1
|
Hawkins BC, Chalker JM, Coote ML, Bissember AC. Electrochemically Generated Carbocations in Organic Synthesis. Angew Chem Int Ed Engl 2024; 63:e202407207. [PMID: 39075778 DOI: 10.1002/anie.202407207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Abstract
This Minireview examines a selection of case studies that showcase distinctive and enabling electrochemical approaches that have allowed for the generation and reaction of carbocation intermediates under mild conditions. Particular emphasis is placed on the progress that has been made in this area of organic synthesis and polymer chemistry over the past decade.
Collapse
Affiliation(s)
- Bill C Hawkins
- Department of Chemistry, University of Otago, 9054, Dunedin, Otago, New Zealand
| | - Justin M Chalker
- Institute for Nanoscale Science and Technology, Flinders University, 5042, Adelaide, South Australia, Australia
| | - Michelle L Coote
- Institute for Nanoscale Science and Technology, Flinders University, 5042, Adelaide, South Australia, Australia
| | - Alex C Bissember
- School of Natural Sciences-Chemistry, University of Tasmania, 7001, Hobart, Tasmania, Australia
| |
Collapse
|
2
|
Sun Z, Song C, Meng Y, Dou Y. Synthesis of 2,3-Benzobicyclo[3.3.1]non-2-enes via a Cascade of Domino Carbocation Migration/Interrupted Ritter Reaction and Dienone-Phenol Rearrangement. J Org Chem 2024; 89:14520-14526. [PMID: 39295074 DOI: 10.1021/acs.joc.4c01516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The 2,3-benzobicyclo[3.3.1]non-2-ene scaffold is a bridged backbone of many bioactive natural products. The development of a concise tactic toward this architecture is of keen interest and highly challenging. Herein, we disclose a novel cascade protocol for realizing this target. This approach relies on a domino sequence of carbocation rearrangement and Ritter reaction of the taiwaniaquinoid scaffold derivatives. A process of dienone-phenol rearrangement was postulated to be involved. Several potentially useful compounds with this intricate bridged ring were obtained in good overall yields (59-83%, over 2 steps).
Collapse
Affiliation(s)
- Zhiwei Sun
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Chuanjun Song
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yonggang Meng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yingchao Dou
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
3
|
Guo X, Price NG, Zhu Q. Electrochemical Cyanation of Alcohols Enabled by an Iodide-Mediated Phosphine P(V/III) Redox Couple. Org Lett 2024; 26:7347-7351. [PMID: 39185852 DOI: 10.1021/acs.orglett.4c02550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
We report herein a mild electrochemical method to transform alcohols into their corresponding nitriles by using commercially available reagents. This protocol accepts substrates with various functional groups including those that are susceptible to oxidative decomposition. Mechanistic studies revealed a critical iodide-mediated phosphine electrochemical oxidation pathway leading to the alkoxyphosphonium intermediate, followed by nucleophilic substitution by a cyanide nucleophile. This method demonstrates the use of electrochemistry in replacing azo-type reagents in direct nucleophilic substitution and homologation of alcohol substrates.
Collapse
Affiliation(s)
- Xuewen Guo
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Nathan G Price
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Qilei Zhu
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
4
|
Chun Y, Luu KB, Woerpel KA. Acetal Substitution Reactions: Stereoelectronic Effects, Conformational Analysis, Reactivity vs. Selectivity, and Neighboring-Group Participation. Synlett 2024; 35:1763-1787. [PMID: 39502501 PMCID: PMC11534297 DOI: 10.1055/s-0042-1751541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Acetal substitution reactions can proceed by a number of mechanisms, but oxocarbenium ion intermediates are involved in many of these reactions. Our research has focused on understanding the conformational preferences, structures, and reactions of these intermediates. This Account summarizes our observations that electrostatic effects play a significant role in defining the preferred conformations, and that torsional effects determine how those intermediates react. Neighboring-group effects are not as straightforward as they might seem, considering that oxocarbenium ion intermediates are in equilibrium with structures that involve stabilization by a nearby substituent.
Collapse
Affiliation(s)
- Yuge Chun
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| | - Khoi B. Luu
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| | - K. A. Woerpel
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| |
Collapse
|
5
|
Lindner H, Carreira EM. Cobalt-Catalyzed Photo-Semipinacol Rearrangement of Unactivated Allylic Alcohols. Angew Chem Int Ed Engl 2024; 63:e202407827. [PMID: 38848286 DOI: 10.1002/anie.202407827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/09/2024]
Abstract
We report a photochemical method for the semipinacol rearrangement of unactivated allylic alcohols. Aliphatic as well as aromatic groups participate as migrating groups, yielding a variety of α,α-disubstituted ketones. The reaction proceeds under mild conditions and is compatible with ethers, esters, halides, nitriles, carbamates, and substituted arenes. The operationally simple and fully catalytic conditions prescribe 1 mol % benzothiazinoquinoxaline as organophotocatalyst, 0.5 mol % Co-salen, and 10 mol % lutidinium triflate and, importantly, display reactivity complementary to procedures employing Brønsted acid. We showcase the utility of the protocol in late-stage drug diversifications.
Collapse
Affiliation(s)
- Henry Lindner
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Erick M Carreira
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| |
Collapse
|
6
|
Lin Q, Duan Y, Li Y, Jian R, Yang K, Jia Z, Xia Y, Zhang L, Luo S. Enantioselective S N1-type reaction via electrochemically generated chiral α-Imino carbocation intermediate. Nat Commun 2024; 15:6900. [PMID: 39134515 PMCID: PMC11319787 DOI: 10.1038/s41467-024-50945-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024] Open
Abstract
Electrochemical reactions via carbocation intermediates remain fundamental transformations that build up molecular functionality and complexity in a sustainable manner. Enantioselective control of such processes is a great challenge in a highly ionic electrolyte solution. Here, we report an anodic generation of chiral α-imino carbocation intermediates by enamine catalysis. The chiral carbocation intermediates can be intercepted by a variety of nucleophiles such as alcohols, water and thiols with high stereoselectivity. The key SN1 step proceeds via a tertiary amine-mediated proton shuttle that facilitates facial selection in reacting with carbocation.
Collapse
Affiliation(s)
- Qifeng Lin
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, China
| | - Yingdong Duan
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, China
| | - Yao Li
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, China
| | - Ruijun Jian
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Kai Yang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, China
| | - Zongbin Jia
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Long Zhang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China.
| | - Sanzhong Luo
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China.
| |
Collapse
|
7
|
Tallarita R, Jacobsen LM, Bandaru SSM, Elvers BJ, Schulzke C. The Role of -OEt Substituents in Molybdenum-Assisted Pentathiepine Formation-Access to Diversely Functionalized Azines. Molecules 2024; 29:3806. [PMID: 39202885 DOI: 10.3390/molecules29163806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
1,2,3,4,5-pentathiepines (PTEs) are naturally occurring polysulfides of increasing scientific interest based on their identified pharmacological activities. Artificial PTEs with N-heterocyclic backbones are efficiently synthesized via mediation by a molybdenum-oxo-bistetrasulfido complex. A common feature of all precursor alkynes successfully used to date in this reaction is the presence of a -CH(OEt)2 group since the previously postulated mechanism requires the presence of one OEt- as the leaving group, and the second must become a transient ethoxonium moiety. This raised the question of whether there really is a need for two, maybe only one, or possibly even zero ethoxy substituents. This research problem was systematically addressed by respective variations in the precursor-alkyne derivatives and by employing one related allene species. It was found that the total absence of ethoxy substituents prevents the formation of PTEs entirely, while the presence of a single ethoxy group results in the possibility to distinctly functionalize the position on the resulting N-heterocyclic pyrrole five ring in the target compound. This position was previously exclusively occupied by an -OEt for all products of the molybdenum-mediated reaction. The allene was applied with similar success as precursor as with the related alkyne. The now-employable significant change in precursor composition gives access to a whole new PTE subfamily, allowing further modulation of (physico)-chemical properties such as solubility, and provides additional insight into the mechanism of PTE formation; it comprises a merely partial validation of the previous hypothesis. The new alkyne precursors and pentathiepines were characterized by a variety of instrumental analyses (NMR, mass spec, UV-vis) and in six cases (one alkyne precursor, one unexpected side product, and four PTEs) by single-crystal X-ray diffraction. Syntheses, isolation procedures, analytical data, and the impact of the findings on the previously proposed mechanism are described in detail herein.
