to release therapeutic agents under the control of light stimuli to improve therapeutic efficacy is a significant challenge in health care. Nitric oxide (NO) is one of the most studied molecules in the fascinating realm of biomedical sciences, not only for its crucial role as a gaseous signaling molecule in the human body but also for its great potential as an unconventional therapeutic in a variety of diseases including cancer, bacterial and viral infections, and neurodegeneration. Handling difficulties due to its gaseous nature, reduced region of action due to its short half-life, and strict dependence of the biological effects on its concentration and generation site are critical questions to be solved for appropriate therapeutic uses of NO. Light-activatable NO precursors, namely, NO photodonors (NOPDs), address the above issues since they are stable in the dark and permit in a noninvasive fashion the remote-controlled delivery of NO on demand with great spatiotemporal precision. Engineering biocompatible materials with NOPDs and their combination with additional imaging, therapeutic, and phototherapeutic components leads to intriguing light-responsive multifunctional constructs exhibiting promising potential for biomedical applications. This contribution illustrates the most significant progress made over the last five years in achieving engineered materials including nanoparticles, gels, and thin films, sharing the common feature to deliver NO under the exclusive control of the biocompatible visible/near infrared light inputs. We will highlight the logical design behind the fabrication of these systems, illustrating the potential therapeutic applications with particular emphasis on cancer and bacterial infections.
Collapse
Affiliation(s)
- Cristina Parisi
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Francesca Laneri
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Tassia J Martins
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Aurore Fraix
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Salvatore Sortino
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| |
Collapse
|
40
|
Ghosh SK, Chatterjee S, Boruah PP, Mandal S, Da Silva JP, Srinivasan V, Ramamurthy V. A supramolecular approach towards the photorelease of encapsulated caged acids in water: 7-diethylaminothio-4-coumarinyl molecules as triggers. Photochem Photobiol Sci 2024; 23:2057-2073. [PMID: 39495428 DOI: 10.1007/s43630-024-00651-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024]
Abstract
Herein, we establish the release of aliphatic acids in water upon excitation of 7-diethylaminothio-4-coumarinyl derivatives encapsulated within the organic host octa acid (OA). The 7-diethylaminothio-4-coumarinyl skeleton, employed here as the trigger, photoreleases caged molecules from the excited triplet state, in contrast to its carbonyl analogue, where the same reaction is known to occur from the excited singlet state. Encapsulation in OA solubilizes molecules in water that are otherwise water-insoluble, and retains the used trigger within itself following the release of the aliphatic acid. Such supramolecular characteristics usher in new features to the photorelease methodology. The thiocarbonyl chromophore extends the absorption of coumarinyl trigger to visible range while enhancing the intersystem crossing (ISC) to the triplet state, making it the reactive state. Despite the non-polar environment within the OA capsules the photocleavage occurs in a heterolytic fashion to release the conjugate base and the used trigger as triplet carbocation in an adiabatic process. Interestingly, the triplet carbocation crosses to the ground singlet surface (closed shell singlet carbocation) with the help of water molecules, possibly aided by C = S chromophore. Utilizing the known excited state dynamics of related thiocoumarinyl and coumarinyl systems, we have identified a few of the important mechanistic features of the photorelease process of 7-diethylaminothio-4-coumarinyl derivatives. Ultrafast excited state dynamic studies and quantum chemical calculations planned should help us better understand the photorelease process so as to effectively exploit the proposed system for potential applications.
Collapse
Affiliation(s)
- Sujit Kumar Ghosh
- Department of Chemistry, University of Miami, Coral Gables, FL, 33146, USA
| | - Shreya Chatterjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, MP, 462066, India
| | - Paras Pratim Boruah
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, MP, 462066, India
| | - Satyajit Mandal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, MP, 462066, India
| | - José P Da Silva
- Centre of Marine Sciences (CCMAR/CIMAR LA), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Varadharajan Srinivasan
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, MP, 462066, India.
