1
|
Beck WF. Intramolecular charge transfer and the function of vibronic excitons in photosynthetic light harvesting. PHOTOSYNTHESIS RESEARCH 2024; 162:139-156. [PMID: 38656684 DOI: 10.1007/s11120-024-01095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024]
Abstract
A widely discussed explanation for the prevalence of pairs or clusters of closely spaced electronic chromophores in photosynthetic light-harvesting proteins is the presence of ultrafast and highly directional excitation energy transfer pathways mediated by vibronic excitons, the delocalized optical excitations derived from mixing of the electronic and vibrational states of the chromophores. We discuss herein the hypothesis that internal conversion processes between exciton states on the <100 fs timescale are possible when the excitonic potential energy surfaces are controlled by the vibrational modes that induce charge transfer character in a strongly coupled system of chromophores. We discuss two examples, the peridinin-chlorophyll protein from marine dinoflagellates and the intact phycobilisome from cyanobacteria, in which the intramolecular charge-transfer (ICT) character arising from out-of-plane distortion of the conjugation of carotenoid or bilin chromophores also results in localization of the initially delocalized optical excitation on the vibrational timescale. Tuning of the ground state conformations of the chromophores to manipulate their ICT character provides a natural photoregulatory mechanism, which would control the overall quantum yield of excitation energy transfer by turning on and off the delocalized character of the optical excitations.
Collapse
Affiliation(s)
- Warren F Beck
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
2
|
Prasad S, Gelin MF, Tan HS. Cross Peaks on Two-Dimensional Optical Spectra Arising from Quantum Cross-Correlation Functions. J Phys Chem Lett 2024; 15:11485-11495. [PMID: 39513981 DOI: 10.1021/acs.jpclett.4c02606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Cross peaks on 2D optical spectra are indicative of interactions between molecular excitonic states. Currently, the two conventional assignments of cross peaks are direct coupling and population transfer between excitonic states. Here, we show that there is another possible source of cross peaks. We theoretically demonstrate that for a model comprising two nondirectly interacting excitons or two-level systems (TLSs), cross peaks can arise if there is a complex-valued or quantum frequency-gap cross-correlation function between the two TLSs. Considering only real-valued or classical cross-correlation functions will result in no cross peaks. We derive and validate the mathematical expressions describing such cross peaks. We then simulate the 2D electronic spectra of an example model system comprising nondirectly interacting TLSs whose quantum cross-correlation functions arise from coupling to a common overdamped Brownian oscillator mode. We show that there are clear observational differences between such quantum correlation cross peaks with conventional direct coupling and population transfer cross peaks.
Collapse
Affiliation(s)
- Sachin Prasad
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Howe-Siang Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
3
|
Schultz JD, Yuly JL, Arsenault EA, Parker K, Chowdhury SN, Dani R, Kundu S, Nuomin H, Zhang Z, Valdiviezo J, Zhang P, Orcutt K, Jang SJ, Fleming GR, Makri N, Ogilvie JP, Therien MJ, Wasielewski MR, Beratan DN. Coherence in Chemistry: Foundations and Frontiers. Chem Rev 2024; 124:11641-11766. [PMID: 39441172 DOI: 10.1021/acs.chemrev.3c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Coherence refers to correlations in waves. Because matter has a wave-particle nature, it is unsurprising that coherence has deep connections with the most contemporary issues in chemistry research (e.g., energy harvesting, femtosecond spectroscopy, molecular qubits and more). But what does the word "coherence" really mean in the context of molecules and other quantum systems? We provide a review of key concepts, definitions, and methodologies, surrounding coherence phenomena in chemistry, and we describe how the terms "coherence" and "quantum coherence" refer to many different phenomena in chemistry. Moreover, we show how these notions are related to the concept of an interference pattern. Coherence phenomena are indeed complex, and ambiguous definitions may spawn confusion. By describing the many definitions and contexts for coherence in the molecular sciences, we aim to enhance understanding and communication in this broad and active area of chemistry.
Collapse
Affiliation(s)
- Jonathan D Schultz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathon L Yuly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Eric A Arsenault
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Kelsey Parker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sutirtha N Chowdhury
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Reshmi Dani
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Hanggai Nuomin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zhendian Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jesús Valdiviezo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Sección Química, Departamento de Ciencias, Pontificia Universidad Católica del Perú, San Miguel, Lima 15088, Peru
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Kaydren Orcutt
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States
| | - Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Queens, New York 11367, United States
- Chemistry and Physics PhD programs, Graduate Center, City University of New York, New York, New York 10016, United States
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
- Illinois Quantum Information Science and Technology Center, University of Illinois, Urbana, Illinois 61801, United States
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michael J Therien
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
4
|
Fleming GR, Scholes GD. The development and applications of multidimensional biomolecular spectroscopy illustrated by photosynthetic light harvesting. Q Rev Biophys 2024; 57:e11. [PMID: 39434618 DOI: 10.1017/s003358352400009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The parallel and synergistic developments of atomic resolution structural information, new spectroscopic methods, their underpinning formalism, and the application of sophisticated theoretical methods have led to a step function change in our understanding of photosynthetic light harvesting, the process by which photosynthetic organisms collect solar energy and supply it to their reaction centers to initiate the chemistry of photosynthesis. The new spectroscopic methods, in particular multidimensional spectroscopies, have enabled a transition from recording rates of processes to focusing on mechanism. We discuss two ultrafast spectroscopies - two-dimensional electronic spectroscopy and two-dimensional electronic-vibrational spectroscopy - and illustrate their development through the lens of photosynthetic light harvesting. Both spectroscopies provide enhanced spectral resolution and, in different ways, reveal pathways of energy flow and coherent oscillations which relate to the quantum mechanical mixing of, for example, electronic excitations (excitons) and nuclear motions. The new types of information present in these spectra provoked the application of sophisticated quantum dynamical theories to describe the temporal evolution of the spectra and provide new questions for experimental investigation. While multidimensional spectroscopies have applications in many other areas of science, we feel that the investigation of photosynthetic light harvesting has had the largest influence on the development of spectroscopic and theoretical methods for the study of quantum dynamics in biology, hence the focus of this review. We conclude with key questions for the next decade of this review.
Collapse
Affiliation(s)
- Graham R Fleming
- Department of Chemistry and QB3 Institute, Kavli Energy Nanoscience Institute, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | |
Collapse
|
5
|
Bubilaitis V, Abramavicius D. Signatures of exciton-exciton annihilation in 2DES spectra including up to six-wave mixing processes. J Chem Phys 2024; 161:104106. [PMID: 39248235 DOI: 10.1063/5.0223724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024] Open
Abstract
Two-dimensional electronic spectroscopy (2DES) is a powerful spectroscopic tool that allows us to study the dynamics of excited states. Exciton-exciton annihilation is at least a fifth order process, which corresponds to intrachromophoric internal conversion from the double-excited high-energy chromophoric state into the single-excited state of the same chromophore. At high excitation intensities, this effect becomes apparent in standard 2DES and can be inspected via high order nK1⃗-nK2⃗+K3⃗ nonlinear processes. We calculate 2DES based on K1⃗-K2⃗+K3⃗ and 2K1⃗-2K2⃗+K3⃗ wave mixing processes to reveal exciton-exciton annihilation (EEA) induced exciton symmetry breaking, which occurs at high excitation intensities. We present the general theory that captures all these processes for bosonic and paulionic quasiparticles in a unified way and demonstrate that the NEEs can be easily utilized for highly nonlinear two-dimensional spectra calculations by employing phase cycling for separating various phase matching conditions. The approach predicts various excitonic third- to fifth-order features; however, due to high excitation intensities, contributions of different order processes become comparable and overlap, i.e., the signals no longer can be associated with well-defined order-to-the-field contributions. In addition, EEA leads to breaking of the exciton symmetries, thus enabling population of dark excitons. Such effects are due to the local nature of the EEA process.
Collapse
Affiliation(s)
- Vytautas Bubilaitis
- Institute of Chemical Physics, Physics Faculty, Vilnius University, Sauletekio ave. 9-III, Vilnius, Lithuania
| | - Darius Abramavicius
- Institute of Chemical Physics, Physics Faculty, Vilnius University, Sauletekio ave. 9-III, Vilnius, Lithuania
| |
Collapse
|
6
|
Sun K, Vasquez L, Borrelli R, Chen L, Zhao Y, Gelin MF. Interconnection between Polarization-Detected and Population-Detected Signals: Theoretical Results and Ab Initio Simulations. J Chem Theory Comput 2024; 20:7560-7573. [PMID: 39185737 DOI: 10.1021/acs.jctc.4c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Most of spectroscopic signals are specified by the nonlinear laser-induced polarization. In recent years, population-detection of signals becomes a trend in femtosecond spectroscopy. Polarization-detected (PD) and population-detected signals are fundamentally different, because they are determined by photoinduced processes acting on disparate time scales. In this work, we consider the fluorescence-detected (FD) N-wave-mixing (NWM) signal as a representative example of population-detected signals, derive a rigorous expression for this signal, and discuss its approximate variants suitable for numerical simulations. This leads us to the definition of the phenomenological FD (PFD) signal, which contains as a special case all definitions of FD signals available in the literature. Then we formulate and prove the population-polarization equivalence (PPE) theorem, which states that PFD NWM signals produced by (possibly strong) laser pulses can be evaluated as conventional PD signals in which the effective polarization is determined by the PFD transition dipole moment operator. We use the PPE theorem for the construction of the ab initio protocol for the simulation of PFD 4WM signals. As an example, we calculate electronic two-dimensional (2D) PFD spectra of the gas-phase pyrazine and compare them with the corresponding PD 2D spectra.
Collapse
Affiliation(s)
- Kewei Sun
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Luis Vasquez
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | | | | | - Yang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
7
|
Gan Z, Gloor CJ, Yan L, Zhong X, You W, Moran AM. Elucidating phonon dephasing mechanisms in layered perovskites with coherent Raman spectroscopies. J Chem Phys 2024; 161:074202. [PMID: 39158047 DOI: 10.1063/5.0216472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024] Open
Abstract
Organic-inorganic hybrid perovskite quantum wells exhibit electronic structures with properties intermediate between those of inorganic semiconductors and molecular crystals. In these systems, periodic layers of organic spacer molecules occupy the interstitial spaces between perovskite sheets, thereby confining electronic excitations to two dimensions. Here, we investigate spectroscopic line broadening mechanisms for phonons coupled to excitons in lead-iodide layered perovskites with phenyl ethyl ammonium (PEA) and azobenzene ethyl ammonium (AzoEA) spacer cations. Using a modified Elliot line shape analysis for the absorbance and photoluminescence spectra, polaron binding energies of 11.2 and 17.5 meV are calculated for (PEA)2PbI4 and (AzoEA)2PbI4, respectively. To determine whether the polaron stabilization processes influence the dephasing mechanisms of coupled phonons, five-pulse coherent Raman spectroscopies are applied to the two systems under electronically resonant conditions. The prominence of inhomogeneous line broadening mechanisms detected in (AzoEA)2PbI4 suggests that thermal fluctuations involving the deformable organic phase broaden the distributions of phonon frequencies within the quantum wells. In addition, our data indicate that polaron stabilization primarily involves photoinduced reorganization of the organic phases for both systems, whereas the impulsively excited phonons represent less than 10% of the total polaron binding energy. The signal generation mechanisms associated with our fifth-order coherent Raman experiments are explored with a perturbative model in which cumulant expansions are used to account for time-coincident vibrational dephasing and polaron stabilization processes.