Collapse
Affiliation(s)
- Roberto Tallarita
- Institute of Biochemistry, Bioinorganic Chemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Lukas M Jacobsen
- Institute of Biochemistry, Bioinorganic Chemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Siva S M Bandaru
- Institute of Biochemistry, Bioinorganic Chemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Benedict J Elvers
- Institute of Biochemistry, Bioinorganic Chemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Carola Schulzke
- Institute of Biochemistry, Bioinorganic Chemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| |
Collapse
|
8
|
Teo WJ, Esteve Guasch J, Jiang L, Li B, Suero MG. Rh-Catalyzed Enantioselective Single-Carbon Insertion of Alkenes. J Am Chem Soc 2024; 146:21837-21846. [PMID: 39058396 PMCID: PMC11311232 DOI: 10.1021/jacs.4c06158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
The interest in the discovery and development of skeletal editing processes that selectively insert, exchange, or delete an atom in organic molecules has significantly increased over the last few years. However, processes of this class that proceed through the creation of a chiral center with high asymmetric induction have been largely unexplored. Herein, we report an enantioselective single-carbon insertion in aryl- and alkyl-substituted alkenes mediated by a catalytically generated chiral Rh-carbynoid and phosphate nucleophiles that produce enantioenriched allylic phosphates (enantiomeric ratio (e.r.) = 89.5:10.5-99.5:0.5). The key to the process was a diastereo- and enantioselective cyclopropanation of the alkene with a chiral Rh-carbynoid and the formation of a transient cyclopropyl-I(III) intermediate. The addition of the phosphate nucleophile provided a cyclopropyl-I(III)-phosphate intermediate that undergoes disrotatory ring opening following the Woodward-Hoffmann-DePuy rules. This process led to a chiral intimate allyl cation-phosphate pair that evolved with excellent enantioretention. The evidence of an SN1-like SNi mechanism is provided by linear free-energy relationship studies, kinetic isotope effects, X-ray crystallography, and control experiments. We demonstrated the utility of the enantioenriched allylic phosphates in late-stage N-H allylations of natural products and drug molecules and in cross-coupling reactions that occurred with excellent enantiospecificity.
Collapse
Affiliation(s)
- Wei Jie Teo
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| | - Josep Esteve Guasch
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
- Departament
de Química Analítica i Química Orgánica, Universitat Rovira i Virgili, Calle Marcel·lí Domingo, 1, Tarragona 43007, Spain
| | - Liyin Jiang
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| | - Bowen Li
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| | - Marcos G. Suero
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
9
|
Berrino E, Cantin T, Artault M, Beck S, Jessen C, Marrot J, Guégan F, Mingot A, Kornath A, Thibaudeau S. Accumulation, Characterization and Reactivity of Chiral Ammonium-Carboxonium Dications in Superacid. Angew Chem Int Ed Engl 2024; 63:e202404066. [PMID: 38587216 DOI: 10.1002/anie.202404066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
The accumulation of chiral ammonium-oxocarbenium dications in superacid is evidenced by low-temperature NMR spectroscopy, X-ray diffraction analysis and confirmed by DFT calculations. Its potential for the diastereoselective remote hydrofunctionalization of non-activated alkene is also explored.
Collapse
Affiliation(s)
- Emanuela Berrino
- IC2MP UMR CNRS 7285, Université de Poitiers, 4 rue Michel, Brunet, 86073 Poitiers cedex 9, France
| | - Thomas Cantin
- IC2MP UMR CNRS 7285, Université de Poitiers, 4 rue Michel, Brunet, 86073 Poitiers cedex 9, France
| | - Maxime Artault
- IC2MP UMR CNRS 7285, Université de Poitiers, 4 rue Michel, Brunet, 86073 Poitiers cedex 9, France
| | - Stefanie Beck
- Department of Chemistry, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13, D-81377, München, Germany
| | - Christoph Jessen
- Department of Chemistry, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13, D-81377, München, Germany
| | - Jérôme Marrot
- UMR CNRS 8180, 45 avenue des États-Unis, 78035, Versailles Cedex, France
| | - Frédéric Guégan
- IC2MP UMR CNRS 7285, Université de Poitiers, 4 rue Michel, Brunet, 86073 Poitiers cedex 9, France
| | - Agnès Mingot
- IC2MP UMR CNRS 7285, Université de Poitiers, 4 rue Michel, Brunet, 86073 Poitiers cedex 9, France
| | - Andreas Kornath
- Department of Chemistry, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13, D-81377, München, Germany
| | - Sébastien Thibaudeau
- IC2MP UMR CNRS 7285, Université de Poitiers, 4 rue Michel, Brunet, 86073 Poitiers cedex 9, France
| |
Collapse
|
10
|
Liang G, Wang S, Zhou C, Ye C, Chen B, Tung CH, Wu LZ. Photocatalytic Generation of Carbocation from Thiols and Application to Cross-Nucleophile Coupling. Org Lett 2024; 26:4286-4291. [PMID: 38722880 DOI: 10.1021/acs.orglett.4c01261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Represented herein is a simple thiol identified as an effective precursor to photochemically form a carbocation. Thanks to the thiyl radical rapid transformation to disulfide, which serves not only to stabilize the generated thiyl radical but also to allow the second electron transfer to form a carbocation. The resulting carbocations, including primary benzylic, secondary, and tertiary carbocations, can smoothly couple with nitrogen, oxygen, and carbon nucleophilic coupling partners as well as complex drug molecules, accompanied by elemental sulfur formation in air.
Collapse
Affiliation(s)
- Ge Liang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shu Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chao Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chen Ye
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
11
|
Charki P, Müller DS. Al(III)-Promoted Formation of All-Carbon Quaternary Centers from Aliphatic Tertiary Chlorides and Alkynyl Silanes. J Org Chem 2024; 89:7324-7329. [PMID: 38712758 DOI: 10.1021/acs.joc.4c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Despite the accessibility of numerous alkynes through coupling or substitution reactions, the synthesis of trialkyl-substituted alkynes is still a major challenge. Within this context, we reexplored the electrophilic alkynyl substitution between tertiary aliphatic chlorides and silylated alkynes. We were able to demonstrate that this approach is significantly more general than originally demonstrated by Capozzi and even tolerates several functional groups. Furthermore, we report diastereoselective reactions which in some instances gave excellent diastereoselectivity (dr >95:5).
Collapse
Affiliation(s)
- Paul Charki
- Univerity of Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France
| | - Daniel S Müller
- Univerity of Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France
| |
Collapse
|
12
|
Stoyanov ES, Bagryanskaya IY, Stoyanova IV. A new type of C +⋯H δ-(C=) bond in adducts of vinyl carbocations with alkenes. Sci Rep 2024; 14:8423. [PMID: 38600206 PMCID: PMC11006867 DOI: 10.1038/s41598-024-58109-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
By X-ray diffraction analysis and IR spectroscopy, it was established here that vinyl carbocations C3H5+/C4H7+ with carborane counterion CHB11Cl11- form stable monosolvates C3H5+⋅C3H6/C4H7+⋅C4H8 with molecules of alkenes C3H6/C4H8. They contain molecular group =C+⋯Hδ--Cδ+= with a new type of bond formed by the H atom of the H-C= group of the alkene with the C atom of the C+=C group of the carbocation. The short C+----Cδ+ distance, equal to 2.44 Å, is typical of that of X----X in proton disolvates (L2H+) with an quasi-symmetrical X-H+⋯X moiety (where X = O or N) of basic molecule L. The nature of the discovered bond differs from that of the classic H-bond by an distribution of electron density: the electron-excessive Hδ- atom from the (=)C-H group of the alkene is attached to the C+ atom of the carbocation, on which the positive charge is predominantly concentrated. Therefore, it can be called an inverse hydrogen bond.