| | | |
Collapse
|
41
|
Bogomolec M, Glavaš M, Škorić I. BODIPY Compounds Substituted on Boron. Molecules 2024; 29:5157. [PMID: 39519798 PMCID: PMC11547857 DOI: 10.3390/molecules29215157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BODIPY compounds are important organic dyes with exceptional spectral and photophysical properties and numerous applications in different scientific fields. Their widespread applications have flourished due to their easy structural modifications, which enable the preparation of different molecular structures with tunable spectral and photophysical properties. To date, researchers have mostly devoted their efforts to modifying BODIPY meso-position or pyrrole rings, whereas the substitution of fluorine atoms remains largely unexplored. However, chemistry of the boron atom is possible, and it enables tuning of the photophysical properties of the dyes, without tackling their spectral properties. Furthermore, modifications of boron affect the solubility and aggregation propensity of the molecules. This review article highlights methods for the preparation of 4-substituted compounds and the most important reactions on the boron of the BODIPY dyes. They were divided into reactions promoted by Lewis acid (AlCl3 or BCl3), or bases such as alkoxides and organometallic reagents. By using these two methodologies, it is possible to cleave B-F bonds and substitute them with B-C, B-N, or B-O bonds from different nucleophiles. A special emphasis in this review is given to still underdeveloped photochemical reactions of the boron atom of BODIPY dyes. These reactions have the potential to be used in the development of a new line of BODIPY photo-cleavable protective groups (also known as photocages) with bio-medicinal and photo-pharmacological applications, such as drug delivery.
Collapse
Affiliation(s)
- Marko Bogomolec
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000 Zagreb, Croatia; (M.B.); (M.G.)
| | - Mladena Glavaš
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000 Zagreb, Croatia; (M.B.); (M.G.)
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10 000 Zagreb, Croatia
| |
Collapse
|
42
|
Herranz-Trillo F, Sørensen HV, Dicko C, Pérez J, Lenton S, Foderà V, Fornell A, Skepö M, Plivelic TS, Berntsson O, Andersson M, Magkakis K, Orädd F, Ahn B, Appio R, Da Silva J, Da Silva V, Lerato M, Terry AE. Time-resolved scattering methods for biological samples at the CoSAXS beamline, MAX IV Laboratory. Methods Enzymol 2024; 709:245-296. [PMID: 39608946 DOI: 10.1016/bs.mie.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
CoSAXS is a state-of-the-art SAXS/WAXS beamline exploiting the high brilliance of the MAX IV 3 GeV synchrotron. By coupling advances in sample environment control with fast X-ray detectors, millisecond time-resolved scattering methods can follow structural dynamics of proteins in solution. In the present work, four sample environments are discussed. A sample environment for combined SAXS with UV-vis and fluorescence spectroscopy (SUrF) enables a comprehensive understanding of the time evolution of conformation in a model protein upon acid-driven denaturation. The use of microfluidic chips with SAXS allows the mapping of concentration with very small sample volumes. For highly reproducible sequences of mixing of components, it is possible using stopped-flow and SAXS to access the initial effects of mixing at 2 millisecond timescales with good signal to noise to allow structural interpretation. The intermediate structures in a protein are explored under light and temperature perturbations by using lasers to "pump" the protein and SAXS as the "probe". The methods described demonstrate that features at low q, corresponding to cooperative motions of the atoms in a protein, could be extracted at millisecond timescales, which results from CoSAXS being a highly-stable, low background, dedicated SAXS beamline.
Collapse
Affiliation(s)
| | - Henrik Vinther Sørensen
- MAX IV Laboratory, Lund University, Lund, Sweden; Department of Chemistry, Division of Computational Chemistry, Lund University, Lund, Sweden
| | - Cedric Dicko
- Division of Pure and Applied Biochemistry, Lund University, Lund, Sweden
| | - Javier Pérez
- Synchrotron SOLEIL, Saint-Aubin - BP, Gif sur Yvette Cedex, France
| | - Samuel Lenton
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken, Copenhagen, Denmark
| | - Vito Foderà
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken, Copenhagen, Denmark
| | - Anna Fornell
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Marie Skepö
- Department of Chemistry, Division of Computational Chemistry, Lund University, Lund, Sweden
| | | | | | | | | | - Fredrik Orädd
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Byungnam Ahn
- MAX IV Laboratory, Lund University, Lund, Sweden
| | | | | | | | - Marco Lerato
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - Ann E Terry
- MAX IV Laboratory, Lund University, Lund, Sweden.