Collapse
Affiliation(s)
- Zijian Gan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Camryn J Gloor
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Liang Yan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Xiaowei Zhong
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Wei You
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Andrew M Moran
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
8
|
Kambhampati P. Unraveling the excitonics of light emission from metal-halide perovskite quantum dots. NANOSCALE 2024; 16:15033-15058. [PMID: 39052235 DOI: 10.1039/d4nr01481b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Metal halide semicondictor perovskites have been under intense investigation for their promise in light absorptive applications like photovoltaics. They have more recently experienced interest for their promise in light emissive applications. A key aspect of perovskites is their glassy, ionic lattice that exhibits dynamical disorder. One possible result of this dynamical disorder is their strong coupling between electronic and lattice degrees of freedom which may confer remarkable properties for light emission such as defect tolerance. How does the system, comprised of excitons, couple to the bath, comprised of lattice modes? How does this system-bath interaction give rise to novel light emissive properties and how do these properties give insight into the nature of these materials? We review recent work from this group in which time-resolved photoluminescence spectroscopy is used to reveal such insights. Based upon a fast time resolution of 3 ps, energy resolution, and temperature dependence, a wide variety of insights are gleaned. These insights include: lattice contributions to the emission linewidths, multiexciton formation, hot carrier cooling, excitonic fine structure, single dot superradiance, and a breakdown of the Condon approximation, all due to complex structural dynamics in these materials.
Collapse
|
9
|
Saraceno P, Sardar S, Caferri R, Camargo FVA, Dall'Osto L, D'Andrea C, Bassi R, Cupellini L, Cerullo G, Mennucci B. Probing the Effect of Mutations on Light Harvesting in CP29 by Transient Absorption and First-Principles Simulations. J Phys Chem Lett 2024; 15:6398-6408. [PMID: 38861672 DOI: 10.1021/acs.jpclett.4c01040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Natural light harvesting is exceptionally efficient thanks to the local energy funnel created within light-harvesting complexes (LHCs). To understand the design principles underlying energy transport in LHCs, ultrafast spectroscopy is often complemented by mutational studies that introduce perturbations into the excitonic structure of the natural complexes. However, such studies may fall short of identifying all excitation energy transfer (EET) pathways and their changes upon mutation. Here, we show that a synergistic combination of first-principles calculations and ultrafast spectroscopy can give unprecedented insight into the EET pathways occurring within LHCs. We measured the transient absorption spectra of the minor CP29 complex of plants and of two mutants, systematically mapping the kinetic components seen in experiments to the simulated exciton dynamics. With our combined strategy, we show that EET in CP29 is surprisingly robust to the changes in the exciton states induced by mutations, explaining the versatility of plant LHCs.
Collapse
Affiliation(s)
- Piermarco Saraceno
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy
| | - Samim Sardar
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy
| | - Roberto Caferri
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Franco V A Camargo
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Luca Dall'Osto
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Cosimo D'Andrea
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy
| | - Giulio Cerullo
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza L. da Vinci 32, 20133 Milano, Italy
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy
| |
Collapse
|
10
|
Betti E, Saraceno P, Cignoni E, Cupellini L, Mennucci B. Insights into Energy Transfer in Light-Harvesting Complex II Through Machine-Learning Assisted Simulations. J Phys Chem B 2024; 128:5188-5200. [PMID: 38761151 DOI: 10.1021/acs.jpcb.4c01494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Light-harvesting complex II (LHCII) is the major antenna of higher plants. Energy transfer processes taking place inside its aggregate of chlorophylls have been experimentally investigated with time-resolved techniques, but a complete understanding of the most relevant energy transfer pathways and relative characteristic times remains elusive. Theoretical models to disentangle experimental data in LHCII have long been challenged by the large size and complex nature of the system. Here, we show that a fully first-principles approach combining molecular dynamics and machine learning can be successfully used to reproduce transient absorption spectra and characterize the EET pathways and the involved times.
Collapse
Affiliation(s)
- Elena Betti
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Piermarco Saraceno
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Edoardo Cignoni
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
11
|
Holzinger R, Bassler NS, Ritsch H, Genes C. Scaling Law for Kasha's Rule in Photoexcited Molecular Aggregates. J Phys Chem A 2024; 128:3910-3915. [PMID: 38568185 PMCID: PMC11103697 DOI: 10.1021/acs.jpca.4c00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 05/22/2024]
Abstract
We study the photophysics of molecular aggregates from a quantum optics perspective, with emphasis on deriving scaling laws for the fast nonradiative relaxation of collective electronic excitations, referred to as Kasha's rule. Aggregates exhibit an energetically broad manifold of collective states with delocalized electronic excitations originating from near-field dipole-dipole exchanges between neighboring monomers. Photoexcitation at optical wavelengths, much larger than the monomer-monomer average separation, addresses almost exclusively symmetric collective states, which for an arrangement known as H-aggregate show an upward hypsochromic shift. The extremely fast subsequent nonradiative relaxation via intramolecular vibrational modes populates lower energy, subradiant states, resulting in effective inhibition of fluorescence. Our analytical treatment allows for the derivation of an approximate scaling law of this relaxation process, linear in the number of available low-energy vibrational modes and directly proportional to the dipole-dipole interaction strength between neighboring monomers.
Collapse
Affiliation(s)
- Raphael Holzinger
- Institute
for Theoretical Physics, Innsbruck University, Technikerstraße 21a, 6020 Innsbruck, Austria
| | - Nico S. Bassler
- Max
Planck Institute for the Science of Light, Staudtstraße 2, D-91058 Erlangen, Germany
| | - Helmut Ritsch
- Institute
for Theoretical Physics, Innsbruck University, Technikerstraße 21a, 6020 Innsbruck, Austria
| | - Claudiu Genes
- Max
Planck Institute for the Science of Light, Staudtstraße 2, D-91058 Erlangen, Germany
| |
Collapse
|
12
|
Riedl M, Renger T, Seibt J. Theory of 2D electronic spectroscopy of water soluble chlorophyll-binding protein (WSCP): Signatures of Chl b derivate. J Chem Phys 2024; 160:184114. [PMID: 38726933 DOI: 10.1063/5.0200876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/21/2024] [Indexed: 06/29/2024] Open
Abstract
We investigate how electronic excitations and subsequent dissipative dynamics in the water soluble chlorophyll-binding protein (WSCP) are connected to features in two-dimensional (2D) electronic spectra, thereby comparing results from our theoretical approach with experimental data from the literature. Our calculations rely on third-order response functions, which we derived from a second-order cumulant expansion of the dissipative dynamics involving the partial ordering prescription, assuming a fast vibrational relaxation in the potential energy surfaces of excitons. Depending on whether the WSCP complex containing a tetrameric arrangement of pigments composed of two dimers with weak excitonic coupling between them binds the chlorophyll variant Chl a or Chl b, the resulting linear absorption and circular dichroism spectra and particularly the 2D spectra exhibit substantial differences in line shapes. These differences between Chl a WSCP and Chl b WSCP cannot be explained by the slightly modified excitonic couplings within the two variants. In the case of Chl a WSCP, the assumption of equivalent dimer subunits facilitates a reproduction of substantial features from the experiment by the calculations. In contrast, for Chl b WSCP, we have to assume that the sample, in addition to Chl b dimers, contains a small but distinct fraction of chemically modified Chl b pigments. The existence of such Chl b derivates has been proposed by Pieper et al. [J. Phys. Chem. B 115, 4042 (2011)] based on low-temperature absorption and hole-burning spectroscopy. Here, we provide independent evidence.
Collapse
Affiliation(s)
- Michael Riedl
- Institute for Theoretical Physics, Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz, Austria
| | - Thomas Renger
- Institute for Theoretical Physics, Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz, Austria
| | - Joachim Seibt
- Institute for Theoretical Physics, Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz, Austria
| |
Collapse
|
13
|
Zhang J, Benavides-Riveros CL, Chen L. Artificial-Intelligence-Based Surrogate Solution of Dissipative Quantum Dynamics: Physics-Informed Reconstruction of the Universal Propagator. J Phys Chem Lett 2024; 15:3603-3610. [PMID: 38527271 DOI: 10.1021/acs.jpclett.4c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The accurate (or even approximate) solution of the equations that govern the dynamics of dissipative quantum systems remains a challenging task in quantum science. While several algorithms have been designed to solve those equations with different degrees of flexibility, they rely mainly on highly expensive iterative schemes. Most recently, deep neural networks have been used for quantum dynamics, but current architectures are highly dependent on the physics of the particular system and usually limited to population dynamics. Here we introduce an artificial-intelligence-based surrogate model that solves dissipative quantum dynamics by parametrizing quantum propagators as Fourier neural operators, which we train using both data set and physics-informed loss functions. Compared with conventional algorithms, our quantum neural propagator avoids time-consuming iterations and provides a universal superoperator that can be used to evolve any initial quantum state for arbitrarily long times. To illustrate the wide applicability of the approach, we employ our quantum neural propagator to compute the population dynamics and time-correlation functions of the Fenna-Matthews-Olson complex.
Collapse
|
14
|
Jiang S, Gudem M, Kowalewski M, Dorfman K. Multidimensional high-harmonic echo spectroscopy: Resolving coherent electron dynamics in the EUV regime. Proc Natl Acad Sci U S A 2024; 121:e2304821121. [PMID: 38315847 PMCID: PMC10873645 DOI: 10.1073/pnas.2304821121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/18/2023] [Indexed: 02/07/2024] Open
Abstract
We theoretically propose a multidimensional high-harmonic echo spectroscopy technique which utilizes strong optical fields to resolve coherent electron dynamics spanning an energy range of multiple electronvolts. Using our recently developed semi-perturbative approach, we can describe the coherent valence electron dynamics driven by a sequence of phase-matched and well-separated short few-cycle strong infrared laser pulses. The recombination of tunnel-ionized electrons by each pulse coherently populates the valence states of a molecule, which allows for a direct observation of its dynamics via the high harmonic echo signal. The broad bandwidth of the effective dipole between valence states originated from the strong-field excitation results in nontrivial ultra-delayed partial rephasing echo, which is not observed in standard two-dimensional optical spectroscopic techniques in a two-level molecular systems. We demonstrate the results of simulations for the anionic molecular system and show that the ultrafast valence electron dynamics can be well captured with femtosecond resolution.
