1
|
Ye BC, Li WH, Zhang X, Chen J, Gao Y, Wang D, Pan H. Advancing Heterogeneous Organic Synthesis With Coordination Chemistry-Empowered Single-Atom Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402747. [PMID: 39291881 DOI: 10.1002/adma.202402747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/17/2024] [Indexed: 09/19/2024]
Abstract
For traditional metal complexes, intricate chemistry is required to acquire appropriate ligands for controlling the electron and steric hindrance of metal active centers. Comparatively, the preparation of single-atom catalysts is much easier with more straightforward and effective accesses for the arrangement and control of metal active centers. The presence of coordination atoms or neighboring functional atoms on the supports' surface ensures the stability of metal single-atoms and their interactions with individual metal atoms substantially regulate the performance of metal active centers. Therefore, the collaborative interaction between metal and the surrounding coordination environment enhances the initiation of reaction substrates and the formation and transformation of crucial intermediate compounds, which imparts single-atom catalysts with significant catalytic efficacy, rendering them a valuable framework for investigating the correlation between structure and activity, as well as the reaction mechanism of catalysts in organic reactions. Herein, comprehensive overviews of the coordination interaction for both homogeneous metal complexes and single-atom catalysts in organic reactions are provided. Additionally, reflective conjectures about the advancement of single-atom catalysts in organic synthesis are also proposed to present as a reference for later development.
Collapse
Affiliation(s)
- Bo-Chao Ye
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wen-Hao Li
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| | - Xia Zhang
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Yong Gao
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| |
Collapse
|
2
|
Jankins TC, Blank PM, Brugnetti A, Boehm P, Aouane FA, Morandi B. Shuttle HAT for mild alkene transfer hydrofunctionalization. Nat Commun 2024; 15:9397. [PMID: 39477933 PMCID: PMC11525564 DOI: 10.1038/s41467-024-53281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
Hydrogen atom transfer (HAT) from a metal-hydride is a reliable and powerful method for functionalizing unsaturated C-C bonds in organic synthesis. Cobalt hydrides (Co-H) have garnered significant attention in this field, where the weak Co-H bonds are most commonly generated in a catalytic fashion through a mixture of stoichiometric amounts of peroxide oxidant and silane reductant. Here we show that the reverse process of HAT to an alkene, i.e. hydrogen atom abstraction of a C-H adjacent to a radical, can be leveraged to generate catalytically active Co-H species in an application of shuttle catalysis coined shuttle HAT. This method obviates the need for stoichiometric reductant/oxidant mixtures thereby greatly simplifying the generation of Co-H. To demonstrate the generality of this shuttle HAT platform, five different reaction manifolds are shown, and the reaction can easily be scaled up to 100 mmol.
Collapse
Affiliation(s)
- Tanner C Jankins
- Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland
| | - Philip M Blank
- Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland
| | - Andrea Brugnetti
- Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland
| | - Philip Boehm
- Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland
| | - Françoise A Aouane
- Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland.
| |
Collapse
|
3
|
Kumar V, Majee S, Anjali K, Saha B, Ray D. Unveiling the Significance of tert-Butoxides in Transition Metal-Free Cross-Coupling Reactions. Top Curr Chem (Cham) 2024; 382:32. [PMID: 39394383 DOI: 10.1007/s41061-024-00478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 09/21/2024] [Indexed: 10/13/2024]
Abstract
The astounding reactivity of tert-butoxides in transition metal-free coupling reactions is driving the scientific community towards a new era of environmental friendly, as well as cost-effective, transformation strategies. Transition metal-catalyzed coupling reactions generate hazardous wastes and require harsh reaction conditions, mostly at elevated temperature, which increases not only costs but also environmental concerns regarding the methodology. Tert-butoxide-catalyzed/mediated coupling reactions have several advantages and potential applications. They can form carbon-carbon, carbon-heteroatom, and heteroatom-heteroatom bonds under mild reaction conditions. Mechanistic insights into these reactions include both ionic and radical pathways, with the fate of the intermediates depending on the reaction conditions and/or additives used in the reactions. Among all of the known tert-butoxides, potassium tert-butoxide has pronounced applications in transition metal-free coupling reactions as compared to other tert-butoxides, such as sodium and lithium tert-butoxides, because of the higher electropositivity of potassium compared to sodium and lithium. Moreover, potassium tert-butoxide can act as a source of base, nucleophile and single electron donors in various important transformations. In this review, we provide an extensive overview and complete compilation of transition metal-free cross-coupling reactions catalyzed/promoted by tert-butoxides during the past 10 years.
Collapse
Affiliation(s)
- Vipin Kumar
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, India
- CSIR-Central Drug Research Institute, Lucknow, India
| | - Suman Majee
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, India
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Km Anjali
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, India
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Biswajit Saha
- Amity Institute of Biotechnology, Amity University, Noida, India.
| | - Devalina Ray
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, India.
- Amity Institute of Biotechnology, Amity University, Noida, India.
| |
Collapse
|
4
|
Niu HL, Luo PX, Zhang SL. Difluorocarbene-Promoted O-O Bond Activation of Peroxy Acids for Electrophilic Carboxylation of Boronic Acids. Chem Asian J 2024; 19:e202400613. [PMID: 39018086 DOI: 10.1002/asia.202400613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/18/2024]
Abstract
In this study, a difluorocarbene-promoted O-O bond activation of peroxy acids is developed through the insertion of difluorocarbene into O-H bond. This activation strategy in synergy with O-B coordination with boronic acids/ester greatly polarizes the O-O bond for in-situ generation of carboxylium species that reacts with the nucleophilic part of boronic acids in a concerted way to produce carboxylic esters. Good efficiency and functional group tolerance are demonstrated. Application of this method to the functionalization of a boronic acid drug used as HSL enzyme inhibitor produces smoothly the ester derivative. This difluorocarbene-mediated O-O bond activation strategy is conceptually different from traditional radical type methods, and is also complementary to conventional esterification methods with a distinct retro-synthetic disconnection.
Collapse
Affiliation(s)
- Hao-Lin Niu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Road 1800, Jiangsu Province, Wuxi, 214122, China
| | - Peng-Xi Luo
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Road 1800, Jiangsu Province, Wuxi, 214122, China
| | - Song-Lin Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Road 1800, Jiangsu Province, Wuxi, 214122, China
| |
Collapse
|
5
|
Ai HJ, Kim ST, Liu C, Buchwald SL. Copper-Catalyzed Amination of Aryl Chlorides under Mild Reaction Conditions. J Am Chem Soc 2024; 146:25949-25955. [PMID: 39283164 DOI: 10.1021/jacs.4c10237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
We report a mild method for the copper-catalyzed amination of aryl chlorides. Key to the success of the method was the use of highly sterically encumbered N1,N2-diaryl diamine ligands which resist catalyst deactivation, allowing reactions to proceed at significantly lower temperatures and with a broader scope than current protocols. A sequence of highly chemoselective C-N and C-O cross-coupling reactions were demonstrated, and mechanistic studies indicate that oxidative addition of the Cu catalyst to the aryl chlorides is rate-limiting. We anticipate that the design principles disclosed herein will help motivate further advances in Cu-catalyzed transformations of aryl chlorides.
Collapse
Affiliation(s)
- Han-Jun Ai
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Seoung-Tae Kim
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Cecilia Liu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Avalos-Ballester V, Acosta B, Smolentseva E. Remarkable Enhancement of Catalytic Reduction of Nitrophenol Isomers by Decoration of Ni Nanosheets with Cu Species. ACS OMEGA 2024; 9:37981-37994. [PMID: 39281961 PMCID: PMC11391462 DOI: 10.1021/acsomega.4c04762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024]
Abstract
Herein, the catalytic reduction of isomers of nitrophenols (NPS) using Ni x Cu y nanostructures with different molar ratios is presented. Ni x Cu y catalysts are prepared using star-shaped Ni nanoparticles as seeds. The applied synthesis transforms Ni nanoparticles into sheet-like structures when Cu species are deposited on them. The bimetallic sheet-like Ni x Cu y nanostructures demonstrate high catalytic activity to reduce NP isomers concerning their monometallic counterparts. The contribution of the Cu+ species affects the catalytic reduction of the NPS isomers. For example, the catalytic reduction of 4-nitrophenol (4-NP) depends on the Ni:Cu molar ratio: Ni1.75Cu > Cu > NiCu > Ni7Cu > Ni3.5Cu > Ni. The Ni7Cu catalyst exhibits the highest catalytic activity in the reduction of nitrophenol isomers 2-nitrophenol (2-NP) and 3-nitrophenol (3-NP), and the obtained results are comparable with those reported for noble-metal-based catalysts. The low-cost production of Ni x Cu y catalysts and their high catalytic stability and availability make them attractive for industrial applications.
Collapse
Affiliation(s)
- Victoria Avalos-Ballester
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí, S.L.P. 78000, México
| | - Brenda Acosta
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí, S.L.P. 78000, México
- Investigadora por México CONAHCYT, Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí, S.L.P. 78000, México
| | - Elena Smolentseva
- Universidad Nacional Autónoma de México Centro de Nanociencias y Nanotecnología, Km. 107 Carretera Tijuana a Ensenada, C.P. 22860 Ensenada, B.C., México
| |
Collapse
|
7
|
Xu L, Zhu J, Shen X, Chai J, Shi L, Wu B, Li W, Ma D. 6-Hydroxy Picolinohydrazides Promoted Cu(I)-Catalyzed Hydroxylation Reaction in Water: Machine-Learning Accelerated Ligands Design and Reaction Optimization. Angew Chem Int Ed Engl 2024:e202412552. [PMID: 39189301 DOI: 10.1002/anie.202412552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 08/28/2024]
Abstract
Hydroxylated (hetero)arenes are privileged motifs in natural products, materials, small-molecule pharmaceuticals and serve as versatile intermediates in synthetic organic chemistry. Herein, we report an efficient Cu(I)/6-hydroxy picolinohydrazide-catalyzed hydroxylation reaction of (hetero)aryl halides (Br, Cl) in water. By establishing machine learning (ML) models, the design of ligands and optimization of reaction conditions were effectively accelerated. The N-(1,3-dimethyl-9H- carbazol-9-yl)-6-hydroxypicolinamide (L32, 6-HPA-DMCA) demonstrated high efficiency for (hetero)aryl bromides, promoting hydroxylation reactions with a minimal catalyst loading of 0.01 mol % (100 ppm) at 80 °C to reach 10000 TON; for substrates containing sensitive functional groups, the catalyst loading needs to be increased to 3.0 mol % under near-room temperature conditions. N-(2,7-Di-tert-butyl-9H-carbazol-9-yl)-6-hydroxypicolinamide (L42, 6-HPA-DTBCA) displayed superior reaction activity for chloride substrates, enabling hydroxylation reactions at 100 °C with 2-3 mol % catalyst loading. These represent the state of art for both lowest catalyst loading and temperature in the copper-catalyzed hydroxylation reactions. Furthermore, this method features a sustainable and environmentally friendly solvent system, accommodates a wide range of substrates, and shows potential for developing robust and scalable synthesis processes for key pharmaceutical intermediates.