Collapse
Affiliation(s)
- Evgenii S Stoyanov
- Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Irina Yu Bagryanskaya
- Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Irina V Stoyanova
- Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
13
|
Fu W, Tian J, Ding Y, Wang X, Wang M, Wang Z. Copper-Catalyzed Site-Selective Electrophilic Aromatic Alkylation of Monosubstituted Simple Arenes. Org Lett 2024; 26:2546-2551. [PMID: 38522077 DOI: 10.1021/acs.orglett.4c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
A copper-catalyzed highly para-selective electrophilic aromatic alkylation of monosubstituted simple arenes has been accomplished. This method provides a practical platform for the transformation from simple commercial arenes to well-defined di- and multisubstituted aromatics with high added value. Control experiments and DFT calculations reveal that the achievement of the excellent site-selectivity is ascribed to the controlled deprotonation of the Wheland intermediates. Remarkably, the type of alkylating regent has been shown to have a significant impact on site-selectivity.
Collapse
Affiliation(s)
- Wanting Fu
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Jing Tian
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Yuanli Ding
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Xi Wang
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Meiyan Wang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Zikun Wang
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| |
Collapse
|
14
|
Wang C, Zheng M, Hu M, Cai W, Chu Y, Wang Q, Xu J, Deng F. Unraveling Spatially Dependent Hydrophilicity and Reactivity of Confined Carbocation Intermediates during Methanol Conversion over ZSM-5 Zeolite. J Am Chem Soc 2024; 146:8688-8696. [PMID: 38482699 DOI: 10.1021/jacs.4c01155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Carbocations play a pivotal role as reactive intermediates in zeolite-catalyzed methanol-to-hydrocarbon (MTH) transformations. However, the interaction between carbocations and water vapor and its subsequent effects on catalytic performance remain poorly understood. Using micro-magnetic resonance imaging (μMRI) and solid-state NMR techniques, this work investigates the hydrophilic behavior of cyclopentenyl cations within ZSM-5 pores under vapor conditions. We show that the polar cationic center of cyclopentenyl cations readily initiates water nucleus formation through water molecule capture. This leads to an inhomogeneous water adsorption gradient along the axial positions of zeolite, correlating with the spatial distribution of carbocation concentrations. The adsorbed water promotes deprotonation and aromatization of cyclopentenyl cations, significantly enhancing the aromatic product selectivity in MTH catalysis. These results reveal the important influence of adsorbed water in modulating the carbocation reactivity within confined zeolite pores.
Collapse
Affiliation(s)
- Chao Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mingji Zheng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Min Hu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenjin Cai
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yueying Chu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qiang Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
15
|
Fujita H, Shimada D, Kudo J, Kosha K, Kakuyama S, Terasaki H, Kunishima M. Carbocationoids, a concept for controlling highly reactive cationic species. Commun Chem 2024; 7:55. [PMID: 38480821 PMCID: PMC10937719 DOI: 10.1038/s42004-024-01139-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/17/2024] Open
Abstract
Carbocations, which are positively charged highly electrophilic intermediates, are efficacious for the direct alkylation of low-reactive nucleophiles. The utilization of carbocations in SN1 reactions relies on the activation of their precursors in the presence of a nucleophile. However, undesirable interactions between the nucleophile and the leaving group activator limit the scope of acceptable nucleophiles. Here we report a strategy to conduct SN1 reactions involving unstable carbocations in an alternative stepwise procedure, which was demonstrated by the benzylation of various neutral nucleophiles. In the first step, carbocations were accumulated in a nucleophile-free solution in the form of carbocationoids utilizing the coordinative stabilization of triazinediones. Subsequently, the addition of these solutions in the second step enabled room-temperature alkylation without the need for acidic additives. This methodology overcomes the inherent challenges of carbocations in SN1 reactions.
Collapse
Affiliation(s)
- Hikaru Fujita
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Daichi Shimada
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Jotaro Kudo
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Kazuyuki Kosha
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Satoshi Kakuyama
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Hiromitsu Terasaki
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Munetaka Kunishima
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan.
| |
Collapse
|
16
|
Li P, Du Z, Wu B, Zhao X, You Y. Highly effective and selective FeBr 3-promoted deuterium bromination/cyclization of 1, n-enynes. Org Biomol Chem 2024; 22:959-964. [PMID: 38205648 DOI: 10.1039/d3ob01778h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A highly effective and selective FeBr3-promoted deuterium bromination/cyclization of 1,n-enynes is reported. On the one hand, the Lewis acid FeBr3 as a catalyst promotes cyclization of 1,n-enynes to afford deuterium heterocyclic frameworks with high efficiency. On the other hand, FeBr3 serves as the bromine source (with D2O as the deuterium source) to promote the formation of the desired deuterated pyrrole derivatives containing alkenyl bromide groups. This protocol provides an effective pathway to afford deuterated alkenyl brominative compounds as (Z)-isomers with high yields and selectivity, offering a new method for introducing 2H into organic compounds.
Collapse
Affiliation(s)
- Ping Li
- Department of Cable Engineering, Henan Institute of Technology, Xinxiang, 453000, China
| | - Zhongjian Du
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, China.
| | - Baofeng Wu
- Research Institute of Exploration and Development, PetroChina, Daqing Oilfield Company, Daqing 163712, China
| | - Xin Zhao
- Research Institute of Exploration and Development, PetroChina, Daqing Oilfield Company, Daqing 163712, China
| | - Yang'en You
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, China.
| |
Collapse
|
17
|
Wakchaure VN, DeSnoo W, Laconsay CJ, Leutzsch M, Tsuji N, Tantillo DJ, List B. Catalytic asymmetric cationic shifts of aliphatic hydrocarbons. Nature 2024; 625:287-292. [PMID: 38200298 PMCID: PMC10781632 DOI: 10.1038/s41586-023-06826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/02/2023] [Indexed: 01/12/2024]
Abstract
Asymmetric catalysis is an advanced area of chemical synthesis, but the handling of abundantly available, purely aliphatic hydrocarbons has proven to be challenging. Typically, heteroatoms or aromatic substructures are required in the substrates and reagents to facilitate an efficient interaction with the chiral catalyst. Confined acids have recently been introduced as tools for homogenous asymmetric catalysis, specifically to enable the processing of small unbiased substrates1. However, asymmetric reactions in which both substrate and product are purely aliphatic hydrocarbons have not previously been catalysed by such super strong and confined acids. We describe here an imidodiphosphorimidate-catalysed asymmetric Wagner-Meerwein shift of aliphatic alkenyl cycloalkanes to cycloalkenes with excellent regio- and enantioselectivity. Despite their long history and high relevance for chemical synthesis and biosynthesis, Wagner-Meerwein reactions utilizing purely aliphatic hydrocarbons, such as those originally reported by Wagner and Meerwein, had previously eluded asymmetric catalysis.
Collapse
Affiliation(s)
- Vijay N Wakchaure
- Max Planck Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - William DeSnoo
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Croix J Laconsay
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Markus Leutzsch
- Max Planck Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Nobuya Tsuji
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, Davis, CA, USA.
| | - Benjamin List
- Max Planck Institut für Kohlenforschung, Mülheim an der Ruhr, Germany.
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan.
| |
Collapse
|
18
|
Lee W, Benton TR, Sengupta A, Houk KN. Molecular Dynamics of the Norbornyl Cation in Solution and Its Generation in Winstein-Trifan Solvolysis: The Timing of Sigma Bridging. J Org Chem 2023. [PMID: 38159025 DOI: 10.1021/acs.joc.3c02325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Molecular dynamics simulations were performed on the solvolyses of exo- and endo-norbornyl brosylate and for the "nonclassical" σ-bridged norbornyl cation in an acetic acid solution. This computational modeling of the original Winstein-Trifan experiment confirms that exo-solvolysis is accompanied by σ-bridging in the transition state, while endo-solvolysis is not; σ-bridging eventually occurs in a dynamically stepwise fashion. Simulations of the norbornyl cation in solution show typical vibrations due to zero-point and thermal vibrations but no tendency to sample localized "classical cation" geometries.
