1
|
Patra S, Kar S, Gopal Bag B. First Vesicular Self-Assembly of an Apocarotenoid Bixin in Aqueous Liquids and Its Antibacterial Activity. Chem Asian J 2024:e202400361. [PMID: 39331573 DOI: 10.1002/asia.202400361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/09/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Bixin 1 is the major constituent of the reddish carotenoids present in the seed-coat of Bixa orellana. The use of the extract of the seed-coat of Bixa orellana in food, cosmetics and garments is well known. The nano-sized long 24 C chain molecule has nine conjugated double bonds having extended conjugation with the '-COOH' and '-COOMe' groups present at the two ends of the molecule. Herein, we report the first self-assembly of bixin in several aqueous liquids. The molecule undergoes spontaneous self-assembly in several liquids yielding vesicular self-assembly. Characterizations of the self-assemblies of bixin were carried out by various microscopic techniques, X-ray diffraction and FTIR studies. The critical vesicular concentrations (CVCs) of the compound carried out in DMSO-water in three different solvent ratios as 2: 1 (v/v), 1: 1 (v/v) and 1: 4 (v/v) were determined to be 100 μM, 90 μM and 60 μM respectively indicating lower CVC values at higher proportion of water. Utilization of the vesicular self-assemblies of bixin have been demonstrated in the entrapment and release of fluorophores including the anticancer drugs doxorubicin and curcumin. Self-assembled bixin and curcumin loaded self-assembled bixin showed significant antibacterial activity with both Gram positive as well as Gram negative bacteria.
Collapse
Affiliation(s)
- Soumen Patra
- Department of Chemistry & Chemical Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Sukhendu Kar
- Department of Chemistry & Chemical Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Braja Gopal Bag
- Department of Chemistry & Chemical Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| |
Collapse
|
2
|
Holey S, Nayak RR. Harnessing Glycolipids for Supramolecular Gelation: A Contemporary Review. ACS OMEGA 2024; 9:25513-25538. [PMID: 38911776 PMCID: PMC11190938 DOI: 10.1021/acsomega.4c00958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/12/2024] [Accepted: 05/17/2024] [Indexed: 06/25/2024]
Abstract
Within the scope of this review, our exploration spans diverse facets of amphiphilic glycolipid-based low-molecular-weight gelators (LMWGs). This journey explores glycolipid synthesis, self-assembly, and gelation with tailorable properties. It begins by examining the design of glycolipids and their influence on gel formation. Following this, a brief exploration of several gel characterization techniques adds another layer to the understanding of these materials. The final section is dedicated to unraveling the various applications of these glycolipid-based supramolecular gels. A meticulous analysis of available glycolipid gelators and their correlations with desired properties for distinct applications is a pivotal aspect of their investigation. As of the present moment, there exists a notable absence of a review dedicated exclusively to glycolipid gelators. This study aims to bridge this critical gap by presenting an overview that provides novel insights into their unique properties and versatile applications. This holistic examination seeks to contribute to a deeper understanding of molecular design, structural characteristics, and functional applications of glycolipid gelators by offering insights that can propel advancements in these converging scientific disciplines. Overall, this review highlights the diverse classifications of glycolipid-derived gelators and particularly emphasizes their capacity to form gels.
Collapse
Affiliation(s)
- Snehal
Ashokrao Holey
- Department
of Oils, Lipid Science and Technology, CSIR-Indian
Institute of Chemical Technology, Hyderabad 500 007, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rati Ranjan Nayak
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Institute
of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| |
Collapse
|
3
|
Sebastian S, Rohila Y, Yadav E, Bhardwaj P, Sudheer Babu Y, Maruthi M, Ansari A, Gupta MK. Supramolecular Organo/hydrogel-Fabricated Long Alkyl Chain α-Amidoamides as a Smart Soft Material for pH-Responsive Curcumin Release. Biomacromolecules 2024; 25:975-989. [PMID: 38189243 DOI: 10.1021/acs.biomac.3c01074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Low-molecular-mass gelators, due to their excellent biocompatibility, low toxicological profile, innate biodegradability and ease of fabrication have garnered significant interest as they self-assemble through non-covalent interactions. In this study, we have designed and synthesized a series of six α-amidoamides by varying the hydrophobic alkyl chain length (C12-C22), which were well characterized using different spectral techniques. These α-amidoamides formed self-assembled aggregates in a DMSO/water solvent system affording organo/hydrogels at 0.66% w/v, which is the minimum gelation concentration (MGC) making them as remarkable supergelators. The various functionalities present in these gelators such as amides and alkyl chain length pave the way toward excellent gelation mechanism through hydrogen bonding and van der Waals interaction as evidenced from FTIR spectroscopy. Notably, as the chain length increased, organo/hydrogels became more thermally stable. Rheological results showed that the stability and strength of these gelators were considerably impacted by variations in chain length. The SEM morphology revealed dense sheet architectures of the organo/hydrogel samples. Organo/hydrogels have a significant impact on the advancement of innovative drug delivery systems that respond to various stimuli, ushering in a new era in pharmaceutical technology. Inspired by this, we encapsulated curcumin, a chemopreventive medication, into the gel core and further released via gel-to-sol transition induced by pH variation at 37 °C, without any alteration in structure-activity relationship. The drug release behavior was observed by UV-vis spectroscopy. Moreover, cell viability and cell invasion experiments demonstrate that the gel formulations exhibit high biocompatibility and low cytotoxicity. Among the tested formulations, 5e+Cur exhibited remarkable efficacy in controlling A549 cell migration, suggesting significant potential for applications in the pharmaceutical industry.
Collapse
Affiliation(s)
- Sharol Sebastian
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Yajat Rohila
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Eqvinshi Yadav
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Priya Bhardwaj
- Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, Haryana,India
| | - Yangala Sudheer Babu
- Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, Haryana,India
| | - Mulaka Maruthi
- Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, Haryana,India
| | - Azaj Ansari
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Manoj K Gupta
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India
| |
Collapse
|
4
|
Gowda A, Pathak SK, Rohaley GAR, Acharjee G, Oprandi A, Williams R, Prévôt ME, Hegmann T. Organic chiral nano- and microfilaments: types, formation, and template applications. MATERIALS HORIZONS 2024; 11:316-340. [PMID: 37921354 DOI: 10.1039/d3mh01390a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Organic chiral nanofilaments are part of an important class of nanoscale chiral materials that has recently been receiving significant attention largely due to their potential use in applications such as optics, photonics, metameterials, and potentially a range of medical as well as sensing applications. This review will focus on key examples of the formation of such nano- and micro-filaments based on carbon nanofibers, polymers, synthetic oligo- and polypeptides, self-assembled organic molecules, and one prominent class of liquid crystals. The most critical aspects discussed here are the underlying driving forces for chiral filament formation, potentially answering why specific sizes and shapes are formed, what molecular design strategies are working equally well or rather differently among these materials classes, and what uses and applications are driving research in this fascinating field of materials science.
Collapse
Affiliation(s)
- Ashwathanarayana Gowda
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
| | - Suraj Kumar Pathak
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
| | - Grace A R Rohaley
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| | - Gourab Acharjee
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Andrea Oprandi
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| | - Ryan Williams
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| | - Marianne E Prévôt
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Torsten Hegmann
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
5
|
Li Z, Huang Y, Li H, Zhang F, Ren Y, Shi W, Liu Q, Wang X. Single-Walled Cluster Nanotubes for Single-Atom Catalysts with Precise Structures. J Am Chem Soc 2024; 146:450-459. [PMID: 38151238 DOI: 10.1021/jacs.3c09752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Spatially confining isolated atomic sites in low-dimensional nanostructures is a promising strategy for preparing high-performance single-atom catalysts (SACs). Herein, fascinating polyoxometalate cluster-based single-walled nanotubes (POM-SWNTs) with atomically precise structures, uniform diameter, and single-cluster wall thickness are constructed by lacunary POM clusters (PW11 and P2W17 clusters). Isolated metal centers are accurately incorporated into the PW11-SWNTs and P2W17-SWNTs supports. The structures of the resulting MPW11-SWNTs and MP2W17-SWNTs are well established (M = Cu, Pt). Molecular dynamics simulations demonstrate the stability of POM-SWNTs. Furthermore, the turnover frequency of PtP2W17-SWNTs is 20 times higher than that of PtP2W17 cluster units and 140 times higher than that of Pt nanoparticles in the alcoholysis of dimethylphenylsilane. Theoretical studies indicate that incorporating a Pt atom into the P2W17 support induces straightforward electron transfer between them, combining the nanoconfined environment to enhance the catalytic activity of PtP2W17-SWNTs. This work shows the feasibility of using subnanometric POM clusters to assemble single-walled cluster nanotubes, highlighting their potential to prepare superior SACs with precise structures.
Collapse
Affiliation(s)
- Zhong Li
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yunwei Huang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Haoyang Li
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Fenghua Zhang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yazhou Ren
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Qingda Liu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Duan Y, Che S. Chiral Mesostructured Inorganic Materials with Optical Chiral Response. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205088. [PMID: 36245314 DOI: 10.1002/adma.202205088] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Fabricating chiral inorganic materials and revealing their unique quantum confinement-determined optical chiral responses are crucial tasks in the multidisciplinary fields of chemistry, physics, and biology. The field of chiral mesostructured inorganic materials started from the synthesis of individual nanocrystals and evolved to include their assembly from metals, semiconductors, ceramics, and inorganic salts endowed with various chiral structures ranging from atomic to micron scales. This tutorial review highlights the recent research on chiral mesostructured inorganic materials, especially the novel expression of mesostructured chirality and endowed optical chiral response, and it may inspire us with new strategies for the design of chiral inorganic materials and new opportunities beyond the traditional applications of chirality. Fabrication methods for chiral mesostructured inorganic materials are classified according to chirality type, scale, and symmetry-breaking mechanism. Special attention is given to highlight systems with original discoveries, exceptional phenomena, or unique mechanisms of optical chiral response for left- and right-handedness.