Collapse
Affiliation(s)
- Lanting Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Jiazhou Zhu
- Suzhou Novartis Technical Development Co., Ltd., #18-1, Tonglian Road, Bixi Subdistrict, Changshu, Jiangsu, 215537, China
| | - Xiaodong Shen
- Suzhou Novartis Technical Development Co., Ltd., #18-1, Tonglian Road, Bixi Subdistrict, Changshu, Jiangsu, 215537, China
| | - Jiashuang Chai
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuang Lu, Shanghai, 200062, China
| | - Lei Shi
- Suzhou Novartis Technical Development Co., Ltd., #18-1, Tonglian Road, Bixi Subdistrict, Changshu, Jiangsu, 215537, China
| | - Bin Wu
- Suzhou Novartis Technical Development Co., Ltd., #18-1, Tonglian Road, Bixi Subdistrict, Changshu, Jiangsu, 215537, China
| | - Wei Li
- Suzhou Novartis Technical Development Co., Ltd., #18-1, Tonglian Road, Bixi Subdistrict, Changshu, Jiangsu, 215537, China
| | - Dawei Ma
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
8
|
Purohit S, Oswal P, Bahuguna A, Tyagi A, Bhatt N, Kumar A. Catalytic system having an organotellurium ligand on graphene oxide: immobilization of Pd(0) nanoparticles and application in heterogeneous catalysis of cross-coupling reactions. RSC Adv 2024; 14:27092-27109. [PMID: 39193294 PMCID: PMC11348857 DOI: 10.1039/d4ra03401e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
First heterogeneous catalytic system, having a covalently linked hybrid bidentate organotellurium ligand [i.e., PhTe-CH2-CH2-NH2] on the surface of graphene oxide, has been synthesized with immobilized and stabilized Pd(0) nanoparticles. To the best of our knowledge, it is the first such catalytic system in which a heterogenized organotellurium ligand has been used. It has been well-characterized using different physicochemical characterization techniques viz. P-XRD, XPS, HR-TEM, EELS, FE-SEM, EDX, TGA, BET surface area analysis, FT-IR spectroscopy, and Raman spectroscopy. The Pd content of the final system has been quantified using ICP-OES. Its applications have been explored in Suzuki-Miyaura C-C cross coupling and C-O cross coupling reactions. Hot filtration experiments corroborate the heterogeneous nature of the catalysis. It is recyclable for up to five reaction cycles in Suzuki-Miyaura and C-O cross coupling with marginal loss in performance. It also catalyzes the reactions of chloroarenes such as chlorobenzene, 4-chloroaniline, 1-chloro-4-nitrobenzene, 4-chloroacetophenone, 4-chlorobenzophenone for Suzuki coupling, and 1-chloro-4-nitrobenzene, 4-chlorobenzonitrile, chlorobenzene, and 4-chlorotoluene for C-O coupling. P-XRD, FE-SEM, and EDX study reveals that the catalytic system retains its structural originality and functionality after recycling.
Collapse
Affiliation(s)
- Suraj Purohit
- Department of Chemistry, School of Physical Sciences, Doon University Dehradun-248001 India
| | - Preeti Oswal
- Department of Chemistry, School of Physical Sciences, Doon University Dehradun-248001 India
| | - Anurag Bahuguna
- Department of Chemistry, School of Physical Sciences, Doon University Dehradun-248001 India
| | - Anupma Tyagi
- Department of Chemistry, School of Physical Sciences, Doon University Dehradun-248001 India
| | - Neeraj Bhatt
- Department of Chemistry, School of Physical Sciences, Doon University Dehradun-248001 India
| | - Arun Kumar
- Department of Chemistry, School of Physical Sciences, Doon University Dehradun-248001 India
| |
Collapse
|
9
|
Wei Y, Li Y, Li X, Yang T, Chen X, Li Y, Zhou Y, Wang J, Zhang J, Li H, Ling H, Wang S, Liu Y, Xie L. Double C-H Amination of Naphthylamine Derivatives by the Cross-Dehydrogenation Coupling Reaction. J Org Chem 2024; 89:11195-11202. [PMID: 39067013 DOI: 10.1021/acs.joc.4c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A high-efficiency tandem process has been developed for the formation of two C-N bonds through a cross-dehydrogenative coupling (CDC) amination of spiro[acridine-9,9'-fluorene]s (SAFs) with amines. This method offers a strategically innovative and atom-economical approach to obtaining diamine-substituted SAFs. Notably, the approach eliminates the need for metal catalysts and other additives, relying solely on O2 as the oxidant. A self-activation mechanism has been proposed to elucidate the effective double amination in the CDC process.
Collapse
Affiliation(s)
- Ying Wei
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yue Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xiaoyan Li
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Tonglin Yang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xin Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yang Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yang Zhou
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jiacheng Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jingrui Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Hao Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Haifeng Ling
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Shasha Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yuyu Liu
- Electrical Engineering College, Nanjing Vocational University of Industry Technology, Nanjing 210023, China
| | - Linghai Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
10
|
Dake G, Blanchard N, Kaliappan KP. Synthesis of N-Alkyl Substituted Benzimidazoquinazolinones. ACS OMEGA 2024; 9:33805-33814. [PMID: 39130563 PMCID: PMC11307283 DOI: 10.1021/acsomega.4c03327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/29/2024] [Accepted: 07/18/2024] [Indexed: 08/13/2024]
Abstract
Aromatic N-heterocycles, especially benzimidazoquinazolinones featuring alkyl chains, hold significant pharmaceutical relevance. Here, we introduce a streamlined one-pot, 2-fold Cu-catalyzed C-N bond formation protocol for the efficient synthesis of diverse N-alkyl benzimidazoquinazolinone derivatives. This method showcases a broad substrate scope, leveraging readily accessible alkyl halides and delivers the desired cyclized products in excellent yields. Additionally, the methodology enabled the synthesis of an antitumor agent with satisfactory yield, highlighting its utility in medicinal chemistry endeavors.
Collapse
Affiliation(s)
- Gaurav
G. Dake
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400 076, India
| | - Nicolas Blanchard
- CNRS,
LIMA, UMR 7042, Universite de Haute Alsace/University
of Strasbourg, Mulhouse 68000, France
| | - Krishna P. Kaliappan
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400 076, India
| |
Collapse
|
11
|
Chen PH, Hsu SJ, Chen CC, Fu JC, Hou DR. Synthesis of Diarylamines via Nitrosonium-Initiated C-N Bond Formation. J Org Chem 2024; 89:10316-10326. [PMID: 38950197 PMCID: PMC11267615 DOI: 10.1021/acs.joc.4c01220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024]
Abstract
Electron-rich diarylamines, exemplified by anisole-derived amines, play pivotal roles in process chemistry, pharmaceuticals, and materials. In this study, homo-diarylamines were synthesized directly from the C-H activation of electron-rich arenes by sodium nitrate/trifluoroacetic acid and the successive treatment of iron powder. Mechanistic investigations reveal that nitrosoarene serves as the reaction intermediate, and the formation of the second C-N bond between the resulting nitrosoarene and electron-rich arene is catalyzed by the nitrosonium ion (NO+). Thus, hetero-diarylamines were synthesized using preformed nitrosoarenes and various electron-rich arenes. This reaction complements a range of cross-coupling reactions catalyzed by transition metal catalysts.
Collapse
Affiliation(s)
| | | | - Cheng-Chun Chen
- Department of Chemistry, National Central University, 300 Jhong-Da Rd., Jhong-Li, Taoyuan 320317, Taiwan
| | - Jui-Chen Fu
- Department of Chemistry, National Central University, 300 Jhong-Da Rd., Jhong-Li, Taoyuan 320317, Taiwan
| | - Duen-Ren Hou
- Department of Chemistry, National Central University, 300 Jhong-Da Rd., Jhong-Li, Taoyuan 320317, Taiwan
| |
Collapse
|
12
|
Wei SQ, Li ZH, Wang SH, Chen H, Wang XY, Gu YZ, Zhang Y, Wang H, Ding TM, Zhang SY, Tu YQ. Asymmetric Intramolecular Amination Catalyzed with Cp*Ir-SPDO via Nitrene Transfer for Synthesis of Spiro-Quaternary Indolinone. J Am Chem Soc 2024; 146:18841-18847. [PMID: 38975938 DOI: 10.1021/jacs.4c05560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
An asymmetric intramolecular spiro-amination to high steric hindering α-C-H bond of 1,3-dicarbonyl via nitrene transfer using inactive aryl azides has been carried out by developing a novel Cp*Ir(III)-SPDO (spiro-pyrrolidine oxazoline) catalyst, thereby enabling the first successful construction of structurally rigid spiro-quaternary indolinone cores with moderate to high yields and excellent enantioselectivities. DFT computations support the presence of double bridging H-F bonds between [SbF6]- and both the ligand and substrate, which favors the plane-differentiation of the enol π-bond for nitrenoid attacking. These findings open up numerous opportunities for the development of new asymmetric nitrene transfer systems.