Collapse
Affiliation(s)
- Shicheng Jiang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai200062, China
| | - Mahesh Gudem
- Department of Physics, Stockholm University, Albanova University Centre, StockholmSE-106 91, Sweden
| | - Markus Kowalewski
- Department of Physics, Stockholm University, Albanova University Centre, StockholmSE-106 91, Sweden
| | - Konstantin Dorfman
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai200062, China
- Center for Theoretical Physics and School of Sciences, Hainan University, Haikou570228, China
- Himalayan Institute for Advanced Study, Unit of Gopinath Seva Foundation, Rishikesh249201, India
| |
Collapse
|
15
|
Segatta F, Aranda D, Aleotti F, Montorsi F, Mukamel S, Garavelli M, Santoro F, Nenov A. Time-Resolved X-ray Absorption Spectroscopy: An MCTDH Quantum Dynamics Protocol. J Chem Theory Comput 2024; 20:307-322. [PMID: 38101807 PMCID: PMC10782456 DOI: 10.1021/acs.jctc.3c00953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023]
Abstract
Expressions for linear and nonlinear spectroscopy simulation in the X-ray window in which the time evolution of a photoexcited molecular system is treated via quantum dynamics are derived. By leveraging on the peculiar properties of core-excited/ionized states, first- and third-order response functions are recast in the limit of time-scale separation between the extremely short core-state lifetime and the (comparably longer) electronic-state transfer and nuclear vibrational motion. This work is a natural extension of Segatta et al. (J. Chem. Theory Comput. 2023, 19, 2075-2091), in which some of the present authors coupled MCTDH quantum dynamics to spectroscopy simulation at different levels of sophistication. Full quantum dynamics and approximate expressions are compared by simulating X-ray transient absorption spectroscopy at the carbon K-edge in the pyrene molecule.
Collapse
Affiliation(s)
- Francesco Segatta
- Dipartimento
di Chimica Industriale “Toso Montanari”, University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Daniel Aranda
- ICMol, Universidad de Valencia, c/Catedrático José
Beltrán,
2, 46980 Paterna, Spain
- Istituto
di Chimica dei Composti Organometallici (ICCOM-CNR), Area della Ricerca del CNR, Via
Moruzzi 1, I-56124 Pisa, Italy
| | - Flavia Aleotti
- Dipartimento
di Chimica Industriale “Toso Montanari”, University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Francesco Montorsi
- Dipartimento
di Chimica Industriale “Toso Montanari”, University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Shaul Mukamel
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, 92697 California, United States
| | - Marco Garavelli
- Dipartimento
di Chimica Industriale “Toso Montanari”, University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Fabrizio Santoro
- Istituto
di Chimica dei Composti Organometallici (ICCOM-CNR), Area della Ricerca del CNR, Via
Moruzzi 1, I-56124 Pisa, Italy
| | - Artur Nenov
- Dipartimento
di Chimica Industriale “Toso Montanari”, University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| |
Collapse
|
16
|
Kizmann M, Yadalam HK, Chernyak VY, Mukamel S. Intraband Exciton Transitions in Photosynthetic Complexes Revealed by Novel Five-Wave-Mixing Spectroscopy. J Chem Theory Comput 2024; 20:280-289. [PMID: 38128473 DOI: 10.1021/acs.jctc.3c00919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
We calculate the χ(4) optical response of an oriented photosystem II reaction center of purple bacteria described by the Frenkel exciton model using nonlinear exciton equations (NEE). This approach treats each chromophore as an anharmonic oscillator and provides an intuitive quasiparticle picture of nonlinear spectroscopic signals of interacting excitons. It provides a computationally powerful description of nonlinear spectroscopic signals that avoids complete diagonalization of the total Hamiltonian. Expressions for the second- and the fourth-order nonlinear signals are derived. The NEE have been successfully employed in the past to describe even-order-wave-mixing. Here, we extend them to aggregates with broken inversion symmetries. Even-order susceptibilities require the introduction of permanent dipoles, which allow to directly probe low-frequency intraband transitions of excitons.
Collapse
Affiliation(s)
- Matthias Kizmann
- Department of Chemistry, University of California, Irvine, California 92614, United States
- Department of Physics and Astronomy, University of California, Irvine, California 92614, United States
| | - Hari Kumar Yadalam
- Department of Chemistry, University of California, Irvine, California 92614, United States
- Department of Physics and Astronomy, University of California, Irvine, California 92614, United States
| | - Vladimir Y Chernyak
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
- Department of Mathematics, Wayne State University, 656 W. Kirby, Detroit, Michigan 48202, United States
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, California 92614, United States
- Department of Physics and Astronomy, University of California, Irvine, California 92614, United States
| |
Collapse
|
17
|
Basu S, Roy SK, Barcenas G, Li L, Yurke B, Knowlton WB, Lee J. Enhanced Photo-Cross-Linking of Thymines in DNA Holliday Junction-Templated Squaraine Dimers. Biochemistry 2023; 62:3234-3244. [PMID: 37906841 DOI: 10.1021/acs.biochem.3c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Programmable self-assembly of dyes using DNA templates to promote exciton delocalization in dye aggregates is gaining considerable interest. New methods to improve the rigidity of the DNA scaffold and thus the stability of the molecular dye aggregates to encourage exciton delocalization are desired. In these dye-DNA constructs, one potential way to increase the stability of the aggregates is to create an additional covalent bond via photo-cross-linking reactions between thymines in the DNA scaffold. Specifically, we report an approach to increase the yield of photo-cross-linking reaction between thymines in the core of a DNA Holliday junction while limiting the damage from UV irradiation to DNA. We investigated the effect of the distance between thymines on the photo-cross-linking reaction yields by using linkers with different lengths to tether the dyes to the DNA templates. By comprehensively evaluating the photo-cross-linking reaction yields of dye-DNA aggregates using linkers with different lengths, we conclude that interstrand thymines tend to photo-cross-link more efficiently with short linkers. A higher cross-linking yield was achieved due to the shorter intermolecular distance between thymines influenced by strong dye-dye interactions. Our method establishes the possibility of improving the stability of DNA-scaffolded dye aggregates, thereby expanding their use in exciton-based applications such as light harvesting, nanoscale computing, quantum computing, and optoelectronics.
Collapse
Affiliation(s)
- Shibani Basu
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Simon K Roy
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - German Barcenas
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Lan Li
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - William B Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
- Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Jeunghoon Lee
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
- Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, United States
| |
Collapse
|
18
|
Saraceno P, Sláma V, Cupellini L. First-principles simulation of excitation energy transfer and transient absorption spectroscopy in the CP29 light-harvesting complex. J Chem Phys 2023; 159:184112. [PMID: 37962444 DOI: 10.1063/5.0170295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
The dynamics of delocalized excitons in light-harvesting complexes (LHCs) can be investigated using different experimental techniques, and transient absorption (TA) spectroscopy is one of the most valuable methods for this purpose. A careful interpretation of TA spectra is essential for the clarification of excitation energy transfer (EET) processes occurring during light-harvesting. However, even in the simplest LHCs, a physical model is needed to interpret transient spectra as the number of EET processes occurring at the same time is very large to be disentangled from measurements alone. Physical EET models are commonly built by fittings of the microscopic exciton Hamiltonians and exciton-vibrational parameters, an approach that can lead to biases. Here, we present a first-principles strategy to simulate EET and transient absorption spectra in LHCs, combining molecular dynamics and accurate multiscale quantum chemical calculations to obtain an independent estimate of the excitonic structure of the complex. The microscopic parameters thus obtained are then used in EET simulations to obtain the population dynamics and the related spectroscopic signature. We apply this approach to the CP29 minor antenna complex of plants for which we follow the EET dynamics and transient spectra after excitation in the chlorophyll b region. Our calculations reproduce all the main features observed in the transient absorption spectra and provide independent insight on the excited-state dynamics of CP29. The approach presented here lays the groundwork for the accurate simulation of EET and unbiased interpretation of transient spectra in multichromophoric systems.
Collapse
Affiliation(s)
- Piermarco Saraceno
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Vladislav Sláma
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
19
|
Bonvicini A, Champagne B. Three-Dimensional Rotational Averaging Using Irreducible Sets of Linearly Independent Fundamental Isotropic Cartesian Tensors: A Computational Approach. J Chem Theory Comput 2023; 19:7801-7815. [PMID: 37871283 DOI: 10.1021/acs.jctc.3c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The theoretical formulation of linear and nonlinear molecular spectroscopies applied to isotropic samples (e.g., liquid or gas solutions) goes through a fundamental step known as the rotational averaging of Cartesian tensors. Rotational averaging of Cartesian tensors is a mathematical procedure from which the expressions for the rotationally invariant observables (e.g., rates or intensities), associated with a given spectroscopic process, can be found. In this work, the mathematical/computational procedure for finding the rotational averages of Cartesian tensors of any rank n, which is based on the use of the fundamental isotropic Cartesian tensors (FICTs), is discussed. Moreover, for the first time, a heuristic computational method for finding a set of linearly independent FICTs is proposed. The procedure has been tested for 2 ≤ n ≤ 12, where most of the linear and nonlinear molecular spectroscopies apply (e.g., one-photon and multiphoton absorption, emission, electronic circular dichroism, Raman optical activity, coherent and incoherent mth-harmonic generation, etc.). Finally, it is shown how this computational procedure can be extended for n > 12.
Collapse
Affiliation(s)
- Andrea Bonvicini
- Department of Chemistry, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Benoît Champagne
- Department of Chemistry, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| |
Collapse
|
20
|
Mathur D, Díaz SA, Hildebrandt N, Pensack RD, Yurke B, Biaggne A, Li L, Melinger JS, Ancona MG, Knowlton WB, Medintz IL. Pursuing excitonic energy transfer with programmable DNA-based optical breadboards. Chem Soc Rev 2023; 52:7848-7948. [PMID: 37872857 PMCID: PMC10642627 DOI: 10.1039/d0cs00936a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 10/25/2023]
Abstract
DNA nanotechnology has now enabled the self-assembly of almost any prescribed 3-dimensional nanoscale structure in large numbers and with high fidelity. These structures are also amenable to site-specific modification with a variety of small molecules ranging from drugs to reporter dyes. Beyond obvious application in biotechnology, such DNA structures are being pursued as programmable nanoscale optical breadboards where multiple different/identical fluorophores can be positioned with sub-nanometer resolution in a manner designed to allow them to engage in multistep excitonic energy-transfer (ET) via Förster resonance energy transfer (FRET) or other related processes. Not only is the ability to create such complex optical structures unique, more importantly, the ability to rapidly redesign and prototype almost all structural and optical analogues in a massively parallel format allows for deep insight into the underlying photophysical processes. Dynamic DNA structures further provide the unparalleled capability to reconfigure a DNA scaffold on the fly in situ and thus switch between ET pathways within a given assembly, actively change its properties, and even repeatedly toggle between two states such as on/off. Here, we review progress in developing these composite materials for potential applications that include artificial light harvesting, smart sensors, nanoactuators, optical barcoding, bioprobes, cryptography, computing, charge conversion, and theranostics to even new forms of optical data storage. Along with an introduction into the DNA scaffolding itself, the diverse fluorophores utilized in these structures, their incorporation chemistry, and the photophysical processes they are designed to exploit, we highlight the evolution of DNA architectures implemented in the pursuit of increased transfer efficiency and the key lessons about ET learned from each iteration. We also focus on recent and growing efforts to exploit DNA as a scaffold for assembling molecular dye aggregates that host delocalized excitons as a test bed for creating excitonic circuits and accessing other quantum-like optical phenomena. We conclude with an outlook on what is still required to transition these materials from a research pursuit to application specific prototypes and beyond.