Collapse
Affiliation(s)
- Yingying Duan
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Shunai Che
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Matrix Composite, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
7
|
Wu Z, Ma J, Xu R, Zhong S, Zhang X, Gong M, Wang G. Light-Modulated Morphological Transformation of Spiropyran Derivative from Nanosphere to Nanorod. Macromol Rapid Commun 2023; 44:e2300360. [PMID: 37566799 DOI: 10.1002/marc.202300360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/05/2023] [Indexed: 08/13/2023]
Abstract
The construction of tunable morphological systems has important implications for understanding the mechanism of molecular self-assembly. In this study, a spiropyran derivative M1 is reported with light-responsive assembly morphology, which can be tuned from nanosphere to nanorod by ultraviolet light irradiation. The absorption spectra show that M1 molecules are transformed from closed-ring (SP) isomers into open-ring (MC) isomers and start to form H-aggregates with increasing irradiation time. Density functional theory calculations indicate that MC-MC isomers possess stronger binding energy than SP-SP isomers. The MC isomers may thus facilitate the dissociation of the SP-SP aggregates and promote the change of self-assembled morphology with the aid of stronger π-π stackings and dipole-dipole interactions. The research gives an effective method for modulating the morphology of assemblies, with great potential for applications in smart materials.
Collapse
Affiliation(s)
- Zhen Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiewen Ma
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ruoyu Xu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shijie Zhong
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xin Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Min Gong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Guojie Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
8
|
He S, Jiang Z, Dou X, Gao L, Feng C. Chiral Supramolecular Assemblies: Controllable Construction and Biological Activity. Chempluschem 2023; 88:e202300226. [PMID: 37438864 DOI: 10.1002/cplu.202300226] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/14/2023]
Abstract
Chiral supramolecular assemblies with helical structures (e. g., proteins with α-helix, DNA with double helix, collagen with triple-helix) as the central structure motifs in biological systems play a crucial role in various physiological activities of living organisms. Variations in chiral structure can cause many abnormal physiological activities. To gain insight into the construction, structural transition, and related physiological functions of these complex helix in natural systems, it is necessary to fabricate artificial supramolecular assemblies with controllable helix orientation as research platform. This review discusses recent advances in chiral supramolecular assembly, including the precise construction and regulation of assembled chiral nanostructures with tunable chirality. Chiral structure-dependent biological activities, including cell proliferation, cell differentiation, antibacterial activity and tissue regeneration, are also discussed. This review not only contributes to further understanding of the importance of chirality in the physiological environment, but also plays an important role in the development of chiral biomedical materials for the treatment of diseases (e. g., tissue engineering regeneration, stem cell transplantation therapy).
Collapse
Affiliation(s)
- Sijia He
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Zichao Jiang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Laiben Gao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
9
|
Zika A, Agarwal M, Schweins R, Gröhn F. Joining Two Switches in One Nano-Object: Photoacidity and Photoisomerization in Electrostatic Self-Assembly. Chemistry 2023; 29:e202203373. [PMID: 36336659 DOI: 10.1002/chem.202203373] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Multi-switchable supramolecular nano-objects that respond to irradiation of different wavelengths with changes in size and shape have been built from two different water-soluble molecular switches, joined by attachment to the same polyelectrolyte. Accordingly, two wavelength-specific reactions, namely the excited-state proton dissociation of a photoacid and the cis-trans isomerization of an azo dye, are combined in one supramolecular nano-object that is stable in aqueous solution. The concept has potential in the fields of sensors, molecular motors, and transport.
Collapse
Affiliation(s)
- Alexander Zika
- Department of Chemistry and Pharmacy &, Interdisciplinary Center for Molecular Materials, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Mohit Agarwal
- Department of Chemistry and Pharmacy &, Interdisciplinary Center for Molecular Materials, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany.,DS / LSS, Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20 156, 38042, Grenoble Cedex 9, France
| | - Ralf Schweins
- DS / LSS, Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20 156, 38042, Grenoble Cedex 9, France
| | - Franziska Gröhn
- Department of Chemistry and Pharmacy &, Interdisciplinary Center for Molecular Materials, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| |
Collapse
|
10
|
Chen Z, Higashi K, Shigehisa Y, Ueda K, Yamamoto K, Moribe K. Understanding the rod-to-tube transformation of self-assembled ascorbyl dipalmitate lipid nanoparticles stabilized with PEGylated lipids. NANOSCALE 2023; 15:2602-2613. [PMID: 36484313 DOI: 10.1039/d2nr04987b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We previously established a nanoparticle-based drug delivery system (DDS) for high-dose ascorbic acid therapy by self-assembly of a lipid-modified ascorbic acid derivative, L-ascorbyl 2,6-dipalmitate (ASC-DP). The particles' morphology should be modified for effective DDSs. Here, we modulated the morphology of self-assembled ASC-DP nanoparticles using two different PEGylated lipids, distearoylphosphatidylethanolamine-polyethylene glycol (DSPE-PEG) and cholesterol-polyethylene glycol (Chol-PEG), with various PEG molecular weights. At the preparation molar ratio of 10 : 1 (ASC-DP/PEGylated lipid), rod-like nanoparticles emerged in the ASC-DP/DSPE-PEG system, whereas the ASC-DP/Chol-PEG system yielded tube-like nanoparticles. The internal structures of both rod-like ASC-DP/DSPE-PEG and tube-like ASC-DP/Chol-PEG nanoparticles were similar to that of repeated ASC-DP bilayers. The particles' surfaces featured PEGylated lipids, which stabilized the structure and dispersion of the nanoparticles. For both systems, the particle size increased slightly with increasing the PEGylated lipid's PEG molecular weight. Increasing the PEG molecular weight decreased the inner tunnel size of tube-like ASC-DP/Chol-PEG nanoparticles. A mechanism has been proposed for the rod-to-tube transformation. Surface-layer free-energy changes owing to the mixing of multiple lipids and PEG chain repulsion are thought to underlie the inner tunnels' formation. The rod-to-tube morphology of self-assembled ASC-DP nanoparticles can be modulated by controlling the PEGylated lipids' structure, including the lipid species and the PEG chain length.
Collapse
Affiliation(s)
- Ziqiao Chen
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Kenjirou Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Yuki Shigehisa
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Keiji Yamamoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Kunikazu Moribe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| |
Collapse
|
11
|
Zhang L, Li M, Wang M, Li L, Guo M, Ke Y, Zhou P, Wang W. Tailored Cross-β Assemblies Establish Peptide "Dominos" Structures for Anchoring Undruggable Pharmacophores. Angew Chem Int Ed Engl 2022; 61:e202212527. [PMID: 36102014 DOI: 10.1002/anie.202212527] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 12/15/2022]
Abstract
β-sheets have the ability to hierarchically stack into assemblies, and much effort has been spent on designing different peptides to regulate their assembly behaviors. Although the progress is remarkable, it remains challenging to manipulate them in a controllable way for achieving both tailored structures and specific functions. In this study, we obtained bola-like peptides using de novo design and combinatorial chemical screening. By regulating the solvent-accessible surface area of the peptide chain, a series of assemblies with different tilt angles and active sites of the β-sheet were obtained, resembling collapsed dominos. The structure-activity relationship of the optimized peptide NQ40 system was established and its ability to target the PD-L1 was demonstrated. This study successfully established the structure-function relationship of β-sheets assemblies and has positive implications on the rational design of peptide assemblies that possess recognition abilities.
Collapse
Affiliation(s)
- Limin Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Mengzhen Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Minxuan Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Lingyun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Mingmei Guo
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yubin Ke
- Spallation Neutron Source Science Center, Dongguan, 523803, P. R. China
| | - Peng Zhou
- College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, P. R. China
| | - Weizhi Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
12
|
Poirier A, Le Griel P, Perez J, Baccile N. Cation-Induced Fibrillation of Microbial Glycolipid Biosurfactant Probed by Ion-Resolved In Situ SAXS. J Phys Chem B 2022; 126:10528-10542. [PMID: 36475558 DOI: 10.1021/acs.jpcb.2c03739] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biological amphiphiles are molecules with a rich phase behavior. Micellar, vesicular, and even fibrillar phases can be found for the same molecule by applying a change in pH or by selecting the appropriate metal ion. The rich phase behavior paves the way toward a broad class of soft materials, from carriers to hydrogels. The present work contributes to understanding the fibrillation of a microbial glycolipid, glucolipid G-C18:1, produced by Starmerella bombicola ΔugtB1 and characterized by a micellar phase at alkaline pH and a vesicular phase at acidic pH. Fibrillation and prompt hydrogelation is triggered by adding either alkaline earth, Ca2+, or transition metal, Ag+, Fe2+, Al3+, ions to a G-C18:1 micellar solution. A specifically designed apparatus coupled to a synchrotron SAXS beamline allows the performing of simultaneous cation- and pH-resolved in situ monitoring of the morphological evolution from spheroidal micelles to crystalline fibers, when Ca2+ is employed, or to wormlike aggregates, when Fe2+ or Al3+ solutions are employed. The fast reactivity of Ag+ and the crystallinity of Ca2+-induced fibers suggest that fibrillation is driven by direct metal-ligand interactions, while the shape transition from spheroidal to elongated micelles with Fe2+ or Al3+ rather suggest charge screening between the lipid and the hydroxylated cation species.