Collapse
Affiliation(s)
- Woojin Lee
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Tyler R Benton
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Arkajyoti Sengupta
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| |
Collapse
|
19
|
Corral Suarez C, Colomer I. Trifluoromethylarylation of alkenes using anilines. Chem Sci 2023; 14:12083-12090. [PMID: 37969609 PMCID: PMC10631225 DOI: 10.1039/d3sc03868h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/19/2023] [Indexed: 11/17/2023] Open
Abstract
Nitrogen containing compounds, such as anilines, are some of the most widespread and useful chemical species, although their high and unselective reactivity has prevented their incorporation into many interesting transformations, such as the functionalization of alkenes. Herein we report a method that allows the trifluoromethylarylation of alkenes using anilines, for the first time, with no need for additives, transition metals, photocatalysts or an excess of reagents. An in-depth mechanistic study reveals the key role of hexafluoroisopropanol (HFIP) as a unique solvent, establishing a hydrogen bonding network with aniline and trifluoromethyl reagent, that is responsible for the altered reactivity and exquisite selectivity. This work uncovers a new mode of reactivity that involves the use of abundant anilines as a non-prefunctionalized aromatic source and the simultaneous activation of trifluoromethyl hypervalent iodine reagent.
Collapse
Affiliation(s)
- Carlos Corral Suarez
- Instituto de Química Orgánica General (IQOG), CSIC Juan de la Cierva 3 28006 Madrid Spain
- IMDEA Nanociencia, Faraday 9 28049 Madrid Spain
| | - Ignacio Colomer
- Instituto de Química Orgánica General (IQOG), CSIC Juan de la Cierva 3 28006 Madrid Spain
- IMDEA Nanociencia, Faraday 9 28049 Madrid Spain
| |
Collapse
|
20
|
Ota K, Nagao K, Hata D, Sugiyama H, Segawa Y, Tokunoh R, Seki T, Miyamoto N, Sasaki Y, Ohmiya H. Synthesis of tertiary alkylphosphonate oligonucleotides through light-driven radical-polar crossover reactions. Nat Commun 2023; 14:6856. [PMID: 37907473 PMCID: PMC10618202 DOI: 10.1038/s41467-023-42639-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023] Open
Abstract
Chemical modification of nucleotides can improve the metabolic stability and target specificity of oligonucleotide therapeutics, and alkylphosphonates have been employed as charge-neutral replacements for naturally-occurring phosphodiester backbones in these compounds. However, at present, the alkyl moieties that can be attached to phosphorus atoms in these compounds are limited to methyl groups or primary/secondary alkyls, and such alkylphosphonate moieties can degrade during oligonucleotide synthesis. The present work demonstrates the tertiary alkylation of the phosphorus atoms of phosphites bearing two 2'-deoxynuclosides. This process utilizes a carbocation generated via a light-driven radical-polar crossover mechanism. This protocol provides tertiary alkylphosphonate structures that are difficult to synthesize using existing methods. The conversion of these species to oligonucleotides having charge-neutral alkylphosphonate linkages through a phosphoramidite-based approach was also confirmed in this study.
Collapse
Affiliation(s)
- Kenji Ota
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan
| | - Kazunori Nagao
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan.
| | - Dai Hata
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan.
| | - Haruki Sugiyama
- Institute for Molecular Science Myodaiji, Okazaki, Japan
- Comprehensive Research Organization for Science and Society Neutron Industrial Application Promotion Center, Tokai, Ibaraki, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Myodaiji, Okazaki, Japan
| | - Yasutomo Segawa
- Institute for Molecular Science Myodaiji, Okazaki, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Myodaiji, Okazaki, Japan
| | - Ryosuke Tokunoh
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Tomohiro Seki
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Naoya Miyamoto
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Yusuke Sasaki
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Hirohisa Ohmiya
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan.
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, Japan.
| |
Collapse
|
21
|
Sokolov VA, Golushko AA, Boyarskaya IA, Vasilyev AV. Cyclization of 1-aryl-4,4,4-trichlorobut-2-en-1-ones into 3-trichloromethylindan-1-ones in triflic acid. Beilstein J Org Chem 2023; 19:1460-1470. [PMID: 37799178 PMCID: PMC10548255 DOI: 10.3762/bjoc.19.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023] Open
Abstract
Trichloromethyl-substituted enones (1-aryl-4,4,4-trichlorobut-2-en-1-ones, ArCOCH=CHCCl3, CCl3-enones) undergo intramolecular transformation into 3-trichloromethylindan-1-ones (CCl3-indanones) in Brønsted superacid CF3SO3H (triflic acid, TfOH) at 80 °C within 2-10 h in yields up to 92%. Protonation of the carbonyl oxygen of the starting CCl3-enones by TfOH affords the key reactive intermediates, the O-protonated forms ArC(=OH+)CH=CHCCl3, which are then cyclized into the target CCl3-indanones. These cations have been studied experimentally by means of NMR spectroscopy in TfOH and theoretically by DFT calculations. Under the same superacidic conditions in TfOH, CCl3-hydroxy ketones (1-aryl-4,4,4-trichloro-3-hydroxybutan-1-ones; ArCOCH2CH(OH)CCl3) undergo dehydration to the corresponding CCl3-enones, which are further cyclized into CCl3-indanones. The yields of CCl3-indanones starting from CCl3-hydroxy ketones are up to 86% in TfOH at 80 °C within 3-18 h.
Collapse
Affiliation(s)
- Vladislav A Sokolov
- Department of Organic Chemistry, Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg, 199034, Russia
- Department of Chemistry, Saint Petersburg State Forest Technical University, Institutsky per., 5, Saint Petersburg, 194021, Russia,
| | - Andrei A Golushko
- Department of Organic Chemistry, Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg, 199034, Russia
- SAMS Research Group, University of Strasbourg, Institut Charles Sadron, CNRS, 67200 Strasbourg, France
| | - Irina A Boyarskaya
- Department of Organic Chemistry, Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg, 199034, Russia
| | - Aleksander V Vasilyev
- Department of Organic Chemistry, Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg, 199034, Russia
- Department of Chemistry, Saint Petersburg State Forest Technical University, Institutsky per., 5, Saint Petersburg, 194021, Russia,
| |
Collapse
|
22
|
Blackburn MAS, Wagen CC, Bodrogean MR, Tadross PM, Bendelsmith AJ, Kutateladze DA, Jacobsen EN. Dual-Hydrogen-Bond Donor and Brønsted Acid Cocatalysis Enables Highly Enantioselective Protio-Semipinacol Rearrangement Reactions. J Am Chem Soc 2023; 145:15036-15042. [PMID: 37428959 PMCID: PMC10387361 DOI: 10.1021/jacs.3c02960] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
A catalytic protio-semipinacol ring-expansion reaction has been developed for the highly enantioselective conversion of tertiary vinylic cyclopropyl alcohols into cyclobutanone products bearing α-quaternary stereogenic centers. The method relies on the cocatalytic effect of a chiral dual-hydrogen-bond donor (HBD) with hydrogen chloride. Experimental evidence is provided for a stepwise mechanism where protonation of the alkene generates a short-lived, high-energy carbocation, which is followed by C-C bond migration to deliver the enantioenriched product. This research applies strong acid/chiral HBD cocatalysis to weakly basic olefinic substrates and lays the foundation for further investigations of enantioselective reactions involving high-energy cationic intermediates.