Collapse
Affiliation(s)
- Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland OH 44106, USA
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| | - Niko Hildebrandt
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Department of Engineering Physics, McMaster University, Hamilton, L8S 4L7, Canada
| | - Ryan D Pensack
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Austin Biaggne
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Lan Li
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
- Center for Advanced Energy Studies, Idaho Falls, ID 83401, USA
| | - Joseph S Melinger
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Mario G Ancona
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
- Department of Electrical and Computer Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - William B Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| |
Collapse
|
21
|
Mass OA, Watt DR, Patten LK, Pensack RD, Lee J, Turner DB, Yurke B, Knowlton WB. Exciton delocalization in a fully synthetic DNA-templated bacteriochlorin dimer. Phys Chem Chem Phys 2023; 25:28437-28451. [PMID: 37843877 PMCID: PMC10599410 DOI: 10.1039/d3cp01634j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023]
Abstract
A bacteriochlorophyll a (Bchla) dimer is a basic functional unit in the LH1 and LH2 photosynthetic pigment-protein antenna complexes of purple bacteria, where an ordered, close arrangement of Bchla pigments-secured by noncovalent bonding to a protein template-enables exciton delocalization at room temperature. Stable and tunable synthetic analogs of this key photosynthetic subunit could lead to facile engineering of exciton-based systems such as in artificial photosynthesis, organic optoelectronics, and molecular quantum computing. Here, using a combination of synthesis and theory, we demonstrate that exciton delocalization can be achieved in a dimer of a synthetic bacteriochlorin (BC) featuring stability, high structural modularity, and spectral properties advantageous for exciton-based devices. The BC dimer was covalently templated by DNA, a stable and highly programmable scaffold. To achieve exciton delocalization in the absence of pigment-protein interactions critical for the Bchla dimer, we relied on the strong transition dipole moment in BC enabled by two auxochromes along the Qy transition, and omitting the central metal and isocyclic ring. The spectral properties of the synthetic "free" BC closely resembled those of Bchla in an organic solvent. Applying spectroscopic modeling, the exciton delocalization in the DNA-templated BC dimer was evaluated by extracting the excitonic hopping parameter, J to be 214 cm-1 (26.6 meV). For comparison, the same method applied to the natural protein-templated Bchla dimer yielded J of 286 cm-1 (35.5 meV). The smaller value of J in the BC dimer likely arose from the partial bacteriochlorin intercalation and the difference in medium effect between DNA and protein.
Collapse
Affiliation(s)
- Olga A Mass
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
| | - Devan R Watt
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
| | - Lance K Patten
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
| | - Ryan D Pensack
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
| | - Jeunghoon Lee
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
- Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, USA
| | - Daniel B Turner
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
- Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, USA
| | - William B Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
- Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, USA
| |
Collapse
|
22
|
Li Manni G, Fdez. Galván I, Alavi A, Aleotti F, Aquilante F, Autschbach J, Avagliano D, Baiardi A, Bao JJ, Battaglia S, Birnoschi L, Blanco-González A, Bokarev SI, Broer R, Cacciari R, Calio PB, Carlson RK, Carvalho Couto R, Cerdán L, Chibotaru LF, Chilton NF, Church JR, Conti I, Coriani S, Cuéllar-Zuquin J, Daoud RE, Dattani N, Decleva P, de Graaf C, Delcey M, De Vico L, Dobrautz W, Dong SS, Feng R, Ferré N, Filatov(Gulak) M, Gagliardi L, Garavelli M, González L, Guan Y, Guo M, Hennefarth MR, Hermes MR, Hoyer CE, Huix-Rotllant M, Jaiswal VK, Kaiser A, Kaliakin DS, Khamesian M, King DS, Kochetov V, Krośnicki M, Kumaar AA, Larsson ED, Lehtola S, Lepetit MB, Lischka H, López Ríos P, Lundberg M, Ma D, Mai S, Marquetand P, Merritt ICD, Montorsi F, Mörchen M, Nenov A, Nguyen VHA, Nishimoto Y, Oakley MS, Olivucci M, Oppel M, Padula D, Pandharkar R, Phung QM, Plasser F, Raggi G, Rebolini E, Reiher M, Rivalta I, Roca-Sanjuán D, Romig T, Safari AA, Sánchez-Mansilla A, Sand AM, Schapiro I, Scott TR, Segarra-Martí J, Segatta F, Sergentu DC, Sharma P, Shepard R, Shu Y, Staab JK, Straatsma TP, Sørensen LK, Tenorio BNC, Truhlar DG, Ungur L, Vacher M, Veryazov V, Voß TA, Weser O, Wu D, Yang X, Yarkony D, Zhou C, Zobel JP, Lindh R. The OpenMolcas Web: A Community-Driven Approach to Advancing Computational Chemistry. J Chem Theory Comput 2023; 19:6933-6991. [PMID: 37216210 PMCID: PMC10601490 DOI: 10.1021/acs.jctc.3c00182] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Indexed: 05/24/2023]
Abstract
The developments of the open-source OpenMolcas chemistry software environment since spring 2020 are described, with a focus on novel functionalities accessible in the stable branch of the package or via interfaces with other packages. These developments span a wide range of topics in computational chemistry and are presented in thematic sections: electronic structure theory, electronic spectroscopy simulations, analytic gradients and molecular structure optimizations, ab initio molecular dynamics, and other new features. This report offers an overview of the chemical phenomena and processes OpenMolcas can address, while showing that OpenMolcas is an attractive platform for state-of-the-art atomistic computer simulations.
Collapse
Affiliation(s)
- Giovanni Li Manni
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Ignacio Fdez. Galván
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| | - Ali Alavi
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
- Yusuf Hamied
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Flavia Aleotti
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Francesco Aquilante
- Theory and
Simulation of Materials (THEOS) and National Centre for Computational
Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jochen Autschbach
- Department
of Chemistry, University at Buffalo, State
University of New York, Buffalo, New York 14260-3000, United States
| | - Davide Avagliano
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Alberto Baiardi
- ETH Zurich, Laboratory for Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Jie J. Bao
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Stefano Battaglia
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| | - Letitia Birnoschi
- The Department
of Chemistry, The University of Manchester, M13 9PL, Manchester, U.K.
| | - Alejandro Blanco-González
- Chemistry
Department, Bowling Green State University, Overmann Hall, Bowling Green, Ohio 43403, United States
| | - Sergey I. Bokarev
- Institut
für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
- Chemistry
Department, School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Ria Broer
- Theoretical
Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Roberto Cacciari
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Paul B. Calio
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Rebecca K. Carlson
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Rafael Carvalho Couto
- Division
of Theoretical Chemistry and Biology, School of Engineering Sciences
in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Luis Cerdán
- Instituto
de Ciencia Molecular, Universitat de València, Catedrático José Beltrán
Martínez n. 2, 46980 Paterna, Spain
- Instituto
de Óptica (IO−CSIC), Consejo
Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Liviu F. Chibotaru
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Nicholas F. Chilton
- The Department
of Chemistry, The University of Manchester, M13 9PL, Manchester, U.K.
| | | | - Irene Conti
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Sonia Coriani
- Department
of Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, 2800 Kongens Lyngby, Denmark
| | - Juliana Cuéllar-Zuquin
- Instituto
de Ciencia Molecular, Universitat de València, Catedrático José Beltrán
Martínez n. 2, 46980 Paterna, Spain
| | - Razan E. Daoud
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Nike Dattani
- HPQC Labs, Waterloo, N2T 2K9 Ontario Canada
- HPQC College, Waterloo, N2T 2K9 Ontario Canada
| | - Piero Decleva
- Istituto
Officina dei Materiali IOM-CNR and Dipartimento di Scienze Chimiche
e Farmaceutiche, Università degli
Studi di Trieste, I-34121 Trieste, Italy
| | - Coen de Graaf
- Department
of Physical and Inorganic Chemistry, Universitat
Rovira i Virgili, Tarragona 43007, Spain
- ICREA, Pg. Lluís
Companys 23, 08010 Barcelona, Spain
| | - Mickaël
G. Delcey
- Division
of Theoretical Chemistry and Biology, School of Engineering Sciences
in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Luca De Vico
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Werner Dobrautz
- Chalmers
University of Technology, Department of Chemistry
and Chemical Engineering, 41296 Gothenburg, Sweden
| | - Sijia S. Dong
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry and Chemical Biology, Department of Physics, and Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Rulin Feng
- Department
of Chemistry, University at Buffalo, State
University of New York, Buffalo, New York 14260-3000, United States
- Department
of Chemistry, Fudan University, Shanghai 200433, China
| | - Nicolas Ferré
- Institut
de Chimie Radicalaire (UMR-7273), Aix-Marseille
Univ, CNRS, ICR 13013 Marseille, France
| | | | - Laura Gagliardi
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Marco Garavelli
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Leticia González
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | - Yafu Guan
- State Key
Laboratory of Molecular Reaction Dynamics and Center for Theoretical
Computational Chemistry, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Meiyuan Guo
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Matthew R. Hennefarth
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew R. Hermes
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Chad E. Hoyer
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Miquel Huix-Rotllant
- Institut
de Chimie Radicalaire (UMR-7273), Aix-Marseille
Univ, CNRS, ICR 13013 Marseille, France
| | - Vishal Kumar Jaiswal
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Andy Kaiser
- Institut
für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Danil S. Kaliakin
- Chemistry
Department, Bowling Green State University, Overmann Hall, Bowling Green, Ohio 43403, United States
| | - Marjan Khamesian
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| | - Daniel S. King
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Vladislav Kochetov
- Institut
für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Marek Krośnicki
- Institute
of Theoretical Physics and Astrophysics, Faculty of Mathematics, Physics
and Informatics, University of Gdańsk, ul Wita Stwosza 57, 80-952, Gdańsk, Poland
| | | | - Ernst D. Larsson
- Division
of Theoretical Chemistry, Chemical Centre, Lund University, P.O. Box 124, SE-22100, Lund, Sweden
| | - Susi Lehtola
- Molecular
Sciences Software Institute, Blacksburg, Virginia 24061, United States
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 University of Helsinki, Finland
| | - Marie-Bernadette Lepetit
- Condensed
Matter Theory Group, Institut Néel, CNRS UPR 2940, 38042 Grenoble, France
- Theory
Group, Institut Laue Langevin, 38042 Grenoble, France
| | - Hans Lischka
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas 79409-1061, United States
| | - Pablo López Ríos
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Marcus Lundberg
- Department
of Chemistry − Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
| | - Dongxia Ma
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Sebastian Mai
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | - Philipp Marquetand
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | | | - Francesco Montorsi
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Maximilian Mörchen
- ETH Zurich, Laboratory for Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Artur Nenov
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Vu Ha Anh Nguyen
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Yoshio Nishimoto
- Graduate
School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Meagan S. Oakley
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Massimo Olivucci
- Chemistry
Department, Bowling Green State University, Overmann Hall, Bowling Green, Ohio 43403, United States
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Markus Oppel
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | - Daniele Padula
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Riddhish Pandharkar
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Quan Manh Phung
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Felix Plasser
- Department
of Chemistry, Loughborough University, Loughborough, LE11 3TU, U.K.