Collapse
Affiliation(s)
- Alexandre Poirier
- Sorbonne Université, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR CNRS 7574, 4 place Jussieu, ParisF-75005, France
| | - Patrick Le Griel
- Sorbonne Université, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR CNRS 7574, 4 place Jussieu, ParisF-75005, France
| | - Javier Perez
- SWING Beamline, Synchrotron SOLEIL, L'Orme des Merisiers, 91190Saint-Aubin, France
| | - Niki Baccile
- Sorbonne Université, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR CNRS 7574, 4 place Jussieu, ParisF-75005, France
| |
Collapse
|
13
|
Baccile N, Lorthioir C, Ba AA, Le Griel P, Pérez J, Hermida-Merino D, Soetaert W, Roelants SLKW. Topological Connection between Vesicles and Nanotubes in Single-Molecule Lipid Membranes Driven by Head-Tail Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14574-14587. [PMID: 36410028 DOI: 10.1021/acs.langmuir.2c01824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lipid nanotube-vesicle networks are important channels for intercellular communication and transport of matter. Experimentally observed in neighboring mammalian cells but also reproduced in model membrane systems, a broad consensus exists on their formation and stability. Lipid membranes must be composed of at least two molecular components, each stabilizing low (generally a phospholipid) and high curvatures. Strong anisotropy or enhanced conical shape of the second amphiphile is crucial for the formation of nanotunnels. Anisotropic driving forces generally favor nanotube protrusions from vesicles. In this work, we report the unique case of topologically connected nanotubes-vesicles obtained in the absence of directional forces, in single-molecule membranes, composed of an anisotropic bolaform glucolipid, above its melting temperature, Tm. Cryo-TEM and fluorescence confocal microscopy show the interconnection between vesicles and nanotubes in a single-phase region, between 60 and 90 °C under diluted conditions. Solid-state NMR demonstrates that the glucolipid can assume two distinct configurations, head-head and head-tail. These arrangements, seemingly of comparable energy above the Tm, could explain the existence and stability of the topologically connected vesicles and nanotubes, which are generally not observed for classical single-molecule phospholipid-based membranes above their Tm.
Collapse
Affiliation(s)
- Niki Baccile
- Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, Paris75005, France
| | - Cédric Lorthioir
- Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, Paris75005, France
| | - Abdoul Aziz Ba
- Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, Paris75005, France
| | - Patrick Le Griel
- Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, Paris75005, France
| | - Javier Pérez
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin, BP48, Gif-sur-Yvette Cedex91192, France
| | - Daniel Hermida-Merino
- Netherlands Organisation for Scientific Research (NWO), DUBBLE@ESRF BP CS40220, Grenoble38043, France
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, Vigo36310, Spain
| | - Wim Soetaert
- InBio, Department of Biotechnology, Ghent University, Ghent9000, Belgium
| | | |
Collapse
|
14
|
Patterning-mediated supramolecular assembly of lipids into nanopalms. iScience 2022; 25:105344. [DOI: 10.1016/j.isci.2022.105344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/04/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
|
15
|
Kadamannil NN, Heo JM, Jang D, Zalk R, Kolusheva S, Zarivach R, Frank GA, Kim JM, Jelinek R. High-Resolution Cryo-Electron Microscopy Reveals the Unique Striated Hollow Structure of Photocatalytic Macrocyclic Polydiacetylene Nanotubes. J Am Chem Soc 2022; 144:17889-17896. [PMID: 36126329 DOI: 10.1021/jacs.2c06710] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-resolution structures are crucial for understanding the functional properties of nanomaterials. We applied single-particle cryo-electron microscopy (cryo-EM), a method traditionally used for structure determination of biological macromolecules, to obtain high-resolution structures of synthetic non-biological filaments formed by photopolymerization of macrocyclic diacetylene (MDA) amphiphilic monomers. Tomographic analysis showed that the MDA monomers self-assemble into hollow nanotubes upon dispersion in water. Single-particle analysis revealed tubes consisting of six pairs of covalently bonded filaments held together by hydrophobic interactions, where each filament is composed of macrocyclic rings stacked in parallel "chair" conformations. The hollow MDA nanotube structures we found may account for the efficient scavenging of amphiphilic pollutants in water and subsequent photodegradation of the guest species.
Collapse
Affiliation(s)
| | - Jung-Moo Heo
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea
| | - Daewoong Jang
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea
| | - Ran Zalk
- Ilse Katz Institute for Nanotechnology, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Sofiya Kolusheva
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel.,Ilse Katz Institute for Nanotechnology, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Raz Zarivach
- Ilse Katz Institute for Nanotechnology, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel.,Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Gabriel A Frank
- Ilse Katz Institute for Nanotechnology, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel.,Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Jong-Man Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea
| | - Raz Jelinek
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel.,Ilse Katz Institute for Nanotechnology, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| |
Collapse
|
16
|
McCourt J, Kewalramani S, Gao C, Roth EW, Weigand SJ, Olvera de la Cruz M, Bedzyk MJ. Electrostatic Control of Shape Selection and Nanoscale Structure in Chiral Molecular Assemblies. ACS CENTRAL SCIENCE 2022; 8:1169-1181. [PMID: 36032772 PMCID: PMC9413830 DOI: 10.1021/acscentsci.2c00447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Indexed: 06/01/2023]
Abstract
How molecular chirality manifests at the nano- to macroscale has been a scientific puzzle since Louis Pasteur discovered biochirality. Chiral molecules assemble into meso-shapes such as twisted and helical ribbons, helicoidal scrolls (cochleates), or möbius strips (closed twisted ribbons). Here we analyze self-assembly for a series of amphiphiles, C n -K, consisting of an ionizable amino acid [lysine (K)] coupled to alkyl tails with n = 12, 14, or 16 carbons. This simple system allows us to probe the effects of electrostatic and van der Waals interactions in chiral assemblies. Small/wide-angle X-ray scattering (SAXS/WAXS) reveals that at low pH, where the headgroups are ionized (+1), C16-K forms high aspect ratio, planar crystalline bilayers. Molecular dynamics (MD) simulations reveal that tilted tails of the bilayer leaflets are interdigitated. SAXS shows that, with increasing salt concentration, C16-K molecules assemble into cochleates, whereas at elevated pH (reduced degree of ionization), helices are observed for all C n -K assemblies. The shape selection between helices and scrolls is explained by a membrane energetics model. The nano- to meso-scale structure of the chiral assemblies can be continuously controlled by solution ionic conditions. Overall, our study represents a step toward an electrostatics-based approach for shape selection and nanoscale structure control in chiral assemblies.
Collapse
Affiliation(s)
- Joseph
M. McCourt
- Department
of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
| | - Sumit Kewalramani
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Changrui Gao
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Eric W. Roth
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Steven J. Weigand
- DuPont-Northwestern-Dow
Collaborative Access Team, Northwestern
University Synchrotron Research Center, Advanced Photon Source, Argonne, Illinois 60439, United States
| | - Monica Olvera de la Cruz
- Department
of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael J. Bedzyk
- Department
of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| |
Collapse
|
17
|
Jeon SW, Yoon YJ, Park SM, Jang JD, Kim TH. Unusual Self-Assembly of Amphiphilic Block Copolymer Blends Induced by Control of Hydrophobic Interaction. J Phys Chem B 2022; 126:6511-6519. [PMID: 35926238 DOI: 10.1021/acs.jpcb.2c03043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Block copolymer blend systems have been of great interest for a wide range of potential applications, such as nanobuilding blocks or guidance materials, because they can provide a rich phase behavior according to external conditions. However, a new and unique phase behavior of block copolymers, which can give us their more extended potential applications, has not yet been reported. Herein, we report the unusual self-assembly of two different types of Pluronic P65 and PE6200 triblock copolymer blends dependent on temperature and PE6200 concentration, which is unique for the block copolymer blends in aqueous solution. As the temperature and concentration of PE6200 (as an additive) increased, the Pluronic P65/PE6200 copolymer blends sequentially self-assembled into an isotropic micellar-hexagonal-isotropic micellar or isotropic micellar-hexagonal-isotropic micellar-lamellar phase, which is a discontinuous ordered phase (called a closed looplike phase transition), and their phase transition temperature could be controlled. To the best of our knowledge, this is the first report of a closed looplike phase transition of Pluronic block copolymer blends in aqueous solution, which can be easily applied to nanosized templates for temperature-selective highly ordered structures and optical devices such as optoelectronics or optical sensors.