Collapse
Affiliation(s)
- Melanie A S Blackburn
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Corin C Wagen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - M Raul Bodrogean
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Pamela M Tadross
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Andrew J Bendelsmith
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Dennis A Kutateladze
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Eric N Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
23
|
Zou YP, Lai ZL, Zhang MW, Peng J, Ning S, Li CC. Total Synthesis of (±)- and (-)-Daphnillonin B. J Am Chem Soc 2023; 145:10998-11004. [PMID: 37167083 DOI: 10.1021/jacs.3c03755] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The first total synthesis of (±)- and (-)-daphnillonin B, a daphnicyclidin-type alkaloid with a new [7-6-5-7-5-5] A/B/C/D/E/F hexacyclic core, has been achieved. The [6-5-7] B/C/D ring system was efficiently and diastereoselectively constructed via a mild type I intramolecular [5+2] cycloaddition, followed by a Grubbs II catalyst-catalyzed radical cyclization. The [5-5] fused E/F ring system was synthesized via a diastereoselective intramolecular Pauson-Khand reaction. Notably, the synthetically challenging [7-6-5-7-5-5] hexacyclic core was reassembled by a unique Wagner-Meerwein-type rearrangement from the [6-6-5-7-5-5] hexacyclic framework found in calyciphylline A-type Daphniphyllum alkaloids.
Collapse
Affiliation(s)
- Yun-Peng Zou
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zheng-Lin Lai
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Meng-Wei Zhang
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianzhao Peng
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuai Ning
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
24
|
Li QH, Zhang GS, Wang F, Cen Y, Liu XL, Zhang JW, Wang YH, Lee AWM, Gao D, Lin GQ, Tian P. Nature-inspired catalytic asymmetric rearrangement of cyclopropylcarbinyl cation. SCIENCE ADVANCES 2023; 9:eadg1237. [PMID: 37163601 PMCID: PMC10171815 DOI: 10.1126/sciadv.adg1237] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In nature, cyclopropylcarbinyl cation is often involved in cationic cascade reactions catalyzed by natural enzymes to produce a great number of structurally diverse natural substances. However, mimicking this natural process with artificial organic catalysts remains a daunting challenge in synthetic chemistry. We report a small molecule-catalyzed asymmetric rearrangement of cyclopropylcarbinyl cations, leading to a series of chiral homoallylic sulfide products with good to excellent yields and enantioselectivities (up to 99% enantiomeric excess). In the presence of a chiral SPINOL-derived N-triflyl phosphoramide catalyst, the dehydration of prochiral cyclopropylcarbinols occurs rapidly to generate symmetrical cyclopropylcarbinyl cations, which are subsequently trapped by thione-containing nucleophiles. A subgram-scale experiment and multiple downstream transformations of the sulfide products are further pursued to demonstrate the synthetic utility. Notably, a few heteroaromatic sulfone derivatives could serve as "covalent warhead" in the enzymatic inhibition of severe acute respiratory syndrome coronavirus 2 main protease.
Collapse
Affiliation(s)
- Qing-Hua Li
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Gui-Shan Zhang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Feng Wang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yixin Cen
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Xi-Liang Liu
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Jian-Wei Zhang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yu-Hui Wang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Albert W M Lee
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Dingding Gao
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Ping Tian
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| |
Collapse
|
25
|
Ghosh S, Changotra A, Petrone DA, Isomura M, Carreira EM, Sunoj RB. Role of Noncovalent Interactions in Inducing High Enantioselectivity in an Alcohol Reductive Deoxygenation Reaction Involving a Planar Carbocationic Intermediate. J Am Chem Soc 2023; 145:2884-2900. [PMID: 36695526 DOI: 10.1021/jacs.2c10975] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The involvement of planar carbocation intermediates is generally considered undesirable in asymmetric catalysis due to the difficulty in gaining facial control and their intrinsic stability issues. Recently, suitably designed chiral catalyst(s) have enabled a guided approach of nucleophiles to one of the prochiral faces of carbocations affording high enantiocontrol. Herein, we present the vital mechanistic insights from our comprehensive density functional theory (B3LYP-D3) study on a chiral Ir-phosphoramidite-catalyzed asymmetric reductive deoxygenation of racemic tertiary α-substituted allenylic alcohols. The catalytic transformation relies on the synergistic action of a phosphoramidite-modified Ir catalyst and Bi(OTf)3, first leading to the formation of an Ir-π-allenyl carbocation intermediate through a turn-over-determining SN1 ionization, followed by a face-selective hydride transfer from a Hantzsch ester analogue to yield an enantioenriched product. Bi(OTf)3 was found to promote a significant number of ionic interactions as well as noncovalent interactions (NCIs) with the catalyst and the substrates (allenylic alcohol and Hantzsch ester), thus providing access to a lower energy route as compared to the pathways devoid of Bi(OTf)3. In the nucleophilic addition, the chiral induction was found to depend on the number and efficacy of such key NCIs. The curious case of reversal of enantioselectivity, when the α-substituent of the allenyl alcohol is changed from methyl to cyclopropyl, was identified to originate from a change in mechanism from an enantioconvergent pathway (α-methyl) to a dynamic kinetic asymmetric transformation (α-cyclopropyl). These molecular insights could lead to newer strategies to tame tertiary carbocations in enantioselective reactions using suitable combinations of catalysts and additives.
Collapse
Affiliation(s)
- Supratim Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Avtar Changotra
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - David A Petrone
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland.,Department of Process Research & Development, Merck & Co., Inc., MRL, Rahway, New Jersey 07065, United States
| | - Mayuko Isomura
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Erick M Carreira
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Raghavan B Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
26
|
de Oliveira MT, Alves JMA, Vrech NL, Braga AAC, Barboza CA. A comprehensive benchmark investigation of quantum chemical methods for carbocations. Phys Chem Chem Phys 2023; 25:1903-1922. [PMID: 36541431 DOI: 10.1039/d2cp04603b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The application of various density functional approximations (DFAs) and an emphasis on popular methods without any consensus have prevailed in computational studies dedicated to carbocations. More importantly, an extensive and rigorous benchmark investigation on density functionals for the class is still lacking. To close this gap, we present a comprehensive benchmark study of quantum chemical methods on a series of classical and nonclassical carbocations, the CARBO33 dataset. We evaluate a total of 107 DFT methods from all rungs giving particular attention to double hybrid density functionals as the potential of the class has been largely undermined in the context of carbocations. To support our findings, DLPNO-CCSD(T) at the complete basis set (CBS) limit and W1-F12 are used as reference methods. Our results indicate that the composite CBS-QB3 method performs poorly and should not be adopted for target energies. Oftentimes, the tested DFAs of a lower rung perform better than several DFAs in a higher rung of Perdew's "Jacob's ladder". Nonetheless, double hybrids DSD-PBEP86-NL and ωB97X-2-D3(BJ) stand out by showing the overall best performance. Among the hybrids evaluated, about half of them show mean absolute deviation (MAD) below 1.1 kcal mol-1, including the popular hybrids M06-2X and mPW1PW91. In this family, MN15-D3(BJ) performs particularly well (MAD = 0.77 kcal mol-1) displaying reliable results across various tests. Highly popular B3LYP exhibited one of the worst performances (MAD = 4.74 kcal mol-1), and we do not recommend its application to carbocations. We also assess the 24 general-purpose basis sets of single- up to quadruple-ζ quality. The best compromise between accuracy and computational cost is achieved with cc-pVTZ followed by def2-TZVP. Computations on larger structures of general interest, including terpene carbocations, are also presented for selected DFT methods confirming general trends in the results.
Collapse
Affiliation(s)
- Marcelo T de Oliveira
- Department of Chemistry and Physics, La Trobe Institute of Molecular Sciences, La Trobe University, Melbourne, Victoria 3086, Australia. .,Chemistry Institute of São Carlos, University of São Paulo, Av. Trabalhador São Carlense 400, 13566-590, São Carlos, SP, Brazil
| | - Júlia M A Alves
- Chemistry Institute of São Carlos, University of São Paulo, Av. Trabalhador São Carlense 400, 13566-590, São Carlos, SP, Brazil
| | - Natália L Vrech
- Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil
| | - Ataualpa A C Braga
- Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil
| | - Cristina A Barboza
- Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland.,Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, Warsaw, Poland
| |
Collapse
|
27
|
Cui M, Feng K, Tian R, Duan Z. Phosphorus-Involved Wagner-Meerwein Rearrangement of Phosphiranes: An Entry to Four-Membered Phosphacycles. Org Lett 2023; 25:205-209. [PMID: 36583566 DOI: 10.1021/acs.orglett.2c04052] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Phosphenium ions [R2P]+ are important and highly reactive dicoordinate phosphorus species. Herein, we report a rearrangement of the carbocation into the phosphenium cation driven by ring strain. This phosphorus-involved Wagner-Meerwein rearrangement pathway converted the 1-acylphosphirane complex into phosphetane and 1,2-dihydrophosphete derivatives depending on the reaction temperature. The generation of the intermediate phosphenium cation was identified by the intramolecular reaction with ether, which also disclosed its strong Lewis acidity. This work expands the boundary of the phosphorus-carbon analogy.