| | - Gerardo Raggi
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
- Quantum
Materials and Software LTD, 128 City Road, London, EC1V 2NX, United Kingdom
| | - Elisa Rebolini
- Scientific
Computing Group, Institut Laue Langevin, 38042 Grenoble, France
| | - Markus Reiher
- ETH Zurich, Laboratory for Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Ivan Rivalta
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Daniel Roca-Sanjuán
- Instituto
de Ciencia Molecular, Universitat de València, Catedrático José Beltrán
Martínez n. 2, 46980 Paterna, Spain
| | - Thies Romig
- Institut
für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Arta Anushirwan Safari
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Aitor Sánchez-Mansilla
- Department
of Physical and Inorganic Chemistry, Universitat
Rovira i Virgili, Tarragona 43007, Spain
| | - Andrew M. Sand
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Igor Schapiro
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Thais R. Scott
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Javier Segarra-Martí
- Instituto
de Ciencia Molecular, Universitat de València, Catedrático José Beltrán
Martínez n. 2, 46980 Paterna, Spain
| | - Francesco Segatta
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Dumitru-Claudiu Sergentu
- Department
of Chemistry, University at Buffalo, State
University of New York, Buffalo, New York 14260-3000, United States
- Laboratory
RA-03, RECENT AIR, A. I. Cuza University of Iaşi, RA-03 Laboratory (RECENT AIR), Iaşi 700506, Romania
| | - Prachi Sharma
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Ron Shepard
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, USA
| | - Yinan Shu
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Jakob K. Staab
- The Department
of Chemistry, The University of Manchester, M13 9PL, Manchester, U.K.
| | - Tjerk P. Straatsma
- National
Center for Computational Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831-6373, United States
- Department
of Chemistry and Biochemistry, University
of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | | | - Bruno Nunes Cabral Tenorio
- Department
of Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, 2800 Kongens Lyngby, Denmark
| | - Donald G. Truhlar
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Liviu Ungur
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Morgane Vacher
- Nantes
Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Valera Veryazov
- Division
of Theoretical Chemistry, Chemical Centre, Lund University, P.O. Box 124, SE-22100, Lund, Sweden
| | - Torben Arne Voß
- Institut
für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Oskar Weser
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Dihua Wu
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Xuchun Yang
- Chemistry
Department, Bowling Green State University, Overmann Hall, Bowling Green, Ohio 43403, United States
| | - David Yarkony
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Chen Zhou
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - J. Patrick Zobel
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | - Roland Lindh
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
- Uppsala
Center for Computational Chemistry (UC3), Uppsala University, PO Box 576, SE-751 23 Uppsala. Sweden
| |
Collapse
|
23
|
Yang J, Cong Y, Li Y, Li H. Machine Learning Approach Based on a Range-Corrected Deep Potential Model for Efficient Vibrational Frequency Computation. J Chem Theory Comput 2023; 19:6366-6374. [PMID: 37652890 DOI: 10.1021/acs.jctc.3c00386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
As an ensemble average result, vibrational spectrum simulation can be time-consuming with high accuracy methods. We present a machine learning approach based on the range-corrected deep potential (DPRc) model to improve the computing efficiency. The DPRc method divides the system into "probe region" and "solvent region"; "solvent-solvent" interactions are not counted in the neural network. We applied the approach to two systems: formic acid C═O stretching and MeCN C≡N stretching vibrational frequency shifts in water. All data sets were prepared using the quantum vibration perturbation approach. Effects of different region divisions, one-body correction, cut range, and training data size were tested. The model with a single-molecule "probe region" showed stable accuracy; it ran roughly 10 times faster than regular deep potential and reduced the training time by about four. The approach is efficient, easy to apply, and extendable to calculating various spectra.
Collapse
Affiliation(s)
- Jitai Yang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, P. R. China
| | - Yang Cong
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, P. R. China
| | - You Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, P. R. China
| | - Hui Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, P. R. China
| |
Collapse
|
24
|
Falvo C, Li H. Double-quantum spectroscopy of dense atomic vapors: Interplay between Doppler and self-broadenings. J Chem Phys 2023; 159:064304. [PMID: 37578061 DOI: 10.1063/5.0158307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
In this article, we present a simulation study of the linear and nonlinear spectroscopy of dense atomic vapors. Motivated by recent experiments, we focus on double quantum spectroscopy, which directly probes dipole-dipole interactions. By explicitly including thermal velocity, we show that temperature has an important impact on the self-broadening mechanisms of the linear and nonlinear spectra. We also provide analytical expressions for the response functions in the short time limit using the two-body approximation, which shows that double quantum spectroscopy for atomic vapors directly probes the transition amplitude of the electronic excitation between two atoms. We also propose an expression for the double quantum spectrum that includes the effect of Doppler broadening, and we discuss the effect of density on the spectrum. We show that when Doppler broadening is negligible compared to self-broadening, the double quantum spectrum scales with the atomic density, while when Doppler broadening dominates, it scales as the square of the density.
Collapse
Affiliation(s)
- Cyril Falvo
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
- Université Grenoble-Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - Hebin Li
- Department of Physics, Florida International University, Miami, Florida 33199, USA
| |
Collapse
|
25
|
Mubeen M, Ain NU, Khalid MA, Mukhtar M, Naz B, Siddique Z, Ul-Hamid A, Iqbal A. Enhancing the FRET by tuning the bandgap of acceptor ternary ZnCdS quantum dots. RSC Adv 2023; 13:19096-19105. [PMID: 37362335 PMCID: PMC10288831 DOI: 10.1039/d3ra03233g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
In this article, we report the band gap tuning of ternary ZnCdS quantum dots (QDs) by varying the concentration of the capping ligand, mercaptoacetic acid (MAA). The functionalization of QDs leads to the control of their size and band gap due to the quantum confinement effect, causing blue shift in the absorption and photoluminescence (PL) spectra with a gradual change in the concentration of the capping ligand from 0.5 to 2.5 M. Ensulizole (2-phenylbenzimidazole-5-sulfonic acid) is an important organic ultraviolet (UV) filter that is frequently used in sunscreen cosmetics. An effective overlapping of the PL spectrum of ensulizole and the absorption spectrum of QDs with 2.5 M MAA is achieved. A formidable decrease in the PL intensity and the PL lifetime of ensulizole promotes an efficient Förster resonance energy transfer (FRET) from sunscreen ensulizole to the QDs. The magnitude of the FRET efficiency (E) is ∼70%. This very high value of E is the signature of the existence of a very fast energy transfer process from ensulizole to the MAA functionalized ZnCdS QDs. The dyad system consisting of ZnCdS QDs and ensulizole sunscreen can serve as a prototype model to develop a better understanding of the photochemistry of ensulizole and consequently the formulation of more efficient sunscreen cosmetics.
Collapse
Affiliation(s)
- Muhammad Mubeen
- Department of Chemistry, Quaid-I-Azam University Islamabad-45320 Pakistan
| | - Noor Ul Ain
- Department of Chemistry, Quaid-I-Azam University Islamabad-45320 Pakistan
| | | | - Maria Mukhtar
- Department of Chemistry, Quaid-I-Azam University Islamabad-45320 Pakistan
| | - Bushra Naz
- Department of Chemistry, Quaid-I-Azam University Islamabad-45320 Pakistan
| | - Zumaira Siddique
- Department of Chemistry, Quaid-I-Azam University Islamabad-45320 Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Azhar Iqbal
- Department of Chemistry, Quaid-I-Azam University Islamabad-45320 Pakistan
| |
Collapse
|
26
|
Zhan S, Gelin MF, Huang X, Sun K. Ab initio simulation of peak evolutions and beating maps for electronic two-dimensional signals of a polyatomic chromophore. J Chem Phys 2023; 158:2890773. [PMID: 37191214 DOI: 10.1063/5.0150387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023] Open
Abstract
By employing the doorway-window (DW) on-the-fly simulation protocol, we performed ab initio simulations of peak evolutions and beating maps of electronic two-dimensional (2D) spectra of a polyatomic molecule in the gas phase. As the system under study, we chose pyrazine, which is a paradigmatic example of photodynamics dominated by conical intersections (CIs). From the technical perspective, we demonstrate that the DW protocol is a numerically efficient methodology suitable for simulations of 2D spectra for a wide range of excitation/detection frequencies and population times. From the information content perspective, we show that peak evolutions and beating maps not only reveal timescales of transitions through CIs but also pinpoint the most relevant coupling and tuning modes active at these CIs.
Collapse
Affiliation(s)
- Siying Zhan
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xiang Huang
- Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany
| | - Kewei Sun
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
27
|
Gera T, Chen L, Eisfeld A, Reimers JR, Taffet EJ, Raccah DIGB. Simulating optical linear absorption for mesoscale molecular aggregates: An adaptive hierarchy of pure states approach. J Chem Phys 2023; 158:2887556. [PMID: 37125709 DOI: 10.1063/5.0141882] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/07/2023] [Indexed: 05/02/2023] Open
Abstract
In this paper, we present dyadic adaptive HOPS (DadHOPS), a new method for calculating linear absorption spectra for large molecular aggregates. This method combines the adaptive HOPS (adHOPS) framework, which uses locality to improve computational scaling, with the dyadic HOPS method previously developed to calculate linear and nonlinear spectroscopic signals. To construct a local representation of dyadic HOPS, we introduce an initial state decomposition that reconstructs the linear absorption spectra from a sum over locally excited initial conditions. We demonstrate the sum over initial conditions can be efficiently Monte Carlo sampled and that the corresponding calculations achieve size-invariant [i.e., O(1)] scaling for sufficiently large aggregates while trivially incorporating static disorder in the Hamiltonian. We present calculations on the photosystem I core complex to explore the behavior of the initial state decomposition in complex molecular aggregates as well as proof-of-concept DadHOPS calculations on an artificial molecular aggregate inspired by perylene bis-imide to demonstrate the size-invariance of the method.
Collapse
Affiliation(s)
- Tarun Gera
- Department of Chemistry, Southern Methodist University, P.O. Box, Dallas, Texas 750314, USA
| | - Lipeng Chen
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, Dresden, Germany
| | - Alexander Eisfeld
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, Dresden, Germany
| | - Jeffrey R Reimers
- International Centre for Quantum and Molecular Structures and the School of Physics, Shanghai University, 200444 Shanghai, China
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney NSW 2007, Australia
| | - Elliot J Taffet
- Department of Chemistry, Southern Methodist University, P.O. Box, Dallas, Texas 750314, USA
| | - Doran I G B Raccah
- Department of Chemistry, Southern Methodist University, P.O. Box, Dallas, Texas 750314, USA
| |
Collapse
|
28
|
Liu Z, Jha A, Liang XT, Duan HG. Transient chiral dynamics revealed by two-dimensional circular dichroism spectroscopy. Phys Rev E 2023; 107:054119. [PMID: 37329099 DOI: 10.1103/physreve.107.054119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 05/05/2023] [Indexed: 06/18/2023]
Abstract
Chirality has been considered as one of the key factors in the evolution of life in nature. It is important to uncover how chiral potentials of molecular systems play vital role in fundamental photochemical processes. Here, we investigate the role of chirality in photoinduced energy transfer in a model dimeric system, where the monomers are excitonically coupled. To observe transient chiral dynamics and energy transfer, we employ circularly polarized laser pulses in two-dimensional electronic spectroscopy to construct the two-dimensional circular dichroism (2DCD) spectral maps. Tracking time-resolved peak magnitudes in 2DCD spectra allows one to identify chirality induced population dynamics. The dynamics of energy transfer is revealed by the time-resolved kinetics of cross peaks. However, the differential signal of 2DCD spectra shows the magnitude of cross peaks is dramatically reduced at initial waiting time, which indicates the weak chiral interactions between two monomers. The downhill energy transfer is resolved by presenting a strong magnitude of cross peak in 2DCD spectra after long waiting time. The chiral contribution towards coherent and incoherent energy-transfer pathways in the model dimer system is further examined via control of excitonic couplings between two monomers. Applications are made to study the energy-transfer process in the Fenna-Matthews-Olson complex. Our work uncovers the potential of 2DCD spectroscopy to resolve the chiral-induced interactions and population transfers in excitonically coupled systems.