Collapse
Affiliation(s)
- Sang-Woo Jeon
- Department of Applied Plasma & Quantum Beam Engineering, Jeonbuk National University, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Young-Jin Yoon
- Department of Applied Plasma & Quantum Beam Engineering, Jeonbuk National University, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Sang-Min Park
- Department of Quantum System Engineering, Jeonbuk National University, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Jong Dae Jang
- Neutron Science Division, Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 34057, Republic of Korea.,Research Center for Advanced Nuclear Interdisciplinary Technology, Jeonbuk National University, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Tae-Hwan Kim
- Department of Applied Plasma & Quantum Beam Engineering, Jeonbuk National University, Jeonju, Jeollabukdo 54896, Republic of Korea.,Department of Quantum System Engineering, Jeonbuk National University, Jeonju, Jeollabukdo 54896, Republic of Korea.,Research Center for Advanced Nuclear Interdisciplinary Technology, Jeonbuk National University, Jeonju, Jeollabukdo 54896, Republic of Korea.,High-Enthalpy Plasma Research Center, Jeonbuk National University, Wanju-gun, Jeollabukdo 55317, Republic of Korea
| |
Collapse
|
18
|
Shen J, Ye R, Liu Z, Zeng H. Hybrid Pyridine–Pyridone Foldamer Channels as M2‐Like Artificial Proton Channels. Angew Chem Int Ed Engl 2022; 61:e202200259. [DOI: 10.1002/anie.202200259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Jie Shen
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Ruijuan Ye
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Zhiwei Liu
- Department of Chemistry & Biochemistry Rowan University 201 Mullica Hill Road Glassboro NJ 08028 USA
| | - Huaqiang Zeng
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| |
Collapse
|
19
|
Kameta N. Stimuli-Responsive Transformable Supramolecular Nanotubes. CHEM REC 2022; 22:e202200025. [PMID: 35244334 DOI: 10.1002/tcr.202200025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 12/11/2022]
Abstract
Supramolecular nanotubes produced by self-assembly of organic molecules can have unique structural features such as a one-dimensional morphology with no branching, distinguishable inner and outer surfaces and membrane walls, or a structure that is hollow and has a high aspect ratio. Incorporation of functional groups that respond to external chemical or physical stimuli into the constituent organic molecules of supramolecular nanotubes allows us to drastically change the structure of the nanotubes by applying such stimuli. This ability affords an array of controllable approaches for the encapsulation, storage, and release of guest compounds, which is expected to be useful in the fields of physics, chemistry, biology, and medicine. In this article, I review the supramolecular nanotubes developed by our group that exhibit morphological transformations in response to pH, chemical reaction, light, temperature, or moisture.
Collapse
Affiliation(s)
- Naohiro Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| |
Collapse
|
20
|
Wang YC, Zhao Y. Diagrammatic quantum Monte Carlo toward the calculation of transport properties in disordered semiconductors. J Chem Phys 2022; 156:204116. [DOI: 10.1063/5.0091124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A new diagrammatic quantum Monte Carlo approach is proposed to deal with the imaginary time propagator involving both dynamic disorder (i.e., electron–phonon interactions) and static disorder of local or nonlocal nature in a unified and numerically exact way. The establishment of the whole framework relies on a general reciprocal-space expression and a generalized Wick’s theorem for the static disorder. Since the numerical cost is independent of the system size, various physical quantities, such as the thermally averaged coherence, Matsubara one-particle Green’s function, and current autocorrelation function, can be efficiently evaluated in the thermodynamic limit (infinite in the system size). The validity and performance of the proposed approach are systematically examined in a broad parameter regime. This approach, combined with proper numerical analytic continuation methods and first-principles calculations, is expected to be a versatile tool toward the calculation of various transport properties, such as mobilities in realistic semiconductors involving multiple electronic energy bands, high-frequency optical and low-frequency acoustic phonons, different forms of dynamic and static disorders, and anisotropy.
Collapse
Affiliation(s)
- Yu-Chen Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iCHEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Yi Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iCHEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| |
Collapse
|
21
|
Shen J, Ye R, Liu Z, Zeng H. Hybrid Pyridine–Pyridone Foldamer Channels as M2‐Like Artificial Proton Channels. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Shen
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Ruijuan Ye
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Zhiwei Liu
- Department of Chemistry & Biochemistry Rowan University 201 Mullica Hill Road Glassboro NJ 08028 USA
| | - Huaqiang Zeng
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| |
Collapse
|
22
|
Kameta N, Kikkawa Y, Norikane Y. Photo-responsive hole formation in the monolayer membrane wall of a supramolecular nanotube for quick recovery of encapsulated protein. NANOSCALE ADVANCES 2022; 4:1979-1987. [PMID: 36133410 PMCID: PMC9419338 DOI: 10.1039/d2na00035k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/28/2022] [Indexed: 06/16/2023]
Abstract
Nanotubes with a single monolayer membrane wall comprised of a synthetic glycolipid and one of two synthetic azobenzene derivatives were assembled. X-ray diffraction, infrared, UV-visible, and circular dichroism spectroscopy clarified the embedding style of the azobenzene derivatives in the membrane wall, revealing that, depending on their different intermolecular hydrogen bond strengths, one azobenzene derivative was individually dispersed whereas the other formed a J-type aggregate. The non-aggregated derivative was insensitive to UV irradiation due to tight fixation by the surrounding glycolipid. In contrast, the aggregated derivative was sensitive to UV irradiation, which induced trans-to-cis isomerization of the derivative and disassembly of the J-type aggregate. Subsequent dissociation of the derivative into the bulk solution resulted in the formation of many nanometer-scale holes in the membrane wall. Although a model protein encapsulated within the nanotubes was slowly released over time from the two open ends of the nanotubes without UV irradiation, exposure to UV irradiation resulted in faster, preferential release of the protein through the holes in the membrane wall. The present findings are expected to facilitate the development not only of efficient means of recovering guest compounds stored within nanotubes but also the development of novel stimuli-responsive capsules in biological and medical fields.
Collapse
Affiliation(s)
- N Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan +81-29-861-4545 +81-29-861-4478
| | - Y Kikkawa
- Research Institute for Advanced Electronics and Photonics, Department of Electronics and Manufacturing, AIST Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Y Norikane
- Research Institute for Advanced Electronics and Photonics, Department of Electronics and Manufacturing, AIST Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| |
Collapse
|
23
|
Okuda S, Ousaka N, Iwata T, Ishida R, Urushima A, Suzuki N, Nagano S, Ikai T, Yashima E. Supramolecular Helical Assemblies of Dirhodium(II) Paddlewheels with 1,4-Diazabicyclo[2.2.2]octane: A Remarkable Substituent Effect on the Helical Sense Preference and Amplification of the Helical Handedness Excess of Metallo-Supramolecular Helical Polymers. J Am Chem Soc 2022; 144:2775-2792. [PMID: 35119857 DOI: 10.1021/jacs.1c12652] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report unique coordination-driven supramolecular helical assemblies of a series of dirhodium(II) tetracarboxylate paddlewheels bearing chiral phenyl- or methyl-substituted amide-bound m-terphenyl residues with triethylene glycol monomethyl ether (TEG) or n-dodecyl tails through a 1:1 complexation with 1,4-diazabicyclo[2.2.2]octane (DABCO). The chiral dirhodium complexes with DABCO in CHCl3/n-hexane (1:1) form one-handed helical coordination polymers with a controlled propeller chirality at the m-terphenyl groups, which are stabilized by intermolecular hydrogen-bonding networks between the adjacent amide groups at the periphery mainly via a cooperative nucleation-elongation mechanism as supported by circular dichroism (CD), vibrational CD, and variable-temperature (VT) absorption and CD analyses. The VT visible-absorption titrations revealed the temperature-dependent changes in the degree of polymerization. The columnar supramolecular helical structures were elucidated by X-ray diffraction and atomic force microscopy. The helix sense of the homopolymer carrying the bulky phenyl and n-dodecyl substituents is opposite those of other chiral homopolymers despite having the same absolute configuration at the pendants. A remarkably strong "sergeants and soldiers" (S&S) effect was observed in most of the chiral/achiral copolymers, while the copolymers of the bulky chiral phenyl-substituted dirhodium complexes with n-dodecyl chains displayed an "abnormal" S&S effect accompanied by an inversion of the helix sense, which could be switched to a "normal" S&S effect by changing the solvent composition. A nonracemic dirhodium complex of 20% enantiomeric excess bearing the less bulky chiral methyl substituents with n-dodecyl chains assembled with DABCO to form an almost one-handed helix (the "majority rule" (MR) effect), whereas the three other nonracemic copolymers showed a weak MR effect.
Collapse
Affiliation(s)
- Shogo Okuda
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Naoki Ousaka
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan.,Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Takuya Iwata
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Riku Ishida
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Akio Urushima
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Nozomu Suzuki
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Shusaku Nagano
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Tomoyuki Ikai
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Eiji Yashima
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan.,Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
24
|
Singh V, Prasad YS, Rachamalla AK, Rebaka VP, Banoo T, Maheswari CU, Sridharan V, Lalitha K, Nagarajan S. Hybrid hydrogels derived from renewable resources as a smart stimuli responsive soft material for drug delivery applications. RSC Adv 2022; 12:2009-2018. [PMID: 35425233 PMCID: PMC8979040 DOI: 10.1039/d1ra08447j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/29/2021] [Indexed: 12/02/2022] Open
Abstract
The design and synthesis of amphiphilic molecules play a crucial role in fabricating smart functional materials via self-assembly. Especially, biologically significant natural molecules and their structural analogues have inspired chemists and made a major contribution to the development of advanced smart materials. In this report, a series of amphiphilic N-acyl amides were synthesized from natural precursors using a simple synthetic protocol. Interestingly, the self-assembly of amphiphiles 6a and 7a furnished a hydrogel and oleogel in vegetable oils. Morphological analysis of gels revealed the existence of a 3-dimensional fibrous network. Thermoresponsive and thixotropic behavior of these gels were evaluated using rheological analysis. A composite gel prepared by the encapsulation of curcumin in the hydrogel formed from 7a displayed a gel-sol transition in response to pH and could act as a dual channel responsive drug carrier.
