1
|
Andrys R, Monnier C, Antonijević Miljaković E, Mickova V, Musilek K, Zemanova L. Towards cost-effective drug discovery: Reusable immobilized enzymes for neurological disease research. Talanta 2024; 276:126263. [PMID: 38788378 DOI: 10.1016/j.talanta.2024.126263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Enzyme handling and utilization bears many challenges such as their limited stability, intolerance of organic solvents, high cost, or inability to reuse. Most of these limitations can be overcome by enzyme immobilization on the surface of solid support. In this work, the recombinant form of human cholinesterases and monoamine oxidases as important drug targets for neurological diseases were immobilized on the surface of magnetic non-porous microparticles by a non-covalent bond utilizing the interaction between a His-tag terminus on the recombinant enzymes and cobalt (Co2+) ions immobilized on the magnetic microparticles. This type of binding led to targeted enzyme orientation, which completely preserved the catalytic activity and allowed high reproducibility of immobilization. In comparison with free enzymes, the immobilized enzymes showed exceptional stability in time and the possibility of repeated use. Relevant Km, Vmax, and IC50 values using known inhibitors were obtained using particular immobilized enzymes. Such immobilized enzymes on magnetic particles could serve as an excellent tool for a sustainable approach in the early stage of drug discovery.
Collapse
Affiliation(s)
- Rudolf Andrys
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic.
| | - Charline Monnier
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic.
| | - Evica Antonijević Miljaković
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic; Department of Toxicology "Akademik Danilo Soldatovic", University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11 000, Belgrade, Serbia.
| | - Veronika Mickova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic.
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic.
| | - Lucie Zemanova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic.
| |
Collapse
|
2
|
Wen X, Chen M, Li Z, Liu W, Xu K, Wang J, Zhao X. Site-specific immobilization of Cysteinyl leukotriene receptor 1 through enzymatic DNA-protein conjugation strategy for lead screening. J Chromatogr A 2024; 1727:464948. [PMID: 38759460 DOI: 10.1016/j.chroma.2024.464948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Immobilization of functional protein, especially G protein-coupled receptors (GPCRs), is particularly significant in various fields such as the development of assays for diagnosis, lead compound screening, as well as drug-protein interaction analysis. However, there are still some challenges with the immobilized proteins such as undefined loads, orientations, and the loss of activity. Herein, we introduced a DNA conjugation strategy into the immobilization of Cysteinyl leukotriene receptor 1(CysLTR1) which enables exquisite molecular control and higher activity of the receptor. We used the bacterial relaxases VirD2 as an immobilized tag fused at the C terminus of CysLTR1. Tyrosine residue(Y29) at the core binding site of the VirD2 tag can react with the single-strand piece of DNA(T-DNA) in the form of a covalent bond. Inspired by this strategy, we developed a new immobilization method by mixing the T-DNA-modified silica gel with the cell lysate containing the expressed VirD2-tagged CysLTR1 for 1 hour. We found that the successful formation of DNA-protein conjugate enables the immobilization of CysLTR1 fast, site-specific, and with minimal loss of activity. The feasibility of the immobilized CysLTR1 was evaluated in drug-protein binding interaction by frontal analysis and adsorption energy distribution analysis. The binding of pranlukast, zafirlukast, and MK571 to the immobilized CysLTR1 was realized, and the association constants presented good agreement between the two methods. Rosmarinic acid was retained in the immobilized CysLTR1 column, and the in-vitro test revealed that the compound binds to the receptor in one type of binding site mode. Despite these results, we concluded that the DNA-protein conjugate strategy will probably open up the possibilities for capturing other functional proteins in covalent and site-specific modes from the complex matrices and the immobilized receptor preserves the potential in fishing out lead compounds from natural products.