Collapse
Affiliation(s)
- Mingyue Cui
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Ke Feng
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Rongqiang Tian
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zheng Duan
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
28
|
Xie J, Dong G. Cyclopropylcarbinyl cation chemistry in synthetic method development and natural product synthesis: cyclopropane formation and skeletal rearrangement. Org Chem Front 2023. [DOI: 10.1039/d3qo00282a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
In this Review, the underrecognized utilities of the cyclopropylcarbinyl cation chemistry are summarized in cyclopropane synthesis and skeletal rearrangements, and their applications in natural product total synthesis are highlighted.
Collapse
|
29
|
Nistanaki SK, Williams CG, Wigman B, Wong JJ, Haas BC, Popov S, Werth J, Sigman MS, Houk KN, Nelson HM. Catalytic asymmetric C-H insertion reactions of vinyl carbocations. Science 2022; 378:1085-1091. [PMID: 36480623 PMCID: PMC9993429 DOI: 10.1126/science.ade5320] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
From the preparation of pharmaceuticals to enzymatic construction of natural products, carbocations are central to molecular synthesis. Although these reactive intermediates are engaged in stereoselective processes in nature, exerting enantiocontrol over carbocations with synthetic catalysts remains challenging. Many resonance-stabilized tricoordinated carbocations, such as iminium and oxocarbenium ions, have been applied in catalytic enantioselective reactions. However, their dicoordinated counterparts (aryl and vinyl carbocations) have not, despite their emerging utility in chemical synthesis. We report the discovery of a highly enantioselective vinyl carbocation carbon-hydrogen (C-H) insertion reaction enabled by imidodiphosphorimidate organocatalysts. Active site confinement featured in this catalyst class not only enables effective enantiocontrol but also expands the scope of vinyl cation C-H insertion chemistry, which broadens the utility of this transition metal-free C(sp3)-H functionalization platform.
Collapse
Affiliation(s)
- Sepand K Nistanaki
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Chloe G Williams
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Benjamin Wigman
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jonathan J Wong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Brittany C Haas
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Stasik Popov
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jacob Werth
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hosea M Nelson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
30
|
Polymer materials derived from the SEAr reaction for gas separation applications. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
31
|
Light-Driven Radical-Polar Crossover Catalysis for Cross-Coupling with Organosilanes. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Stegbauer S, Jandl C, Bach T. Chiral Lewis acid catalysis in a visible light-triggered cycloaddition/rearrangement cascade. Chem Sci 2022; 13:11856-11862. [PMID: 36320923 PMCID: PMC9580482 DOI: 10.1039/d2sc03159k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/18/2022] [Indexed: 07/10/2024] Open
Abstract
Cascade (domino) reactions facilitate the formation of complex molecules from simple starting materials in a single operation. It was found that 1-naphthaldehyde derivatives can be converted to enantioenriched (82-96% ee) polycyclic benzoisochromenes via a cascade of ortho photocycloaddition and ensuing acid-catalysed rearrangement reactions. The cascade was initiated by irradiation with visible light (λ = 457 nm) and catalysed by a chiral AlBr3-activated 1,3,2-oxazaborolidine (14 examples, 65-93% yield). The absolute configuration of the products was elucidated by single crystal X-ray crystallography. Mechanistic experiments suggest that the ortho photocycloaddition occurs on the triplet hypersurface and that the chiral catalyst induces in this step the observed enantioselectivity.
Collapse
Affiliation(s)
- Simone Stegbauer
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center Lichtenbergstrasse 4 Garching 85747 Germany https://www.ch.nat.tum.de/en/oc1/home/ +49 (0)89 289 13315
| | - Christian Jandl
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center Lichtenbergstrasse 4 Garching 85747 Germany https://www.ch.nat.tum.de/en/oc1/home/ +49 (0)89 289 13315
| | - Thorsten Bach
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center Lichtenbergstrasse 4 Garching 85747 Germany https://www.ch.nat.tum.de/en/oc1/home/ +49 (0)89 289 13315
| |
Collapse
|
33
|
Shershnev IA, Boyarskaya IA, Vasilyev AV. 5,5,5-Trichloropent-3-en-one as a Precursor of 1,3-Bi-centered Electrophile in Reactions with Arenes in Brønsted Superacid CF 3SO 3H. Synthesis of 3-Methyl-1-trichloromethylindenes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196675. [PMID: 36235211 PMCID: PMC9573653 DOI: 10.3390/molecules27196675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/26/2022]
Abstract
Reactions of 5,5,5-trichloropent-3-en-2-one Cl3CCH=CHC(=O)Me with arenes in Brønsted superacid CF3SO3H at room temperature for 2 h-5 days afford 3-methyl-1-trichloromethylindenes, a novel class of indene derivatives. The key reactive intermediate, O-protonated form of starting compound Cl3CCH=CHC(=OH+)Me, has been studied experimentally by NMR in CF3SO3H and theoretically by DFT calculations. The reaction proceeds through initial hydroarylation of the carbon-carbon double bond of starting CCl3-enone, followed by cyclization onto the O-protonated carbonyl group, leading to target indenes. In general, 5,5,5-trichloropent-3-en-2-one in CF3SO3H acts as a 1,3-bi-centered electrophile.
Collapse
Affiliation(s)
- Ivan A. Shershnev
- Department of Organic Chemistry, Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg 199034, Russia
| | - Irina A. Boyarskaya
- Department of Organic Chemistry, Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg 199034, Russia
| | - Aleksander V. Vasilyev
- Department of Organic Chemistry, Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg 199034, Russia
- Department of Chemistry, Saint Petersburg State Forest Technical University, Institutsky per., 5, Saint Petersburg 194021, Russia
- Correspondence: or
| |
Collapse
|
34
|
Jia H, Ritter T. α-Thianthrenium Carbonyl Species: The Equivalent of an α-Carbonyl Carbocation. Angew Chem Int Ed Engl 2022; 61:e202208978. [PMID: 35895980 PMCID: PMC9804271 DOI: 10.1002/anie.202208978] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 01/05/2023]
Abstract
Here we report an α-thianthrenium carbonyl species, as the equivalent of an α-carbonyl carbocation, which is generated by the radical conjugate addition of a trifluoromethyl thianthrenium salt to Michael acceptors. The reactivity allows for the synthesis of Cα -tetrasubstituted α- and β-amino acid analogues via a Ritter reaction by addition of acetonitrile. Addition of hydroxide, methoxide, and even fluoride can afford α-heteroatom substituted α-phenylpropanoates.
Collapse
Affiliation(s)
- Hao Jia
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Tobias Ritter
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
35
|
Long X, Li J, Gao F, Wu H, Deng J. Bioinspired Synthesis of Spirochensilide A from Lanosterol. J Am Chem Soc 2022; 144:16292-16297. [PMID: 36054904 DOI: 10.1021/jacs.2c07198] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A bioinspired synthesis of spirochensilide A from commercially available lanosterol is reported. The synthesis features a directed C-H oxidation, a Wagner-Meerwein-type double methyl migration, a Meinwald rearrangement, and a double-bond isomerization/spiroketal formation cascade. The proposed biosynthetic speculation was modified by this synthetic sequence, which also served as a platform for the synthesis of other lanostanes with migrating methyl groups.