| |
Collapse
|
43
|
Matsubara S, Shoji S, Tamiaki H. Biomimetic light-harvesting antennas via the self-assembly of chemically programmed chlorophylls. Chem Commun (Camb) 2024; 60:12513-12524. [PMID: 39376203 DOI: 10.1039/d4cc04363d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The photosynthetic pigment "chlorophyll" possesses attractive photophysical properties, including efficient sunlight absorption, photoexcited energy transfer, and charge separation, which are advantageous for applications for photo- and electro-functional materials such as artificial photosynthesis and solar cells. However, these functions cannot be realized by individual chlorophyll molecules alone; rather, they are achieved by the formation of sophisticated supramolecules through the self-assembly of the pigments. Here, we present strategies for constructing and developing artificial light-harvesting systems by mimicking photosynthetic antenna complexes through the highly ordered supramolecular self-assembly of synthetic dyes, particularly chlorophyll derivatives.
Collapse
Affiliation(s)
- Shogo Matsubara
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Aichi, 466-8555, Japan
| | - Sunao Shoji
- Faculty of Engineering, Nara Women's University, Nara 630-8506, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
44
|
Schmitt C, Mauker P, Vepřek NA, Gierse C, Meiring JCM, Kuch J, Akhmanova A, Dehmelt L, Thorn-Seshold O. A Photocaged Microtubule-Stabilising Epothilone Allows Spatiotemporal Control of Cytoskeletal Dynamics. Angew Chem Int Ed Engl 2024; 63:e202410169. [PMID: 38961560 DOI: 10.1002/anie.202410169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
The cytoskeleton is essential for spatial and temporal organisation of a wide range of cellular and tissue-level processes, such as proliferation, signalling, cargo transport, migration, morphogenesis, and neuronal development. Cytoskeleton research aims to study these processes by imaging, or by locally manipulating, the dynamics and organisation of cytoskeletal proteins with high spatiotemporal resolution: which matches the capabilities of optical methods. To date, no photoresponsive microtubule-stabilising tool has united all the features needed for a practical high-precision reagent: a low potency and biochemically stable non-illuminated state; then an efficient, rapid, and clean photoresponse that generates a high potency illuminated state; plus good solubility at suitable working concentrations; and efficient synthetic access. We now present CouEpo, a photocaged epothilone microtubule-stabilising reagent that combines these needs. Its potency increases approximately 100-fold upon irradiation by violet/blue light to reach low-nanomolar values, allowing efficient photocontrol of microtubule dynamics in live cells, and even the generation of cellular asymmetries in microtubule architecture and cell dynamics. CouEpo is thus a high-performance tool compound that can support high-precision research into many microtubule-associated processes, from biophysics to transport, cell motility, and neuronal physiology.
Collapse
Affiliation(s)
- Carina Schmitt
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Butenandtstrasse 7, Munich, 81377, Germany
| | - Philipp Mauker
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Butenandtstrasse 7, Munich, 81377, Germany
| | - Nynke A Vepřek
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Butenandtstrasse 7, Munich, 81377, Germany
| | - Carolin Gierse
- Department of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Str. 4a, Dortmund, 44227, Germany
| | - Joyce C M Meiring
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, Netherlands
| | - Jürgen Kuch
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Butenandtstrasse 7, Munich, 81377, Germany
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, Netherlands
| | - Leif Dehmelt
- Department of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Str. 4a, Dortmund, 44227, Germany
| | - Oliver Thorn-Seshold
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Butenandtstrasse 7, Munich, 81377, Germany
| |
Collapse
|
45
|
Szyjka CE, Kelly SL, Strobel EJ. Sequential structure probing of cotranscriptional RNA folding intermediates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618260. [PMID: 39464030 PMCID: PMC11507761 DOI: 10.1101/2024.10.14.618260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Cotranscriptional RNA folding pathways typically involve the sequential formation of folding intermediates. Existing methods for cotranscriptional RNA structure probing map the structure of nascent RNA in the context of a terminally arrested transcription elongation complex. Consequently, the rearrangement of RNA structures as nucleotides are added to the transcript can be inferred but is not assessed directly. To address this limitation, we have developed linked-multipoint Transcription Elongation Complex RNA structure probing (TECprobe-LM), which assesses the cotranscriptional rearrangement of RNA structures by sequentially positioning E. coli RNAP at two or more points within a DNA template so that nascent RNA can be chemically probed. We validated TECprobe-LM by measuring known folding events that occur within the E. coli signal recognition particle RNA, Clostridium beijerinckii pfl ZTP riboswitch, and Bacillus cereus crcB fluoride riboswitch folding pathways. Our findings establish TECprobe-LM as a strategy for detecting cotranscriptional RNA folding events directly using chemical probing.