Collapse
Affiliation(s)
- Zihui Liu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P.R. China
| | - Ajay Jha
- Rosalind Franklin Institute, Harwell, Oxfordshire OX11 0QX, United Kingdom
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Xian-Ting Liang
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P.R. China
| | - Hong-Guang Duan
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P.R. China
| |
Collapse
|
29
|
Hedse A, Kalaee AAS, Wacker A, Pullerits T. Pulse overlap artifacts and double quantum coherence spectroscopy. J Chem Phys 2023; 158:141104. [PMID: 37061484 DOI: 10.1063/5.0146148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
The double quantum coherence (DQC) signal in nonlinear spectroscopy gives information about the many-body correlation effects not easily available by other methods. The signal is short-lived, consequently, a significant part of it is generated during the pulse overlap. Since the signal is at two times the laser frequency, one may intuitively expect that the pulse overlap-related artifacts are filtered out by the Fourier transform. Here, we show that this is not the case. We perform explicit calculations of phase-modulated two-pulse experiments of a two-level system where the DQC is impossible. Still, we obtain a significant signal at the modulation frequency, which corresponds to the DQC, while the Fourier transform over the pulse delay shows a double frequency. We repeat the calculations with a three-level system where the true DQC signal occurs. We conclude that with realistic dephasing times, the pulse-overlap artifact can be significantly stronger than the DQC signal. Our results call for great care when analyzing such experiments. As a rule of thumb, we recommend that only delays larger than 1.5 times the pulse length should be used.
Collapse
Affiliation(s)
- Albin Hedse
- Chemical Physics and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | | | - Andreas Wacker
- Mathematical Physics and NanoLund, Lund University, P.O. Box 118, 22100 Lund, Sweden
| | - Tõnu Pullerits
- Chemical Physics and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden
| |
Collapse
|
30
|
Segatta F, Ruiz DA, Aleotti F, Yaghoubi M, Mukamel S, Garavelli M, Santoro F, Nenov A. Nonlinear Molecular Electronic Spectroscopy via MCTDH Quantum Dynamics: From Exact to Approximate Expressions. J Chem Theory Comput 2023; 19:2075-2091. [PMID: 36961952 PMCID: PMC10100531 DOI: 10.1021/acs.jctc.2c01059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
We present an accurate and efficient approach to computing the linear and nonlinear optical spectroscopy of a closed quantum system subject to impulsive interactions with an incident electromagnetic field. It incorporates the effect of ultrafast nonadiabatic dynamics by means of explicit numerical propagation of the nuclear wave packet. The fundamental expressions for the evaluation of first- and higher-order response functions are recast in a general form that can be used with any quantum dynamics code capable of computing the overlap of nuclear wave packets evolving in different states. Here we present the evaluation of these expressions with the multiconfiguration time-dependent Hartree (MCTDH) method. Application is made to pyrene, excited to its lowest bright excited state S2 which exhibits a sub-100-fs nonadiabatic decay to a dark state S1. The system is described by a linear vibronic coupling Hamiltonian, parametrized with multiconfiguration electronic structure methods. We show that the ultrafast nonadiabatic dynamics can have a remarkable effect on the spectral line shapes that goes beyond simple lifetime broadening. Furthermore, a widely employed approximate expression based on the time scale separation of dephasing and population relaxation is recast in the same theoretical framework. Application to pyrene shows the range of validity of such approximations.
Collapse
Affiliation(s)
- Francesco Segatta
- Dipartimento di Chimica Industriale "Toso Montanari", University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Daniel Aranda Ruiz
- ICMol, Universidad de Valencia, Catedrático José Beltrán Martínez, 2, 46980 Paterna, Spain
- Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), Area della Ricerca del CNR, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Flavia Aleotti
- Dipartimento di Chimica Industriale "Toso Montanari", University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Martha Yaghoubi
- Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), Area della Ricerca del CNR, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Shaul Mukamel
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari", University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Fabrizio Santoro
- Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), Area della Ricerca del CNR, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Artur Nenov
- Dipartimento di Chimica Industriale "Toso Montanari", University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| |
Collapse
|
31
|
Zhao Y. The hierarchy of Davydov's Ansätze: From guesswork to numerically "exact" many-body wave functions. J Chem Phys 2023; 158:080901. [PMID: 36859105 DOI: 10.1063/5.0140002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
This Perspective presents an overview of the development of the hierarchy of Davydov's Ansätze and a few of their applications in many-body problems in computational chemical physics. Davydov's solitons originated in the investigation of vibrational energy transport in proteins in the 1970s. Momentum-space projection of these solitary waves turned up to be accurate variational ground-state wave functions for the extended Holstein molecular crystal model, lending unambiguous evidence to the absence of formal quantum phase transitions in Holstein systems. The multiple Davydov Ansätze have been proposed, with increasing Ansatz multiplicity, as incremental improvements of their single-Ansatz parents. For a given Hamiltonian, the time-dependent variational formalism is utilized to extract accurate dynamic and spectroscopic properties using Davydov's Ansätze as its trial states. A quantity proven to disappear for large multiplicities, the Ansatz relative deviation is introduced to quantify how closely the Schrödinger equation is obeyed. Three finite-temperature extensions to the time-dependent variation scheme are elaborated, i.e., the Monte Carlo importance sampling, the method of thermofield dynamics, and the method of displaced number states. To demonstrate the versatility of the methodology, this Perspective provides applications of Davydov's Ansätze to the generalized Holstein Hamiltonian, variants of the spin-boson model, and systems of cavity-assisted singlet fission, where accurate dynamic and spectroscopic properties of the many-body systems are given by the Davydov trial states.
Collapse
Affiliation(s)
- Yang Zhao
- Division of Materials Science, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
32
|
van Hengel CDN, van Adrichem KE, Jansen TLC. Simulation of two-dimensional infrared Raman spectroscopy with application to proteins. J Chem Phys 2023; 158:064106. [PMID: 36792507 DOI: 10.1063/5.0138958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Two-dimensional infrared Raman spectroscopy is a powerful technique for studying the structure and interaction in molecular and biological systems. Here, we present a new implementation of the simulation of the two-dimensional infrared Raman signals. The implementation builds on the numerical integration of the Schrödinger equation approach. It combines the prediction of dynamics from molecular dynamics with a map-based approach for obtaining Hamiltonian trajectories and response function calculations. The new implementation is tested on the amide-I region for two proteins, where one is dominated by α-helices and the other by β-sheets. We find that the predicted spectra agree well with experimental observations. We further find that the two-dimensional infrared Raman spectra at least of the studied proteins are much less sensitive to the laser polarization used compared to conventional two-dimensional infrared experiments. The present implementation and findings pave the way for future applications for the interpretation of two-dimensional infrared Raman spectra.
Collapse
Affiliation(s)
- Carleen D N van Hengel
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Kim E van Adrichem
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Thomas L C Jansen
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
33
|
Sen S, Senjean B, Visscher L. Characterization of excited states in time-dependent density functional theory using localized molecular orbitals. J Chem Phys 2023; 158:054115. [PMID: 36754801 DOI: 10.1063/5.0137729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Localized molecular orbitals are often used for the analysis of chemical bonds, but they can also serve to efficiently and comprehensibly compute linear response properties. While conventional canonical molecular orbitals provide an adequate basis for the treatment of excited states, a chemically meaningful identification of the different excited-state processes is difficult within such a delocalized orbital basis. In this work, starting from an initial set of supermolecular canonical molecular orbitals, we provide a simple one-step top-down embedding procedure for generating a set of orbitals, which are localized in terms of the supermolecule but delocalized over each subsystem composing the supermolecule. Using an orbital partitioning scheme based on such sets of localized orbitals, we further present a procedure for the construction of local excitations and charge-transfer states within the linear response framework of time-dependent density functional theory (TDDFT). This procedure provides direct access to approximate diabatic excitation energies and, under the Tamm-Dancoff approximation, also their corresponding electronic couplings-quantities that are of primary importance in modeling energy transfer processes in complex biological systems. Our approach is compared with a recently developed diabatization procedure based on subsystem TDDFT using projection operators, which leads to a similar set of working equations. Although both of these methods differ in the general localization strategies adopted and the type of basis functions (Slaters vs Gaussians) employed, an overall decent agreement is obtained.
Collapse
Affiliation(s)
- Souloke Sen
- Division of Theoretical Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Bruno Senjean
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Lucas Visscher
- Division of Theoretical Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
34
|
Zakutauskaitė K, Mačernis M, Nguyen HH, Ogilvie JP, Abramavičius D. Extracting the excitonic Hamiltonian of a chlorophyll dimer from broadband two-dimensional electronic spectroscopy. J Chem Phys 2023; 158:015103. [PMID: 36610982 DOI: 10.1063/5.0108166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We apply Frenkel exciton theory to model the entire Q-band of a tightly bound chlorophyll dimer inspired by the photosynthetic reaction center of photosystem II. The potential of broadband two-dimensional electronic spectroscopy experiment spanning the Qx and Qy regions to extract the parameters of the model dimer Hamiltonian is examined through theoretical simulations of the experiment. We find that the local nature of Qx excitation enables identification of molecular properties of the delocalized Qy excitons. Specifically, we demonstrate that the cross-peak region, where excitation energy is resonant with Qy while detection is at Qx, contains specific spectral signatures that can reveal the full real-space molecular Hamiltonian, a task that is impossible by considering the Qy transitions alone. System-bath coupling and site energy disorder in realistic systems may limit the resolution of these spectral signatures due to spectral congestion.
Collapse
Affiliation(s)
- Kristina Zakutauskaitė
- Institute of Chemical Physics, Vilnius University, Sauletekio al. 9-III, Vilnius, Lithuania
| | - Mindaugas Mačernis
- Institute of Chemical Physics, Vilnius University, Sauletekio al. 9-III, Vilnius, Lithuania
| | - Hoang H Nguyen
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Darius Abramavičius
- Institute of Chemical Physics, Vilnius University, Sauletekio al. 9-III, Vilnius, Lithuania
| |
Collapse
|
35
|
Brixner T, Mueller S, Müller A, Knote A, Schnepp W, Truman S, Vetter A, von Mammen S. femtoPro: virtual-reality interactive training simulator of an ultrafast laser laboratory. APPLIED PHYSICS. B, LASERS AND OPTICS 2023; 129:78. [PMID: 37152905 PMCID: PMC10148635 DOI: 10.1007/s00340-023-08018-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023]
Abstract
The huge field of optics and photonics research and development is in constant demand of well-trained experts. However, it is challenging to teach efficiently the setup process of complicated optical experiments due to limited hardware availability and eye-safety concerns, in particular, in the case of femtosecond lasers. We have developed an interactive simulation of an ultrafast laser laboratory ("femtoPro") for teaching and training, implementing physical models for the calculation and visualization of Gaussian laser beam propagation, ultrashort optical pulses, their modulation by typical optical elements, and linear as well as nonlinear light-matter interaction. This facilitates the setup and simulated measurement procedure, in virtual reality (VR) and at real-time speeds, of various typical optical arrangements and spectroscopy schemes such as telescopes, interferometers, or pulse characterization. femtoPro can be employed to supplement academic teaching in connection with regular courses in optics or spectroscopy, to train future scientists and engineers in the field of (ultrafast) optics in practical skills, to communicate to other researchers how to set up and align a particular experiment, to "test-build" and simulate new designs of optical setups, to simulate ultrafast spectroscopy data, to offer practical exercises to high-school students, and to reach out to the general public.