Collapse
Affiliation(s)
- Shi-Qiang Wei
- School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai Key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai, Minhang 200240, China
| | - Zi-Hao Li
- School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai Key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai, Minhang 200240, China
| | - Shuang-Hu Wang
- School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai Key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai, Minhang 200240, China
| | - Hua Chen
- College of Pharmaceutical Science and Collaborative Innovation Cent of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiao-Yu Wang
- School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai Key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai, Minhang 200240, China
| | - Yun-Zhou Gu
- School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai Key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai, Minhang 200240, China
| | - Ye Zhang
- School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai Key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai, Minhang 200240, China
| | - Hong Wang
- College of Pharmaceutical Science and Collaborative Innovation Cent of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tong-Mei Ding
- School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai Key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai, Minhang 200240, China
| | - Shu-Yu Zhang
- School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai Key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai, Minhang 200240, China
| | - Yong-Qiang Tu
- School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai Key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai, Minhang 200240, China
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
13
|
Tang MP, Zhu L, Deng Y, Shi YX, Kin-Man Lai S, Mo X, Pang XY, Liu C, Jiang W, Tse ECM, Au-Yeung HY. Water and Air Stable Copper(I) Complexes of Tetracationic Catenane Ligands for Oxidative C-C Cross-Coupling. Angew Chem Int Ed Engl 2024; 63:e202405971. [PMID: 38661248 DOI: 10.1002/anie.202405971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 04/26/2024]
Abstract
Aqueous soluble and stable Cu(I) molecular catalysts featuring a catenane ligand composed of two dicationic, mutually repelling but mechanically interlocked macrocycles are reported. The ligand interlocking not only fine-tunes the coordination sphere and kinetically stabilizes the Cu(I) against air oxidation and disproportionation, but also buries the hydrophobic portions of the ligands and prevents their dissociation which are necessary for their good water solubility and a sustained activity. These catenane Cu(I) complexes can catalyze the oxidative C-C coupling of indoles and tetrahydroisoquinolines in water, using H2O2 as a green oxidant with a good substrate scope. The successful use of catenane ligands in exploiting aqueous Cu(I) catalysis thus highlights the many unexplored potential of mechanical bond as a design element for exploring transition metal catalysis under challenging conditions.
Collapse
Affiliation(s)
- Man Pang Tang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Lihui Zhu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Yulin Deng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Yi-Xiang Shi
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Samuel Kin-Man Lai
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Xiaoyong Mo
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Xin-Yu Pang
- Department of Chemistry, South University of Science and Technology of China, Xueyuan Blvd 1088, Shenzhen, 518055, P. R. China
| | - Chunyu Liu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, 100083, P. R. China
| | - Wei Jiang
- Department of Chemistry, South University of Science and Technology of China, Xueyuan Blvd 1088, Shenzhen, 518055, P. R. China
| | - Edmund Chun Ming Tse
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- CAS-HKU Joint Laboratory on New Materials, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Ho Yu Au-Yeung
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- CAS-HKU Joint Laboratory on New Materials, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
14
|
Phulwale V, Shet H, Gunturu KC, Rout SR, Dandela R, Adhav S, Kapdi AR. Cu(II)/PTABS-Promoted, Chemoselective Amination of HaloPyrimidines. J Org Chem 2024; 89:9243-9254. [PMID: 38878304 DOI: 10.1021/acs.joc.4c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Chemoselective amination is a highly desired synthetic methodology, given its importance as a possible strategy to synthesize various drug molecules and agrochemicals. We, herein, disclose a highly chemoselective Cu(II)-PTABS-promoted amination of pyrimidine structural feature containing different halogen atoms.
Collapse
Affiliation(s)
- Vikram Phulwale
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India
| | - Harshita Shet
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India
| | | | - Smruti Rekha Rout
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology-Indian Oil Odisha Campus , Samantpuri, Bhubaneswar, Odisha 751013, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology-Indian Oil Odisha Campus , Samantpuri, Bhubaneswar, Odisha 751013, India
| | - Suyog Adhav
- BASF Chemicals India Pvt. Ltd., Plot No 12, Thane Belapur Road, Navi Mumbai 400705, India
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India
| |
Collapse
|
15
|
Elavarasan V, Vijayakumar S, Aldawood S, Thangaswamy S, Prathipkumar S. Assessment of luminescent copper nanomaterials as anti-germs, anti-proliferation efficiencies using green nano-strategy. LUMINESCENCE 2024; 39:e4831. [PMID: 39051545 DOI: 10.1002/bio.4831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
For the first time, we suggest using leaf extract from Ocimum americanum as the economically viable bio-fabrication of copper nanomaterials. The residuals of leaf extract bio-capping provide the stability of the nanomaterials in-situ. UV-Vis and XRD confirmed the formation, with the UV-Vis spectrum of Cu-NMs revealing a surface plasmon resonance characteristic peak at 350 nm. FT-IR analysis was employed to examine the functional groups. FE-SEM with EDX was used to assess the morphology and carry out an elemental analysis of the nanomaterials. Diffusion and MTT assays were used to study the antimicrobial and anticancer activities. The synthesized copper nanomaterials exhibited in-vitro cytotoxicity against human skin cancer (A431) cell lines. Green nanomaterial was examined against the methylene blue dye, photodegradation was reduced by up to 90.6% within 50 minutes. The copper nanomaterials synthesized in our study exhibit promising applications in biomedicine and environmental pollution research.
Collapse
Affiliation(s)
- Vidhya Elavarasan
- Department of Botany, Sri Vijay Vidyalaya College of Arts and Science (Women), Affiliated to Periyar University, Bargur, Krishnagiri, India
| | | | - Saad Aldawood
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Selvankumar Thangaswamy
- Biomaterials Research Unit, Center for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu, India
| | | |
Collapse
|
16
|
Cao L, Liu R, Huang Y, Chu D, Li M, Xu G, Li X, Huang J, Zhao Y, Feng L. Electronic-Structure-Modulated Cu,Co-Coanchored N-Doped Nanocarbon as a Difunctional Electrocatalyst for Hydrogen Evolution and Oxygen Reduction Reactions. Molecules 2024; 29:2973. [PMID: 38998925 PMCID: PMC11243191 DOI: 10.3390/molecules29132973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
To alleviate the problems of environmental pollution and energy crisis, aggressive development of clean and alternative energy technologies, in particular, water splitting, metal-air batteries, and fuel cells involving two key half reactions comprising hydrogen evolution reaction (HER) and oxygen reduction (ORR), is crucial. In this work, an innovative hybrid comprising heterogeneous Cu/Co bimetallic nanoparticles homogeneously dispersed on a nitrogen-doped carbon layer (Cu/Co/NC) was constructed as a bifunctional electrocatalyst toward HER and ORR via a hydrothermal reaction along with post-solid-phase sintering technique. Thanks to the interfacial coupling and electronic synergism between the Cu and Co bimetallic nanoparticles, the Cu/Co/NC catalyst showed improved catalytic ORR activity with a half-wave potential of 0.865 V and an excellent stability of more than 30 h, even compared to 20 wt% Pt/C. The Cu/Co/NC catalyst also exhibited excellent HER catalytic performance with an overpotential of below 149 mV at 10 mA/cm2 and long-term operation for over 30 h.
Collapse
Affiliation(s)
- Liyun Cao
- School of Materials Science and Engineering, International S&T Cooperation Foundation of Shaanxi Province, Shaanxi University of Science and Technology, Xi’an 710021, China; (L.C.); (R.L.); (X.L.); (Y.Z.)
| | - Rui Liu
- School of Materials Science and Engineering, International S&T Cooperation Foundation of Shaanxi Province, Shaanxi University of Science and Technology, Xi’an 710021, China; (L.C.); (R.L.); (X.L.); (Y.Z.)
| | - Yixuan Huang
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia; (Y.H.); (D.C.); (M.L.)
| | - Dewei Chu
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia; (Y.H.); (D.C.); (M.L.)
| | - Mengyao Li
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia; (Y.H.); (D.C.); (M.L.)
| | - Guoting Xu
- College of Chemistry and Environmental Sciences, Kashi University, Kashi 844000, China;
| | - Xiaoyi Li
- School of Materials Science and Engineering, International S&T Cooperation Foundation of Shaanxi Province, Shaanxi University of Science and Technology, Xi’an 710021, China; (L.C.); (R.L.); (X.L.); (Y.Z.)
| | - Jianfeng Huang
- School of Materials Science and Engineering, International S&T Cooperation Foundation of Shaanxi Province, Shaanxi University of Science and Technology, Xi’an 710021, China; (L.C.); (R.L.); (X.L.); (Y.Z.)
| | - Yong Zhao
- School of Materials Science and Engineering, International S&T Cooperation Foundation of Shaanxi Province, Shaanxi University of Science and Technology, Xi’an 710021, China; (L.C.); (R.L.); (X.L.); (Y.Z.)
| | - Liangliang Feng
- School of Materials Science and Engineering, International S&T Cooperation Foundation of Shaanxi Province, Shaanxi University of Science and Technology, Xi’an 710021, China; (L.C.); (R.L.); (X.L.); (Y.Z.)
| |
Collapse
|
17
|
Gisbert Y, Simón Marqués P, Baccini C, Abid S, Saffon-Merceron N, Rapenne G, Kammerer C. Copper-catalysed perarylation of cyclopentadiene: synthesis of hexaarylcyclopentadienes. Chem Sci 2024; 15:9127-9137. [PMID: 38903211 PMCID: PMC11186316 DOI: 10.1039/d4sc02458c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
While hexaphenylsilacyclopentadiene (hexaphenylsilole) is viewed as an archetypal Aggregation-Induced Emission (AIE) luminogen, its isostructural hydrocarbon surrogate hexaphenylcyclopentadiene has strikingly never been investigated in this context, most probably due to a lack of synthetic availability. Herein, we report a straightforward synthesis of hexaphenylcyclopentadiene, via the direct perarylation of cyclopentadiene upon copper(i) catalysis under microwave activation, with the formation of six new C-C bonds in a single synthetic operation. Using zirconocene dichloride as a convenient source of cyclopentadiene and a variety of aryl iodides as coupling partners, this copper-catalysed cross-coupling reaction gave rise to a series of unprecedented hexaarylcyclopentadienes. The latter are direct precursors of extended π-conjugated polycyclic compounds, and their cyclodehydrogenation under Scholl reaction conditions yielded helicenic 17,17-diarylcyclopenta[l,l']diphenanthrenes. These structurally complex polyannelated fluorene derivatives can now be prepared in only two synthetic steps from cyclopentadiene.