Collapse
Affiliation(s)
- Courtney E. Szyjka
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY 14260, USA
| | - Skyler L. Kelly
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY 14260, USA
| | - Eric J. Strobel
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
46
|
Parisi C, Laneri F, Fraix A, Sortino S. Multifunctional Molecular Hybrids Photoreleasing Nitric Oxide: Advantages, Pitfalls, and Opportunities. J Med Chem 2024; 67:16932-16950. [PMID: 39009572 DOI: 10.1021/acs.jmedchem.4c01038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The multifaceted role nitric oxide (NO) plays in human physiology and pathophysiology has opened new scenarios in biomedicine by exploiting this free radical as an unconventional therapeutic against important diseases. The difficulties in handling gaseous NO and the strict dependence of the biological effects on its doses and location have made the light-activated NO precursors, namely NO photodonors (NOPDs), very appealing by virtue of their precise spatiotemporal control of NO delivery. The covalent integration of NOPDs and additional functional components within the same molecular skeleton through suitable linkers can lead to an intriguing class of multifunctional photoactivatable molecular hybrids. In this Perspective, we provide an overview of the recent advances in these molecular constructs, emphasizing those merging NO photorelease with targeting, fluorescent reporting, and phototherapeutic functionalities. We will highlight the rational design behind synthesizing these molecular hybrids and critically describe the advantages, drawbacks, and opportunities they offer in biomedical research.
Collapse
Affiliation(s)
- Cristina Parisi
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Francesca Laneri
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Aurore Fraix
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Salvatore Sortino
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| |
Collapse
|
47
|
Pantl O, Chiovini B, Szalay G, Turczel G, Kovács E, Mucsi Z, Rózsa B, Cseri L. Seeing and Cleaving: Turn-Off Fluorophore Uncaging and Its Application in Hydrogel Photopatterning and Traceable Neurotransmitter Photocages. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 39368105 PMCID: PMC11492179 DOI: 10.1021/acsami.4c10861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024]
Abstract
The advancements in targeted drug release and experimental neuroscience have amplified the scientific interest in photolabile protecting groups (PPGs) and photouncaging. The growing need for the detection of uncaging events has led to the development of reporters with fluorescence turn-on upon uncaging. In contrast, fluorescent tags with turn-off properties have been drastically underexplored, although there are applications where they would be sought after. In this work, a rhodamine-based fluorescent tag is developed with signal turn-off following photouncaging. One-photon photolysis experiments reveal a ready loss of red fluorescence signal upon UV (365 nm) irradiation, while no significant change is observed in control experiments in the absence of PPG or with irradiation around the absorption maximum of the fluorophore (595 nm). The two-photon photolysis of the turn-off fluorescent tag is explored in hydrogel photolithography experiments. The hydrogel-bound tag enables the power-, dwell time-, and wavelength-dependent construction of intricate patterns and gradients. Finally, a prominent caged neurotransmitter (MNI-Glu) is modified with the fluorescent tag, resulting in the glutamate precursor named as GlutaTrace with fluorescence traceability and turn-off upon photouncaging. GlutaTrace is successfully applied for the visualization of glutamate precursor distribution following capillary microinjection and for the selective excitation of neurons in a mouse brain model.
