1
|
Saganuwan SA. Structure-activity relationship of pharmacophores and toxicophores: the need for clinical strategy. Daru 2024; 32:781-800. [PMID: 38935265 PMCID: PMC11555194 DOI: 10.1007/s40199-024-00525-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
OBJECTIVES Sometimes clinical efficacy and potential risk of therapeutic and toxic agents are difficult to predict over a long period of time. Hence there is need for literature search with a view to assessing cause of toxicity and less efficacy of drugs used in clinical practice. METHOD Hence literatures were searched for physicochemical properties, chemical formulas, molecular masses, pH values, ionization, receptor type, agonist and antagonist, therapeutic, toxic and structure-activity relationship of chemical compounds with pharmacophore and toxicophore, with a view to identifying high efficacious and relative low toxic agents. Inclusion criteria were manuscripts published on PubMed, Scopus, Web of Science, PubMed Central, Google Scholar among others, between 1960 and 2023. Keywords such as pharmacophore, toxicophore, structure-activity-relationship and disease where also searched. The exclusion criteria were the chemicals that lack pharmacophore, toxicophore and manuscripts published before 1960. RESULTS Findings have shown that pharmacophore and toxicophore functional groups determine clinical efficacy and safety of therapeutics, but if they overlap therapeutic and toxicity effects go concurrently. Hence the functional groups, dose, co-administration and concentration of drugs at receptor, drug-receptor binding and duration of receptor binding are the determining factors of pharmacophore and toxicophore activity. Molecular mass, chemical configuration, pH value, receptor affinity and binding capacity, multiple pharmacophores, hydrophilic/lipophilic nature of the chemical contribute greatly to functionality of pharmacophore and toxicophore. CONCLUSION Daily single therapy, avoidance of reversible pharmacology, drugs with covalent adduct, maintenance of therapeutic dose, and the use of multiple pharmacophores for terminal diseases will minimize toxicity and improve efficacy.
Collapse
Affiliation(s)
- Saganuwan Alhaji Saganuwan
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Federal University of Agriculture, Makurdi, P.M.B. 2373, Benue State, Nigeria.
| |
Collapse
|
2
|
Huang Q, Peng Y, Peng Y, Lin H, Deng S, Feng S, Wei Y. Design, in silico evaluation, and in vitro verification of new bivalent Smac mimetics with pro-apoptotic activity. Methods 2024; 224:35-46. [PMID: 38373678 DOI: 10.1016/j.ymeth.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
Bivalent Smac mimetics have been shown to possess binding affinity and pro-apoptotic activity similar to or more potent than that of native Smac, a protein dimer able to neutralize the anti-apoptotic activity of an inhibitor of caspase enzymes, XIAP, which endows cancer cells with resistance to anticancer drugs. We design five new bivalent Smac mimetics, which are formed by various linkers tethering two diazabicyclic cores being the IAP binding motifs. We built in silico models of the five mimetics by the TwistDock workflow and evaluated their conformational tendency, which suggests that compound 3, whose linker is n-hexylene, possess the highest binding potency among the five. After synthesis of these compounds, their ability in tumour cell growth inhibition and apoptosis induction displayed in experiments with SK-OV-3 and MDA-MB-231 cancer cell lines confirms our prediction. Among the five mimetics, compound 3 displays promising pro-apoptotic activity and deserves further optimization.
Collapse
Affiliation(s)
- Qingsheng Huang
- Shenzhen Key Laboratory of Intelligent Bioinformatics & Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; School of Mathematics and Statistics, Hanshan Normal University, Chaozhou 521041, China
| | - Yin Peng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Yuefeng Peng
- Shenzhen Key Laboratory of Intelligent Bioinformatics & Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huijuan Lin
- Department of Ultrasound, Guangdong Women and Children Hospital, Guangzhou 510000, China
| | - Shiqi Deng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Shengzhong Feng
- Shenzhen Key Laboratory of Intelligent Bioinformatics & Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Yanjie Wei
- Shenzhen Key Laboratory of Intelligent Bioinformatics & Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
3
|
Zhang H, Liu C, Zhu D, Zhang Q, Li J. Medicinal Chemistry Strategies for the Development of Inhibitors Disrupting β-Catenin's Interactions with Its Nuclear Partners. J Med Chem 2023; 66:1-31. [PMID: 36583662 DOI: 10.1021/acs.jmedchem.2c01016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dysregulation of the Wnt/β-catenin signaling pathway is strongly associated with various aspects of cancer, including tumor initiation, proliferation, and metastasis as well as antitumor immunity, and presents a promising opportunity for cancer therapy. Wnt/β-catenin signaling activation increases nuclear dephosphorylated β-catenin levels, resulting in β-catenin binding to TCF and additional cotranscription factors, such as BCL9, CBP, and p300. Therefore, directly disrupting β-catenin's interactions with these nuclear partners holds promise for the effective and selective suppression of the aberrant activation of Wnt/β-catenin signaling. Herein, we summarize recent advances in biochemical techniques and medicinal chemistry strategies used to identify potent peptide-based and small-molecule inhibitors that directly disrupt β-catenin's interactions with its nuclear binding partners. We discuss the challenges involved in developing drug-like inhibitors that target the interactions of β-catenin and its nuclear binding partner into therapeutic agents.
Collapse
Affiliation(s)
- Hao Zhang
- School of Pharmacy, Fudan University, Shanghai 201203, China.,Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Chenglong Liu
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Di Zhu
- School of Pharmacy, Fudan University, Shanghai 201203, China.,Department of Pharmacology, School of Basic Medical Science, Fudan University, Shanghai 201100, China
| | - Qingwei Zhang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Jianqi Li
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| |
Collapse
|
4
|
Ikeda K, Maezawa Y, Yonezawa T, Shimizu Y, Tashiro T, Kanai S, Sugaya N, Masuda Y, Inoue N, Niimi T, Masuya K, Mizuguchi K, Furuya T, Osawa M. DLiP-PPI library: An integrated chemical database of small-to-medium-sized molecules targeting protein-protein interactions. Front Chem 2023; 10:1090643. [PMID: 36700083 PMCID: PMC9868583 DOI: 10.3389/fchem.2022.1090643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/09/2022] [Indexed: 01/11/2023] Open
Abstract
Protein-protein interactions (PPIs) are recognized as important targets in drug discovery. The characteristics of molecules that inhibit PPIs differ from those of small-molecule compounds. We developed a novel chemical library database system (DLiP) to design PPI inhibitors. A total of 32,647 PPI-related compounds are registered in the DLiP. It contains 15,214 newly synthesized compounds, with molecular weight ranging from 450 to 650, and 17,433 active and inactive compounds registered by extracting and integrating known compound data related to 105 PPI targets from public databases and published literature. Our analysis revealed that the compounds in this database contain unique chemical structures and have physicochemical properties suitable for binding to the protein-protein interface. In addition, advanced functions have been integrated with the web interface, which allows users to search for potential PPI inhibitor compounds based on types of protein-protein interfaces, filter results by drug-likeness indicators important for PPI targeting such as rule-of-4, and display known active and inactive compounds for each PPI target. The DLiP aids the search for new candidate molecules for PPI drug discovery and is available online (https://skb-insilico.com/dlip).
Collapse
Affiliation(s)
- Kazuyoshi Ikeda
- HPC—and AI-driven Drug Development Platform Division, Center for Computational Science, Yokohama, Kanagawa, Japan,Division of Physics for Life Functions, Keio University Faculty of Pharmacy, Tokyo, Japan,*Correspondence: Kazuyoshi Ikeda,
| | | | - Tomoki Yonezawa
- Division of Physics for Life Functions, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Yugo Shimizu
- Division of Physics for Life Functions, Keio University Faculty of Pharmacy, Tokyo, Japan
| | | | | | | | | | - Naoko Inoue
- PeptiDream Inc., Chiyoda-Ku, Kanagawa, Japan
| | | | | | - Kenji Mizuguchi
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan,Institute for Protein Research, Osaka University, Osaka, Japan
| | | | - Masanori Osawa
- Division of Physics for Life Functions, Keio University Faculty of Pharmacy, Tokyo, Japan
| |
Collapse
|
5
|
Shin I, Li H, Lee CH. A Thiol-Activated Fluorogenic Probe for Detection of a Target Protein. Chem Commun (Camb) 2022; 58:6336-6339. [DOI: 10.1039/d2cc02029g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel fluorogenic probe for facile and efficient detection of a target protein that binds to a bioactive small molecule was developed. The probe was composed of a thiol-activated fluorogenic...
Collapse
|
6
|
Xu W, Brown LE, Porco JA. Divergent, C-C Bond Forming Macrocyclizations Using Modular Sulfonylhydrazone and Derived Substrates. J Org Chem 2021; 86:16485-16510. [PMID: 34730970 PMCID: PMC8783553 DOI: 10.1021/acs.joc.1c01848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A divergent approach to C-C bond forming macrocycle construction is described. Modular sulfonylhydrazone and derived pyridotriazole substrates with three key building blocks have been constructed and cyclized to afford diverse macrocyclic frameworks. Broad substrate scope and functional group tolerance have been demonstrated. In addition, site-selective postfunctionalization allowed for further diversification of macrocyclic cores.