Collapse
Affiliation(s)
- Xin Wen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Minyu Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Zimeng Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Weiyao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Ke Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jing Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Xinfeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| |
Collapse
|
3
|
Bertolini S, Delcorte A. Molecular Dynamics Simulations of Soft and Reactive Landing of Proteins Desorbed by Argon Cluster Bombardment. J Phys Chem B 2024; 128:6716-6729. [PMID: 38975731 DOI: 10.1021/acs.jpcb.4c01698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Reactive molecular dynamics (MD) simulations were conducted to investigate the soft and reactive landing of hyperthermal velocity proteins transferred to a vacuum using large argon clusters. Experimentally, the interaction of argon cluster ion beams (Ar1000-5000+) with a target biofilm was previously used in such a manner to transfer lysozymes onto a collector with the retention of their bioactivity, paving the way to a new solvent-free method for complex biosurface nanofabrication. However, the experiments did not give access to a microscopic view of the interactions needed for their full understanding, which can be provided by the MD model. Our reactive force field simulations clarify the landing mechanisms of the lysozymes and their fragments on collectors with different natures (gold- and hydrogen-terminated graphite). The results highlight the conditions of soft and reactive landing on rigid surfaces, the effects of the protein structure, energy, and incidence angle before landing, and the adhesion forces with the collector substrate. Many of the obtained results can be generalized to other soft and reactive landing approaches used for biomolecules such as electrospray ionization and matrix-assisted laser desorption ionization.
Collapse
Affiliation(s)
- Samuel Bertolini
- Institute of Condensed Matter and Nanoscience, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | - Arnaud Delcorte
- Institute of Condensed Matter and Nanoscience, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
4
|
Tereshin MN, Melikhova TD, Eletskaya BZ, Ivanova EA, Onoprienko LV, Makarov DA, Razumikhin MV, Myagkikh IV, Fabrichniy IP, Stepanenko VN. Biocatalytic Method for Producing an Affinity Resin for the Isolation of Immunoglobulins. Biomolecules 2024; 14:849. [PMID: 39062563 PMCID: PMC11274487 DOI: 10.3390/biom14070849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Affinity chromatography is a widely used technique for antibody isolation. This article presents the successful synthesis of a novel affinity resin with a mutant form of protein A (BsrtA) immobilized on it as a ligand. The key aspect of the described process is the biocatalytic immobilization of the ligand onto the matrix using the sortase A enzyme. Moreover, we used a matrix with primary amino groups without modification, which greatly simplifies the synthesis process. The resulting resin shows a high dynamic binding capacity (up to 50 mg IgG per 1 mL of sorbent). It also demonstrates high tolerance to 0.1 M NaOH treatment and maintains its effectiveness even after 100 binding, elution, and sanitization cycles.
Collapse
Affiliation(s)
- Mikhail N. Tereshin
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadskogo Pr. 86, 119571 Moscow, Russia; (M.N.T.); (V.N.S.)
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, 8-2 Trubetskaya Str., 119991 Moscow, Russia;
| | - Tatiana D. Melikhova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117437 Moscow, Russia; (T.D.M.); (L.V.O.); (I.V.M.)
| | - Barbara Z. Eletskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117437 Moscow, Russia; (T.D.M.); (L.V.O.); (I.V.M.)
| | - Elena A. Ivanova
- International Biotechnology Center “Generium” LLC, Vladimirskaya st. 14, 601125 Volginsky, Russia; (E.A.I.); (I.P.F.)
| | - Lyudmila V. Onoprienko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117437 Moscow, Russia; (T.D.M.); (L.V.O.); (I.V.M.)
| | - Dmitry A. Makarov
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, 8-2 Trubetskaya Str., 119991 Moscow, Russia;
| | | | - Igor V. Myagkikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117437 Moscow, Russia; (T.D.M.); (L.V.O.); (I.V.M.)
| | - Igor P. Fabrichniy
- International Biotechnology Center “Generium” LLC, Vladimirskaya st. 14, 601125 Volginsky, Russia; (E.A.I.); (I.P.F.)
| | - Vasiliy N. Stepanenko
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadskogo Pr. 86, 119571 Moscow, Russia; (M.N.T.); (V.N.S.)