Collapse
Affiliation(s)
- Vandana Singh
- School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur-613401 Tamil Nadu India
| | - Yadavali Siva Prasad
- School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur-613401 Tamil Nadu India
- Department of Biomedical Engineering, Saveetha School of Engineering Saveetha Nagar Thandalam Tamil Nadu India
| | - Arun Kumar Rachamalla
- Department of Chemistry, National Institute of Technology Warangal Warangal-506004 Telangana India +91-9940430715
| | - Vara Prasad Rebaka
- Department of Chemistry, National Institute of Technology Warangal Warangal-506004 Telangana India +91-9940430715
| | - Tohira Banoo
- Department of Chemistry, National Institute of Technology Warangal Warangal-506004 Telangana India +91-9940430715
| | - C Uma Maheswari
- School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur-613401 Tamil Nadu India
| | - Vellaisamy Sridharan
- Department of Chemistry and Chemical Sciences, Central University of Jammu Rahya-Suchani (Bagla), District-Samba Jammu-181143 J&K India
| | - Krishnamoorthy Lalitha
- School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur-613401 Tamil Nadu India
| | - Subbiah Nagarajan
- School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur-613401 Tamil Nadu India
- Department of Chemistry, National Institute of Technology Warangal Warangal-506004 Telangana India +91-9940430715
| |
Collapse
|
25
|
Zhou LC, Yang YH, He R, Qin Y, Zhang L. Co-assembled nanotubes with controlled curvature radius using a hydrogen bond regulation strategy. RSC Adv 2021; 11:34275-34280. [PMID: 35497309 PMCID: PMC9042347 DOI: 10.1039/d1ra05251a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/06/2021] [Indexed: 11/21/2022] Open
Abstract
The design of co-organized nanotube systems with controlled curvature radius that are realized by tilt modulation of co-assembled molecules, induced by the strength of non-covalent interactions in aqueous media, remains a significant challenge. Here, we report success in utilizing a hydrogen bond regulation strategy to stimulate molecular tilt for the formation of nanotubes with controlled curvature radius based on the co-assembly of two kinds of achiral cationic building blocks in aqueous solution. Computations and electron microscopy experiments suggest that the nanotube curvature radius drastically decreases as the tilt angle θ of co-assembled molecules increases with an increase of hydrogen bond strength. Interestingly, a slight change in the co-assembled molecular tilt causes a drastic change in the nanotube curvature radius.
Collapse
Affiliation(s)
- Lai-Cheng Zhou
- PCFM Lab, GDHPRC Lab, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Yun-Han Yang
- PCFM Lab, GDHPRC Lab, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Ran He
- PCFM Lab, GDHPRC Lab, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Yang Qin
- PCFM Lab, GDHPRC Lab, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Ling Zhang
- PCFM Lab, GDHPRC Lab, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
26
|
Baccile N, Ben Messaoud G, Le Griel P, Cowieson N, Perez J, Geys R, De Graeve M, Roelants SLKW, Soetaert W. Palmitic acid sophorolipid biosurfactant: from self-assembled fibrillar network (SAFiN) to hydrogels with fast recovery. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200343. [PMID: 34334020 DOI: 10.1098/rsta.2020.0343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/18/2021] [Indexed: 06/13/2023]
Abstract
Nanofibres are an interesting phase into which amphiphilic molecules can self-assemble. Described for a large number of synthetic lipids, they were seldom reported for natural lipids like microbial amphiphiles, known as biosurfactants. In this work, we show that the palmitic acid congener of sophorolipids (SLC16:0), one of the most studied families of biosurfactants, spontaneously forms a self-assembled fibre network (SAFiN) at pH below 6 through a pH jump process. pH-resolved in situ small-angle X-ray scattering (SAXS) shows a continuous micelle-to-fibre transition, characterized by an enhanced core-shell contrast between pH 9 and pH 7 and micellar fusion into a flat membrane between pH 7 and pH 6, approximately. Below pH 6, homogeneous, infinitely long nanofibres form by peeling off the membranes. Eventually, the nanofibre network spontaneously forms a thixotropic hydrogel with fast recovery rates after applying an oscillatory strain amplitude out of the linear viscoelastic regime: after being submitted to strain amplitudes during 5 min, the hydrogel recovers about 80% and 100% of its initial elastic modulus after, respectively, 20 s and 10 min. Finally, the strength of the hydrogel depends on the medium's final pH, with an elastic modulus fivefold higher at pH 3 than at pH 6. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)'.
Collapse
Affiliation(s)
- Niki Baccile
- Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, F-75005 Paris, France
| | - Ghazi Ben Messaoud
- Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, F-75005 Paris, France
| | - Patrick Le Griel
- Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, F-75005 Paris, France
| | - Nathan Cowieson
- Harwell Science and Innovation Campus, Diamond Light Source, Didcot, Oxfordshire, OX11 0DE, UK
| | - Javier Perez
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin, BP48,91192 Gif-sur-Yvette Cedex, France
| | - Robin Geys
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Ghent University, Coupure Links 653, Ghent, Oost-Vlaanderen BE 9000, Belgium
| | - Marilyn De Graeve
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Ghent University, Coupure Links 653, Ghent, Oost-Vlaanderen BE 9000, Belgium
| | - Sophie L K W Roelants
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Ghent University, Coupure Links 653, Ghent, Oost-Vlaanderen BE 9000, Belgium
- Bio Base Europe Pilot Plant, Rodenhuizekaai 1, Ghent, Oost-Vlaanderen BE 9000, Belgium
| | - Wim Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Ghent University, Coupure Links 653, Ghent, Oost-Vlaanderen BE 9000, Belgium
- Bio Base Europe Pilot Plant, Rodenhuizekaai 1, Ghent, Oost-Vlaanderen BE 9000, Belgium
| |
Collapse
|
27
|
Kameta N, Kogiso M. Self-Assembly of a Pyridine-Based Amphiphile Complexed with Regioisomeric Dihydroxy Naphthalenes into Supramolecular Nanotubes with Different Inner Diameters. Chemistry 2021; 27:12566-12573. [PMID: 34296478 DOI: 10.1002/chem.202101354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Indexed: 02/02/2023]
Abstract
A pyridine-based amphiphile complexed with 1,5-, 1,6-, 2,6-, or 2,7-dihydroxy naphthalene self-assembled in water to form nanotubes with inner diameters of 46, 38, 24, 18, and 11 nm in which the naphthalene molecules formed J-type aggregates. In contrast, the amphiphile complexed with 1,2-, 1,3-, 1,4-, 1,7-, 1,8-, or 2,3-dihydroxy naphthalene formed nanofibers in which the naphthalene molecules formed H-type aggregates. The inner diameter of the nanotubes strongly depended on the regioisomeric dihydroxy naphthalene. UV-vis, fluorescence, infrared spectroscopy, X-ray diffraction analysis, and differential scanning calorimetry showed that nanotubes with smaller inner diameters had weaker intermolecular hydrogen bonds between the tilted amphiphiles complexed with the naphthalene molecules within the membrane walls and showed larger Stokes shifts in the excimer fluorescence of the naphthalene moiety. These findings should be useful not only for fine-tuning the inner diameters of supramolecular nanotubes but also for controlling the aggregation states of functional aromatic molecules to generate nanostructures with useful optical and electronic properties in water.
Collapse
Affiliation(s)
- Naohiro Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Masaki Kogiso
- Interdisciplinary Research Center for Catalytic Chemistry, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| |
Collapse
|
28
|
Kameta N. Stimuli-Responsive Supramolecular Nanotube Capsules. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Naohiro Kameta
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology
| |
Collapse
|
29
|
Wang Y, Wan K, Pan F, Zhu X, Jiang Y, Wang H, Chen Y, Shi X, Liu M. Bamboo-like π-Nanotubes with Tunable Helicity and Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2021; 60:16615-16621. [PMID: 33960094 DOI: 10.1002/anie.202104843] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Indexed: 01/02/2023]
Abstract
We report the fabrication of an exotic bamboo-like π-nanotube via the hierarchical self-assembly of a dipeptide-substituted naphthalenediimide gelator with tunable helicity and circularly polarized luminescence (CPL). It was found that in the presence of trifluoroacetic acid (TFA) the gelator molecules self-assembled into a bamboo-like π-nanotube, which is composed of truncated nanocones and CPL active. When defining the diameter ratio of the lower to upper edge of each nanocone as a parameter to express the helicity of different nanotubes, it was found that both the helicity and CPL of these nanotubes can be adjusted by the amount of TFA. Moreover, the helicity of the nanotube can be conveyed to the achiral quantum dots (QDs) and produce a hybrid nanotube/QDs CPL active materials with adjustable dissymmetry factor. This work finds a new type self-assembled bamboo-like π-nanotube and unveils their helicity and CPL control.