Collapse
Affiliation(s)
- Tobias Brixner
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Stefan Mueller
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Andreas Müller
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Games Engineering, Institut für Informatik, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Andreas Knote
- Games Engineering, Institut für Informatik, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Wilhelm Schnepp
- Games Engineering, Institut für Informatik, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Samuel Truman
- Games Engineering, Institut für Informatik, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Anne Vetter
- Games Engineering, Institut für Informatik, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Sebastian von Mammen
- Games Engineering, Institut für Informatik, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
36
|
Gelin MF, Chen L, Domcke W. Equation-of-Motion Methods for the Calculation of Femtosecond Time-Resolved 4-Wave-Mixing and N-Wave-Mixing Signals. Chem Rev 2022; 122:17339-17396. [PMID: 36278801 DOI: 10.1021/acs.chemrev.2c00329] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Femtosecond nonlinear spectroscopy is the main tool for the time-resolved detection of photophysical and photochemical processes. Since most systems of chemical interest are rather complex, theoretical support is indispensable for the extraction of the intrinsic system dynamics from the detected spectroscopic responses. There exist two alternative theoretical formalisms for the calculation of spectroscopic signals, the nonlinear response-function (NRF) approach and the spectroscopic equation-of-motion (EOM) approach. In the NRF formalism, the system-field interaction is assumed to be sufficiently weak and is treated in lowest-order perturbation theory for each laser pulse interacting with the sample. The conceptual alternative to the NRF method is the extraction of the spectroscopic signals from the solutions of quantum mechanical, semiclassical, or quasiclassical EOMs which govern the time evolution of the material system interacting with the radiation field of the laser pulses. The NRF formalism and its applications to a broad range of material systems and spectroscopic signals have been comprehensively reviewed in the literature. This article provides a detailed review of the suite of EOM methods, including applications to 4-wave-mixing and N-wave-mixing signals detected with weak or strong fields. Under certain circumstances, the spectroscopic EOM methods may be more efficient than the NRF method for the computation of various nonlinear spectroscopic signals.
Collapse
Affiliation(s)
- Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Lipeng Chen
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
| | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, D-85747 Garching,Germany
| |
Collapse
|
37
|
Xu M, Yan Y, Shi Q, Ankerhold J, Stockburger JT. Taming Quantum Noise for Efficient Low Temperature Simulations of Open Quantum Systems. PHYSICAL REVIEW LETTERS 2022; 129:230601. [PMID: 36563205 DOI: 10.1103/physrevlett.129.230601] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
The hierarchical equations of motion (HEOM), derived from the exact Feynman-Vernon path integral, is one of the most powerful numerical methods to simulate the dynamics of open quantum systems. Its applicability has so far been limited to specific forms of spectral reservoir distributions and relatively elevated temperatures. Here we solve this problem and introduce an effective treatment of quantum noise in frequency space by systematically clustering higher order Matsubara poles, equivalent to an optimized rational decomposition. This leads to an elegant extension of the HEOM to arbitrary temperatures and very general reservoirs in combination with efficiency, high accuracy, and long-time stability. Moreover, the technique can directly be implemented in other approaches such as Green's function, stochastic, and pseudomode formulations. As one highly nontrivial application, for the subohmic spin-boson model at vanishing temperature the Shiba relation is quantitatively verified which predicts the long-time decay of correlation functions.
Collapse
Affiliation(s)
- Meng Xu
- Institute for Complex Quantum Systems and IQST, Ulm University-Albert-Einstein-Allee 11, D-89069 Ulm, Germany
| | - Yaming Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - J Ankerhold
- Institute for Complex Quantum Systems and IQST, Ulm University-Albert-Einstein-Allee 11, D-89069 Ulm, Germany
| | - J T Stockburger
- Institute for Complex Quantum Systems and IQST, Ulm University-Albert-Einstein-Allee 11, D-89069 Ulm, Germany
| |
Collapse
|
38
|
Abstract
Major advances in X-ray sources including the development of circularly polarized and orbital angular momentum pulses make it possible to probe matter chirality at unprecedented energy regimes and with Ångström and femtosecond spatiotemporal resolutions. We survey the theory of stationary and time-resolved nonlinear chiral measurements that can be carried out in the X-ray regime using tabletop X-ray sources or large scale (XFEL, synchrotron) facilities. A variety of possible signals and their information content are discussed.
Collapse
Affiliation(s)
- Jérémy R Rouxel
- Université de Lyon, UJM-Saint-Etienne, CNRS, IOGS, Laboratoire Hubert Curien UMR 5516, Saint-Etienne F-42023, France
| | - Shaul Mukamel
- Department of Chemistry and Physics & Astronomy, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
39
|
Chen L, Bennett DIG, Eisfeld A. Calculating non-linear response functions for multi-dimensional electronic spectroscopy using dyadic non-Markovian quantum state diffusion. J Chem Phys 2022; 157:114104. [DOI: 10.1063/5.0107925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a methodology for simulating multi-dimensional electronic spectra of molecular aggregates with coupling of electronic excitation to a structured environment using the stochastic non-Markovian quantum state diffusion (NMQSD) method in combination with perturbation theory for the response functions. A crucial aspect of our approach is that we propagate the NMQSD equation in a doubled system Hilbert space, but with the same noise. We demonstrate that our approach shows fast convergence with respect to the number of stochastic trajectories, providing a promising technique for numerical calculation of two-dimensional electronic spectra of large molecular aggregates.
Collapse
Affiliation(s)
- Lipeng Chen
- Department of Chemistry, Max-Planck-Institute for the Physics of Complex Systems, Germany
| | - Doran I. G Bennett
- Chemistry, Southern Methodist University Department of Chemistry, United States of America
| | | |
Collapse
|
40
|
Quintela Rodriguez FE, Troiani F. Vibrational response functions for multidimensional electronic spectroscopy in the adiabatic regime: A coherent-state approach. J Chem Phys 2022; 157:034107. [DOI: 10.1063/5.0094512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Multi-dimensional spectroscopy represents a particularly insightful tool for investigating the interplay of nuclear and electronic dynamics, which plays an important role in a number of photophysical processes and photochemical reactions. Here, we present a coherent state representation of the vibronic dynamics and of the resulting response functions for the widely used linearly displaced harmonic oscillator model. Analytical expressions are initially derived for the case of third-order response functions in an N-level system, with ground state initialization of the oscillator (zero-temperature limit). The results are then generalized to the case of Mth order response functions, with arbitrary M. The formal derivation is translated into a simple recipe, whereby the explicit analytical expressions of the response functions can be derived directly from the Feynman diagrams. We further generalize to the whole set of initial coherent states, which form an overcomplete basis. This allows one, in principle, to derive the dependence of the response functions on arbitrary initial states of the vibrational modes and is here applied to the case of thermal states. Finally, a non-Hermitian Hamiltonian approach is used to include in the above expressions the effect of vibrational relaxation.
Collapse
Affiliation(s)
| | - Filippo Troiani
- Centro S3, CNR-Istituto di Nanoscienze, I-41125 Modena, Italy
| |
Collapse
|
41
|
Taher-Ghahramani F, Zheng F, Eisfeld A. Gaussian process regression for absorption spectra analysis of molecular dimers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 275:121091. [PMID: 35306303 DOI: 10.1016/j.saa.2022.121091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/05/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
A common task is the determination of system parameters from spectroscopy, where one compares the experimental spectrum with calculated spectra, that depend on the desired parameters. Here we discuss an approach based on a machine learning technique, where the parameters for the numerical calculations are chosen from Gaussian Process Regression (GPR). This approach does not only quickly converge to an optimal parameter set, but in addition provides information about the complete parameter space, which allows for example to identify extended parameter regions where numerical spectra are consistent with the experimental one. We consider as example dimers of organic molecules and aim at extracting in particular the interaction between the monomers, and their mutual orientation. We find that indeed the GPR gives reliable results which are in agreement with direct calculations of these parameters using quantum chemical methods.
Collapse
Affiliation(s)
- Farhad Taher-Ghahramani
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str 38, Dresden, Germany.
| | - Fulu Zheng
- Bremen Center for Computational Materials Science, University of Bremen, Am Fallturm 1, 28359 Bremen, Germany.
| | - Alexander Eisfeld
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str 38, Dresden, Germany.
| |
Collapse
|
42
|
Gerken F, Posske T, Mukamel S, Thorwart M. Unique Signatures of Topological Phases in Two-Dimensional THz Spectroscopy. PHYSICAL REVIEW LETTERS 2022; 129:017401. [PMID: 35841546 DOI: 10.1103/physrevlett.129.017401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/12/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
We develop a microscopic theory for the two-dimensional (2D) spectroscopy of one-dimensional topological superconductors. We consider a ring geometry of an archetypal topological superconductor with periodic boundary conditions, bypassing energy-specific differences caused by topologically protected or trivial boundary modes that are hard to distinguish. We show numerically and analytically that the cross-peak structure of the 2D spectra carries unique signatures of the topological phases of the chain. Our work reveals how 2D spectroscopy can identify topological phases in bulk properties.
Collapse
Affiliation(s)
- Felix Gerken
- I. Institut für Theoretische Physik, Universität Hamburg, Notkestraße 9, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Thore Posske
- I. Institut für Theoretische Physik, Universität Hamburg, Notkestraße 9, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Shaul Mukamel
- Departments of Chemistry and Physics and Astronomy, University of California, Irvine, California 92697-2025, USA
| | - Michael Thorwart
- I. Institut für Theoretische Physik, Universität Hamburg, Notkestraße 9, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
43
|
Sláma V, Cupellini L, Mennucci B. Excitonic Nature of Carotenoid–Phthalocyanine Dyads and Its Role in Transient Absorption Spectra. ACS PHYSICAL CHEMISTRY AU 2022; 2:206-215. [PMID: 35637783 PMCID: PMC9136948 DOI: 10.1021/acsphyschemau.1c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/28/2022]
Abstract
![]()
Artificial carotenoid–tetrapyrrole
dyads have been extensively
used as model systems to understand the quenching mechanisms that
occur in light-harvesting complexes during nonphotochemical quenching.
In particular, dyads containing a carotenoid covalently linked to
a zinc phthalocyanine have been studied by transient absorption spectroscopy,
and the observed signals have been interpreted in terms of an excitonically
coupled state involving the lowest excited states of the two fragments.
If present, such excitonic delocalization would have significant implications
on the mechanism of nonphotochemical quenching. Here, we use quantum
chemical calculations to show that this delocalization is not needed
to reproduce the transient absorption spectra. On the contrary, the
observed signals can be explained through excitonic couplings in the
higher-energy manifold of states. We also argue that the covalent
linkage between the two fragments allows for electronic communications,
which complicates the analysis of the spectra based on two independent
but coupled moieties. These findings call for a more thorough reassessment
of the photophysics in these dyads and its implications in the context
of natural nonphotochemical quenching.