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, 8-2 Trubetskaya Str., 119991 Moscow, Russia;
| |
Collapse
|
5
|
Guo L, He R, Chen G, Yang H, Kou X, Huang W, Gao R, Huang S, Huang S, Zhu F, Ouyang G. A Synergetic Pore Compartmentalization and Hydrophobization Strategy for Synchronously Boosting the Stability and Activity of Enzyme. J Am Chem Soc 2024; 146:17189-17200. [PMID: 38864358 DOI: 10.1021/jacs.4c03286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Spatial immobilization of fragile enzymes using a nanocarrier is an efficient means to design heterogeneous biocatalysts, presenting superior stability and recyclability to pristine enzymes. An immobilized enzyme, however, usually compromises its catalytic activity because of inevasible mass transfer issues and the unfavorable conformation changes in a confined environment. Here, we describe a synergetic metal-organic framework pore-engineering strategy to trap lipase (an important hydrolase), which confers lipase-boosted stability and activity simultaneously. The hierarchically porous NU-1003, featuring interconnected mesopore and micropore channels, is precisely modified by chain-adjustable fatty acids on its mesopore channel, into which lipase is trapped. The interconnected pore structure ensures efficient communication between trapped lipase and exterior media, while the fatty acid-mediated hydrophobic pore can activate the opening conformation of lipase by interfacial interaction. Such dual pore compartmentalization and hydrophobization activation effects render the catalytic center of trapped lipase highly accessible, resulting in 1.57-fold and 2.46-fold activities as native lipase on ester hydrolysis and enantioselective catalysis. In addition, the feasibility of these heterogeneous biocatalysts for kinetic resolution of enantiomer is also validated, showing much higher efficiency than native lipase.
Collapse
Affiliation(s)
- Lihong Guo
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275, China
| | - Rongwei He
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Huangsheng Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei Huang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Rui Gao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuyao Huang
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center), Guangzhou 510070, China
| | - Siming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou 511436, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| |
Collapse
|
6
|
Mostufa S, Rezaei B, Ciannella S, Yari P, Gómez-Pastora J, He R, Wu K. Advancements and Perspectives in Optical Biosensors. ACS OMEGA 2024; 9:24181-24202. [PMID: 38882113 PMCID: PMC11170745 DOI: 10.1021/acsomega.4c01872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024]
Abstract
Optical biosensors exhibit immense potential, offering extraordinary possibilities for biosensing due to their high sensitivity, reusability, and ultrafast sensing capabilities. This review provides a concise overview of optical biosensors, encompassing various platforms, operational mechanisms, and underlying physics, and it summarizes recent advancements in the field. Special attention is given to plasmonic biosensors and metasurface-based biosensors, emphasizing their significant performance in bioassays and, thus, their increasing attraction in biosensing research, positioning them as excellent candidates for lab-on-chip and point-of-care devices. For plasmonic biosensors, we emphasize surface plasmon resonance (SPR) and its subcategories, along with localized surface plasmon resonance (LSPR) devices and surface enhance Raman spectroscopy (SERS), highlighting their ability to perform diverse bioassays. Additionally, we discuss recently emerged metasurface-based biosensors. Toward the conclusion of this review, we address current challenges, opportunities, and prospects in optical biosensing. Considering the advancements and advantages presented by optical biosensors, it is foreseeable that they will become a robust and widespread platform for early disease diagnostics.