Collapse
Affiliation(s)
- Xianwen Long
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jun Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Feng Gao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hai Wu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jun Deng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
36
|
Gong X, Çağlayan M, Ye Y, Liu K, Gascon J, Dutta Chowdhury A. First-Generation Organic Reaction Intermediates in Zeolite Chemistry and Catalysis. Chem Rev 2022; 122:14275-14345. [PMID: 35947790 DOI: 10.1021/acs.chemrev.2c00076] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Zeolite chemistry and catalysis are expected to play a decisive role in the next decade(s) to build a more decentralized renewable feedstock-dependent sustainable society owing to the increased scrutiny over carbon emissions. Therefore, the lack of fundamental and mechanistic understanding of these processes is a critical "technical bottleneck" that must be eliminated to maximize economic value and minimize waste. We have identified, considering this objective, that the chemistry related to the first-generation reaction intermediates (i.e., carbocations, radicals, carbenes, ketenes, and carbanions) in zeolite chemistry and catalysis is highly underdeveloped or undervalued compared to other catalysis streams (e.g., homogeneous catalysis). This limitation can often be attributed to the technological restrictions to detect such "short-lived and highly reactive" intermediates at the interface (gas-solid/solid-liquid); however, the recent rise of sophisticated spectroscopic/analytical techniques (including under in situ/operando conditions) and modern data analysis methods collectively compete to unravel the impact of these organic intermediates. This comprehensive review summarizes the state-of-the-art first-generation organic reaction intermediates in zeolite chemistry and catalysis and evaluates their existing challenges and future prospects, to contribute significantly to the "circular carbon economy" initiatives.
Collapse
Affiliation(s)
- Xuan Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Mustafa Çağlayan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Yiru Ye
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Kun Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Jorge Gascon
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | | |
Collapse
|
37
|
Stoyanov ES, Bagryanskaya IY, Stoyanova IV. IR-Spectroscopic and X-ray-Structural Study of Vinyl-Type Carbocations in Their Carborane Salts. ACS OMEGA 2022; 7:27560-27572. [PMID: 35967019 PMCID: PMC9366973 DOI: 10.1021/acsomega.2c03025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The butylene carbocation in its salts with anions CHB11F11 - and CHB11Cl11 - forms isomers CH2=C+-CH2-CH3 (I) and CH3-C+=CH-CH3 (II), which were characterized here by infrared (IR) spectroscopy and X-ray diffraction analysis. The strongest influence on the structure of the cations is exerted by geometric ordering of their anionic environment. In the crystalline phase, the cations uniformly interact with neighboring anions, and the C=C bond is located in the middle part of the cations forming a -CH=C+- moiety with the highest positive charge on it and the lowest νC=C frequency, at 1490 cm-1. In the amorphous phase with a disordered anionic environment of the cations, contact ion pairs Anion-···CH2=C+-CH2-CH3 form predominantly, with terminal localization of the C=C bond through which the contact occurs. The positive charge is slightly extinguished by the anion, and the C=C stretch frequency is higher by ∼100 cm-1. The replacement of the hydrogen atom in cations I/II by a Cl atom giving rise to cations CH2=C+-CHCl-CH3 and CH3-C+=CCl-CH3 means that the donation of electron density from the Cl atom quenches the positive charge on the C+=C bond more strongly, and the C=C stretch frequency increases so much that it even exceeds that of neutral alkene analogues by 35-65 cm-1. An explanation is given for the finding that upon stabilization of the vinyl cations by polyatomic substituents such as silylium (SiMe3) and t-Bu groups, the stretching C=C frequency approaches the triple-bond frequency. Namely, the scattering of a positive charge on these substituents enhances their donor properties so much that the electron density on the C=C bond with a weakened charge becomes much higher than that of neutral alkenes.
Collapse
|
38
|
Jia H, Ritter T. α‐Thianthrenium Carbonyl Species: The Equivalent of an α‐Carbonyl Carbocation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hao Jia
- Max-Planck-Institute für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Chemistry Kaiser-Wilhelm-Platz 1 45470 Muelheim an der Ruhr GERMANY
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Department of Organic Chemistry Kaiser-Wilhelm-Platz 1 45470 Muelheim an der Ruhr GERMANY
| |
Collapse
|
39
|
Takumi M, Sakaue H, Shibasaki D, Nagaki A. Rapid access to organic triflates based on flash generation of unstable sulfonium triflates in flow. Chem Commun (Camb) 2022; 58:8344-8347. [PMID: 35797717 DOI: 10.1039/d2cc02344j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Flash (extremely fast) electrochemical generation of unstable arylbis(arylthio)sulfonium triflates [ArS(ArSSAr)]+ [OTf]- that are unsuitable for accumulation in batch processes was achieved within 10 s in a divided-type flow electrochemcial reactor, enabling one-flow access to vinyl triflates, short-lived oxocarbenium triflates and glycosyl triflates.
Collapse
Affiliation(s)
- Masahiro Takumi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Hodaka Sakaue
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Daiki Shibasaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Aiichiro Nagaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| |
Collapse
|
40
|
Narobe R, Murugesan K, Haag C, Schirmer TE, König B. C(sp 3)-H Ritter amination by excitation of in situ generated iodine(III)-BF 3 complexes. Chem Commun (Camb) 2022; 58:8778-8781. [PMID: 35843213 DOI: 10.1039/d2cc03283j] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visible light excitation of iodine(III)-BF3 complex enables the formation of carbocations from C(sp3)-H bonds. The complexes are generated catalytically from iodoarene, carboxylate ligand, the oxidizing agent Selectfluor, and the Lewis acid BF3. This modular catalytic system allows the formation of synthetically valuable amine derivatives without a metal- or photocatalyst.
Collapse
Affiliation(s)
- Rok Narobe
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| | - Kathiravan Murugesan
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| | - Christoph Haag
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| | - Tobias Emanuel Schirmer
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| | - Burkhard König
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| |
Collapse
|
41
|
Chen W, Yi X, Liu Z, Tang X, Zheng A. Carbocation chemistry confined in zeolites: spectroscopic and theoretical characterizations. Chem Soc Rev 2022; 51:4337-4385. [PMID: 35536126 DOI: 10.1039/d1cs00966d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acid-catalyzed reactions inside zeolites are one type of broadly applied industrial reactions, where carbocations are the most common intermediates of these reaction processes, including methanol to olefins, alkene/aromatic alkylation, and hydrocarbon cracking/isomerization. The fundamental research on these acid-catalyzed reactions is focused on the stability, evolution, and lifetime of carbocations under the zeolite confinement effect, which greatly affects the efficiency, selectivity and deactivation of zeolite catalysts. Therefore, a profound understanding of the carbocations confined in zeolites is not only beneficial to explain the reaction mechanism but also drive the design of new zeolite catalysts with ideal acidity and cages/channels. In this review, we provide both an in-depth understanding of the stabilization of carbocations by the pore confinement effect and summary of the advanced characterization methods to capture carbocations in zeolites, including UV-vis spectroscopy, solid-state NMR, fluorescence microscopy, IR spectroscopy and Raman spectroscopy. Also, we clarify the relationship between the activity and stability of carbocations in zeolite-catalyzed reactions, and further highlight the role of carbocations in various hydrocarbon conversion reactions inside zeolites with diverse frameworks and varying acidic properties.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Zhiqiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Xiaomin Tang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
42
|
Ping Y, Pan Q, Guo Y, Liu Y, Li X, Wang M, Kong W. Switchable 1,2-Rearrangement Enables Expedient Synthesis of Structurally Diverse Fluorine-Containing Scaffolds. J Am Chem Soc 2022; 144:11626-11637. [DOI: 10.1021/jacs.2c02487] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yuanyuan Ping
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Qi Pan
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Ya Guo
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Yongli Liu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Xiao Li
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Wangqing Kong
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
43
|
Ranjith J, Jeong Y, Kim H, Ha HJ. α‐ Aziridinyl Carbenium Ion Intermediate and Stereoselective Dehydroxylative Diarylation of Aziridin‐2‐yl Carboxaldehyde. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jala Ranjith
- Hankuk University of Foreign Studies Chemistry KOREA, REPUBLIC OF
| | - Yeolib Jeong
- Korea Advanced Institute of Science and Technology Chemistry KOREA, REPUBLIC OF
| | - Hyunwoo Kim
- Korean Advanced Institute of Science: Korea Advanced Institute of Science and Technology Chemistry KOREA, REPUBLIC OF
| | - Hyun-Joon Ha
- Hankuk University of Foreign Studies Department of Chemistry and Protein Research Center for Bio-Industry Yongin 449-791 Kyunggi-Do KOREA, REPUBLIC OF
| |
Collapse
|
44
|
A perspective on the force-induced heterolytic bond cleavage in triarylmethane mechanophores. Synlett 2022. [DOI: 10.1055/a-1854-2131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Triarylmethane derivatives and their corresponding trityl carbocations are among the oldest chemical species synthesized and studied by chemists. The carbocationic platforms are particularly interesting due to their stability, high extinction coefficient, and tunable absorption of light in the visible spectrum, which can be achieved through structural modifications. These stable cations are traditionally obtained through heterolytic cleavage of judiciously designed, parent triarylmethanes by exposure to acids or UV light (λ < 300 nm), and methods based on electrochemistry or radiolysis. Our group has recently discovered that trityl carbocations can be generated also via mechanical stimulation of solid polymer materials featuring triarylmethane units as covalent crosslinks. In this Synpacts contribution, we expand on our previous finding by discussing some intriguing research questions that we aim to tackle in the immediate future.