Collapse
Affiliation(s)
- Yohan Gisbert
- CEMES, Université de Toulouse, CNRS 29 Rue Marvig 31055 Toulouse France
| | | | - Caterina Baccini
- CEMES, Université de Toulouse, CNRS 29 Rue Marvig 31055 Toulouse France
| | - Seifallah Abid
- CEMES, Université de Toulouse, CNRS 29 Rue Marvig 31055 Toulouse France
| | - Nathalie Saffon-Merceron
- Université de Toulouse, UPS, Institut de Chimie de Toulouse ICT UAR 2599, 118 Route de Narbonne 31062 Toulouse France
| | - Gwénaël Rapenne
- CEMES, Université de Toulouse, CNRS 29 Rue Marvig 31055 Toulouse France
- Division of Materials Science, Nara Institute of Science and Technology 8916-5 Takayama, Ikoma Nara Japan
| | - Claire Kammerer
- CEMES, Université de Toulouse, CNRS 29 Rue Marvig 31055 Toulouse France
| |
Collapse
|
18
|
Wu F, Chang J, Bai D. Synthesis of Sterically Hindered Dialkyl Ethers via Palladium-Catalyzed Fluoro-alkoxylation of gem-Difluoroalkenes. Org Lett 2024; 26:4953-4957. [PMID: 38815137 DOI: 10.1021/acs.orglett.4c01541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Organofluorine compounds are of high value in medicinal and agricultural chemistry. Herein, we report a palladium-catalyzed fluoro-alkoxylation of gem-difluoroalkenes for the synthesis of much more challenging sterically hindered ethers. This reaction represents a direct synthesis method for α-trifluoromethyl ethers with a broad functional group tolerance and excellent regioselectivity. This system employs N-fluorobenzenesulfonimide (NFSI) as an electrophilic fluorine source and alcohols as nucleophilic donors, including but not limited to sterically hindered tert-substituted alcohols.
Collapse
Affiliation(s)
- Fen Wu
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, China
| | - Junbiao Chang
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, China
| | - Dachang Bai
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
19
|
Talukdar V, Mondal K, Halder P, Das P. Ullmann-Type N-, S-, and O-Arylation Using a Well-Defined 7-Azaindole- N-oxide (7-AINO)-Based Copper(II) Catalyst: Scope and Application to Drug Synthesis. J Org Chem 2024; 89:7455-7471. [PMID: 38773695 DOI: 10.1021/acs.joc.3c02852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
An air-stable, robust, and well-defined copper(II)-7-azaindole-N-oxide-based catalyst [Cu2II(7-AINO)4] (abbreviated as Cu(II)-7-AINO) has been demonstrated as an efficient catalyst for various Ullmann-type coupling reactions. This easily prepared and cost-effective catalyst facilitates the arylation and heteroarylation of diverse N-, S-, and O-nucleophiles, including azoles, aminoazoles, (hetero)arylthiols, and phenols. Notably, they also exhibit substantial compatibility with a wide range of functional groups. Furthermore, the catalyst demonstrates significant selectivity for -NH sites of aminoazoles and -SH sites of aminothiophenols over -NH2 sites in both cases, enhancing its versatility. Exploiting the catalyst's chemo- and regioselective properties, we have successfully demonstrated the applicability of our methodology in synthesizing various drug molecules. Specifically, Epirizole analogue, Nilotinib, and Vortioxetine were successfully synthesized using our protocol.
Collapse
Affiliation(s)
- Vishal Talukdar
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Krishanu Mondal
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Pallabi Halder
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Parthasarathi Das
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| |
Collapse
|
20
|
Sciacca C, Cardullo N, Pulvirenti L, Travagliante G, D'Urso A, D'Agata R, Peri E, Cancemi P, Cornu A, Deffieux D, Pouységu L, Quideau S, Muccilli V. Synthesis of obovatol and related neolignan analogues as α-glucosidase and α-amylase inhibitors. Bioorg Chem 2024; 147:107392. [PMID: 38723423 DOI: 10.1016/j.bioorg.2024.107392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/12/2024] [Accepted: 04/21/2024] [Indexed: 05/18/2024]
Abstract
Diabetes mellitus is a metabolic disease characterized by hyperglycemia, which can be counteracted by the inhibition of α-glucosidase (α-Glu) and α-amylase (α-Amy), enzymes responsible for the hydrolysis of carbohydrates. In recent decades, many natural compounds and their bioinspired analogues have been studied as α-Glu and α-Amy inhibitors. However, no studies have been devoted to the evaluation of α-Glu and α-Amy inhibition by the neolignan obovatol (1). In this work, we report the synthesis of 1 and a library of new analogues. The synthesis of these compounds was achieved by implementing methodologies based on: phenol allylation, Claisen/Cope rearrangements, methylation, Ullmann coupling, demethylation, phenol oxidation and Michael-type addition. Obovatol (1) and ten analogues were evaluated for their in vitro inhibitory activity towards α-Glu and α-Amy. Our investigation highlighted that the naturally occurring 1 and four neolignan analogues (11, 22, 26 and 27) were more effective inhibitors than the hypoglycemic drug acarbose (α-Amy: 34.6 µM; α-Glu: 248.3 µM) with IC5O value of 6.2-23.6 µM toward α-Amy and 39.8-124.6 µM toward α-Glu. Docking investigations validated the inhibition outcomes, highlighting optimal compatibility between synthesized neolignans and both the enzymes. Concurrently circular dichroism spectroscopy detected the conformational changes in α-Glu induced by its interaction with the studied neolignans. Detailed studies through fluorescence measurements and kinetics of α-Glu and α-Amy inhibition also indicated that 1, 11, 22, 26 and 27 have the greatest affinity for α-Glu and 1, 11 and 27 for α-Amy. Surface plasmon resonance imaging (SPRI) measurements confirmed that among the compounds studied, the neolignan 27 has the greater affinity for both enzymes, thus corroborating the results obtained by kinetics and fluorescence quenching. Finally, in vitro cytotoxicity of the investigated compounds was tested on human colon cancer cell line (HCT-116). All these results demonstrate that these obovatol-based neolignan analogues constitute promising candidates in the pursuit of developing novel hypoglycemic drugs.
Collapse
Affiliation(s)
- Claudia Sciacca
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Nunzio Cardullo
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Luana Pulvirenti
- CNR-ICB, Consiglio Nazionale delle Ricerche-Istituto di Chimica Biomolecolare, via Paolo Gaifami 18, Catania 95126, Italy
| | - Gabriele Travagliante
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Alessandro D'Urso
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Roberta D'Agata
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Emanuela Peri
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90128, Italy
| | - Patrizia Cancemi
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90128, Italy
| | - Anaëlle Cornu
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, Talence Cedex, France
| | - Denis Deffieux
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, Talence Cedex, France
| | - Laurent Pouységu
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, Talence Cedex, France
| | - Stéphane Quideau
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, Talence Cedex, France; Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France.
| | - Vera Muccilli
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy.
| |
Collapse
|
21
|
Parte LG, Fernández S, Sandonís E, Guerra J, López E. Transition-Metal-Catalyzed Transformations for the Synthesis of Marine Drugs. Mar Drugs 2024; 22:253. [PMID: 38921564 PMCID: PMC11204618 DOI: 10.3390/md22060253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/27/2024] Open
Abstract
Transition metal catalysis has contributed to the discovery of novel methodologies and the preparation of natural products, as well as new chances to increase the chemical space in drug discovery programs. In the case of marine drugs, this strategy has been used to achieve selective, sustainable and efficient transformations, which cannot be obtained otherwise. In this perspective, we aim to showcase how a variety of transition metals have provided fruitful couplings in a wide variety of marine drug-like scaffolds over the past few years, by accelerating the production of these valuable molecules.
Collapse
Affiliation(s)
- Lucía G. Parte
- Department of Organic Chemistry, Science Faculty, University of Valladolid (UVa), Paseo de Belén 7, 47011 Valladolid, Spain; (L.G.P.); (E.S.)
| | - Sergio Fernández
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London (QMUL), Mile End Road, London E1 4NS, UK;
| | - Eva Sandonís
- Department of Organic Chemistry, Science Faculty, University of Valladolid (UVa), Paseo de Belén 7, 47011 Valladolid, Spain; (L.G.P.); (E.S.)
| | - Javier Guerra
- Department of Organic Chemistry, Science Faculty, University of Valladolid (UVa), Paseo de Belén 7, 47011 Valladolid, Spain; (L.G.P.); (E.S.)
| | - Enol López
- Department of Organic Chemistry, ITAP, School of Engineering (EII), University of Valladolid (UVa), Dr Mergelina, 47002 Valladolid, Spain
| |
Collapse
|
22
|
Ghosh A, Sagadevan A, Murugesan K, Nastase SAF, Maity B, Bodiuzzaman M, Shkurenko A, Hedhili MN, Yin J, Mohammed OF, Eddaoudi M, Cavallo L, Rueping M, Bakr OM. Multiple neighboring active sites of an atomically precise copper nanocluster catalyst for efficient bond-forming reactions. MATERIALS HORIZONS 2024; 11:2494-2505. [PMID: 38477151 DOI: 10.1039/d4mh00098f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Atomically precise copper nanoclusters (NCs) are an emerging class of nanomaterials for catalysis. Their versatile core-shell architecture opens the possibility of tailoring their catalytically active sites. Here, we introduce a core-shell copper nanocluster (CuNC), [Cu29(StBu)13Cl5(PPh3)4H10]tBuSO3 (StBu: tert-butylthiol; PPh3: triphenylphosphine), Cu29NC, with multiple accessible active sites on its shell. We show that this nanocluster is a versatile catalyst for C-heteroatom bond formation (C-O, C-N, and C-S) with several advantages over previous Cu systems. When supported, the cluster can also be reused as a heterogeneous catalyst without losing its efficiency, making it a hybrid homogeneous and heterogeneous catalyst. We elucidated the atomic-level mechanism of the catalysis using density functional theory (DFT) calculations based on the single crystal structure. We found that the cooperative action of multiple neighboring active sites is essential for the catalyst's efficiency. The calculations also revealed that oxidative addition is the rate-limiting step that is facilitated by the neighboring active sites of the Cu29NC, which highlights a unique advantage of nanoclusters over traditional copper catalysts. Our results demonstrate the potential of nanoclusters for enabling the rational atomically precise design and investigation of multi-site catalysts.