Collapse
Affiliation(s)
- Wenqing Xu
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - Lauren E. Brown
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - John A. Porco
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
7
|
McPherson KS, Korzhnev DM. Targeting protein-protein interactions in the DNA damage response pathways for cancer chemotherapy. RSC Chem Biol 2021; 2:1167-1195. [PMID: 34458830 PMCID: PMC8342002 DOI: 10.1039/d1cb00101a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/20/2021] [Indexed: 12/11/2022] Open
Abstract
Cellular DNA damage response (DDR) is an extensive signaling network that orchestrates DNA damage recognition, repair and avoidance, cell cycle progression and cell death. DDR alteration is a hallmark of cancer, with the deficiency in one DDR capability often compensated by a dependency on alternative pathways endowing cancer cells with survival and growth advantage. Targeting these DDR pathways has provided multiple opportunities for the development of cancer therapies. Traditional drug discovery has mainly focused on catalytic inhibitors that block enzyme active sites, which limits the number of potential drug targets within the DDR pathways. This review article describes the emerging approach to the development of cancer therapeutics targeting essential protein-protein interactions (PPIs) in the DDR network. The overall strategy for the structure-based design of small molecule PPI inhibitors is discussed, followed by an overview of the major DNA damage sensing, DNA repair, and DNA damage tolerance pathways with a specific focus on PPI targets for anti-cancer drug design. The existing small molecule inhibitors of DDR PPIs are summarized that selectively kill cancer cells and/or sensitize cancers to front-line genotoxic therapies, and a range of new PPI targets are proposed that may lead to the development of novel chemotherapeutics.
Collapse
Affiliation(s)
- Kerry Silva McPherson
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center Farmington CT 06030 USA +1 860 679 3408 +1 860 679 2849
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center Farmington CT 06030 USA +1 860 679 3408 +1 860 679 2849
| |
Collapse
|
8
|
Chen W, Chen X, Li D, Zhou J, Jiang Z, You Q, Guo X. Discovery of DDO-2213 as a Potent and Orally Bioavailable Inhibitor of the WDR5-Mixed Lineage Leukemia 1 Protein-Protein Interaction for the Treatment of MLL Fusion Leukemia. J Med Chem 2021; 64:8221-8245. [PMID: 34105966 DOI: 10.1021/acs.jmedchem.1c00091] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
WD repeat-containing protein 5 (WDR5) is essential for the stability and methyltransferase activity of the mixed lineage leukemia 1 (MLL1) complex. Dysregulation of the MLL1 gene is associated with human acute leukemias, and the direct disruption of the WDR5-MLL1 protein-protein interaction (PPI) is emerging as an alternative strategy for MLL-rearranged cancers. Here, we represent a new aniline pyrimidine scaffold for WDR5-MLL1 inhibitors. A comprehensive structure-activity analysis identified a potent inhibitor 63 (DDO-2213), with an IC50 of 29 nM in a competitive fluorescence polarization assay and a Kd value of 72.9 nM for the WDR5 protein. Compound 63 selectively inhibited MLL histone methyltransferase activity and the proliferation of MLL translocation-harboring cells. Furthermore, 63 displayed good pharmacokinetic properties and suppressed the growth of MV4-11 xenograft tumors in mice after oral administration, first verifying the in vivo efficacy of targeting the WDR5-MLL1 PPI by small molecules.
Collapse
Affiliation(s)
- Weilin Chen
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xin Chen
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Dongdong Li
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jianrui Zhou
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoke Guo
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
9
|
Kong Q, Huang P, Chu B, Ke M, Chen W, Zheng Z, Ji S, Cai Z, Li P, Tian R. High-Throughput and Integrated Chemical Proteomic Approach for Profiling Phosphotyrosine Signaling Complexes. Anal Chem 2020; 92:8933-8942. [PMID: 32539344 DOI: 10.1021/acs.analchem.0c00839] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phosphotyrosine (pTyr) signaling complexes are important resources of biomarkers and drug targets which often need to be profiled with enough throughput. Current profiling approaches are not feasible to meet this need due to either biased profiling by antibody-based detection or low throughput by traditional affinity purification-mass spectrometry approach (AP-MS), as exemplified by our previously developed photo-pTyr-scaffold approach. To address these limitations, we developed a 96-well microplate-based sample preparation and fast data independent proteomic analysis workflow. By assembling the photo-pTyr-scaffold probe into a 96-well microplate, we achieved steric hindrance-free photoaffinity capture of pTyr signaling complexes, selective enrichment under denaturing conditions, and efficient in-well digestion in a fully integrated manner. EGFR signaling complex proteins could be efficiently captured and identified by using 300 times less cell lysate and 100 times less photo-pTyr-scaffold probe as compared with our previous approach operated in an Eppendorf tube. Furthermore, the lifetime of the photo-pTyr-scaffold probe in a 96-well microplate was significantly extended from 1 week up to 1 month. More importantly, by combining with high-flow nano LC separation and data independent acquisition on the Q Exactive HF-X mass spectrometer, LC-MS time could be significantly reduced to only 35 min per sample without increasing sample loading amount and compromising identification and quantification performance. This new high-throughput proteomic approach allowed us to rapidly and reproducibly profile dynamic pTyr signaling complexes with EGF stimulation at five time points and EGFR inhibitor treatment at five different concentrations. We are therefore optimized for its generic application in biomarkers discovery and drug screening in a high-throughput fashion.
Collapse
Affiliation(s)
- Qian Kong
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China.,State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Peiwu Huang
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China.,State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Bizhu Chu
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Mi Ke
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Wendong Chen
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China.,SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Zhendong Zheng
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Shanping Ji
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Pengfei Li
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China.,Shenzhen Grubbs Institute, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Ruijun Tian
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| |
Collapse
|
10
|
Gao Y, Wang X, Wei Z, Cao J, Liang D, Lin Y, Duan H. Asymmetric synthesis of spirooxindole–pyranoindole products via Friedel–Crafts alkylation/cyclization of the indole carbocyclic ring. NEW J CHEM 2020. [DOI: 10.1039/d0nj00074d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Enantioselective Friedel–Crafts alkylation/cyclization of the indole carbocyclic ring with isatylidene malononitriles was performed using a new bifunctional catalyst.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Organic Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Xiaonan Wang
- Department of Organic Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Zhonglin Wei
- Department of Organic Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Jungang Cao
- Department of Organic Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Dapeng Liang
- Department of Organic Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Yingjie Lin
- Department of Organic Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Haifeng Duan
- Department of Organic Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
11
|
Khatravath M, Mallurwar NK, Konda S, Gaddam J, Rao P, Iqbal J, Arya P. Synthesis of C1–C11 eribulin fragment and its diastereomeric analogues. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Shi M, Xu D. Molecular Dynamics Investigations Suggest a Non-specific Recognition Strategy of 14-3-3σ Protein by Tweezer: Implication for the Inhibition Mechanism. Front Chem 2019; 7:237. [PMID: 31058132 PMCID: PMC6478809 DOI: 10.3389/fchem.2019.00237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 03/26/2019] [Indexed: 02/04/2023] Open
Abstract
The supramolecular complex formed between protein and designed molecule has become one of the most efficient ways to modify protein functions. As one of the more well-studied model systems, 14-3-3 family proteins play an important role in regulating intracellular signaling pathways via protein-protein interactions. In this work, we selected 14-3-3σ as the target protein. Molecular dynamics simulations and binding free energy calculations were applied to identify the possible binding sites and understand its recognition ability of the supramolecular inhibitor, the tweezer molecule (CLR01). On the basis of our simulation, major interactions between lysine residues and CLR01 come from the van der Waals interactions between the long alkyl chain of lysine and the cavity formed by the norbornadiene and benzene rings of the inhibitor. Apart from K214, which was found to be crystallized with this inhibitor, other lysine sites have also shown their abilities to form inclusion complexes with the inhibitor. Such non-specific recognition features of CLR01 against 14-3-3σ can be used in the modification of protein functions via supramolecular chemistry.
Collapse
Affiliation(s)
- Mingsong Shi
- College of Chemistry, Sichuan University, Chengdu, China
| | - Dingguo Xu
- College of Chemistry, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Ni D, Lu S, Zhang J. Emerging roles of allosteric modulators in the regulation of protein-protein interactions (PPIs): A new paradigm for PPI drug discovery. Med Res Rev 2019; 39:2314-2342. [PMID: 30957264 DOI: 10.1002/med.21585] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 03/12/2019] [Accepted: 03/24/2019] [Indexed: 12/26/2022]
Abstract
Protein-protein interactions (PPIs) are closely implicated in various types of cellular activities and are thus pivotal to health and disease states. Given their fundamental roles in a wide range of biological processes, the modulation of PPIs has enormous potential in drug discovery. However, owing to the general properties of large, flat, and featureless interfaces of PPIs, previous attempts have demonstrated that the generation of therapeutic agents targeting PPI interfaces is challenging, rendering them almost "undruggable" for decades. To date, rapid progress in chemical and structural biology techniques has promoted the exploitation of allostery as a novel approach in drug discovery. By attaching to allosteric sites that are topologically and spatially distinct from PPI interfaces, allosteric modulators can achieve improved physiochemical properties. Thus, allosteric modulators may represent an alternative strategy to target intractable PPIs and have attracted intense pharmaceutical interest. In this review, we first briefly introduce the characteristics of PPIs and then present different approaches for investigating PPIs, as well as the latest methods for modulating PPIs. Importantly, we comprehensively review the recent progress in the development of allosteric modulators to inhibit or stabilize PPIs. Finally, we conclude with future perspectives on the discovery of allosteric PPI modulators, especially the application of computational methods to aid in allosteric PPI drug discovery.