Collapse
Affiliation(s)
- Yuan Wang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaiwei Wan
- University of Chinese Academy of Sciences, Beijing, 100049, China.,Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| | - Fei Pan
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China.,Institute of Solid Mechanics, Beihang University, Beijing, 100191, China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuqian Jiang
- Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| | - Hui Wang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| | - Yuli Chen
- Institute of Solid Mechanics, Beihang University, Beijing, 100191, China
| | - Xinghua Shi
- University of Chinese Academy of Sciences, Beijing, 100049, China.,Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
30
|
Wang Y, Wan K, Pan F, Zhu X, Jiang Y, Wang H, Chen Y, Shi X, Liu M. Bamboo‐like π‐Nanotubes with Tunable Helicity and Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104843] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yuan Wang
- Beijing National Laboratory for Molecular Science CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Kaiwei Wan
- University of Chinese Academy of Sciences Beijing 100049 China
- Laboratory of Theoretical and Computational Nanoscience CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology (NCNST) Beijing 100190 P. R. China
| | - Fei Pan
- Laboratory of Theoretical and Computational Nanoscience CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology (NCNST) Beijing 100190 P. R. China
- Institute of Solid Mechanics Beihang University Beijing 100191 China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yuqian Jiang
- Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology (NCNST) Beijing 100190 P. R. China
| | - Hui Wang
- Laboratory of Theoretical and Computational Nanoscience CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology (NCNST) Beijing 100190 P. R. China
| | - Yuli Chen
- Institute of Solid Mechanics Beihang University Beijing 100191 China
| | - Xinghua Shi
- University of Chinese Academy of Sciences Beijing 100049 China
- Laboratory of Theoretical and Computational Nanoscience CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology (NCNST) Beijing 100190 P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
31
|
From bumblebee to bioeconomy: Recent developments and perspectives for sophorolipid biosynthesis. Biotechnol Adv 2021; 54:107788. [PMID: 34166752 DOI: 10.1016/j.biotechadv.2021.107788] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022]
Abstract
Sophorolipids are biobased compounds produced by the genera Starmerella and Pseudohyphozyma that gain exponential interest from academic and industrial stakeholders due to their mild and environmental friendly characteristics. Currently, industrially relevant sophorolipid volumetric productivities are reached up to 3.7 g∙L-1∙h-1 and sophorolipids are used in the personal care and cleaning industry at small scale. Moreover, applications in crop protection, food, biohydrometallurgy and medical fields are being extensively researched. The research and development of sophorolipids is at a crucial stage. Therefore, this work presents an overview of the state-of-the-art on sophorolipid research and their applications, while providing a critical assessment of scientific techniques and standardisation in reporting. In this review, the genuine sophorolipid producing organisms and the natural role of sophorolipids are discussed. Subsequently, an evaluation is made of innovations in production processes and the relevance of in-situ product recovery for process performance is discussed. Furthermore, a critical assessment of application research and its future perspectives are portrayed with a focus on the self-assembly of sophorolipid molecules. Following, genetic engineering strategies that affect the sophorolipid physiochemical properties are summarised. Finally, the impact of sophorolipids on the bioeconomy are uncovered, along with relevant future perspectives.
Collapse
|
32
|
Chen Z, Higashi K, Shidara R, Ueda K, Morita T, Limwikrant W, Yamamoto K, Moribe K. The nanostructure of rod-like ascorbyl dipalmitate nanoparticles stabilized by a small amount of DSPE-PEG. Int J Pharm 2021; 602:120599. [PMID: 33862127 DOI: 10.1016/j.ijpharm.2021.120599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/24/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022]
Abstract
Previously, we reported the formation of 100-200 nm disk- and tube-like nanoparticles by hydration of L-ascorbyl 2,6-dipalmitate (ASC-DP) and distearoylphosphatidylethanolamine polyethylene glycol 2000 (DSPE-PEG) films prepared at an initial molar ratio of 2:1. This study investigated the feasibility of nanoparticle formation with higher ASC-DP loading. Although particle size distribution determined by dynamic light scattering showed a multimodal pattern including micro-sized particles at a molar ratio of 3:1, the mean particle size gradually decreased with a further increased molar ratio. Homogeneous ca. 240 nm nanoparticles with a unimodal size distribution were obtained at a molar ratio of 10:1. FE-TEM showed that the nanoparticles at a molar ratio of 10:1 were rod-shaped with a diameter of ca. 100 nm and a length of ca. 300 nm. After centrifugation, X-ray analysis of the nanoparticle precipitates showed that these rod-like nanoparticles were composed of a series of lamellar structures with 3.7 nm repeated units. The molar ratio of ASC-DP/DSPE-PEG in the nanoparticle precipitates determined by 1H NMR measurements was 68.8:1. The rod-like nanoparticles should be composed of a core-shell structure, where a small amount of DSPE-PEG covers the lamellar structure of ASC-DP. Further increase in the ASC-DP/DSPE-PEG molar ratio over 33:1 no longer provided nanoparticles. Hence, to prepare a stable ASC-DP nanoparticle suspension, it is necessary to prepare ASC-DP/DSPE-PEG films containing at least 3 mol% DSPE-PEG.
Collapse
Affiliation(s)
- Ziqiao Chen
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Kenjirou Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Ryuhei Shidara
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Takeshi Morita
- Graduate School of Science, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba 263-8522, Japan
| | - Waree Limwikrant
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri Ayudhya Road, Ratchatewi, Bangkok 10400, Thailand
| | - Keiji Yamamoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Kunikazu Moribe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| |
Collapse
|
33
|
Zhou C, Xu Q, Ren Y, Sun X, Xu Z, Han J, Guo R. Benzoate ester as a new species for supramolecular chiral assembly. SOFT MATTER 2021; 17:5137-5147. [PMID: 33881132 DOI: 10.1039/d1sm00188d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, a benzoate ester molecule, dodecamethylnonacosane-2,28-diyl dibenzoate (DMNDB), has been discovered as a new species that aggregates into chiral nano-assemblies. In the tetrahydrofuran (THF)/water system, the benzoate ester, DMNDB, could self-assemble into left-handed twisted nanowires, and the most suitable THF/water volume ratio to obtain uniform twisted nanowires was 3 : 7. The driving forces of assembly and the molecular packing type in assemblies for the twisted nanowires were explored, and a possible assembly mechanism was proposed to understand the generation of chiral assemblies. Interestingly, the left-handed nanowires could cross-link and immobilize the solvent in the isopropanol (iPrOH)/water (2 : 8) system to form chiral gels. When the iPrOH/water ratio was increased to 6 : 4, the left-handed nanowires as structural units were found to evolve to right-handed nanofibers. Accordingly, the intermolecular interactions and the molecular packing type also changed with the solvent ratio. What is more, the xerogel could be obtained by drying the gel and left-handed twisted nanowires could form in the THF/water system again, showing the recyclability of chiral nanoassemblies. Also, these DMNDB chiral nanostructures exhibited potential for application in enantioselective separation by co-assembling with tetra-aniline.
Collapse
Affiliation(s)
- Chuanqiang Zhou
- Testing Center, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Qianqian Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China.
| | - Yuanyuan Ren
- Testing Center, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Xiaohuan Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China.
| | - Zhilong Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China.
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China.
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China.
| |
Collapse
|
34
|
Chen S, Costil R, Leung FK, Feringa BL. Self-Assembly of Photoresponsive Molecular Amphiphiles in Aqueous Media. Angew Chem Int Ed Engl 2021; 60:11604-11627. [PMID: 32936521 PMCID: PMC8248021 DOI: 10.1002/anie.202007693] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Indexed: 12/22/2022]
Abstract
Amphiphilic molecules, comprising hydrophobic and hydrophilic moieties and the intrinsic propensity to self-assemble in aqueous environment, sustain a fascinating spectrum of structures and functions ranging from biological membranes to ordinary soap. Facing the challenge to design responsive, adaptive, and out-of-equilibrium systems in water, the incorporation of photoresponsive motifs in amphiphilic molecular structures offers ample opportunity to design supramolecular systems that enables functional responses in water in a non-invasive way using light. Here, we discuss the design of photoresponsive molecular amphiphiles, their self-assembled structures in aqueous media and at air-water interfaces, and various approaches to arrive at adaptive and dynamic functions in isotropic and anisotropic systems, including motion at the air-water interface, foam formation, reversible nanoscale assembly, and artificial muscle function. Controlling the delicate interplay of structural design, self-assembling conditions and external stimuli, these responsive amphiphiles open several avenues towards application such as soft adaptive materials, controlled delivery or soft actuators, bridging a gap between artificial and natural dynamic systems.
Collapse
Affiliation(s)
- Shaoyu Chen
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenNetherlands
| | - Romain Costil
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenNetherlands
| | - Franco King‐Chi Leung
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenNetherlands
- Present address: State Key Laboratory of Chemical Biology and Drug DiscoveryDepartment of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHong KongChina
| | - Ben L. Feringa
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenNetherlands
| |
Collapse
|
35
|
Kameta N, Ding W, Masuda M. Effect of Glycine Position on the Inner Diameter of Supramolecular Nanotubes Consisting of Glycolipid Monolayer Membranes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Naohiro Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Wuxiao Ding
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Mitsutoshi Masuda
- Research Institute for Sustainable Chemistry, Department of Materials and Chemistry, AIST, Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
36
|
Chen S, Costil R, Leung FK, Feringa BL. Self‐Assembly of Photoresponsive Molecular Amphiphiles in Aqueous Media. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202007693] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shaoyu Chen
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747AG Groningen Netherlands
| | - Romain Costil
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747AG Groningen Netherlands
| | - Franco King‐Chi Leung
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747AG Groningen Netherlands
- Present address: State Key Laboratory of Chemical Biology and Drug Discovery Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hong Kong China
| | - Ben L. Feringa
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747AG Groningen Netherlands
| |
Collapse
|
37
|
Kameta N, Ding W. Stacking of nanorings to generate nanotubes for acceleration of protein refolding. NANOSCALE 2021; 13:1629-1638. [PMID: 33331384 DOI: 10.1039/d0nr07660k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Self-assembly and photoisomerization of azobenzene-based amphiphilic molecules produced nanorings with an inner diameter of 25 nm and lengths of <40 nm. The nanorings, which consisted of a single bilayer membrane of the amphiphiles, retained their morphology in the presence of a stacking inhibitor; whereas in the absence of the inhibitor, the nanorings stacked into short nanotubes (<500 nm). When subjected to mild heat treatment, these nanotubes joined end-to-end to form nanotubes with lengths of several tens of micrometers. The nanorings and the short and long nanotubes were able to encapsulate proteins and thereby suppress aggregation induced by thermal denaturation. In addition, the nanotubes accelerated refolding of denatured proteins by encapsulating them and then releasing them into the bulk solution; refolding occurred simultaneously with release. In contrast, the nanorings did not accelerate protein refolding. Refolding efficiency increased with increasing nanotube length, indicating that the re-aggregation of the proteins was strictly inhibited by lowering the concentration of the proteins in the bulk solution as the result of the slow release from the longer nanotubes. The migration of the proteins through the long, narrow nanochannels during the release process will also contribute to refolding.