Collapse
Affiliation(s)
- Atanu Ghosh
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Arunachalam Sagadevan
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Kathiravan Murugesan
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Stefan Adrian F Nastase
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Bholanath Maity
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Mohammad Bodiuzzaman
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Aleksander Shkurenko
- Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mohamed Nejib Hedhili
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jun Yin
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong, China
| | - Omar F Mohammed
- Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mohamed Eddaoudi
- Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Osman M Bakr
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
23
|
Cook A, Newman SG. Alcohols as Substrates in Transition-Metal-Catalyzed Arylation, Alkylation, and Related Reactions. Chem Rev 2024; 124:6078-6144. [PMID: 38630862 DOI: 10.1021/acs.chemrev.4c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Alcohols are abundant and attractive feedstock molecules for organic synthesis. Many methods for their functionalization require them to first be converted into a more activated derivative, while recent years have seen a vast increase in the number of complexity-building transformations that directly harness unprotected alcohols. This Review discusses how transition metal catalysis can be used toward this goal. These transformations are broadly classified into three categories. Deoxygenative functionalizations, representing derivatization of the C-O bond, enable the alcohol to act as a leaving group toward the formation of new C-C bonds. Etherifications, characterized by derivatization of the O-H bond, represent classical reactivity that has been modernized to include mild reaction conditions, diverse reaction partners, and high selectivities. Lastly, chain functionalization reactions are described, wherein the alcohol group acts as a mediator in formal C-H functionalization reactions of the alkyl backbone. Each of these three classes of transformation will be discussed in context of intermolecular arylation, alkylation, and related reactions, illustrating how catalysis can enable alcohols to be directly harnessed for organic synthesis.
Collapse
Affiliation(s)
- Adam Cook
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
24
|
Kumar P, Nemiwal M. Advanced Functionalized Nanoclusters (Cu, Ag, and Au) as Effective Catalyst for Organic Transformation Reactions. Chem Asian J 2024; 19:e202400062. [PMID: 38386668 DOI: 10.1002/asia.202400062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/24/2024]
Abstract
A considerable amount of research has been carried out in recent years on synthesizing metal nanoclusters (NCs), which have wide applications in the field of optical materials with non-linear properties, bio-sensing, and catalysis. Aside from being structurally accurate, the atomically precise NCs possess well-defined compositions due to significant tailoring, both at the surface and the core, for certain functionalities. To illustrate the importance of atomically precise metal NCs for catalytic processes, this review emphasizes 1) the recent work on Cu, Ag, and Au NCs with their synthesis, 2) the parameters affecting the activity and selectivity of NCs catalysis, and 3) the discussion on the catalytic potential of these metal NCs. Additionally, metal NCs will facilitate the design of extremely active and selective catalysts for significant reactions by elucidating catalytic mechanisms at the atomic and molecular levels. Future advancements in the science of catalysis are expected to come from the potential to design NCs catalysts at the atomic level.
Collapse
Affiliation(s)
- Parveen Kumar
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, 302017, India
| | - Meena Nemiwal
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, 302017, India
| |
Collapse
|
25
|
Yasui S, Banjo S, Nagashima Y, Okada Y, Yoshikawa K, Nakata K, Chida N, Okamura T, Sato T. Total Synthesis of Lobatamides A and C. Angew Chem Int Ed Engl 2024; 63:e202402335. [PMID: 38454885 DOI: 10.1002/anie.202402335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
The total synthesis of lobatamides A (1 a) and C (1 c) via a common bislactone intermediate is reported. The allylic aryl moiety including a trisubstituted Z-olefin was constructed by hydroboration of a 1,1-disubstituted allene and subsequent Migita-Kosugi-Stille coupling. Although the seco acid proved to be highly unstable even in the presence of weak bases, Zhao macrolactonization under acidic conditions via the α-acyloxyenamide successfully provided the common bislactone intermediate. Hydrozirconation-iodination of the terminal alkyne and subsequent copper-mediated coupling with primary amides proceeded successfully in the presence of the sensitive bislactone framework. The developed synthetic route enables the late-stage installation of enamide side chains, which are crucial structures for V-ATPase inhibition.
Collapse
Affiliation(s)
- Soichiro Yasui
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Shona Banjo
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Yoshiyuki Nagashima
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Yuto Okada
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Kao Yoshikawa
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Keisuke Nakata
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Noritaka Chida
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Toshitaka Okamura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Takaaki Sato
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| |
Collapse
|
26
|
Mishra S, Aghi A, Kumar A. Rh(III)-Catalyzed Controlled Ortho-Amidation of Arylamides with Dioxazolones Using Weakly Coordinating Native Primary Amide as the Directing Group. J Org Chem 2024; 89:5606-5618. [PMID: 38557043 DOI: 10.1021/acs.joc.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Herein, we report a controlled introduction of an amide unit at the ortho-position of an electron-deficient arylamide system without affording any cyclized products using user-friendly dioxazolone as an amidating reagent in the presence of a Rh(III)-catalyst. This is the first report where native primary amide has been utilized as a weakly coordinating group for site-selective C-N bond formation reaction. The developed protocol works under external auxiliary-free conditions with a wide substrate scope.
Collapse
Affiliation(s)
- Saksham Mishra
- Department of Chemistry, Indian Institute of Technology, Bihta, Patna 801106, Bihar, India
| | - Anjali Aghi
- Department of Chemistry, Indian Institute of Technology, Bihta, Patna 801106, Bihar, India
| | - Amit Kumar
- Department of Chemistry, Indian Institute of Technology, Bihta, Patna 801106, Bihar, India
| |
Collapse
|
27
|
Murugesan T, Moulana Mahal SH, Arayil Vennoli K, Karthikeyan D, Kaliyamoorthy A. Copper-Catalyzed Regioselective Imidation of 2-Pyridones. Org Lett 2024; 26:3048-3053. [PMID: 38578090 DOI: 10.1021/acs.orglett.4c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
We demonstrate a ligand- and glovebox-free regioselective direct C(3)-H imidation of 2-pyridones and also benzylic-type imidation of 2-pyridones bearing a methyl substituent employing Cu(OAc)2·H2O as the catalyst and N-fluorobenzenesulfonimide (NFSI) as an imidating reagent. A broad range of imidated 2-pyridone derivatives is made up to excellent yields. The present strategy operates well on a gram scale, and the ensuing product can be readily subjected to mono- and bis-desulfonylation reactions.
Collapse
Affiliation(s)
- Tamilarasu Murugesan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| | - Shanawas Hussain Moulana Mahal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| | - Kalyanakrishnan Arayil Vennoli
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| | - Dharsan Karthikeyan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| | - Alagiri Kaliyamoorthy
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| |
Collapse
|
28
|
Song XF, Zhang LJ, Zhang XG, Tu HY. Cu-Catalyzed Carbocyclization for General Synthesis of N-Containing Heterocyclics Enabled by BrCF 2COOEt as a C1 Source. J Org Chem 2024; 89:3403-3412. [PMID: 38331393 DOI: 10.1021/acs.joc.3c02827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
A practical and efficient copper-catalyzed carbocyclization of 2-functionalized anilines with ethyl bromodifluoroacetate has been developed. Ethyl bromodifluoroacetate is employed as the C1 source via quadruple cleavage in this transformation. This reaction can afford a variety of N-containing heterocyclics with satisfactory yields and excellent functional group compatibility.
Collapse
Affiliation(s)
- Xiao-Fang Song
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing 210009, China
- School of Intelligent Manufacturing and Electronic Engineering, Wenzhou University of Technology, Wenzhou 325035, China
| | - Li-Jing Zhang
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Xing-Guo Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Hai-Yong Tu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
29
|
Li K, Kelly HR, Franco A, Batista VS, Baráth E. Dehydrogenation and Transfer Hydrogenation of Alkenones to Phenols and Ketones on Carbon-Supported Noble Metals. ACS Catal 2024; 14:2883-2896. [PMID: 38449532 PMCID: PMC10913045 DOI: 10.1021/acscatal.3c04849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/13/2024] [Accepted: 01/24/2024] [Indexed: 03/08/2024]
Abstract
The catalytic dehydrogenation of substituted alkenones on noble metal catalysts supported on carbon (Pt/C, Pd/C, Rh/C, and Ru/C) was investigated in an organic phase under inert conditions. The dehydrogenation and semihydrogenation of the enone starting materials resulted in aromatic compounds (primary products), saturated cyclic ketones (secondary products), and cyclic alcohols (minor products). Pd/C exhibits the highest catalytic activity, followed by Pt/C and Rh/C. Aromatic compounds remain the primary products, even in the presence of hydrogen donors. Joint experimental and theoretical analyses showed that the four catalytic materials stabilize a common dienol intermediate on the metal surfaces, formed by keto-enol tautomerization. This intermediate subsequently forms aromatic products upon dehydrogenation. The binding orientation of the enone reactants on the catalytic surface is strongly metal-dependent, as the M-O bond distance changes substantially according to the metal. The longer M-O bonds (Pt: 2.84 Å > Pd: 2.23 Å > Rh: 2.17 Å > Ru: 2.07 Å) correlate with faster reaction rates and more favorable keto-enol tautomerization, as shorter distances correspond to a more stabilized starting material. Tautomerization is shown to occur via a stepwise surface-assisted pathway. Overall, each of the studied metals exhibits a distinct balance of enthalpy and entropy of activation (ΔH°‡, ΔS°‡), offering unique possibilities in the realm of enone dehydrogenation reactions that can be achieved by suitable selection of catalytic materials.