Collapse
Affiliation(s)
- Duan Ni
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Shaoyong Lu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.,Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.,Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.,Center for Single-Cell Omics, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Taechalertpaisarn J, Lyu RL, Arancillo M, Lin CM, Jiang Z, Perez LM, Ioerger TR, Burgess K. Design criteria for minimalist mimics of protein-protein interface segments. Org Biomol Chem 2019; 17:908-915. [PMID: 30629068 DOI: 10.1039/c8ob02901f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Small molecules that can interrupt or inhibit protein-protein interactions (PPIs) are valuable as probes in chemical biology and medicinal chemistry, but they are also notoriously difficult to develop. Design of non-peptidic small molecules that mimic amino acid side-chain interactions in PPIs ("minimalist mimics") is seen as a way to fast track discovery of PPI inhibitors. However, there has been little comment on general design criteria for minimalist mimics, even though such guidelines could steer construction of libraries to screen against multiple PPI targets. We hypothesized insight into general design criteria for minimalist mimics could be gained by comparing preferred conformations of typical minimalist mimic designs against side-chain orientations on a huge number of PPI interfaces. That thought led to this work which features nine minimalist mimic designs: one from the literature, and eight new "hypothetical" ones conceived by us. Simulated preferred conformers of these were systematically aligned with >240 000 PPI interfaces from the Protein Data Bank. Conclusions from those analyses did indeed reveal various design considerations that are discussed here. Surprisingly, this study also showed one of the minimalist mimic designs aligned on PPI interface segments more than 15 times more frequently than any other in the series (according to uniform standards described herein); reasons for this are also discussed.
Collapse
Affiliation(s)
- Jaru Taechalertpaisarn
- Department of Chemistry and Laboratory For Molecular Simulation, Texas A & M University, Box 30012, College Station, TX 77842-3012, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Rahimi MN, McAlpine SR. Protein-protein inhibitor designed de novo to target the MEEVD region on the C-terminus of Hsp90 and block co-chaperone activity. Chem Commun (Camb) 2019; 55:846-849. [PMID: 30575826 DOI: 10.1039/c8cc07576j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein-protein interactions control all cellular functions. Presented is the first de novo designed protein-protein inhibitor that targets the C-terminus of heat shock protein 90 (Hsp90) and blocks co-chaperones from binding. Compound LB76, which was created from an Hsp90 co-chaperone, selectively pulls down Hsp90 from cell lysates, binds to Hsp90's C-terminal domain, and blocks the interactions between Hsp90 and TPR-containing co-chaperones. Through these interactions, LB76 inhibits the protein-folding function of Hsp90. Blocking these protein-protein interactions between Hsp90 and C-terminal co-chaperones regulate the cell's entire protein-folding machinery.
Collapse
Affiliation(s)
- Marwa N Rahimi
- School of Chemistry, Gate 2 High street, Dalton 219, University of New South Wales, Sydney, Australia.
| | | |
Collapse
|
16
|
Jiang X, Chen X, Li Y, Liang H, Zhang Y, He X, Chen B, Kwok Chan WT, Chan ASC, Qiu L. Enantioselective Syntheses of Tricyclic Benzimidazoles via Intramolecular Allylic Aminations with Chiral-Bridged Biphenyl Phosphoramidite Ligands. Org Lett 2019; 21:608-613. [PMID: 30645135 DOI: 10.1021/acs.orglett.8b03640] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The first iridium-catalyzed enantioselective intramolecular allylic aminations of benzimidazole-tethered allylic carbonates were developed, providing three classes of tricyclic benzimidazoles bearing a tertiary carbon stereogenic center in high yields and excellent enantioselectivities (up to 99% yield, 99% ee). Wide substrate scope, excellent catalytic efficiency and mild conditions rendered this protocol particularly superior and practical. Impressively, the chiral bridge with a tunable structure was shown to provide a very good adjustment space for the chiral environment. The excellent catalytic performance of the ligands manifested their advantages over the bisphenol-based and BINOL-derived counterparts in these transformations. It also highlighted the potential application value of the chiral-bridged ligands.
Collapse
Affiliation(s)
- Xiaoding Jiang
- School of Chemistry, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province , Sun Yat-Sen University , Guangzhou 510275 , People's Republic of China
| | - Xiangmeng Chen
- School of Chemistry, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province , Sun Yat-Sen University , Guangzhou 510275 , People's Republic of China
| | - Yongsu Li
- School of Chemistry, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province , Sun Yat-Sen University , Guangzhou 510275 , People's Republic of China
| | - Hao Liang
- School of Chemistry, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province , Sun Yat-Sen University , Guangzhou 510275 , People's Republic of China
| | - Yaqi Zhang
- School of Chemistry, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province , Sun Yat-Sen University , Guangzhou 510275 , People's Republic of China
| | - Xiaobo He
- School of Chemistry, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province , Sun Yat-Sen University , Guangzhou 510275 , People's Republic of China
| | - Bin Chen
- School of Chemistry, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province , Sun Yat-Sen University , Guangzhou 510275 , People's Republic of China
| | - Wesley Ting Kwok Chan
- Department of Applied Biology and Chemical Technology , The Hong Kong Polytechnic University , Hong Kong , People's Republic of China
| | - Albert S C Chan
- School of Chemistry, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province , Sun Yat-Sen University , Guangzhou 510275 , People's Republic of China
| | - Liqin Qiu
- School of Chemistry, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province , Sun Yat-Sen University , Guangzhou 510275 , People's Republic of China
| |
Collapse
|
17
|
Gigante A, Grad JN, Briels J, Bartel M, Hoffmann D, Ottmann C, Schmuck C. A new class of supramolecular ligands stabilizes 14-3-3 protein-protein interactions by up to two orders of magnitude. Chem Commun (Camb) 2019; 55:111-114. [PMID: 30515494 DOI: 10.1039/c8cc07946c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report the first supramolecular stabilizers of the interaction between 14-3-3ζ and two of its effectors, Tau and C-Raf, which are involved in neurodegenerative diseases and proliferative signal transduction, respectively. These supramolecular ligands open up an opportunity to modulate functions of 14-3-3 with these effectors.
Collapse
Affiliation(s)
- A Gigante
- Institute of Organic Chemistry, University of Duisburg Essen, Universitätstr. 7, 45141, Essen, Germany.
| | | | | | | | | | | | | |
Collapse
|
18
|
Wang C, Wen D, Chen H, Deng Y, Liu X, Liu X, Wang L, Gao F, Guo Y, Sun M, Wang K, Yan W. The catalytic asymmetric synthesis of CF3-containing spiro-oxindole–pyrrolidine–pyrazolone compounds through squaramide-catalyzed 1,3-dipolar cycloaddition. Org Biomol Chem 2019; 17:5514-5519. [DOI: 10.1039/c9ob00720b] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Pharmaceutically important compounds were synthesized through the organocatalytic 1,3-dipolar cycloaddition reaction.
Collapse
|
19
|
Li B, Liu J, Gao F, Sun M, Guo Y, Zhou Y, Wen D, Deng Y, Chen H, Wang K, Yan W. The asymmetric construction of CF3-containing spiro-thiazolone-pyrrolidine compoundsvia[3 + 2] cycloaddition. Org Biomol Chem 2019; 17:2892-2895. [DOI: 10.1039/c9ob00325h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An organocatalytic method for the asymmetric construction of CF3-containing spiro-thiazolone-pyrrolidine compounds has been developed.
Collapse
|
20
|
Allosteric Modulators of Protein-Protein Interactions (PPIs). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:313-334. [PMID: 31707709 DOI: 10.1007/978-981-13-8719-7_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein-protein interactions (PPIs) represent promising drug targets of broad-spectrum therapeutic interests due to their critical implications in both health and disease circumstances. Hence, they are widely accepted as the Holy Grail of drug development. Historically, PPIs were rendered "undruggable" for their large, flat, and pocket-less structures. Current attempts to drug these "intractable" targets include orthosteric and allosteric methodologies. Previous efforts employing orthosteric approaches like protein therapeutics and orthosteric small molecules frequently suffered from poor performance caused by the difficulties in directly targeting PPI interfaces. As structural biology progresses rapidly, allosteric modulators, which direct to the allosteric regulatory sites remote to the PPI surfaces, have gradually established as a potential solution. Allosteric pockets are topologically distal from the PPI orthosteric sites, and their ligands do not need to compete with the PPI partners, which helps to improve the physiochemical and pharmacological properties of allosteric PPI modulators. Thus, exploiting allostery to tailor PPIs is regarded as a tempting strategy in future PPI drug discovery. Here, we provide a comprehensive review of our representative achievements along the way we utilize allosteric effects to tame the difficult PPI systems into druggable targets. Importantly, we provide an in-depth mechanistic analysis of this success, which will be instructive to future related lead optimizations and drug design. Finally, we discuss the current challenges in allosteric PPI drug discovery. Their solutions as well as future perspectives are also presented.
Collapse
|
21
|
Farzaneh Behelgardi M, Zahri S, Mashayekhi F, Mansouri K, Asghari SM. A peptide mimicking the binding sites of VEGF-A and VEGF-B inhibits VEGFR-1/-2 driven angiogenesis, tumor growth and metastasis. Sci Rep 2018; 8:17924. [PMID: 30560942 PMCID: PMC6298961 DOI: 10.1038/s41598-018-36394-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/21/2018] [Indexed: 12/31/2022] Open
Abstract
Interfering with interactions of vascular endothelial growth factors (VEGFs) with their receptors (VEGFRs) effectively inhibits angiogenesis and tumor growth. We designed an antagonist peptide of VEGF-A and VEGF-B reproducing two discontinuous receptor binding regions of VEGF-B (loop 1 and loop3) covalently linked together by a receptor binding region of VEGF-A (loop3). The designed peptide (referred to as VGB4) was able to bind to both VEGFR1 and VEGFR2 on the Human Umbilical Vein Endothelial Cells (HUVECs) surface and inhibited VEGF-A driven proliferation, migration and tube formation in HUVECs through suppression of ERK1/2 and AKT phosphorylation. The whole-animal fluorescence imaging demonstrated that fluorescein isothiocyanate (FITC)-VGB4 accumulated in the mammary carcinoma tumors (MCTs). Administration of VGB4 led to the regression of 4T1 murine MCT growth through decreased expression of p-VEGFR1 and p-VEGFR2 and abrogation of ERK1/2 and AKT activation followed by considerable decrease of tumor cell proliferation (Ki67 expression) and angiogenesis (CD31 and CD34 expression), induction of apoptosis (increased p53 expression, TUNEL staining and decreased Bcl2 expression), and suppression of metastasis (increased E-cadherin and decreased N-cadherin, NF-κB and MMP-9 expression). These findings indicate that VGB4 may be applicable for antiangiogenic and antitumor therapy.