Collapse
Affiliation(s)
- N Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | | |
Collapse
|
38
|
Buhse T, Cruz JM, Noble-Terán ME, Hochberg D, Ribó JM, Crusats J, Micheau JC. Spontaneous Deracemizations. Chem Rev 2021; 121:2147-2229. [DOI: 10.1021/acs.chemrev.0c00819] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Thomas Buhse
- Centro de Investigaciones Químicas−IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, 62209 Cuernavaca, Morelos Mexico
| | - José-Manuel Cruz
- Facultad de Ciencias en Física y Matemáticas, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas 29050, Mexico
| | - María E. Noble-Terán
- Centro de Investigaciones Químicas−IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, 62209 Cuernavaca, Morelos Mexico
| | - David Hochberg
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Carretera Ajalvir, Km. 4, 28850 Torrejón de Ardoz, Madrid Spain
| | - Josep M. Ribó
- Institut de Ciències del Cosmos (IEEC-ICC) and Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Catalunya Spain
| | - Joaquim Crusats
- Institut de Ciències del Cosmos (IEEC-ICC) and Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Catalunya Spain
| | - Jean-Claude Micheau
- Laboratoire des IMRCP, UMR au CNRS No. 5623, Université Paul Sabatier, F-31062 Toulouse Cedex, France
| |
Collapse
|
39
|
Kameta N, Ding W, Masuda M. Glycolipid nanotube templates for the production of hydrophilic/hydrophobic and left/right-handed helical polydiacetylene nanotubes. Chem Commun (Camb) 2021; 57:464-467. [PMID: 33326541 DOI: 10.1039/d0cc07387c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Encapsulation and preorganization of diacetylene monomers in glycolipid nanotubes allows for the production of polydiacetylene nanotubes with hydrophilic/hydrophobic surfaces and left/right-handed helicities.
Collapse
Affiliation(s)
- Naohiro Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | | | | |
Collapse
|
40
|
Tosi F, Berrocal JA, Stuart MCA, Wezenberg SJ, Feringa BL. Tuning of Morphology by Chirality in Self-Assembled Structures of Bis(Urea) Amphiphiles in Water. Chemistry 2021; 27:326-330. [PMID: 32785999 PMCID: PMC7839493 DOI: 10.1002/chem.202003403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/10/2020] [Indexed: 12/12/2022]
Abstract
We present the synthesis and self‐assembly of a chiral bis(urea) amphiphile and show that chirality offers a remarkable level of control towards different morphologies. Upon self‐assembly in water, the molecular‐scale chiral information is translated to the mesoscopic level. Both enantiomers of the amphiphile self‐assemble into chiral twisted ribbons with opposite handedness, as supported by Cryo‐TEM and circular dichroism (CD) measurements. The system presents thermo‐responsive aggregation behavior and combined transmittance measurements, temperature‐dependent UV, CD, TEM, and micro‐differential scanning calorimetry (DSC) show that a ribbon‐to‐vesicles transition occurs upon heating. Remarkably, chirality allows easy control of morphology as the self‐assembly into distinct aggregates can be tuned by varying the enantiomeric excess of the amphiphile, giving access to flat sheets, helical ribbons, and twisted ribbons.
Collapse
Affiliation(s)
- Filippo Tosi
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - José Augusto Berrocal
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Marc C A Stuart
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.,Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Sander J Wezenberg
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.,Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
41
|
Wen L, Sun J, Li C, Zhu C, Zhang X, Wang Z, Song Q, Lv C, Zhang Y. Rich-colour mechanochromism of a cyanostilbene derivative with chiral self-assembly. NEW J CHEM 2021. [DOI: 10.1039/d1nj01528a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The tricolored fluorescence switching was realized in a novel chiral fluorophore. The fabrication of a helical assembly was proposed as a candidate strategy for attaining an additional metastable state, which contributed to enriched PL colors via pairwise excimer emission.
Collapse
Affiliation(s)
- Li Wen
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Jingwei Sun
- Department of Materials Chemistry
- Huzhou University
- Huzhou
- People's Republic of China
| | - Chengjian Li
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Chenfei Zhu
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Xi Zhang
- Department of Materials Chemistry
- Huzhou University
- Huzhou
- People's Republic of China
| | - Zhenbo Wang
- Department of Materials Chemistry
- Huzhou University
- Huzhou
- People's Republic of China
| | - Qingbao Song
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Chunyan Lv
- Department of Materials Chemistry
- Huzhou University
- Huzhou
- People's Republic of China
| | - Yujian Zhang
- Department of Materials Chemistry
- Huzhou University
- Huzhou
- People's Republic of China
| |
Collapse
|
42
|
Xu XH, Liu WB, Song X, Zhou L, Liu N, Zhu YY, Wu ZQ. Chain-end functionalization of living helical polyisocyanides through a Pd( ii)-mediated Sonogashira coupling reaction. Polym Chem 2021. [DOI: 10.1039/d1py00809a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Various functional helical polymers were constructed through chain-end functionalization of living helical polyisocyanides through a Pd(ii)-mediated Sonogashira coupling reaction.
Collapse
Affiliation(s)
- Xun-Hui Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Wen-Bin Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Xue Song
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Yuan-Yuan Zhu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| |
Collapse
|
43
|
Nandakumar A, Ito Y, Ueda M. Solvent Effects on the Self-Assembly of an Amphiphilic Polypeptide Incorporating α-Helical Hydrophobic Blocks. J Am Chem Soc 2020; 142:20994-21003. [PMID: 33272014 DOI: 10.1021/jacs.0c03425] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The self-assembly of biological molecules is an important pathway to understanding the molecular basis of complex metabolic events. The presence of a cosolvent in an aqueous solution during the self-assembly process can promote the formation of kinetically trapped metastable intermediates. In nature, a category of cosolvents termed osmolytes can work to strengthen the hydrogen-bond network of water such that the native states of certain proteins are favored, thus modulating their function and stability. However, identifying cosolvents that act as osmolytes in biomimetic applications, such as the self-assembly of soft materials, remains challenging. The present work examined the effects of ethanol (EtOH) and acetonitrile (ACN) as cosolvents on the self-assembly of the amphiphilic polypeptide PSar30-(l-Leu-Aib)6 (S30L12), which incorporates α-helical hydrophobic blocks, in aqueous solution. The results provided a direct observation of morphological behavior of S30L12 as a function of solvent composition. Morphological transitions were investigated using transmission electron microscopy, while the packing of peptide molecules was assessed using circular dichroism analyses and evaluations of membrane fluidity. In the EtOH/H2O mixtures, the EtOH strengthened the hydrogen-bond network of the water, thus limiting the hydrophobic hydration of S30L12 assemblies and enhancing hydrophobic interactions between assemblies. In contrast, ACN formed self-associated nanoclusters in water and at the hydrophobic cores of peptide assemblies to stabilize the edges exposed to bulk water and enhance the assembly kinetics. Fourier transform infrared (FT-IR) analysis indicated that both EtOH and ACN can modify the self-assembly of biomaterials in the same manner as osmolyte protectants or denaturants.
Collapse
Affiliation(s)
- Avanashiappan Nandakumar
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshihiro Ito
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Motoki Ueda
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
44
|
Reppe T, Poppe S, Tschierske C. Controlling Mirror Symmetry Breaking and Network Formation in Liquid Crystalline Cubic, Isotropic Liquid and Crystalline Phases of Benzil-Based Polycatenars. Chemistry 2020; 26:16066-16079. [PMID: 32652801 PMCID: PMC7756378 DOI: 10.1002/chem.202002869] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Indexed: 12/25/2022]
Abstract
Spontaneous development of chirality in systems composed of achiral molecules is important for new routes to asymmetric synthesis, chiral superstructures and materials, as well as for the understanding of the mechanisms of emergence of prebiotic chirality. Herein, it is shown that the 4,4'-diphenylbenzil unit is a universal transiently chiral bent building block for the design of multi-chained (polycatenar) rod-like molecules capable of forming a wide variety of helically twisted network structures in the liquid, the liquid crystalline (LC) and the crystalline state. Single polar substituents at the apex of tricatenar molecules support the formation of the achiral (racemic) cubic double network phase with Ia 3 ‾ d symmetry and relatively small twist along the networks. The combination of an alkyl chain with fluorine substitution leads to the homogeneously chiral triple network phase with I23 space group, and in addition, provides a mirror symmetry broken liquid. Replacing F by Cl or Br further increases the twist, leading to a short pitch double gyroid Ia 3 ‾ d phase, which is achiral again. The effects of the structural variations on the network structures, either leading to achiral phases or chiral conglomerates are analyzed.