Collapse
Affiliation(s)
- Katja Li
- Department
of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, Garching bei München D-85748, Germany
| | - H. Ray Kelly
- Department
of Chemistry, Yale University, 225 Prospect Street, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Ana Franco
- Leibniz-Institut
für Katalyse (e.V. LIKAT), Albert Einstein Str. 29a, Rostock D-18059, Germany
| | - Victor S. Batista
- Department
of Chemistry, Yale University, 225 Prospect Street, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Eszter Baráth
- Department
of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, Garching bei München D-85748, Germany
- Leibniz-Institut
für Katalyse (e.V. LIKAT), Albert Einstein Str. 29a, Rostock D-18059, Germany
| |
Collapse
|
30
|
Buntine J, Dasgupta S, Dorney K, Rubinstein O, Salimimarand M, White JM, Rizzacasa MA. Total Synthesis of Icumazole A Using a Modified Cadiot-Chodkiewicz Coupling. Org Lett 2024; 26:1062-1066. [PMID: 38285532 DOI: 10.1021/acs.orglett.3c04268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The first total synthesis of myxobacteria metabolite icumazole A (1) is reported. Key steps in the route include an organocatalyzed asymmetric self-aldol reaction followed by an acetate aldol reaction to form the stereotriad present in the oxazole moiety, an intramolecular Diels-Alder reaction to form the isochromanone, and an acetylide addition and selective methylation. The final steps involved a high-yielding modified Cadiot-Chodkiewicz coupling and stereoselective reduction to secure the Z,Z-diene and afford 1.
Collapse
Affiliation(s)
- Jack Buntine
- School of Chemistry, The Bio21 Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Samrat Dasgupta
- School of Chemistry, The Bio21 Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Keely Dorney
- School of Chemistry, The Bio21 Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Oscar Rubinstein
- School of Chemistry, The Bio21 Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Mina Salimimarand
- School of Chemistry, The Bio21 Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Jonathan M White
- School of Chemistry, The Bio21 Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Mark A Rizzacasa
- School of Chemistry, The Bio21 Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
31
|
Pan C, He C, Wang J, Tang J, Zhang X. Ruthenium-catalysed direct C-H amidation of 4-aryl-pyrrolo[2,3- d]pyrimidines with acyl/phosphoryl azides. Org Biomol Chem 2024; 22:1181-1185. [PMID: 38214147 DOI: 10.1039/d3ob01946b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
A ruthenium-catalysed arene ortho C-H amidation of 4-aryl-pyrrolo[2,3-d]pyrimidine derivatives with acyl azides or phosphoryl azides as the nitrogen sources toward C-N bond formation was developed. This protocol could offer a novel and direct approach to access a series of amidated and phosphoramidated pyrrolo[2,3-d]pyrimidine derivatives in moderate to good yields, thereby evading the general Curtius rearrangement. The protocol features significant functional group tolerance and a single-step process, with the release of only innocuous molecular nitrogen as the byproduct.
Collapse
Affiliation(s)
- Chenhong Pan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Chun He
- Zhejiang Apeloa Pharmaceutical Co., Ltd, Dongyang 322118, P. R. China
| | - Jiangrong Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Junyang Tang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xingxian Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
32
|
Teimouri M, Raju S, Acheampong E, Schmittou AN, Donnadieu B, Wipf DO, Pierce BS, Stokes SL, Emerson JP. Aminoquinoline-Based Tridentate ( NNN)-Copper Catalyst for C-N Bond-Forming Reactions from Aniline and Diazo Compounds. Molecules 2024; 29:730. [PMID: 38338473 PMCID: PMC10856582 DOI: 10.3390/molecules29030730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
A new tridentate Cu2+ complex based on (E)-1-(pyridin-2-yl)-N-(quinolin-8-yl)methanimine (PQM) was generated and characterized to support the activation of diazo compounds for the formation of new C-N bonds. This neutral Schiff base ligand was structurally characterized to coordinate with copper(II) in an equatorial fashion, yielding a distorted octahedral complex. Upon characterization, this copper(II) complex was used to catalyze an efficient and cost-effective protocol for C-N bond formation between N-nucleophiles and copper carbene complexes arising from the activation of diazo carbonyl compounds. A substrate scope of approximately 15 different amine-based substrates was screened, yielding 2° or 3° amine products with acceptable to good yields under mild reaction conditions. Reactivity towards phenol and thiophenol were also screened, showing relatively weak C-O or C-S bond formation under optimized conditions.
Collapse
Affiliation(s)
- Mohsen Teimouri
- Department of Chemistry, Mississippi State University, Starkville, MS 39762, USA (B.D.); (D.O.W.)
| | - Selvam Raju
- Department of Chemistry, Mississippi State University, Starkville, MS 39762, USA (B.D.); (D.O.W.)
| | - Edward Acheampong
- Department of Chemistry, Mississippi State University, Starkville, MS 39762, USA (B.D.); (D.O.W.)
| | - Allison N. Schmittou
- Department of Chemistry and Biochemistry, The University of Alabama, 3097D Shelby Hall, Tuscaloosa, AL 35487, USA
| | - Bruno Donnadieu
- Department of Chemistry, Mississippi State University, Starkville, MS 39762, USA (B.D.); (D.O.W.)
| | - David O. Wipf
- Department of Chemistry, Mississippi State University, Starkville, MS 39762, USA (B.D.); (D.O.W.)
| | - Brad S. Pierce
- Department of Chemistry and Biochemistry, The University of Alabama, 3097D Shelby Hall, Tuscaloosa, AL 35487, USA
| | - Sean L. Stokes
- Department of Chemistry, Mississippi State University, Starkville, MS 39762, USA (B.D.); (D.O.W.)
| | - Joseph P. Emerson
- Department of Chemistry, Mississippi State University, Starkville, MS 39762, USA (B.D.); (D.O.W.)
| |
Collapse
|
33
|
Lin JX, Liu GH, Liu LQ, Wang YC, He Y. Sodium Carbonate-Promoted Formation of 5-Amino-1,2,4-thiadiazoles and 5-Amino-1,2,4-selenadiazoles with Elemental Sulfur and Selenium. J Org Chem 2024; 89:101-110. [PMID: 38071750 DOI: 10.1021/acs.joc.3c01716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Sodium carbonate-promoted facile synthesis of 5-amino-1,2,4-thiadiazoles and 5-amino-1,2,4-selenadiazoles with elemental sulfur and selenium, respectively, was developed. This method was carried out with O2 in the air as the green oxidant, and it has several advantages, including low cost, low toxicity, and stable sulfur and selenium sources, good to excellent yields with water as the sole byproduct, simple operation, and a broad substrate scope. Preliminary mechanistic studies indicate that the formation of the 1,2,4-thiadiazole ring and the 1,2,4-selenadiazole ring undergoes different processes.
Collapse
Affiliation(s)
- Jun-Xu Lin
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China
| | - Guo-Hui Liu
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China
| | - Li-Qiu Liu
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China
| | - Ying-Chun Wang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China
| | - Yan He
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| |
Collapse
|
34
|
Reese MS, Bonanno MG, Bower JK, Moore CE, Zhang S. C-N Bond Formation at Discrete Cu III-Aryl Complexes. J Am Chem Soc 2023; 145:26810-26816. [PMID: 38050828 PMCID: PMC11019775 DOI: 10.1021/jacs.3c09260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Copper(III) aryl species are widely proposed as intermediates in Cu-catalyzed C-C and C-heteroatom bond formation reactions. Despite their wide utility, mechanistic aspects of C-heteroatom formation at CuIII centers as well as factors that lead to byproducts, e.g., Ar-H, Ar-Ar, remain elusive due to the rarity of discrete CuIII-Ar complexes. Herein, we report the synthesis and reactivity of a series of CuII and CuIII aryl complexes that closely mimic the intermediates in Cu-catalyzed C-N coupling reactions. Copper(II) aryl complexes [TBA][LCuII-ArR] were synthesized via the treatment of CuII with a range of aryl donors, such as ZnAr2R, TMS-ArR, and ArR-Bpin. Oxidation of [TBA][LCuII-ArR] produces formal copper(III) aryl complexes LCuIII-ArR. Treatment of copper(III) aryl complexes with neutral nitrogen nucleophiles produces the C-N coupling product in up to 64% yield, along with commonly observed byproducts, such as Ar-H and Ar-Ar. Hammett analysis of the C-N bond formation performed with various N-nucleophiles shows a ρ value of -1.66, consistent with the electrophilic character of LCuIII-ArR. We propose mechanisms for common side reactions in Cu-catalyzed coupling reactions that lead to the formation of Ar-Ar and Ar-H.
Collapse
Affiliation(s)
- Maxwell S Reese
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Mitchell G Bonanno
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Jamey K Bower
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Curtis E Moore
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Shiyu Zhang
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
35
|
He N, Nakatani N, Hada M. How does multi-reference computation change the catalysis chemistry? DFT and CASPT2 studies of the Cu-catalysed coupling reactions between aryl iodides and β-diketones. Phys Chem Chem Phys 2023; 25:28871-28884. [PMID: 37853798 DOI: 10.1039/d3cp03418f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The molecular mechanism of a Cu-catalysed coupling reaction was theoretically studied using density functional theory (DFT) and the complete active space self-consistent field method followed by the second-order perturbation theory (CASSCF/CASPT2) to investigate the effects of the strong electron correlation of the Cu centre on the reaction profile. Both DFT and CASSCF/CASPT2 calculations showed that the catalytic cycle proceeds via an oxidative addition (OA) reaction, followed by a reductive elimination (RE) reaction, where OA is the rate-determining step. Although the DFT-calculated activation energies of the OA and RE steps are highly dependent on the choice of functionals, the CASSCF/CASPT2 results are less affected by the choice of DFT-optimised geometries. Therefore, with a careful assessment based on the CASSCF/CASPT2 single-point energy evaluation, an optimal choice of the DFT geometry is of good qualitative use for energetics at the CASPT2 level of theory. Based on the changes in the electron populations of the 3d orbitals during the OA and RE steps, the characteristic features of the DFT-calculated electronic structure were qualitatively consistent with those calculated using the CASSCF method. Further electronic structure analysis by the natural orbital occupancy of the CASSCF wavefunction showed that the ground state is almost single-reference in this system and the strong electron correlation effect of the Cu centre can be dealt with using the MP2 or CCSD method, too. However, the slightly smaller occupation numbers of the 3dπ orbital in the course of reactions suggested that the electron correlation effect of the Cu(III) centre appears through the interaction between the 3dπ orbital and the C-I antibonding σ* orbital in the OA step, and between the 3dπ orbital and the Cu-C antibonding σ* orbital in the RE step.