Collapse
Affiliation(s)
| | - Saber Zahri
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Farhad Mashayekhi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - S Mohsen Asghari
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.
| |
Collapse
|
22
|
Small-molecule Ca Vα 1⋅Ca Vβ antagonist suppresses neuronal voltage-gated calcium-channel trafficking. Proc Natl Acad Sci U S A 2018; 115:E10566-E10575. [PMID: 30355767 DOI: 10.1073/pnas.1813157115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Extracellular calcium flow through neuronal voltage-gated CaV2.2 calcium channels converts action potential-encoded information to the release of pronociceptive neurotransmitters in the dorsal horn of the spinal cord, culminating in excitation of the postsynaptic central nociceptive neurons. The CaV2.2 channel is composed of a pore-forming α1 subunit (CaVα1) that is engaged in protein-protein interactions with auxiliary α2/δ and β subunits. The high-affinity CaV2.2α1⋅CaVβ3 protein-protein interaction is essential for proper trafficking of CaV2.2 channels to the plasma membrane. Here, structure-based computational screening led to small molecules that disrupt the CaV2.2α1⋅CaVβ3 protein-protein interaction. The binding mode of these compounds reveals that three substituents closely mimic the side chains of hot-spot residues located on the α-helix of CaV2.2α1 Site-directed mutagenesis confirmed the critical nature of a salt-bridge interaction between the compounds and CaVβ3 Arg-307. In cells, compounds decreased trafficking of CaV2.2 channels to the plasma membrane and modulated the functions of the channel. In a rodent neuropathic pain model, the compounds suppressed pain responses. Small-molecule α-helical mimetics targeting ion channel protein-protein interactions may represent a strategy for developing nonopioid analgesia and for treatment of other neurological disorders associated with calcium-channel trafficking.
Collapse
|
23
|
Pennington KL, Chan TY, Torres MP, Andersen JL. The dynamic and stress-adaptive signaling hub of 14-3-3: emerging mechanisms of regulation and context-dependent protein-protein interactions. Oncogene 2018; 37:5587-5604. [PMID: 29915393 PMCID: PMC6193947 DOI: 10.1038/s41388-018-0348-3] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022]
Abstract
14-3-3 proteins are a family of structurally similar phospho-binding proteins that regulate essentially every major cellular function. Decades of research on 14-3-3s have revealed a remarkable network of interacting proteins that demonstrate how 14-3-3s integrate and control multiple signaling pathways. In particular, these interactions place 14-3-3 at the center of the signaling hub that governs critical processes in cancer, including apoptosis, cell cycle progression, autophagy, glucose metabolism, and cell motility. Historically, the majority of 14-3-3 interactions have been identified and studied under nutrient-replete cell culture conditions, which has revealed important nutrient driven interactions. However, this underestimates the reach of 14-3-3s. Indeed, the loss of nutrients, growth factors, or changes in other environmental conditions (e.g., genotoxic stress) will not only lead to the loss of homeostatic 14-3-3 interactions, but also trigger new interactions, many of which are likely stress adaptive. This dynamic nature of the 14-3-3 interactome is beginning to come into focus as advancements in mass spectrometry are helping to probe deeper and identify context-dependent 14-3-3 interactions-providing a window into adaptive phosphorylation-driven cellular mechanisms that orchestrate the tumor cell's response to a variety of environmental conditions including hypoxia and chemotherapy. In this review, we discuss emerging 14-3-3 regulatory mechanisms with a focus on post-translational regulation of 14-3-3 and dynamic protein-protein interactions that illustrate 14-3-3's role as a stress-adaptive signaling hub in cancer.
Collapse
Affiliation(s)
- K L Pennington
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - T Y Chan
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - M P Torres
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - J L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
24
|
Yang J, Hu L. Immunomodulators targeting the PD-1/PD-L1 protein-protein interaction: From antibodies to small molecules. Med Res Rev 2018; 39:265-301. [PMID: 30215856 DOI: 10.1002/med.21530] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapy has made great strides in the recent decade, especially in the area of immune checkpoint blockade. The outstanding efficacy, prolonged durability of effect, and rapid assimilation of anti-PD-1 and anti-PD-L1 monoclonal antibodies in clinical practice have been nothing short of a medical breakthrough in the treatment of numerous malignancies. The major advantages of these therapeutic antibodies over their small molecule counterparts have been their high binding affinity and target specificity. However, antibodies do have their flaws including immune-related toxicities, inadequate pharmacokinetics and tumor penetration, and high cost burden to manufacturers and consumers. These limitations hinder broader clinical applications of the antibodies and have heightened interests in developing the alternative small molecule platform that includes peptidomimetics and peptides to target the PD-1/PD-L1 immune checkpoint system. The progress on these small molecule alternatives has been relatively slow compared to that of the antibodies. Fortunately, recent structural studies of the interactions among PD-1, PD-L1, and their respective antibodies have revealed key hotspots on PD-1 and PD-L1 that may facilitate drug discovery efforts for small molecule immunotherapeutics. This review is intended to discuss key concepts in immuno-oncology, describe the successes and shortcomings of PD-1/PD-L1 antibody-based therapies, and to highlight the recent development of small molecule inhibitors of the PD-1/PD-L1 protein-protein interaction.
Collapse
Affiliation(s)
- Jeffrey Yang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Longqin Hu
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Cancer Pharmacology Program, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
25
|
Lopes RMRM, Ventura AE, Silva LC, Faustino H, Gois PMP. N,O
-Iminoboronates: Reversible Iminoboronates with Improved Stability for Cancer Cells Targeted Delivery. Chemistry 2018; 24:12495-12499. [DOI: 10.1002/chem.201802515] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/06/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Ricardo M. R. M. Lopes
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| | - Ana E. Ventura
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology; Instituto Superior Técnico; Universidade de Lisboa; Lisboa Portugal
| | - Liana C. Silva
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology; Instituto Superior Técnico; Universidade de Lisboa; Lisboa Portugal
| | - Hélio Faustino
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| | - Pedro M. P. Gois
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| |
Collapse
|
26
|
Chen H, Luo D, Zhang L, Lin X, Luo Q, Yi H, Wang J, Yan X, Li B, Chen Y, Liu X, Zhang H, Liu S, Qiu M, Yang D, Jiang N. Restoration of p53 using the novel MDM2-p53 antagonist APG115 suppresses dedifferentiated papillary thyroid cancer cells. Oncotarget 2018; 8:43008-43022. [PMID: 28498808 PMCID: PMC5522123 DOI: 10.18632/oncotarget.17398] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/06/2017] [Indexed: 12/20/2022] Open
Abstract
Dedifferentiated papillary thyroid cancer (DePTC) is characterized by aggressive growth, recurrence, distant metastasis, and resistance to radioactive iodine (RAI) therapy. DePTC is also accompanied by poor prognosis and high early-mortality. Nevertheless, most DePTC cells show intact p53 downstream functionality. In cells with wild-type p53, the murine double minute2 (MDM2) protein interacts with p53 and abrogates its activity. Inhibition of the MDM2-p53 interaction restores p53 activity and leads to cell cycle arrest and apoptosis. Restoring p53 function by inhibiting its interaction with p53 suppressors such as MDM2 is thus a promising therapeutic strategy for the treatment of DePTC. The novel MDM2-p53 interaction antagonist APG115 is an analogue of SAR405838, and is being tested in a phase I clinical trial. In this study, we evaluated the efficacy of APG115 as a single-agent to treat DePTC. APG115 diminished the viability of p53 wild-type DePTC cells and induced cell cycle arrest and apoptosis. In a human xenograft mouse model, APG115 elicited robust tumor regression and cell apoptosis. These data demonstrate that further research is warranted to determine whether APG115 can be used to effectively treat DePTC patients.
Collapse
Affiliation(s)
- Haibo Chen
- Department of Nuclear Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Dingyuan Luo
- Department of Vascular and Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Lin Zhang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China.,Department of Clinical Laboratory, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Xiaofeng Lin
- Department of Nuclear Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qiuyun Luo
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Hanjie Yi
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Jing Wang
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Xianglei Yan
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Baoxia Li
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Yuelei Chen
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xingguang Liu
- Department of Nuclear Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Hong Zhang
- Department of Nuclear Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Sheng Liu
- Department of Nuclear Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Miaozhen Qiu
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510120, China
| | - Dajun Yang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China.,Suzhou Ascentage Pharma Inc., Jiangsu 215123, China
| | - Ningyi Jiang
- Department of Nuclear Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
27
|
Blasco V, Cuñat AC, Sanz-Cervera JF, Marco JA, Falomir E, Murga J, Carda M. Arylureas derived from colchicine: Enhancement of colchicine oncogene downregulation activity. Eur J Med Chem 2018; 150:817-828. [DOI: 10.1016/j.ejmech.2018.03.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/01/2018] [Accepted: 03/13/2018] [Indexed: 02/07/2023]
|
28
|
Danelius E, Pettersson M, Bred M, Min J, Waddell MB, Guy RK, Grøtli M, Erdelyi M. Flexibility is important for inhibition of the MDM2/p53 protein-protein interaction by cyclic β-hairpins. Org Biomol Chem 2018; 14:10386-10393. [PMID: 27731454 DOI: 10.1039/c6ob01510g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protein-protein interactions that have large, flat and featureless binding sites are difficult drug targets. In the development of their modulators conventional drug discovery strategies are often unsuccessful. Gaining a detailed understanding of the binding mode of protein-protein interaction inhibitors is therefore of vast importance for their future pharmaceutical use. The MDM2/p53 protein pair is a highly promising target for cancer treatment. Disruption of the protein complex using p53 α-helix mimetics has been shown to be a successful strategy to control p53 activity. To gain further insight into the binding of inhibitors to MDM2, the flexibility of four cyclic β-hairpins that act as α-helical mimetics and potential MDM2/p53 interaction inhibitors was investigated in relation to their inhibitory activity. MDM2-binding of the mimetics was determined using fluorescence polarization and surface plasmon resonance assays, whereas their conformation and dynamics in solution was described by the combined experimental and computational NAMFIS analysis. Molecular flexibility was shown to be important for the activity of the cyclic β-hairpin based MDM2 inhibitors.