Collapse
Affiliation(s)
- Orsolya Pantl
- BrainVisionCenter, 43−45 Liliom Str., H-1094 Budapest, Hungary
| | - Balázs Chiovini
- Laboratory
of 3D Functional Network and Dendritic Imaging, HUN-REN Institute of Experimental Medicine, 43 Szigony Str., H-1083 Budapest, Hungary
- The
Faculty of Information Technology, Pázmány
Péter Catholic University, 50 Práter Str., H-1083 Budapest, Hungary
| | - Gergely Szalay
- Laboratory
of 3D Functional Network and Dendritic Imaging, HUN-REN Institute of Experimental Medicine, 43 Szigony Str., H-1083 Budapest, Hungary
| | - Gábor Turczel
- NMR
Research Laboratory, Centre for Structural Science, HUN-REN Research Centre for Natural Sciences, 2 Magyar tudósok körútja, H-1117 Budapest, Hungary
| | - Ervin Kovács
- The
Faculty of Information Technology, Pázmány
Péter Catholic University, 50 Práter Str., H-1083 Budapest, Hungary
- Institute
of Materials and Environmental Chemistry, HUN-REN Research Centre
for Natural Sciences, 2 Magyar tudósok körútja, H-1117 Budapest, Hungary
| | - Zoltán Mucsi
- BrainVisionCenter, 43−45 Liliom Str., H-1094 Budapest, Hungary
- Institute
of Chemistry, Faculty of Materials Science and Engineering, University of Miskolc, H-3515 Miskolc, Hungary
| | - Balázs Rózsa
- BrainVisionCenter, 43−45 Liliom Str., H-1094 Budapest, Hungary
- Laboratory
of 3D Functional Network and Dendritic Imaging, HUN-REN Institute of Experimental Medicine, 43 Szigony Str., H-1083 Budapest, Hungary
- The
Faculty of Information Technology, Pázmány
Péter Catholic University, 50 Práter Str., H-1083 Budapest, Hungary
| | - Levente Cseri
- BrainVisionCenter, 43−45 Liliom Str., H-1094 Budapest, Hungary
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics, 3 Műegyetem rakpart, H-1111 Budapest, Hungary
| |
Collapse
|
48
|
Ruiz-Relaño S, Nam D, Albalad J, Cortés-Martínez A, Juanhuix J, Imaz I, Maspoch D. Synthesis of Metal-Organic Cages via Orthogonal Bond Cleavage in 3D Metal-Organic Frameworks. J Am Chem Soc 2024; 146:26603-26608. [PMID: 39311525 PMCID: PMC11450890 DOI: 10.1021/jacs.4c09431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024]
Abstract
Herein we address the question of whether a supramolecular finite metal-organic structure such as a cage or metal-organic polyhedron (MOP) can be synthesized via controlled cleavage of a three-dimensional (3D) metal-organic structure. To demonstrate this, we report the synthesis of a Cu(II)-based cuboctahedral MOP through orthogonal olefinic bond cleavage of the cavities of a 3D, Cu(II)-based, metal-organic framework (MOF). Additionally, we demonstrate that controlling the ozonolysis conditions used for the cleavage enables Clip-off Chemistry synthesis of two cuboctahedral MOPs that differ by their external functionalization: one in which all 24 external groups represent a mixture of aldehydes, carboxylic acids, acetals and esters, and one in which all are aldehydes.
Collapse
Affiliation(s)
- Sara Ruiz-Relaño
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Dongsik Nam
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Jorge Albalad
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Alba Cortés-Martínez
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Judith Juanhuix
- Alba
Synchrotron Light Facility, Cerdanyola
del Vallès, 08290 Barcelona, Spain
| | - Inhar Imaz
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Daniel Maspoch
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- ICREA, Passeig Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
49
|
Tran TTT, Abe M. Design and synthesis of a 2,5-Diarylthiophene chromophore for enhanced near-infrared two-photon uncaging efficiency of calcium ions. Photochem Photobiol Sci 2024; 23:1811-1827. [PMID: 39264489 DOI: 10.1007/s43630-024-00623-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
The design and synthesis of two-photon-responsive chromophores have recently garnered significant attention owing to their potential applications in materials and life sciences. In this study, a novel π-conjugated system, 2-dimethylaminophenyl-5-nitrophenylthiophene derivatives, featuring a thiophene unit as the π-linker between the donor (NMe2C6H4-) and acceptor (NO2C6H4-) units was designed, synthesized, and applied for the development of two-photon-responsive chromophores as a photoremovable protecting group in the near-infrared region. Notably, the positional effect of the nitro group (NO2), meta versus para position, was observed in the uncaging process of benzoic acid. Additionally, while the para-isomer exhibited a single fluorescence peak, a dual emission was detected for the meta-isomer in polar solvents. The caged calcium ion (Ca2+) incorporating the newly synthesized thiophene unit exhibited a sizable two-photon absorption cross-section value (σ2 = 129 GM at 830 nm). Both one-photon and two-photon photoirradiation of caged calcium ions successfully released calcium ions, indicating the potential utility of 2,5-diarylthiophene derivatives in future biological studies.