Collapse
Affiliation(s)
- Vladislav Sláma
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
44
|
Ren H, Zhang Q, Wang Z, Zhang G, Liu H, Guo W, Mukamel S, Jiang J. Machine learning recognition of protein secondary structures based on two-dimensional spectroscopic descriptors. Proc Natl Acad Sci U S A 2022; 119:e2202713119. [PMID: 35476517 PMCID: PMC9171355 DOI: 10.1073/pnas.2202713119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
Protein secondary structure discrimination is crucial for understanding their biological function. It is not generally possible to invert spectroscopic data to yield the structure. We present a machine learning protocol which uses two-dimensional UV (2DUV) spectra as pattern recognition descriptors, aiming at automated protein secondary structure determination from spectroscopic features. Accurate secondary structure recognition is obtained for homologous (97%) and nonhomologous (91%) protein segments, randomly selected from simulated model datasets. The advantage of 2DUV descriptors over one-dimensional linear absorption and circular dichroism spectra lies in the cross-peak information that reflects interactions between local regions of the protein. Thanks to their ultrafast (∼200 fs) nature, 2DUV measurements can be used in the future to probe conformational variations in the course of protein dynamics.
Collapse
Affiliation(s)
- Hao Ren
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Qian Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Zhengjie Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Guozhen Zhang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Hongzhang Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Wenyue Guo
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Shaul Mukamel
- Department of Chemistry and Physics & Astronomy, University of California, Irvine, CA 92697
| | - Jun Jiang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|
45
|
Chen L, Bennett DIG, Eisfeld A. Simulation of absorption spectra of molecular aggregates: A hierarchy of stochastic pure state approach. J Chem Phys 2022; 156:124109. [DOI: 10.1063/5.0078435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Simulation of spectroscopic observables for molecular aggregates with strong and structured coupling of electronic excitation to vibrational degrees of freedom is an important but challenging task. The Hierarchy of Pure States (HOPS) provides a formally exact solution based on local, stochastic trajectories. Exploiting the localization of HOPS for the simulation of absorption spectra in large aggregates requires a formulation in terms of normalized trajectories. Here, we provide a normalized dyadic equation where the ket- and bra-states are propagated in different electronic Hilbert spaces. This work opens the door to applying adaptive HOPS methods for the simulation of absorption spectra.
Collapse
Affiliation(s)
- Lipeng Chen
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, Dresden, Germany
| | - Doran I. G. Bennett
- Department of Chemistry, Southern Methodist University, P.O. Box 750314, Dallas, Texas 75205, USA
| | - Alexander Eisfeld
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, Dresden, Germany
| |
Collapse
|
46
|
Cignoni E, Slama V, Cupellini L, Mennucci B. The atomistic modeling of light-harvesting complexes from the physical models to the computational protocol. J Chem Phys 2022; 156:120901. [DOI: 10.1063/5.0086275] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The function of light-harvesting complexes is determined by a complex network of dynamic interactions among all the different components: the aggregate of pigments, the protein, and the surrounding environment. Complete and reliable predictions on these types of composite systems can be only achieved with an atomistic description. In the last few decades, there have been important advances in the atomistic modeling of light-harvesting complexes. These advances have involved both the completeness of the physical models and the accuracy and effectiveness of the computational protocols. In this Perspective, we present an overview of the main theoretical and computational breakthroughs attained so far in the field, with particular focus on the important role played by the protein and its dynamics. We then discuss the open problems in their accurate modeling that still need to be addressed. To illustrate an effective computational workflow for the modeling of light harvesting complexes, we take as an example the plant antenna complex CP29 and its H111N mutant.
Collapse
Affiliation(s)
- Edoardo Cignoni
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Vladislav Slama
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
47
|
Dimitriev OP. Dynamics of Excitons in Conjugated Molecules and Organic Semiconductor Systems. Chem Rev 2022; 122:8487-8593. [PMID: 35298145 DOI: 10.1021/acs.chemrev.1c00648] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The exciton, an excited electron-hole pair bound by Coulomb attraction, plays a key role in photophysics of organic molecules and drives practically important phenomena such as photoinduced mechanical motions of a molecule, photochemical conversions, energy transfer, generation of free charge carriers, etc. Its behavior in extended π-conjugated molecules and disordered organic films is very different and very rich compared with exciton behavior in inorganic semiconductor crystals. Due to the high degree of variability of organic systems themselves, the exciton not only exerts changes on molecules that carry it but undergoes its own changes during all phases of its lifetime, that is, birth, conversion and transport, and decay. The goal of this review is to give a systematic and comprehensive view on exciton behavior in π-conjugated molecules and molecular assemblies at all phases of exciton evolution with emphasis on rates typical for this dynamic picture and various consequences of the above dynamics. To uncover the rich variety of exciton behavior, details of exciton formation, exciton transport, exciton energy conversion, direct and reverse intersystem crossing, and radiative and nonradiative decay are considered in different systems, where these processes lead to or are influenced by static and dynamic disorder, charge distribution symmetry breaking, photoinduced reactions, electron and proton transfer, structural rearrangements, exciton coupling with vibrations and intermediate particles, and exciton dissociation and annihilation as well.
Collapse
Affiliation(s)
- Oleg P Dimitriev
- V. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine, pr. Nauki 41, Kyiv 03028, Ukraine
| |
Collapse
|
48
|
Searching for a Unique Exciton Model of Photosynthetic Pigment–Protein Complexes: Photosystem II Reaction Center Study by Differential Evolution. MATHEMATICS 2022. [DOI: 10.3390/math10060959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Studying the optical properties of photosynthetic pigment–protein complexes (PPCs) in the visible light range, both experimentally and theoretically, is one of the ways of gaining knowledge about the function of the photosynthetic machinery of living species. To simulate the PPC optical response, it is necessary to use semiclassical theories describing the effect of external fields–matter interaction, energy migration in molecular crystals, and electron–phonon coupling. In this paper, we report the results of photosystem II reaction center (PSIIRC) linear optical response simulations. Applying the multimode Brownian oscillator model and the theory of molecular excitons, we have demonstrated that the absorption, circular and linear dichroism, and steady-state fluorescence of PSIIRC can be accurately fitted with the help of differential evolution (DE), the multiparametric evolutionary optimization algorithm. To explore the effectiveness of DE, we used the simulated experimental data as the target functions instead of those actually measured. Only 2 of 10 DE strategies have shown the best performance of the optimization algorithm. With the best tuning parameters of DE/rand-to-best/1/exp strategy determined from the strategy tests, we found the exact solution for the PSIIRC exciton model and fitted the spectra with a reasonable convergence rate.
Collapse
|
49
|
Heshmatpour C, Hauer J, Šanda F. Correlated spectral fluctuations quantified by line shape analysis of fifth-order two-dimensional electronic spectra. J Chem Phys 2022; 156:084114. [DOI: 10.1063/5.0081053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Correlated spectral fluctuations were suggested to coordinate excitation transport inside natural light harvesting complexes. We demonstrate the capacities of 2D line shapes from fifth-order coherent electronic signals (R5-2D) to report on such fluctuations in molecular aggregates and present a stochastic approach to fluctuations in correlated site and bi-exciton binding energies in the optical dynamics of Frenkel excitons. The model is applied to R5-2D line shapes of a homodimer, and we show that the peak tilt dynamics are a measure for site energy disorder, inter-site correlation, and the strength of bi-exciton binding energy fluctuations.
Collapse
Affiliation(s)
- Constantin Heshmatpour
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, Prague 121 16, Czech Republic
- Professur für Dynamische Spektroskopien, Fakultät für Chemie, Technische Universität München, Lichtenbergstr. 4, D-85748 Garching b. München, Germany
| | - Jürgen Hauer
- Professur für Dynamische Spektroskopien, Fakultät für Chemie, Technische Universität München, Lichtenbergstr. 4, D-85748 Garching b. München, Germany
| | - František Šanda
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, Prague 121 16, Czech Republic
| |
Collapse
|
50
|
Mass OA, Wilson CK, Barcenas G, Terpetschnig EA, Obukhova OM, Kolosova OS, Tatarets AL, Li L, Yurke B, Knowlton WB, Pensack RD, Lee J. Influence of Hydrophobicity on Excitonic Coupling in DNA-Templated Indolenine Squaraine Dye Aggregates. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:3475-3488. [PMID: 35242270 PMCID: PMC8883467 DOI: 10.1021/acs.jpcc.1c08981] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/15/2022] [Indexed: 06/01/2023]
Abstract
Control over the strength of excitonic coupling in molecular dye aggregates is a substantial factor for the development of technologies such as light harvesting, optoelectronics, and quantum computing. According to the molecular exciton model, the strength of excitonic coupling is inversely proportional to the distance between dyes. Covalent DNA templating was proved to be a versatile tool to control dye spacing on a subnanometer scale. To further expand our ability to control photophysical properties of excitons, here, we investigated the influence of dye hydrophobicity on the strength of excitonic coupling in squaraine aggregates covalently templated by DNA Holliday Junction (DNA HJ). Indolenine squaraines were chosen for their excellent spectral properties, stability, and diversity of chemical modifications. Six squaraines of varying hydrophobicity from highly hydrophobic to highly hydrophilic were assembled in two dimer configurations and a tetramer. In general, the examined squaraines demonstrated a propensity toward face-to-face aggregation behavior observed via steady-state absorption, fluorescence, and circular dichroism spectroscopies. Modeling based on the Kühn-Renger-May approach quantified the strength of excitonic coupling in the squaraine aggregates. The strength of excitonic coupling strongly correlated with squaraine hydrophobic region. Dimer aggregates of dichloroindolenine squaraine were found to exhibit the strongest coupling strength of 132 meV (1065 cm-1). In addition, we identified the sites for dye attachment in the DNA HJ that promote the closest spacing between the dyes in their dimers. The extracted aggregate geometries, and the role of electrostatic and steric effects in squaraine aggregation are also discussed. Taken together, these findings provide a deeper insight into how dye structures influence excitonic coupling in dye aggregates covalently templated via DNA, and guidance in design rules for exciton-based materials and devices.
Collapse
Affiliation(s)
- Olga A. Mass
- Micron
School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Christopher K. Wilson
- Micron
School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - German Barcenas
- Micron
School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | | | - Olena M. Obukhova
- State
Scientific Institution “Institute for Single Crystals”
of National Academy of Sciences of Ukraine, Kharkiv 61072, Ukraine
| | - Olga S. Kolosova
- State
Scientific Institution “Institute for Single Crystals”
of National Academy of Sciences of Ukraine, Kharkiv 61072, Ukraine
| | - Anatoliy L. Tatarets
- State
Scientific Institution “Institute for Single Crystals”
of National Academy of Sciences of Ukraine, Kharkiv 61072, Ukraine
| | - Lan Li
- Micron
School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
- Center
for Advanced Energy Studies, Idaho
Falls, Idaho 83401, United States
| | - Bernard Yurke
- Micron
School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
- Department
of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - William B. Knowlton
- Micron
School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
- Department
of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Ryan. D. Pensack
- Micron
School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Jeunghoon Lee
- Micron
School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
- Department
of Chemistry and Biochemistry, Boise State
University, Boise, Idaho 83725, United
States
| |
Collapse
|