Collapse
Affiliation(s)
- Emma Danelius
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-41296 Gothenburg, Sweden.
| | - Mariell Pettersson
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-41296 Gothenburg, Sweden.
| | - Matilda Bred
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-41296 Gothenburg, Sweden.
| | - Jaeki Min
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - M Brett Waddell
- Molecular Interaction Analysis Shared Resource, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - R Kiplin Guy
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-41296 Gothenburg, Sweden.
| | - Mate Erdelyi
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-41296 Gothenburg, Sweden. and Swedish NMR Centre, Medicinaregatan 5, SE-41390 Gothenburg, Sweden
| |
Collapse
|
29
|
Rossetti A, Sacchetti A, Gatti M, Pugliese A, Roda G. Rapid access to reverse-turn peptidomimetics by a three-component Ugi reaction of 3,4-dihydroisoquinoline. Chem Heterocycl Compd (N Y) 2018. [DOI: 10.1007/s10593-018-2202-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Blasco V, Murga J, Falomir E, Carda M, Royo S, Cuñat AC, Sanz-Cervera JF, Marco JA. Synthesis and biological evaluation of cyclic derivatives of combretastatin A-4 containing group 14 elements. Org Biomol Chem 2018; 16:5859-5870. [DOI: 10.1039/c8ob01148f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Tricyclic compounds bearing group 14 elements have been synthesized. Effects on tumor cells, the cell cycle and VEGFR-2 have been measured.
Collapse
Affiliation(s)
- Víctor Blasco
- Departamento de Química Orgánica
- Universidad de Valencia
- E-46100 Burjassot
- Spain
| | - Juan Murga
- Departamento de Química Inorgánica y Orgánica
- Universidad Jaume I
- E-12071 Castellón
- Spain
| | - Eva Falomir
- Departamento de Química Inorgánica y Orgánica
- Universidad Jaume I
- E-12071 Castellón
- Spain
| | - Miguel Carda
- Departamento de Química Inorgánica y Orgánica
- Universidad Jaume I
- E-12071 Castellón
- Spain
| | - Santiago Royo
- Departamento de Química Inorgánica y Orgánica
- Universidad Jaume I
- E-12071 Castellón
- Spain
| | - Ana C. Cuñat
- Departamento de Química Orgánica
- Universidad de Valencia
- E-46100 Burjassot
- Spain
| | | | - J. Alberto Marco
- Departamento de Química Orgánica
- Universidad de Valencia
- E-46100 Burjassot
- Spain
| |
Collapse
|
31
|
Shin WH, Christoffer CW, Kihara D. In silico structure-based approaches to discover protein-protein interaction-targeting drugs. Methods 2017; 131:22-32. [PMID: 28802714 PMCID: PMC5683929 DOI: 10.1016/j.ymeth.2017.08.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023] Open
Abstract
A core concept behind modern drug discovery is finding a small molecule that modulates a function of a target protein. This concept has been successfully applied since the mid-1970s. However, the efficiency of drug discovery is decreasing because the druggable target space in the human proteome is limited. Recently, protein-protein interaction (PPI) has been identified asan emerging target space for drug discovery. PPI plays a pivotal role in biological pathways including diseases. Current human interactome research suggests that the number of PPIs is between 130,000 and 650,000, and only a small number of them have been targeted as drug targets. For traditional drug targets, in silico structure-based methods have been successful in many cases. However, their performance suffers on PPI interfaces because PPI interfaces are different in five major aspects: From a geometric standpoint, they have relatively large interface regions, flat geometry, and the interface surface shape tends to fluctuate upon binding. Also, their interactions are dominated by hydrophobic atoms, which is different from traditional binding-pocket-targeted drugs. Finally, PPI targets usually lack natural molecules that bind to the target PPI interface. Here, we first summarize characteristics of PPI interfaces and their known binders. Then, we will review existing in silico structure-based approaches for discovering small molecules that bind to PPI interfaces.
Collapse
Affiliation(s)
- Woong-Hee Shin
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
32
|
Stevers LM, Sijbesma E, Botta M, MacKintosh C, Obsil T, Landrieu I, Cau Y, Wilson AJ, Karawajczyk A, Eickhoff J, Davis J, Hann M, O'Mahony G, Doveston RG, Brunsveld L, Ottmann C. Modulators of 14-3-3 Protein-Protein Interactions. J Med Chem 2017; 61:3755-3778. [PMID: 28968506 PMCID: PMC5949722 DOI: 10.1021/acs.jmedchem.7b00574] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Direct
interactions between proteins are essential for the regulation
of their functions in biological pathways. Targeting the complex network
of protein–protein interactions (PPIs) has now been widely
recognized as an attractive means to therapeutically intervene in
disease states. Even though this is a challenging endeavor and PPIs
have long been regarded as “undruggable” targets, the
last two decades have seen an increasing number of successful examples
of PPI modulators, resulting in growing interest in this field. PPI
modulation requires novel approaches and the integrated efforts of
multiple disciplines to be a fruitful strategy. This perspective focuses
on the hub-protein 14-3-3, which has several hundred identified protein
interaction partners, and is therefore involved in a wide range of
cellular processes and diseases. Here, we aim to provide an integrated
overview of the approaches explored for the modulation of 14-3-3 PPIs
and review the examples resulting from these efforts in both inhibiting
and stabilizing specific 14-3-3 protein complexes by small molecules,
peptide mimetics, and natural products.
Collapse
Affiliation(s)
- Loes M Stevers
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS) , Eindhoven University of Technology , P.O. Box 513, 5600 MB , Eindhoven , The Netherlands
| | - Eline Sijbesma
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS) , Eindhoven University of Technology , P.O. Box 513, 5600 MB , Eindhoven , The Netherlands
| | - Maurizio Botta
- Department of Biotechnology, Chemistry and Pharmacy , University of Siena , Via Aldo Moro 2 , 53100 Siena , Italy
| | - Carol MacKintosh
- Division of Cell and Developmental Biology, School of Life Sciences , University of Dundee , Dundee DD1 4HN , United Kingdom
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry, Faculty of Science , Charles University , Prague 116 36 , Czech Republic
| | | | - Ylenia Cau
- Department of Biotechnology, Chemistry and Pharmacy , University of Siena , Via Aldo Moro 2 , 53100 Siena , Italy
| | - Andrew J Wilson
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , United Kingdom.,Astbury Center For Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , United Kingdom
| | | | - Jan Eickhoff
- Lead Discovery Center GmbH , Dortmund 44227 , Germany
| | - Jeremy Davis
- UCB Celltech , 216 Bath Road , Slough SL1 3WE , United Kingdom
| | - Michael Hann
- GlaxoSmithKline , Gunnels Wood Road , Stevenage, Hertfordshire SG1 2NY , United Kingdom
| | - Gavin O'Mahony
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit , AstraZeneca Gothenburg , Pepparedsleden 1 , SE-431 83 Mölndal , Sweden
| | - Richard G Doveston
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS) , Eindhoven University of Technology , P.O. Box 513, 5600 MB , Eindhoven , The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS) , Eindhoven University of Technology , P.O. Box 513, 5600 MB , Eindhoven , The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS) , Eindhoven University of Technology , P.O. Box 513, 5600 MB , Eindhoven , The Netherlands.,Department of Chemistry , University of Duisburg-Essen , Universitätstraße 7 , 45141 Essen , Germany
| |
Collapse
|
33
|
Wang L, Zhou L, Reille-Seroussi M, Gagey-Eilstein N, Broussy S, Zhang T, Ji L, Vidal M, Liu WQ. Identification of Peptidic Antagonists of Vascular Endothelial Growth Factor Receptor 1 by Scanning the Binding Epitopes of Its Ligands. J Med Chem 2017; 60:6598-6606. [DOI: 10.1021/acs.jmedchem.7b00283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lei Wang
- UMR 8638 CNRS, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, 4 Avenue de l’Observatoire, Paris 75006, France
| | - Lingyu Zhou
- Shanghai Key Laboratory of Complex Prescription and The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Marie Reille-Seroussi
- UMR 8638 CNRS, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, 4 Avenue de l’Observatoire, Paris 75006, France
| | - Nathalie Gagey-Eilstein
- UMR 8638 CNRS, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, 4 Avenue de l’Observatoire, Paris 75006, France
| | - Sylvain Broussy
- UMR 8638 CNRS, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, 4 Avenue de l’Observatoire, Paris 75006, France
| | - Tianyu Zhang
- Shanghai Key Laboratory of Complex Prescription and The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Lili Ji
- Shanghai Key Laboratory of Complex Prescription and The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Michel Vidal
- UMR 8638 CNRS, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, 4 Avenue de l’Observatoire, Paris 75006, France
- UF Pharmacocinétique
et Pharmacochimie, Hôpital Cochin, AP-HP, 27 Rue du Faubourg Saint Jacques, Paris 75014, France
| | - Wang-Qing Liu
- UMR 8638 CNRS, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, 4 Avenue de l’Observatoire, Paris 75006, France
| |
Collapse
|
34
|
Wang Y, Patil P, Kurpiewska K, Kalinowska-Tluscik J, Dömling A. Two Cycles with One Catch: Hydrazine in Ugi 4-CR and Its Postcyclizations. ACS COMBINATORIAL SCIENCE 2017; 19:193-198. [PMID: 28181791 PMCID: PMC5350607 DOI: 10.1021/acscombsci.7b00009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Isocyanide-based
multicomponent reactions (IMCR) are by far the
most versatile reactions that can construct relatively complex molecules
by one-pot synthesis. More importantly, the development of post IMCR
modifications significantly improves the scaffold’s diversity.