Collapse
Affiliation(s)
- Tam Thi Thanh Tran
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Manabu Abe
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
- Center for Photo-Drug Delivery Systems, Hiroshima University Research, Hiroshima University, 1-3-1 Kagamiyama Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|
50
|
Rashed M, Sims CB, Mahbub S, Hu NH, Greene AN, Espitia Armenta H, Iarussi RA, Furgal JC. Reinvigorating Photo-Activated R-Alkoxysilanes Containing 2-Nitrobenzyl Protecting Groups as Stable Precursors for Photo-Driven Si-O Bond Formation in Polymerization and Surface Modification. ACS OMEGA 2024; 9:40650-40664. [PMID: 39372029 PMCID: PMC11447853 DOI: 10.1021/acsomega.4c04837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024]
Abstract
This study aimed to revitalize silicon-based sol-gel chemistry methodologies utilizing photoprotected R-alkoxysilanes to control the synthesis of unique silicon-based materials. We have investigated the synthesis, characterization, light-induced deprotection, and subsequent polymerization/surface functionalization through the use of 2-nitrobenzyloxy-based photoremovable protecting groups (PPGs) as alkoxy reactive groups on ethyl and phenyl (R x -(alkoxy) y silanes, with x = 0-3 and y = 1-3). The photochemical dynamics, relative efficiencies, and kinetics of the novel alkoxysilane-based PPGs were thoroughly investigated using UV light irradiation by NMR and UV/vis methods. We then explored the tin-catalyzed coupling of photodeprotected products (R x -silanols) to form polymers/oligomers. We have found that photoenabled removal of PPGs and conversion to silanols from all silane systems studied is achieved. Furthermore, these deprotected species are polymerizable into siloxanes and effectively used as light-controlled surface modifiers with masking techniques of which proof-of-concept examples are given, enabling promising application as photolithographic reagents.
Collapse
Affiliation(s)
- Mahmud
R. Rashed
- Department of Chemistry and
Center for Photochemical Sciences, Bowling
Green State University, Bowling
Green, Ohio 43403, United States
| | - Cory B. Sims
- Department of Chemistry and
Center for Photochemical Sciences, Bowling
Green State University, Bowling
Green, Ohio 43403, United States
| | - Shahrea Mahbub
- Department of Chemistry and
Center for Photochemical Sciences, Bowling
Green State University, Bowling
Green, Ohio 43403, United States
| | - Nai-hsuan Hu
- Department of Chemistry and
Center for Photochemical Sciences, Bowling
Green State University, Bowling
Green, Ohio 43403, United States
| | - Ashley N. Greene
- Department of Chemistry and
Center for Photochemical Sciences, Bowling
Green State University, Bowling
Green, Ohio 43403, United States
| | - Herenia Espitia Armenta
- Department of Chemistry and
Center for Photochemical Sciences, Bowling
Green State University, Bowling
Green, Ohio 43403, United States
| | - Ryan A. Iarussi
- Department of Chemistry and
Center for Photochemical Sciences, Bowling
Green State University, Bowling
Green, Ohio 43403, United States
| | - Joseph C. Furgal
- Department of Chemistry and
Center for Photochemical Sciences, Bowling
Green State University, Bowling
Green, Ohio 43403, United States
| |
Collapse
|