Collapse
Affiliation(s)
- Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Stefano Ciannella
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Parsa Yari
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Jenifer Gómez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Rui He
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
7
|
Sommerfeld IK, Palm P, Hussnaetter KP, Pieper MI, Bulut S, Lile T, Wagner R, Walkowiak JJ, Elling L, Pich A. Microgels with Immobilized Glycosyltransferases for Enzymatic Glycan Synthesis. Biomacromolecules 2024; 25:3807-3822. [PMID: 38807305 DOI: 10.1021/acs.biomac.4c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Glycans, composed of linked monosaccharides, play crucial roles in biology and find diverse applications. Enhancing their enzymatic synthesis can be achieved by immobilizing enzymes on materials such as microgels. Here, we present microgels with immobilized glycosyltransferases, synthesized through droplet microfluidics, immobilizing enzymes either via encapsulation or postattachment. SpyTag-SpyCatcher interaction was used for enzyme binding, among others. Fluorescamine and permeability assays confirmed enzyme immobilization and microgel porosity, while enzymatic activities were determined using HPLC. The potential application of microgels in cascade reactions involving multiple enzymes was demonstrated by combining β4GalT and α3GalT in an enzymatic reaction with high yields. Moreover, a cascade of β4GalT and β3GlcNAcT was successfully implemented. These results pave the way toward a modular membrane bioreactor for automated glycan synthesis containing the presented biocatalytic microgels.
Collapse
Affiliation(s)
- Isabel Katja Sommerfeld
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
- DWI─Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52074, Germany
| | - Philip Palm
- Laboratory for Biomaterials, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, Aachen 52074, Germany
| | - Kai Philip Hussnaetter
- Laboratory for Biomaterials, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, Aachen 52074, Germany
| | - Maria Isabell Pieper
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
- DWI─Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52074, Germany
| | - Selin Bulut
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
- DWI─Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52074, Germany
| | - Tudor Lile
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
- DWI─Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52074, Germany
| | - Rebekka Wagner
- Laboratory for Biomaterials, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, Aachen 52074, Germany
| | - Jacek Janusz Walkowiak
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
- DWI─Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52074, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, RD Geleen 6167, The Netherlands
| | - Lothar Elling
- Laboratory for Biomaterials, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, Aachen 52074, Germany
| | - Andrij Pich
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
- DWI─Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52074, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, RD Geleen 6167, The Netherlands
| |
Collapse
|
8
|
Fink TD, Funnell JL, Gilbert RJ, Zha RH. One-Pot Assembly of Drug-Eluting Silk Coatings with Applications for Nerve Regeneration. ACS Biomater Sci Eng 2024; 10:482-496. [PMID: 38109315 DOI: 10.1021/acsbiomaterials.3c01042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Clinical use of polymeric scaffolds for tissue engineering often suffers from their inability to promote strong cellular interactions. Functionalization with biomolecules may improve outcomes; however, current functionalization approaches using covalent chemistry or physical adsorption can lead to loss of biomolecule bioactivity. Here, we demonstrate a novel bottom-up approach for enhancing the bioactivity of poly(l-lactic acid) electrospun scaffolds though interfacial coassembly of protein payloads with silk fibroin into nanothin coatings. In our approach, protein payloads are first added into an aqueous solution with Bombyx mori-derived silk fibroin. Phosphate anions are then added to trigger coassembly of the payload and silk fibroin, as well as noncovalent formation of a payload-silk fibroin coating at poly(l-lactic) acid fiber surfaces. Importantly, the coassembly process results in homogeneous distribution of protein payloads, with the loading quantity depending on payload concentration in solution and coating time. This coassembly process yields greater loading capacity than physical adsorption methods, and the payloads can be released over time in physiologically relevant conditions. We also demonstrate that the coating coassembly process can incorporate nerve growth factor and that coassembled coatings lead to significantly more neurite extension than loading via adsorption in a rat dorsal root ganglia explant culture model.