Collapse
Affiliation(s)
- Nan He
- Department of Chemistry, Faculty of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan.
| | - Naoki Nakatani
- Department of Chemistry, Faculty of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan.
| | - Masahiko Hada
- Department of Chemistry, Faculty of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan.
| |
Collapse
|
36
|
Singh SK, Kumar S, Yadav MS, Gupta A, Tiwari VK. Triazole-Appended Glycohybrid/CuI-Catalyzed C-C Cross-Coupling of Aryl/Heteroaryl Halides with Alkynyl Sugars. J Org Chem 2023; 88:13440-13453. [PMID: 37747895 DOI: 10.1021/acs.joc.3c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
This report describes a convenient method for the Cu(I)-catalyzed Sonogashira cross-coupling reaction of aryl/heteroaryl halides and alkynyl sugars in the presence of a 1,2,3-triazole-appended glycohybrid as a biocompatible ligand. The Sonogashira cross-coupling products were exclusively formed without the Glaser-Hay homocoupling reaction in the presence of a glycosyl monotriazolyl ligand at 120 °C. However, the Glaser-Hay homocoupling products were obtained at 60-70 °C in the presence of bis-triazolyl-based macrocyclic glycohybrid ligand L8. The glycosyl triazole ligands were synthesized via the CuI/DIPEA-mediated regioselective CuAAC click reaction, and a series of glycohybrids of glucose, mannose, and galactose alkynes including glycosyl rods were developed in good yields. The developed glycohybrids have been well characterized by various spectroscopic techniques, such as nuclear magnetic resonance, high-resolution mass spectrometry, and single-crystal X-ray data of L3. The protocol works well with the heteroaryl and naphthyl halides, and the mechanistic approach leads to CuI/ligand-assisted oxidative coupling. The coupling protocol has notable features, including low catalytic loading, cost-effectiveness, biocompatible nature, and a wide substrate scope.
Collapse
Affiliation(s)
- Sumit K Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, U.P. 221005, India
| | - Sunil Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, U.P. 221005, India
| | - Mangal S Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, U.P. 221005, India
| | - Abhishek Gupta
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, U.P. 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, U.P. 221005, India
| |
Collapse
|
37
|
Grooms AJ, Nordmann AN, Badu-Tawiah AK. Dual Tunability for Uncatalyzed N-Alkylation of Primary Amines Enabled by Plasma-Microdroplet Fusion. Angew Chem Int Ed Engl 2023:e202311100. [PMID: 37770409 DOI: 10.1002/anie.202311100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023]
Abstract
The fusion of non-thermal plasma with charged microdroplets facilitates catalyst-free N-alkylation for a variety of primary amines, without halide salt biproduct generation. Significant reaction enhancement (up to >200×) is observed over microdroplet reactions generated from electrospray. This enhancement for the plasma-microdroplet system is attributed to the combined effects of energetic collisions and the presence of reactive oxygen species (ROS). The ROS (e.g., O2 ⋅- ) act as a proton sink to increase abundance of free neutral amines in the charged microdroplet environment. The effect of ROS on N-alkylation is confirmed through three unique experiments: (i) utilization of radical scavenging reagent, (ii) characterization of internal energy distribution, and (iii) controls performed without plasma, which lacked reaction acceleration. Establishing plasma discharge in the wake of charged microdroplets as a green synthetic methodology overcomes two major challenges within conventional gas-phase plasma chemistry, including the lack of selectivity and product scale-up. Both limitations are overcome here, where dual tunability is achieved by controlling reagent concentration and residence time in the microdroplet environment, affording single or double N-alkylated products. Products are readily collected yielding milligram quantities in eight hours. These results showcase a novel synthetic strategy that represents a straightforward and sustainable C-N bond-forming process.
Collapse
Affiliation(s)
- Alexander J Grooms
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH-43210, USA
| | - Anna N Nordmann
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH-43210, USA
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH-43210, USA
| |
Collapse
|
38
|
Liu Y, Feng Y, Nie J, Xie S, Pen X, Hong H, Chen X, Chen L, Li Y. Aromatization of cyclic hydrocarbons via thioether elimination reaction. Chem Commun (Camb) 2023; 59:11232-11235. [PMID: 37655718 DOI: 10.1039/d3cc03279e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Herein, the diversity-oriented aromatization of cyclic hydrocarbons via potassium ethyl xanthogenate (EtOCS2K)/NH4I-mediated methylthiyl radical addition and thioether elimination was investigated under transition-metal-free conditions. The methylthiyl radical species were generated in situ via the NH4I-mediated decomposition of DMSO following which EtOCS2K promoted the breaking of carbon-sulfur bonds of thioether.
Collapse
Affiliation(s)
- Yang Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China.
| | - Yingqi Feng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China.
| | - Jinli Nie
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China.
| | - Sijie Xie
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China.
| | - Xin Pen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China.
| | - Huanliang Hong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China.
| | - Xiuwen Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China.
| | - Lu Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China.
| | - Yibiao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China.
| |
Collapse
|
39
|
Luo Y, Li Y, Wu J, Xue XS, Hartwig JF, Shen Q. Oxidative addition of an alkyl halide to form a stable Cu(III) product. Science 2023; 381:1072-1079. [PMID: 37676952 PMCID: PMC10658983 DOI: 10.1126/science.adg9232] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023]
Abstract
The step that cleaves the carbon-halogen bond in copper-catalyzed cross-coupling reactions remains ill defined because of the multiple redox manifolds available to copper and the instability of the high-valent copper product formed. We report the oxidative addition of α-haloacetonitrile to ionic and neutral copper(I) complexes to form previously elusive but here fully characterized copper(III) complexes. The stability of these complexes stems from the strong Cu-CF3 bond and the high barrier for C(CF3)-C(CH2CN) bond-forming reductive elimination. The mechanistic studies we performed suggest that oxidative addition to ionic and neutral copper(I) complexes proceeds by means of two different pathways: an SN2-type substitution to the ionic complex and a halogen-atom transfer to the neutral complex. We observed a pronounced ligand acceleration of the oxidative addition, which correlates with that observed in the copper-catalyzed couplings of azoles, amines, or alkynes with alkyl electrophiles.
Collapse
Affiliation(s)
- Yongrui Luo
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Yuli Li
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Jian Wu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Xiao-Song Xue
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - John F. Hartwig
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Qilong Shen
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| |
Collapse
|
40
|
Fang J, Bekkouch O, Zeiser G, Zubchuk Y, Bizet V, Blanchard N, Evano G. Copper-Catalyzed, Ligand-Controlled N(sp 3)- or N(sp)-Selective Arylation of Cyanamides. Org Lett 2023; 25:6446-6451. [PMID: 37610917 DOI: 10.1021/acs.orglett.3c02622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Cyanamides possess both nucleophilic and electrophilic centers, and their arylation reactions are known to proceed at N(sp3) and C(sp) sites, leading to N-aryl cyanamides or amidines. N(sp) selectivity has also been reported only in the presence of amines, thus leading to guanidines. Herein, we report a general copper-catalyzed ligand-controlled Chan-Lam-Evans arylation of cyanamides proceeding regioselectively at the N(sp3) or N(sp) atoms and leading to either N-aryl cyanamides or dissymmetric carbodiimides. The nature of the ligand, either a bipyridine or a diamine, controls the product distribution and thus offers a divergent entry to useful building blocks from readily available cyanamides.
Collapse
Affiliation(s)
- Jiaqi Fang
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, 1050 Brussels, Belgium
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68000 Mulhouse, France
| | - Oumaïma Bekkouch
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, 1050 Brussels, Belgium
| | - Guilhem Zeiser
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, 1050 Brussels, Belgium
| | - Yurii Zubchuk
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68000 Mulhouse, France
| | - Vincent Bizet
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68000 Mulhouse, France
| | - Nicolas Blanchard
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68000 Mulhouse, France
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, 1050 Brussels, Belgium
| |
Collapse
|
41
|
Shet H, Gunturu KC, Gharpure SJ, Prasad Kommyreddy S, Gupta KS, Rout SR, Dandela R, Kapdi AR. Cu(II)/PTABS-Promoted, Regioselective S NAr Amination of Polychlorinated Pyrimidines with Mechanistic Understanding. J Org Chem 2023. [PMID: 37486860 DOI: 10.1021/acs.joc.3c01003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Regioselective amination of polyhalogenated heteroarenes (especially pyrimidines) has extensive synthetic and commercial relevance for drug synthesis applications but is plagued by the lack of effective synthetic strategies. Herein, we report the Cu(II)/PTABS-promoted highly regioselective nucleophilic aromatic substitution (SNAr) of polychlorinated pyrimidines assisted by DFT predictions of the bond dissociation energies of different C-Cl bonds. The unique reactivity of Cu(II)-PTABS has been attributed to the coordination/activation mechanism that has been known to operate in these reactions, but further insights into the catalytic species have also been provided.
Collapse
Affiliation(s)
- Harshita Shet
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India
| | | | - Santosh J Gharpure
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | | | - Krishna S Gupta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Smruti Rekha Rout
- Department of Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Bhubaneswar, Odisha 751013, India
| | - Rambabu Dandela
- Department of Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Bhubaneswar, Odisha 751013, India
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India
| |
Collapse
|
42
|
Das S, Ehlers AW, Patra S, de Bruin B, Chattopadhyay B. Iron-Catalyzed Intermolecular C-N Cross-Coupling Reactions via Radical Activation Mechanism. J Am Chem Soc 2023. [PMID: 37390369 DOI: 10.1021/jacs.3c05627] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
A concept for intermolecular C-N cross-coupling amination has been discovered using tetrazoles and aromatic and aliphatic azides with boronic acids under iron-catalyzed conditions. The amination follows an unprecedented metalloradical activation mechanism that is different from traditional metal-catalyzed C-N cross-coupling reactions. The scope of the reaction has been demonstrated by the employment of a large number of tetrazoles, azides, and boronic acids. Moreover, several late-stage aminations and a short synthesis of a drug candidate have been showcased for further synthetic utility. Collectively, this iron-catalyzed C-N cross-coupling should have wide applications in the context of medicinal chemistry, drug discovery, and pharmaceutical industries.