Here, we describe the use of N-Boc protected hydrazine
together with α-amino acid derived isocyanides in the Ugi tetrazole
reaction and its post cyclization under both acidic and basic conditions.
The cyclization in acidic conditions was conducted in a one pot fashion,
which give 7-aminotetrazolopyrazinone (6) and tetrazolotriazepinone
(7) cyclic products. The post cyclization under basic
condition could selectively afford Boc-protected 7-aminotetrazolopyrazinone
(8) products in yield of 38–87%.
Collapse
Affiliation(s)
- Yuanze Wang
- University of Groningen, Department of Drug Design, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Pravin Patil
- University of Groningen, Department of Drug Design, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Katarzyna Kurpiewska
- Jagiellonian University, Faculty of Chemistry, Department
of Crystal Chemistry and Crystal Physics, Biocrystallography Group, Ingardena 3, 30-060 Krakow, Poland
| | - Justyna Kalinowska-Tluscik
- Jagiellonian University, Faculty of Chemistry, Department
of Crystal Chemistry and Crystal Physics, Biocrystallography Group, Ingardena 3, 30-060 Krakow, Poland
| | - Alexander Dömling
- University of Groningen, Department of Drug Design, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
35
|
Zhou Y, Zhang N, Chen W, Zhao L, Zhong R. Underlying mechanisms of cyclic peptide inhibitors interrupting the interaction of CK2α/CK2β: comparative molecular dynamics simulation studies. Phys Chem Chem Phys 2017; 18:9202-10. [PMID: 26974875 DOI: 10.1039/c5cp06276d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Protein-protein interactions (PPIs) are fundamental to all biological processes. Recently, the CK2β-derived cyclic peptide Pc has been demonstrated to efficiently antagonize the CK2α/CK2β interaction and strongly affect the phosphorylation of CK2β-dependent CK2 substrate specificity. The binding affinity of Pc to CK2α is destroyed to different extents by two single-point mutations of Tyr188 to Ala (Y188A) and Phe190 to Ala (F190A), which exert negative effects on the inhibitory activity (IC50) of Pc against the CK2α/CK2β interaction from 3.0 μM to 54.0 μM and ≫100 μM, respectively. However, the structural influences of Y188A and F190A mutations on the CK2α-Pc complex remain unclear. In this study, comparative molecular dynamics (MD) simulations, principal component analysis (PCA), domain cross-correlation map (DCCM) analysis and energy calculations were performed on wild type (WT), Y188A mutant, and F190A mutant systems. The results revealed that ordered communications between hydrophobic and polar interactions were essential for CK2α-Pc binding in the WT system. In addition to the loss of the hydrogen bond between Gln36 of CK2α and Gly189 of Pc in the two mutants, the improper recognition mechanisms occurred through different pathways. These pathways included the weakened hydrophobic interactions in the Y188A mutant as well as decreased polar and hydrophobic interactions in the F190A mutant. The energy analysis results qualitatively elucidated the instability of the two mutants and energetic contributions of the key residues. This study not only revealed the structural mechanisms for the decreased binding affinity of Y188A and F190A mutant CK2α-Pc complexes, but also provided valuable clues for the rational design of CK2α/CK2β subunit interaction inhibitors with high affinity and specificity.
Collapse
Affiliation(s)
- Yue Zhou
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Na Zhang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Wenjuan Chen
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Lijiao Zhao
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Rugang Zhong
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
36
|
Gupta AK, Bharadwaj M, Kumar A, Mehrotra R. Spiro-oxindoles as a Promising Class of Small Molecule Inhibitors of p53-MDM2 Interaction Useful in Targeted Cancer Therapy. Top Curr Chem (Cham) 2016; 375:3. [PMID: 27943171 DOI: 10.1007/s41061-016-0089-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 11/23/2016] [Indexed: 01/29/2023]
Abstract
As a result of the toxicity of currently available anticancer drugs and the inefficiency of chemotherapeutic treatments, the design and discovery of effective and selective antitumor agents continues to be a hot topic in organic medicinal chemistry. Targeted therapy is a newer type of cancer treatment that uses drugs designed to interfere with specific molecules necessary for tumor growth and progression. This review explains the mechanism of regulation of p53 (tumor suppressor protein) by MDM2 and illustrates the role of targeting p53-MDM2 protein-protein interaction using small molecules as a new cancer therapeutic strategy. Spirocyclic oxindoles or spiro-oxindoles, with a rigid heterocyclic ring fused at the 3-position of the oxindole core with varied substitution around it, are the most efficacious class of small molecules which inhibit cell proliferation and induce apoptosis in cancer cells, leading to complete tumor growth regression without affecting activities of normal cells. In this review, we present a comprehensive account of the systematic development of and recent progress in diverse spiro-oxindole derivatives active as potent selective inhibitors of p53-MDM2 interaction with special emphasis on spiro-pyrrolidinyl oxindoles (the MI series), their mechanism of action, and structure-activity relationship. This review will help in understanding the molecular mechanism of p53 reactivation by spiro-oxindoles in tumor tissues and also facilitates the design and exploration of more potent analogues with high efficacy and low side effects for the treatment of cancer. Recent progress in spiro-oxindole derivatives as potent small molecule inhibitors of p53-MDM2 interaction, useful as anticancer agents, is described with reference to their mechanism of action and structure-activity relationship.
Collapse
Affiliation(s)
- Alpana K Gupta
- Division of Molecular Cytology, Department of Health Research (Govt. of India), National Institute of Cancer Prevention and Research (ICMR), Noida, India
| | - Mausumi Bharadwaj
- Division of Molecular Genetics and Biochemistry, National Institute of Cancer Prevention and Research (ICMR), Noida, India.
| | - Anoop Kumar
- Division of Molecular Genetics and Biochemistry, National Institute of Cancer Prevention and Research (ICMR), Noida, India
| | - Ravi Mehrotra
- Division of Molecular Cytology, Department of Health Research (Govt. of India), National Institute of Cancer Prevention and Research (ICMR), Noida, India.
| |
Collapse
|
37
|
Hou X, Rooklin D, Fang H, Zhang Y. Resveratrol serves as a protein-substrate interaction stabilizer in human SIRT1 activation. Sci Rep 2016; 6:38186. [PMID: 27901083 PMCID: PMC5128864 DOI: 10.1038/srep38186] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/04/2016] [Indexed: 12/26/2022] Open
Abstract
Resveratrol is a natural compound found in red wine that has been suggested to exert its potential health benefit through the activation of SIRT1, a crucial member of the mammalian NAD+-dependent deacetylases. SIRT1 has emerged as an attractive therapeutic target for many aging related diseases, however, how its activity can only be activated toward some specific substrates by resveratrol has been poorly understood. Herein, by employing extensive molecular dynamics simulations as well as fragment-centric topographical mapping of binding interfaces, we have clarified current controversies in the literature and elucidated that resveratrol plays an important activation role by stabilizing SIRT1/peptide interactions in a substrate-specific manner. This new mechanism highlights the importance of the N-terminal domain in substrate recognition, explains the activity restoration role of resveratrol toward some “loose-binding” substrates of SIRT1, and has significant implications for the rational design of new substrate-specific SIRT1 modulators.
Collapse
Affiliation(s)
- Xuben Hou
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, 250012, China.,Department of Chemistry, New York University, New York, New York, 10003, United States
| | - David Rooklin
- Department of Chemistry, New York University, New York, New York, 10003, United States
| | - Hao Fang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, 250012, China
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, New York, 10003, United States.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China
| |
Collapse
|
38
|
Marzo-Mas A, Barbier P, Breuzard G, Allegro D, Falomir E, Murga J, Carda M, Peyrot V, Marco JA. Interactions of long-chain homologues of colchicine with tubulin. Eur J Med Chem 2016; 126:526-535. [PMID: 27915168 DOI: 10.1016/j.ejmech.2016.11.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 01/30/2023]
Abstract
Several colchicine analogues in which the N-acetyl residue has been replaced by aliphatic, straight-chain acyl moieties, have been synthesized. These compounds show high cytotoxic activity at the nanomolar level against the tumoral cell lines HT-29, MCF-7 and A549. Some of them exhibit activities in the picomolar range against the HT-29 line and are thus two to three orders of magnitude more cytotoxic than colchicine. In this specific cell line, the activities were found to be closely related to the length of the acyl carbon chain, an increase in the latter giving rise to an increase in the cytotoxicity with a maximum in the range of 10-12 carbon atoms, followed by a decrease in activity with still longer chains. Some of the compounds inhibit microtubule assembly and induce the formation of abnormal polymers and present in most cases better apparent affinity constants than colchicine. In addition, at IC50 concentrations the analogues block the cell cycle of A549 cells in the G2/M phase. Molecular docking studies suggest that, while interactions of the colchicine analogues with the colchicine binding site at β-tubulin are still present, the increase in the acyl chain length leads to the progressive development of new interactions, not present in colchicine itself, with the neighboring α-tubulin subunit. Indeed, sufficiently long acyl chains span the intradimer interface and contact with a hydrophobic groove in α-tubulin. It is worth noting that some of the compounds show cytotoxicity at concentrations three orders of magnitude lower than colchicine. Their pharmacological use in cancer therapy could possibly be performed with lower dosages and be thus endowed with less acute toxicity problems than in the case of colchicine.