Collapse
Affiliation(s)
- Tanner D Fink
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Shirley Ann Jackson, Ph. D. Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Jessica L Funnell
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
- Shirley Ann Jackson, Ph. D. Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
- Shirley Ann Jackson, Ph. D. Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - R Helen Zha
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Shirley Ann Jackson, Ph. D. Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
9
|
Nabi S, Sofi FA, Jan Q, Bhat AY, Ingole PP, Bayati M, Bhat MA. The enhanced electrocatalytic performance of nanoscopic Cu 6Pd 12Fe 12 heterometallic molecular box encaged cytochrome c. NANOSCALE 2023; 16:411-426. [PMID: 38073595 DOI: 10.1039/d3nr03451h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Designing molecular cages for atomic/molecular scale guests is a special art used by material chemists to harvest the virtues of the otherwise vile idea known as "the cage". In recent years, there has been a notable surge in research investigations focused on the exploration and utilization of the distinct advantages offered by this art in the advancement of efficient and stable bio-electrocatalysts. This usually is achieved through encapsulation of biologically accessible redox proteins within specifically designed molecular cages and matrices. Herein, we present the first successful method for encaging cytochrome c (Cyt-c), a clinically significant enzyme system, inside coordination-driven self-assembled Cu6Pd12Fe12 heterometallic hexagonal molecular boxes (Cu-HMHMB), in order to create a Cyt-c@Cu-HMHMB composite. 1H NMR, FTIR, and UV-Vis spectroscopy, ICP-MS, TGA and voltammetric investigations carried out on the so-crafted Cyt-c@Cu-HMHMB bio-inorganic composite imply that the presented strategy ensures encaging of Cyt-c in a catalytically active, electrochemically stable and redox-accessible state inside the Cu-HMHMB. Cyt-c@Cu-HMHMB is demonstrated to exhibit excellent stability and electrocatalytic activity toward very selective, sensitive electrochemical sensing of nitrite exhibiting a limit of detection as low as 32 nanomolar and a sensitivity of 7.28 μA μM-1 cm-2. Importantly, Cyt-c@Cu-HMHMB is demonstrated to exhibit an excellent electrocatalytic performance toward the 4ē pathway oxygen reduction reaction (ORR) with an onset potential of 0.322 V (vs. RHE) and a Tafel slope of 266 mV dec-1. Our findings demonstrate that Cu-HMHMB is an excellent matrix for Cyt-c encapsulation. We anticipate that the entrapment-based technique described here will be applicable to other enzyme systems and Cyt-c for various electrochemical and other applications.
Collapse
Affiliation(s)
- Shazia Nabi
- Department of Chemistry, University of Kashmir, Srinagar-190006, J & K, India.
| | - Feroz Ahmad Sofi
- Department of Chemistry, University of Kashmir, Srinagar-190006, J & K, India.
| | - Qounsar Jan
- Department of Chemistry, University of Kashmir, Srinagar-190006, J & K, India.
| | - Aamir Y Bhat
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India
| | - Pravin P Ingole
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India
| | - Maryam Bayati
- Department of Mechanical & Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Mohsin Ahmad Bhat
- Department of Chemistry, University of Kashmir, Srinagar-190006, J & K, India.
| |
Collapse
|
10
|
Costa IO, Morais JRF, de Medeiros Dantas JM, Gonçalves LRB, Dos Santos ES, Rios NS. Enzyme immobilization technology as a tool to innovate in the production of biofuels: A special review of the Cross-Linked Enzyme Aggregates (CLEAs) strategy. Enzyme Microb Technol 2023; 170:110300. [PMID: 37523882 DOI: 10.1016/j.enzmictec.2023.110300] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
This review emphasizes the crucial role of enzyme immobilization technology in advancing the production of two main biofuels, ethanol and biodiesel, with a specific focus on the Cross-linked Enzyme Aggregates (CLEAs) strategy. This method of immobilization has gained attention due to its simplicity and affordability, as it does not initially require a solid support. CLEAs synthesis protocol includes two steps: enzyme precipitation and cross-linking of aggregates using bifunctional agents. We conducted a thorough search for papers detailing the synthesis of CLEAs utilizing amylases, cellulases, and hemicellulases. These key enzymes are involved in breaking down starch or lignocellulosic materials to produce ethanol, both in first and second-generation processes. CLEAs of lipases were included as these enzymes play a crucial role in the enzymatic process of biodiesel production. However, when dealing with large or diverse substrates such as lignocellulosic materials for ethanol production and oils/fats for biodiesel production, the use of individual enzymes may not be the most efficient method. Instead, a system that utilizes a blend of enzymes may prove to be more effective. To innovate in the production of biofuels (ethanol and biodiesel), enzyme co-immobilization using different enzyme species to produce Combi-CLEAs is a promising trend.