Collapse
Affiliation(s)
- Subrata Das
- Department of Biological & Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014 Uttar Pradesh, India
| | - Andreas W Ehlers
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Sima Patra
- Department of Biological & Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014 Uttar Pradesh, India
| | - Bas de Bruin
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Buddhadeb Chattopadhyay
- Department of Biological & Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014 Uttar Pradesh, India
| |
Collapse
|
43
|
Li P, Peng Y, Cai J, Bai Y, Li Q, Pang H. Recent Advances in Metal-Organic Frameworks (MOFs) and Their Composites for Non-Enzymatic Electrochemical Glucose Sensors. Bioengineering (Basel) 2023; 10:733. [PMID: 37370664 DOI: 10.3390/bioengineering10060733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, with pressing needs such as diabetes management, the detection of glucose in various substrates has attracted unprecedented interest from researchers in academia and industry. As a relatively new glucose sensor, non-enzymatic target detection has the characteristics of high sensitivity, good stability and simple manufacturing process. However, it is urgent to explore novel materials with low cost, high stability and excellent performance to modify electrodes. Metal-organic frameworks (MOFs) and their composites have the advantages of large surface area, high porosity and high catalytic efficiency, which can be utilized as excellent materials for electrode modification of non-enzymatic electrochemical glucose sensors. However, MOFs and their composites still face various challenges and difficulties that limit their further commercialization. This review introduces the applications and the challenges of MOFs and their composites in non-enzymatic electrochemical glucose sensors. Finally, an outlook on the development of MOFs and their composites is also presented.
Collapse
Affiliation(s)
- Panpan Li
- Guangling College, Yangzhou University, Yangzhou 225009, China
| | - Yi Peng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Jinpeng Cai
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yang Bai
- School of Pharmacy, Changzhou University, Changzhou 213164, China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210008, China
| | - Qing Li
- Guangling College, Yangzhou University, Yangzhou 225009, China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
44
|
Hou J, Yin J, Han H, Yang Q, Li Y, Lou Y, Wu X, You Y. Regio- and Stereoselective Hydrochlorination/Cyclization of 1, n-Enynes by FeCl 3 Catalysis. Org Lett 2023. [PMID: 37285405 DOI: 10.1021/acs.orglett.3c01495] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A highly regio- and stereoselective hydrochlorination/cyclization of enynes has been reported by FeCl3 catalysis. A variety of enynes undergo this cyclization transformation with acetic chloride as the chlorine source and H2O providing protons via a cationic pathway. This protocol provides a cheap, simple, stereospecific, and effective cyclization to afford heterocyclic alkenyl chloride compounds as Z isomers with high yields (≤98%) and regioselectivity.
Collapse
Affiliation(s)
- Jicheng Hou
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
| | - Junhao Yin
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
| | - Hao Han
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
| | - Qirui Yang
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
| | - Yougui Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
| | - Yazhou Lou
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiang Wu
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
| | - Yang'en You
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
| |
Collapse
|
45
|
Toda Y, Kobayashi T, Hirai F, Yano T, Oikawa M, Sukegawa K, Shimizu M, Ito F, Suga H. Visible-Light-Driven C-H Imidation of Arenes and Heteroarenes by a Phosphonium Ylide Organophotoredox Catalyst: Application to C-H Functionalization of Alkenes. J Org Chem 2023. [PMID: 37262322 DOI: 10.1021/acs.joc.3c00988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Phosphonium ylide catalysis through an oxidative quenching cycle has been developed for visible-light-driven C-H imidation of arenes and heteroarenes. The present protocol could be applied not only to trihalomethylative lactonization reactions involving trifluoromethyl, trichloromethyl, and tribromomethyl radicals but also to the first example of an organophotoredox-catalyzed imidative lactonization reaction involving a nitrogen-centered electrophilic radical species.
Collapse
Affiliation(s)
- Yasunori Toda
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Toya Kobayashi
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Fumiya Hirai
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Takamichi Yano
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Makoto Oikawa
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Kimiya Sukegawa
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Masahiro Shimizu
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Fuyuki Ito
- Department of Chemistry, Institute of Education, Shinshu University, Nagano 380-8544, Japan
| | - Hiroyuki Suga
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| |
Collapse
|
46
|
Zhang Z, Chen L, Wang Y, Dai W, Li P, Yang Z, Li X, Zheng H. Furan Synthesis via a Tandem 1,2-Acyloxy Migration/[3 + 2] Cycloaddition/Aromatization of Enol Ether-Tethered Propargylic Esters. J Org Chem 2023. [PMID: 37192482 DOI: 10.1021/acs.joc.3c00216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
An effective method for the synthesis of furans is developed via a tandem 1,2-acyloxy migration/intramolecular [3 + 2] cycloaddition/aromatization of enol ether-tethered propargylic esters. The reaction exhibits excellent functional group tolerance, broad substrate scope, and excellent chemoselectivity. The isolation of dihydrofuran intermediates in some cases gives more insight into the [3 + 2] cycloisomerization process.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Luxin Chen
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Ying Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Weikai Dai
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Pengfei Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Zhen Yang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, China
- Research Center of Advanced Catalytic Materials & Functional Molecular Synthesis, College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Xiuhuan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Huaiji Zheng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| |
Collapse
|
47
|
Sánchez-Férez F, Calvet T, Font-Bardia M, Pons J. The Formation of a Unique 2D Isonicotinate Polymer Driven by Cu(II) Aerobic Oxidation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103724. [PMID: 37241351 DOI: 10.3390/ma16103724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
The isolation and structural characterization of a unique Cu(II) isonicotinate (ina) material with 4-acetylpyridine (4-acpy) is provided. The formation of [Cu(ina)2(4-acpy)]n (1) is triggered by the Cu(II) aerobic oxidation of 4-acpy using O2. This gradual formation of ina led to its restrained incorporation and hindered the full displacement of 4-acpy. As a result, 1 is the first example of a 2D layer assembled by an ina ligand capped by a monodentate pyridine ligand. The Cu(II)-mediated aerobic oxidation with O2 was previously demonstrated for aryl methyl ketones, but we extend the applicability of this methodology to heteroaromatic rings, which has not been tested so far. The formation of ina has been identified by 1H NMR, thus demonstrating the feasible but strained formation of ina from 4-acpy in the mild conditions from which 1 was obtained.
Collapse
Affiliation(s)
| | - Teresa Calvet
- Departament de Mineralogia, Petrologia i Geologia Aplicada, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain
| | - Mercè Font-Bardia
- Unitat de Difracció de Raig-X, Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona, Solé i Sabarís, 1-3, 08028 Barcelona, Spain
| | - Josefina Pons
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
48
|
Iftikhar R, Mazhar A, Iqbal MS, Khan FZ, Askary SH, Sibtain H. Ring forming transformations of ynamides via cycloaddition. RSC Adv 2023; 13:10715-10756. [PMID: 37025669 PMCID: PMC10072253 DOI: 10.1039/d3ra00139c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Ynamides are N-alkyne compounds bearing an electron withdrawing group at the nitrogen atom. They offer unique pathways for the construction of versatile building blocks owing to their exceptional balance between reactivity and stability. Recently several studies have been reported that explore and illustrate the synthetic potential of ynamides and ynamide-derived advanced intermediates in cycloadditions with different reaction partners to yield heterocyclic cycloadducts of synthetic and pharmaceutical value. Cycloaddition reactions of ynamides are the facile and preferable routes for the construction of structural motifs having striking importance in synthetic, medicinal chemistry, and advanced materials. In this systematic review, we highlighted the recently reported novel transformations and synthetic applications that involved the cycloaddition reaction of ynamides. The scope along with the limitations of the transformations are discussed in detail.
Collapse
Affiliation(s)
- Ramsha Iftikhar
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Aqsa Mazhar
- Faculty of Health and Medicine, University of New South Wales 2033-Sydney Australia
| | - Muhammad Saqlain Iqbal
- Department of Electrical Information Engineering, Polytechnic University of Bari 70126-Bari Italy
| | - Faiza Zahid Khan
- Institute of Chemistry, RheinischeFriedrich-Wilhelms-Universität Bonn Bonn Germany
| | - Syed Hassan Askary
- Department of Chemistry, University of Management and Technology 54770-Lahore Pakistan
| | - Hifza Sibtain
- Department of Chemistry, University of Management and Technology 54770-Lahore Pakistan
| |
Collapse
|
49
|
Jia X, Tian X, Zhuang D, Wan Z, Gu J, Li Z. Copper-Catalyzed Intermolecular Cross-dehydrogenative C-N Coupling at Room Temperature via Remote Activating Group Enabled Radical Relay Strategy. Org Lett 2023; 25:2012-2017. [PMID: 36944029 DOI: 10.1021/acs.orglett.3c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Employing N-fluorobenzenesulfonimide (NFSI) as a nitrogen-centered radical (NCR) precursor, an intermolecular C(sp2)-N coupling on heteroarenes or substituted benzenes with remote activated aniline derivatives via copper catalyzed N-N radical relay strategy at room temperature is developed. Good to excellent yields are acquired, and no ligand or additive is required. Reaction scope investigation and preliminary mechanistic studies demonstrate that the remote activating strategy and delicate control on the reactivities of active NCR species are essential to guarantee satisfactory chemo- and site-selectivity.
Collapse
Affiliation(s)
- Xiaoqi Jia
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Xiangmin Tian
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Dailin Zhuang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Zhenyang Wan
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Jiahao Gu
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Ziyuan Li
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| |
Collapse
|
50
|
Liu H, Gong ZR, Lin ML, Luo W, Xu YJ, Dong L. C-O Coupling/[4+2] Cycloaddition Tandem Reactions via Oxidative Dearomatization of BINOLs: Access to Bridged Polycyclic Compounds. J Org Chem 2023; 88:3916-3926. [PMID: 36849248 DOI: 10.1021/acs.joc.2c02817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Intramolecular C-H activation/C-O coupling, dearomatization, and [4+2] cycloaddition of BINOL units have been well developed in a one-pot approach with maleimide derivatives as the dienophiles. This tandem catalytic system generates a variety of functionalized bridged polycyclic products in a step-economical manner, which greatly enriches the modification methods and strategies for the BINOL skeletons.
Collapse
Affiliation(s)
- Hao Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China.,Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zi-Rong Gong
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Meng-Ling Lin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wen Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yan-Jun Xu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|