1 Introduction
2 The development of our first triarylmethane mechanophore
3 The potential reversibility of triarylmethane mechanophores
4 A general molecular platform for force-induced, scissile, homolytic and heterolytic bond cleavage?
5 Conclusion
Collapse
|
45
|
Wu X, Sparr C. Stereoselective Synthesis of Atropisomeric Acridinium Salts by the Catalyst-Controlled Cyclization of ortho-Quinone Methide Iminiums. Angew Chem Int Ed Engl 2022; 61:e202201424. [PMID: 35167176 PMCID: PMC9306694 DOI: 10.1002/anie.202201424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 11/07/2022]
Abstract
Quinone methides are fundamental intermediates for a wide range of reactions in which catalyst stereocontrol is often achieved by hydrogen bonding. Herein, we describe the feasibility of an intramolecular Friedel-Crafts 6π electrocyclization through ortho-quinone methide iminiums stereocontrolled by a contact ion pair. A disulfonimide catalyst activates racemic trichloroacetimidate substrates and imparts stereocontrol in the cyclization step, providing a new avenue for selective ortho-quinone methide iminium functionalization. A highly stereospecific oxidation readily transforms the enantioenriched acridanes into rotationally restricted acridiniums. Upon ion exchange, the method selectively affords atropisomeric acridinium tetrafluoroborate salts in high yields and an enantioenrichment of up to 93 : 7 e.r. We envision that ion-pairing catalysis over ortho-quinone methide iminiums enables the selective synthesis of a diversity of heterocycles and aniline derivatives with distinct stereogenic units.
Collapse
Affiliation(s)
- Xingxing Wu
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
- NCCR Molecular Systems Engineering, BPR 1095Mattenstrasse 24a4058BaselSwitzerland
| | - Christof Sparr
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
- NCCR Molecular Systems Engineering, BPR 1095Mattenstrasse 24a4058BaselSwitzerland
| |
Collapse
|
46
|
González JM, Rubial B, Ballesteros A. Silylium‐Catalyzed Alkynylation and Etherification Reactions of Benzylic Acetates. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- José Manuel González
- Universidad de Oviedo Quimica Organica e Inorganica Julian Claveria 8 33006 Oviedo SPAIN
| | - Belén Rubial
- Universidad de Oviedo Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Química Organometálica "Enrique Moles" SPAIN
| | - Alfredo Ballesteros
- Universidad de Oviedo Departamento de Química Orgánica e Inorgánica and Instituto de Química Organometálica "Enrique Moles" SPAIN
| |
Collapse
|
47
|
Sun J, Li W, Gross ML. Advances in mass spectrometry-based footprinting of membrane proteins. Proteomics 2022; 22:e2100222. [PMID: 35290716 PMCID: PMC10493193 DOI: 10.1002/pmic.202100222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/09/2022]
Abstract
Structural biology is entering an exciting time where many new high-resolution structures of large complexes and membrane proteins (MPs) are determined regularly. These advances have been driven by over 15 years of technological improvements, first in macromolecular crystallography, and recently in cryo-electron microscopy. Obtaining information about MP higher order structure and interactions is also a frontier, important but challenging owing to their unique properties and the need to choose suitable detergents/lipids for their study. The development of mass spectrometry (MS), both instruments and methodology in the past 10 years, has also advanced it as a complementary method to study MP structure and interactions. In this review, we discuss advances in MS-based footprinting for MPs and highlight recent methodologies that offer new promise for MP study by chemical footprinting and mass spectrometry.
Collapse
Affiliation(s)
- Jie Sun
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
48
|
Lorenzetto T, Fabris F, Scarso A. A resorcin[4]arene hexameric capsule as a supramolecular catalyst in elimination and isomerization reactions. Beilstein J Org Chem 2022; 18:337-349. [PMID: 35422886 PMCID: PMC8978922 DOI: 10.3762/bjoc.18.38] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/16/2022] [Indexed: 12/27/2022] Open
Abstract
The hexameric resorcin[4]arene capsule as a self-assembled organocatalyst promotes a series of reactions like the carbonyl-ene cyclization of (S)-citronellal preferentially to isopulegol, the water elimination from 1,1-diphenylethanol, the isomerization of α-pinene and β-pinene preferentially to limonene and minor amounts of camphene. The role of the supramolecular catalyst consists in promoting the protonation of the substrates leading to the formation of cationic intermediates that are stabilized within the cavity with consequent peculiar features in terms of acceleration and product selectivity. In all cases the catalytic activity displayed by the hexameric capsule is remarkable if compared to many other strong Brønsted or Lewis acids.
Collapse
Affiliation(s)
- Tommaso Lorenzetto
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari di Venezia, via Torino 155, 30172, Mestre-Venezia, Italy
| | - Fabrizio Fabris
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari di Venezia, via Torino 155, 30172, Mestre-Venezia, Italy
| | - Alessandro Scarso
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari di Venezia, via Torino 155, 30172, Mestre-Venezia, Italy
| |
Collapse
|
49
|
Ishii A, Ebina R, Nakata N. Formation and Chemical and Optical Properties of 1,2,5‐Triphenylpentadienyl Cation Fixed in a Rigid Dibenzobarrelene Skeleton. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Akihiko Ishii
- Saitama University Graduate School of Science and Engineering: Saitama Daigaku Daigakuin Rikogaku Kenkyuka Chemistry 255 Shimo-okuboSakura-ku 338-8570 Saitama JAPAN
| | - Ryota Ebina
- Saitama University Graduate School of Science and Engineering: Saitama Daigaku Daigakuin Rikogaku Kenkyuka Chemistry JAPAN
| | - Norio Nakata
- Saitama University Graduate School of Science and Engineering: Saitama Daigaku Daigakuin Rikogaku Kenkyuka Chemistry JAPAN
| |
Collapse
|
50
|
Wigman B, Lee W, Wei W, Houk KN, Nelson HM. Electrochemical Fluorination of Vinyl Boronates through Donor-Stabilized Vinyl Carbocation Intermediates. Angew Chem Int Ed Engl 2022; 61:e202113972. [PMID: 35029844 PMCID: PMC8901537 DOI: 10.1002/anie.202113972] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 01/24/2023]
Abstract
The electrochemical generation of vinyl carbocations from alkenyl boronic esters and boronates is reported. Using easy-to-handle nucleophilic fluoride reagents, these intermediates are trapped to form fully substituted vinyl fluorides. Mechanistic studies support the formation of dicoordinated carbocations through sequential single-electron oxidation events. Notably, this electrochemical fluorination features fast reaction times and Lewis acid-free conditions. This transformation provides a complementary method to access vinyl fluorides with simple fluoride salts such as TBAF.
Collapse
Affiliation(s)
- Benjamin Wigman
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Woojin Lee
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wenjing Wei
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hosea M Nelson
- Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|