Collapse
Affiliation(s)
- Ana Marzo-Mas
- Depart. de Q. Inorgánica y Orgánica, Univ. Jaume I, E-12071 Castellón, Spain
| | - Pascale Barbier
- Aix-Marseille Université, Inserm, CRO2 UMR_S 911, Faculté de Pharmacie, 13385, Marseille, France
| | - Gilles Breuzard
- Aix-Marseille Université, Inserm, CRO2 UMR_S 911, Faculté de Pharmacie, 13385, Marseille, France
| | - Diane Allegro
- Aix-Marseille Université, Inserm, CRO2 UMR_S 911, Faculté de Pharmacie, 13385, Marseille, France
| | - Eva Falomir
- Depart. de Q. Inorgánica y Orgánica, Univ. Jaume I, E-12071 Castellón, Spain
| | - Juan Murga
- Depart. de Q. Inorgánica y Orgánica, Univ. Jaume I, E-12071 Castellón, Spain.
| | - Miguel Carda
- Depart. de Q. Inorgánica y Orgánica, Univ. Jaume I, E-12071 Castellón, Spain
| | - Vincent Peyrot
- Aix-Marseille Université, Inserm, CRO2 UMR_S 911, Faculté de Pharmacie, 13385, Marseille, France.
| | - J Alberto Marco
- Depart. de Q. Orgánica, Univ. de Valencia, E-46100 Burjassot, Valencia, Spain
| |
Collapse
|
39
|
Su J, Ma Z, Li X, Lin L, Shen Z, Yang P, Li Y, Wang H, Yan W, Wang K, Wang R. Asymmetric Synthesis of 2′-Trifluoromethylated Spiro-pyrrolidine-3,3′-oxindolesviaSquaramide-Catalyzed Umpolung and 1,3-Dipolar Cycloaddition. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600688] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jinhuan Su
- The Institute of Pharmacology; Key Laboratory of Preclinical Study for New Drugs of Gansu Province; School of Basic Medical Sciences; Lanzhou University; Lanzhou 730000 People's Republic of China
| | - Zelin Ma
- The Institute of Pharmacology; Key Laboratory of Preclinical Study for New Drugs of Gansu Province; School of Basic Medical Sciences; Lanzhou University; Lanzhou 730000 People's Republic of China
| | - Xiaoyuan Li
- The Institute of Pharmacology; Key Laboratory of Preclinical Study for New Drugs of Gansu Province; School of Basic Medical Sciences; Lanzhou University; Lanzhou 730000 People's Republic of China
| | - Li Lin
- The Institute of Pharmacology; Key Laboratory of Preclinical Study for New Drugs of Gansu Province; School of Basic Medical Sciences; Lanzhou University; Lanzhou 730000 People's Republic of China
| | - Zhiqiang Shen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou 730000 People's Republic of China
| | - Peiju Yang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou 730000 People's Republic of China
| | - Yuan Li
- The Peoples Hospital of Gansu Province; Lanzhou 730000 People's Republic of China
| | - Hailin Wang
- The Peoples Hospital of Gansu Province; Lanzhou 730000 People's Republic of China
| | - Wenjin Yan
- The Institute of Pharmacology; Key Laboratory of Preclinical Study for New Drugs of Gansu Province; School of Basic Medical Sciences; Lanzhou University; Lanzhou 730000 People's Republic of China
| | - Kairong Wang
- The Institute of Pharmacology; Key Laboratory of Preclinical Study for New Drugs of Gansu Province; School of Basic Medical Sciences; Lanzhou University; Lanzhou 730000 People's Republic of China
| | - Rui Wang
- The Institute of Pharmacology; Key Laboratory of Preclinical Study for New Drugs of Gansu Province; School of Basic Medical Sciences; Lanzhou University; Lanzhou 730000 People's Republic of China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou 730000 People's Republic of China
| |
Collapse
|
40
|
Wang L, Li L, Fu WT, Jiang ZY, You QD, Xu XL. Optimization and bioevaluation of Cdc37-derived peptides: An insight into Hsp90-Cdc37 protein-protein interaction modulators. Bioorg Med Chem 2016; 25:233-240. [PMID: 27818030 DOI: 10.1016/j.bmc.2016.10.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 10/22/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
Abstract
Targeting Hsp90-Cdc37 protein-protein interaction (PPI) is becoming an alternative approach for future anti-cancer drug development. We previously reported the discovery of an eleven-residue peptide (Pep-1) with micromolar activity for the disruption of Hsp90-Cdc37 PPI. Efforts to improve upon the Pep-1 led to the discovery of more potent modulators for Hsp90-Cdc37 PPI. Through the analysis of peptides binding patterns, more peptides were designed for further verification which resulted in Pep-5, the shortest peptide targeting Hsp90-Cdc37, exerting the optimal structure and the most efficient binding mode. Subsequent MD simulation analysis also confirmed that Pep-5 could perform more stable binding ability and better ligand properties than Pep-1. Under the premise of retentive binding capacity, Pep-5 exhibited lower molecular weight and higher ligand efficiency with a Kd value of 5.99μM (Pep-1 Kd=6.90μM) in both direct binding determination and biological evaluation. The optimal and shortest Pep-5 might provide a breakthrough and a better model for the future design of small molecule inhibitors targeting Hsp90-Cdc37 PPI.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Li Li
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wei-Tao Fu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Zheng-Yu Jiang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qi-Dong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiao-Li Xu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
41
|
Jiang ZY, Lu MC, You QD. Discovery and Development of Kelch-like ECH-Associated Protein 1. Nuclear Factor Erythroid 2-Related Factor 2 (KEAP1:NRF2) Protein-Protein Interaction Inhibitors: Achievements, Challenges, and Future Directions. J Med Chem 2016; 59:10837-10858. [PMID: 27690435 DOI: 10.1021/acs.jmedchem.6b00586] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The transcription factor Nrf2 is the primary regulator of the cellular defense system, and enhancing Nrf2 activity has potential usages in various diseases, especially chronic age-related and inflammatory diseases. Recently, directly targeting Keap1-Nrf2 protein-protein interaction (PPI) has been an emerging strategy to selectively and effectively activate Nrf2. This Perspective summarizes the progress in the discovery and development of Keap1-Nrf2 PPI inhibitors, including the Keap1-Nrf2 regulatory mechanisms, biochemical techniques for inhibitor identification, and approaches for identifying peptide and small-molecule inhibitors, as well as discusses privileged structures and future directions for further development of Keap1-Nrf2 PPI inhibitors.
Collapse
Affiliation(s)
- Zheng-Yu Jiang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University , Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, China
| | - Meng-Chen Lu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University , Nanjing 210009, China
| | - Qi-Dong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University , Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, China
| |
Collapse
|
42
|
Lu S, Jang H, Gu S, Zhang J, Nussinov R. Drugging Ras GTPase: a comprehensive mechanistic and signaling structural view. Chem Soc Rev 2016; 45:4929-52. [PMID: 27396271 PMCID: PMC5021603 DOI: 10.1039/c5cs00911a] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ras proteins are small GTPases, cycling between inactive GDP-bound and active GTP-bound states. Through these switches they regulate signaling that controls cell growth and proliferation. Activating Ras mutations are associated with approximately 30% of human cancers, which are frequently resistant to standard therapies. Over the past few years, structural biology and in silico drug design, coupled with improved screening technology, led to a handful of promising inhibitors, raising the possibility of drugging Ras proteins. At the same time, the invariable emergence of drug resistance argues for the critical importance of additionally honing in on signaling pathways which are likely to be involved. Here we overview current advances in Ras structural knowledge, including the conformational dynamic of full-length Ras in solution and at the membrane, therapeutic inhibition of Ras activity by targeting its active site, allosteric sites, and Ras-effector protein-protein interfaces, Ras dimers, the K-Ras4B/calmodulin/PI3Kα trimer, and targeting Ras with siRNA. To mitigate drug resistance, we propose signaling pathways that can be co-targeted along with Ras and explain why. These include pathways leading to the expression (or activation) of YAP1 and c-Myc. We postulate that these and Ras signaling pathways, MAPK/ERK and PI3K/Akt/mTOR, act independently and in corresponding ways in cell cycle control. The structural data are instrumental in the discovery and development of Ras inhibitors for treating RAS-driven cancers. Together with the signaling blueprints through which drug resistance can evolve, this review provides a comprehensive and innovative master plan for tackling mutant Ras proteins.