Collapse
Affiliation(s)
- Tino Reppe
- Institute of ChemistryMartin Luther University Halle-WittenbergKurt-Mothes-Straße 206120HalleGermany
| | - Silvio Poppe
- Institute of ChemistryMartin Luther University Halle-WittenbergKurt-Mothes-Straße 206120HalleGermany
| | - Carsten Tschierske
- Institute of ChemistryMartin Luther University Halle-WittenbergKurt-Mothes-Straße 206120HalleGermany
| |
Collapse
|
45
|
Asaro F, Boga C, Zorzi RD, Geremia S, Gigli L, Nitti P, Semeraro S. ( R)-10-Hydroxystearic Acid: Crystals vs. Organogel. Int J Mol Sci 2020; 21:ijms21218124. [PMID: 33143206 PMCID: PMC7662707 DOI: 10.3390/ijms21218124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/03/2022] Open
Abstract
The chiral (R)-10-hydroxystearic acid ((R)-10-HSA) is a positional homologue of both (R)-12-HSA and (R)-9-HSA with the OH group in an intermediate position. While (R)-12-HSA is one of the best-known low-molecular-weight organogelators, (R)-9-HSA is not, but it forms crystals in several solvents. With the aim to gain information on the structural role of hydrogen-bonding interactions of the carbinol OH groups, we investigated the behavior of (R)-10-HSA in various solvents. This isomer displays an intermediate behavior between (R)-9 and (R)-12-HSA, producing a stable gel exclusively in paraffin oil, while it crystallizes in other organic solvents. Here, we report the X-ray structure of a single crystal of (R)-10-HSA as well as some structural information on its polymorphism, obtained through X-ray Powder Diffraction (XRPD) and Infrared Spectroscopy (IR). This case study provides new elements to elucidate the structural determinants of the microscopic architectures that lead to the formation of organogels of stearic acid derivatives.
Collapse
Affiliation(s)
- Fioretta Asaro
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy; (S.G.); (P.N.); (S.S.)
- Correspondence: (F.A.); (R.D.Z.); Tel.: +39-040-5583951 (F.A.)
| | - Carla Boga
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy;
| | - Rita De Zorzi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy; (S.G.); (P.N.); (S.S.)
- Correspondence: (F.A.); (R.D.Z.); Tel.: +39-040-5583951 (F.A.)
| | - Silvano Geremia
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy; (S.G.); (P.N.); (S.S.)
| | - Lara Gigli
- Elettra–Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, Basovizza, 34149 Trieste, Italy;
| | - Patrizia Nitti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy; (S.G.); (P.N.); (S.S.)
| | - Sabrina Semeraro
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy; (S.G.); (P.N.); (S.S.)
| |
Collapse
|
46
|
Minakawa M, Nakagawa M, Wang KH, Imura Y, Kawai T. Controlling Helical Pitch of Chiral Supramolecular Nanofibers Composed of Two Amphiphiles. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Muneharu Minakawa
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Makoto Nakagawa
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Ke-Hsuan Wang
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yoshiro Imura
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Takeshi Kawai
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
47
|
Khazi MI, Balachandra C, Shin G, Jang GH, Govindaraju T, Kim JM. Co-solvent polarity tuned thermochromic nanotubes of cyclic dipeptide-polydiacetylene supramolecular system. RSC Adv 2020; 10:35389-35396. [PMID: 35515666 PMCID: PMC9056892 DOI: 10.1039/d0ra05656a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/28/2020] [Indexed: 11/21/2022] Open
Abstract
The cooperative non-covalent interactions arising from structurally integrated multiple molecules have emerged as a powerful tool for the creation of functional supramolecular structures. Herein, we constructed cyclic dipeptide (CDP)–polydiacetylene (PDA) conjugate (CDP–DA) by introducing cyclo(l-Phe-l-Lys) to the linear 10,12-pentacosadiynoic acid. Owing to extensive hydrogen bonding characteristics, together with structural chirality of cyclo(l-Phe-l-Lys) and strong π–π stacking diacetylenic template, CDP–DA generated supramolecular nanotubes. The structural visualization using scanning and transmission electron microscopy revealed chloroform/methanol co-solvent polarity tuned morphological transformation of intrinsic lamellar assemblies into nanotubes comprising single-wall and multi-wall structure. The mechanistic understanding by X-ray diffraction patterns confirms bilayer organization in lamellar structure, which forms nanotubes via a gradual lamellar curling-to-scrolling process. The supramolecular CDP–DA nanotubes are transformed into the rigid covalently cross-linked blue-phase polydiacetylene (CDP–PDA) by UV irradiation. Very interestingly, the blue-phase nanotubes display reversible thermochromic changing temperature up to 150 °C with excellent repeatability over a dozen thermal cycles. This work provides an efficient strategy for precise morphological control and aiding the perspective for development in nanostructures for functional devices. Co-solvent controlled fabrication of thermo-responsive chromogenic nanotubes of a cyclic dipeptide–polydiacetylene supramolecular system.![]()
Collapse
Affiliation(s)
| | - Chenikkayala Balachandra
- Bioorganic Chemistry Laboratory, New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru Karnataka 560064 India
| | - Geon Shin
- Department of Chemical Engineering, Hanyang University Seoul 04763 Korea
| | - Gang-Hee Jang
- Department of Chemical Engineering, Hanyang University Seoul 04763 Korea
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru Karnataka 560064 India
| | - Jong-Man Kim
- Institute of Nano Science and Technology, Hanyang University Seoul 04763 Korea .,Department of Chemical Engineering, Hanyang University Seoul 04763 Korea
| |
Collapse
|
48
|
Ding L, Pelcovits RA, Powers TR. Shapes of fluid membranes with chiral edges. Phys Rev E 2020; 102:032608. [PMID: 33075976 DOI: 10.1103/physreve.102.032608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
We carry out Monte Carlo simulations of a colloidal fluid membrane with a free edge and composed of chiral rodlike viruses. The membrane is modeled by a triangular mesh of beads connected by bonds in which the bonds and beads are free to move at each Monte Carlo step. Since the constituent viruses are experimentally observed to twist only near the membrane edge, we use an effective energy that favors a particular sign of the geodesic torsion of the edge. The effective energy also includes the membrane bending stiffness, edge bending stiffness, and edge tension. We find three classes of membrane shapes resulting from the competition of the various terms in the free energy: branched shapes, chiral disks, and vesicles. Increasing the edge bending stiffness smooths the membrane edge, leading to correlations among the membrane normals at different points along the edge. The normalized power spectrum for edge displacements shows a peak with increasing preferred geodesic torsion. We also consider membrane shapes under an external force by fixing the distance between two ends of the membrane and finding the shape for increasing values of the distance between the two ends. As the distance increases, the membrane twists into a ribbon, with the force eventually reaching a plateau.
Collapse
Affiliation(s)
- Lijie Ding
- Department of Physics, Brown University, 182 Hope Street, Providence, Rhode Island 02912, USA
| | - Robert A Pelcovits
- Department of Physics, Brown University, 182 Hope Street, Providence, Rhode Island 02912, USA
- Brown Theoretical Physics Center and Department of Physics, Brown University, 182 Hope Street, Providence, Rhode Island 02912, USA
| | - Thomas R Powers
- Department of Physics, Brown University, 182 Hope Street, Providence, Rhode Island 02912, USA
- Center for Fluid Mechanics and Department of Physics, Brown University, 182 Hope Street, Providence, Rhode Island 02912, USA
| |
Collapse
|
49
|
Wang Q, He L, Fan D, Liang W, Wang X, Fang J. PLA2-Triggered Release of Drugs from Self-Assembled Lipid Tubules for Arthritis Treatments. ACS APPLIED BIO MATERIALS 2020; 3:6488-6496. [DOI: 10.1021/acsabm.0c00883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Liming He
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Donghao Fan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wenlang Liang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiaochen Wang
- Advanced Materials Processing and Analysis Center and Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
| | - Jiyu Fang
- Advanced Materials Processing and Analysis Center and Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
50
|
Mirror Symmetry Breaking in Liquids and Their Impact on the Development of Homochirality in Abiogenesis: Emerging Proto-RNA as Source of Biochirality? Symmetry (Basel) 2020. [DOI: 10.3390/sym12071098] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Recent progress in mirror symmetry breaking and chirality amplification in isotropic liquids and liquid crystalline cubic phases of achiral molecule is reviewed and discussed with respect to its implications for the hypothesis of emergence of biological chirality. It is shown that mirror symmetry breaking takes place in fluid systems where homochiral interactions are preferred over heterochiral and a dynamic network structure leads to chirality synchronization if the enantiomerization barrier is sufficiently low, i.e., that racemization drives the development of uniform chirality. Local mirror symmetry breaking leads to conglomerate formation. Total mirror symmetry breaking requires either a proper phase transitions kinetics or minor chiral fields, leading to stochastic and deterministic homochirality, respectively, associated with an extreme chirality amplification power close to the bifurcation point. These mirror symmetry broken liquids are thermodynamically stable states and considered as possible systems in which uniform biochirality could have emerged. A model is hypothesized, which assumes the emergence of uniform chirality by chirality synchronization in dynamic “helical network fluids” followed by polymerization, fixing the chirality and leading to proto-RNA formation in a single process.
Collapse
|