Collapse
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Shuo Gu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
43
|
Dasari B, Fufa T, Aeluri M, Gaddam J, Deora GS, Gaunitz F, Kitambi SS, Arya P. Macrocyclic Toolbox from Epothilone Fragment Identifies a Compound Showing Molecular Interactions with Actin and Novel Promoters of Apoptosis in Patient-derived Brain Tumor Cells. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201600126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bhanudas Dasari
- Dr. Reddy's Institute of Life Sciences (DRILS); University of Hyderabad, Campus; Hyderabad 500046 India
- Sai Advantium Pharma Ltd.; IKP Road Turkapally; Hyderabad 500078 India
| | - Temesgen Fufa
- Klinik und Poliklinik für Neurochirurgie; Universitätsklinikum Leipzig; Leipzig Germany
- Department of Microbiology and Tumor and Cell Biology; Karolinska Institutet; 17177 Stockholm Sweden
| | - Madhu Aeluri
- Dr. Reddy's Institute of Life Sciences (DRILS); University of Hyderabad, Campus; Hyderabad 500046 India
- GVK Biosciences, Nacharam; IDA Mallapur; Hyderabad 500076 India
| | - Jagan Gaddam
- Dr. Reddy's Institute of Life Sciences (DRILS); University of Hyderabad, Campus; Hyderabad 500046 India
| | - Girdhar Singh Deora
- School of Pharmacy; The University of Queensland; Brisbane QLD 4072 Australia
| | - Frank Gaunitz
- Klinik und Poliklinik für Neurochirurgie; Universitätsklinikum Leipzig; Leipzig Germany
| | - Satish Srinivas Kitambi
- Department of Microbiology and Tumor and Cell Biology; Karolinska Institutet; 17177 Stockholm Sweden
| | - Prabhat Arya
- Dr. Reddy's Institute of Life Sciences (DRILS); University of Hyderabad, Campus; Hyderabad 500046 India
| |
Collapse
|
44
|
Newman DJ, Cragg GM. Natural Products as Sources of New Drugs from 1981 to 2014. JOURNAL OF NATURAL PRODUCTS 2016; 79:629-61. [PMID: 26852623 DOI: 10.1021/acs.jnatprod.5b01055] [Citation(s) in RCA: 3768] [Impact Index Per Article: 418.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
This contribution is a completely updated and expanded version of the four prior analogous reviews that were published in this journal in 1997, 2003, 2007, and 2012. In the case of all approved therapeutic agents, the time frame has been extended to cover the 34 years from January 1, 1981, to December 31, 2014, for all diseases worldwide, and from 1950 (earliest so far identified) to December 2014 for all approved antitumor drugs worldwide. As mentioned in the 2012 review, we have continued to utilize our secondary subdivision of a "natural product mimic", or "NM", to join the original primary divisions and the designation "natural product botanical", or "NB", to cover those botanical "defined mixtures" now recognized as drug entities by the U.S. FDA (and similar organizations). From the data presented in this review, the utilization of natural products and/or their novel structures, in order to discover and develop the final drug entity, is still alive and well. For example, in the area of cancer, over the time frame from around the 1940s to the end of 2014, of the 175 small molecules approved, 131, or 75%, are other than "S" (synthetic), with 85, or 49%, actually being either natural products or directly derived therefrom. In other areas, the influence of natural product structures is quite marked, with, as expected from prior information, the anti-infective area being dependent on natural products and their structures. We wish to draw the attention of readers to the rapidly evolving recognition that a significant number of natural product drugs/leads are actually produced by microbes and/or microbial interactions with the "host from whence it was isolated", and therefore it is considered that this area of natural product research should be expanded significantly.
Collapse
Affiliation(s)
- David J Newman
- NIH Special Volunteer, Wayne, Pennsylvania 19087, United States
| | - Gordon M Cragg
- NIH Special Volunteer, Bethesda, Maryland 20814, United States
| |
Collapse
|
45
|
An Intriguing Correlation Based on the Superimposition of Residue Pairs with Inhibitors that Target Protein-Protein Interfaces. Sci Rep 2016; 6:18543. [PMID: 26730437 PMCID: PMC4698585 DOI: 10.1038/srep18543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/19/2015] [Indexed: 11/26/2022] Open
Abstract
Druggable sites on protein-protein interfaces are difficult to predict. To survey inhibitor-binding sites onto which residues are superimposed at protein-protein interfaces, we analyzed publicly available information for 39 inhibitors that target the protein-protein interfaces of 8 drug targets. By focusing on the differences between residues that were superimposed with inhibitors and non-superimposed residues, we observed clear differences in the distances and changes in the solvent-accessible surface areas (∆SASA). Based on the observation that two or more residues were superimposed onto inhibitors in 37 (95%) of 39 protein-inhibitor complexes, we focused on the two-residue relationships. Application of a cross-validation procedure confirmed a linear negative correlation between the absolute value of the dihedral angle and the sum of the ∆SASAs of the residues. Finally, we applied the regression equation of this correlation to four inhibitors that bind to new sites not bound by the 39 inhibitors as well as additional inhibitors of different targets. Our results shed light on the two-residue correlation between the absolute value of the dihedral angle and the sum of the ∆SASA, which may be a useful relationship for identifying the key two-residues as potential targets of protein-protein interfaces.
Collapse
|
46
|
Lu MC, Yuan ZW, Jiang YL, Chen ZY, You QD, Jiang ZY. A systematic molecular dynamics approach to the study of peptide Keap1–Nrf2 protein–protein interaction inhibitors and its application to p62 peptides. MOLECULAR BIOSYSTEMS 2016; 12:1378-87. [DOI: 10.1039/c6mb00030d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein–protein interactions (PPIs) as drug targets have been gaining growing interest, though developing drug-like small molecule PPI inhibitors remains challenging.
Collapse
Affiliation(s)
- Meng-Chen Lu
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
- Jiangsu Key Laboratory of Drug Design and Optimization
| | - Zhen-Wei Yuan
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
- Jiangsu Key Laboratory of Drug Design and Optimization
| | - Yong-Lin Jiang
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
- Jiangsu Key Laboratory of Drug Design and Optimization
| | - Zhi-Yun Chen
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
- Jiangsu Key Laboratory of Drug Design and Optimization
| | - Qi-Dong You
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
- Jiangsu Key Laboratory of Drug Design and Optimization
| | - Zheng-Yu Jiang
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
- Jiangsu Key Laboratory of Drug Design and Optimization
| |
Collapse
|
47
|
Lu S, Jang H, Zhang J, Nussinov R. Inhibitors of Ras-SOS Interactions. ChemMedChem 2015; 11:814-21. [PMID: 26630662 DOI: 10.1002/cmdc.201500481] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Indexed: 12/18/2022]
Abstract
Activating Ras mutations are found in about 30 % of human cancers. Ras activation is regulated by guanine nucleotide exchange factors, such as the son of sevenless (SOS), which form protein-protein interactions (PPIs) with Ras and catalyze the exchange of GDP by GTP. This is the rate-limiting step in Ras activation. However, Ras surfaces lack any evident suitable pockets where a molecule might bind tightly, rendering Ras proteins still 'undruggable' for over 30 years. Among the alternative approaches is the design of inhibitors that target the Ras-SOS PPI interface, a strategy that is gaining increasing recognition for treating Ras mutant cancers. Herein we focus on data that has accumulated over the past few years pertaining to the design of small-molecule modulators or peptide mimetics aimed at the interface of the Ras-SOS PPI. We emphasize, however, that even if such Ras-SOS therapeutics are potent, drug resistance may emerge. To counteract this development, we propose "pathway drug cocktails", that is, drug combinations aimed at parallel (or compensatory) pathways. A repertoire of classified cancer, cell/tissue, and pathway/protein combinations would be beneficial toward this goal.
Collapse
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China.
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory, National Cancer Institute, Frederick, MD, 21702, USA. .,Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
48
|
Ambadipudi S, Zweckstetter M. Targeting intrinsically disordered proteins in rational drug discovery. Expert Opin Drug Discov 2015; 11:65-77. [DOI: 10.1517/17460441.2016.1107041] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Susmitha Ambadipudi
- German Center for Neurodegenerative Diseases (DZNE), 37077 Göttingen, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), 37077 Göttingen, Germany
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
49
|
Abstract
Modulation of protein-protein interactions (PPIs) is becoming increasingly important in drug discovery and chemical biology. While a few years ago this 'target class' was deemed to be largely undruggable an impressing number of publications and success stories now show that targeting PPIs with small, drug-like molecules indeed is a feasible approach. Here, we summarize the current state of small-molecule inhibition and stabilization of PPIs and review the active molecules from a structural and medicinal chemistry angle, especially focusing on the key examples of iNOS, LFA-1 and 14-3-3.
Collapse
|
50
|
Pettersson M, Quant M, Min J, Iconaru L, Kriwacki RW, Waddell MB, Guy RK, Luthman K, Grøtli M. Design, Synthesis and Evaluation of 2,5-Diketopiperazines as Inhibitors of the MDM2-p53 Interaction. PLoS One 2015; 10:e0137867. [PMID: 26427060 PMCID: PMC4591261 DOI: 10.1371/journal.pone.0137867] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/23/2015] [Indexed: 11/19/2022] Open
Abstract
The transcription factor p53 is the main tumour suppressor in cells and many cancer types have p53 mutations resulting in a loss of its function. In tumours that retain wild-type p53 function, p53 activity is down-regulated by MDM2 (human murine double minute 2) via a direct protein-protein interaction. We have designed and synthesised two series of 2,5-diketopiperazines as inhibitors of the MDM2-p53 interaction. The first set was designed to directly mimic the α-helical region of the p53 peptide, containing key residues in the i, i+4 and i+7 positions of a natural α-helix. Conformational analysis indicated that 1,3,6-trisubstituted 2,5-diketopiperazines were able to place substituents in the same spatial orientation as an α-helix template. The key step of the synthesis involved the cyclisation of substituted dipeptides. The other set of tetrasubstituted 2,5-diketopiperazines were designed based on structure-based docking studies and the Ugi multicomponent reaction was used for the synthesis. This latter set comprised the most potent inhibitors which displayed micromolar IC50-values in a biochemical fluorescence polarisation assay.
Collapse
Affiliation(s)
- Mariell Pettersson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96, Gothenburg, Sweden
| | - Maria Quant
- Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96, Gothenburg, Sweden
| | - Jaeki Min
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee, 38105, United States of America
| | - Luigi Iconaru
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee, 38105, United States of America
| | - Richard W. Kriwacki
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee, 38105, United States of America
| | - M. Brett Waddell
- Molecular Interaction Analysis Shared Resource, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee, 38105, United States of America
| | - R. Kiplin Guy
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee, 38105, United States of America
| | - Kristina Luthman
- Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96, Gothenburg, Sweden
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|