Collapse
Affiliation(s)
- Isabela Oliveira Costa
- Departamento de Engenharia Química, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | | | | | | | | | - Nathália Saraiva Rios
- Departamento de Engenharia Química, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
11
|
Chen G, Huang S, Ma X, He R, Ouyang G. Encapsulating and stabilizing enzymes using hydrogen-bonded organic frameworks. Nat Protoc 2023:10.1038/s41596-023-00828-5. [PMID: 37198321 DOI: 10.1038/s41596-023-00828-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/01/2023] [Indexed: 05/19/2023]
Abstract
Enzymes are outstanding natural catalysts with exquisite 3D structures, initiating countless life-sustaining biotransformations in living systems. The flexible structure of an enzyme, however, is highly susceptible to non-physiological environments, which greatly limits its large-scale industrial applications. Seeking suitable supports to immobilize fragile enzymes is one of the most efficient routes to ameliorate the stability problem. This protocol imparts a new bottom-up strategy for enzyme encapsulation using a hydrogen-bonded organic framework (HOF-101). In short, the surface residues of the enzyme can trigger the nucleation of HOF-101 around its surface through the hydrogen-bonded biointerface. As a result, a series of enzymes with different surface chemistries are able to be encapsulated within a highly crystalline HOF-101 scaffold, which has long-range ordered mesochannels. The details of experimental procedures are described in this protocol, which involve the encapsulating method, characterizations of materials and biocatalytic performance tests. Compared with other immobilization methods, this enzyme-triggering HOF-101 encapsulation is easy to operate and affords higher loading efficiency. The formed HOF-101 scaffold has an unambiguous structure and well-arranged mesochannels, favoring mass transfer and understanding of the biocatalytic process. It takes ~13.5 h for successful synthesis of enzyme-encapsulated HOF-101, 3-4 d for characterizations of materials and ~4 h for the biocatalytic performance tests. In addition, no specific expertise is necessary for the preparation of this biocomposite, although the high-resolution imaging requires a low-electron-dose microscope technology. This protocol can provide a useful methodology to efficiently encapsulate enzymes and design biocatalytic HOF materials.
Collapse
Affiliation(s)
- Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China.
| | - Siming Huang
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiaomin Ma
- Cryo-EM Center, Southern University of Science and Technology, Shenzhen, China
| | - Rongwei He
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China.
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, China.
| |
Collapse
|
12
|
Imam H, Hill K, Reid A, Mix S, Marr PC, Marr AC. Supramolecular Ionic Liquid Gels for Enzyme Entrapment. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:6829-6837. [PMID: 37180026 PMCID: PMC10170508 DOI: 10.1021/acssuschemeng.3c00517] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Reported herein is an entrapment method for enzyme immobilization that does not require the formation of new covalent bonds. Ionic liquid supramolecular gels are formed containing enzymes that can be shaped into gel beads and act as recyclable immobilized biocatalysts. The gel was formed from two components, a hydrophobic phosphonium ionic liquid and a low molecular weight gelator derived from the amino acid phenylalanine. Gel-entrapped lipase from Aneurinibacillus thermoaerophilus was recycled for 10 runs over 3 days without loss of activity and retained activity for at least 150 days. The procedure does not form covalent bonds upon gel formation, which is supramolecular, and no bonds are formed between the enzyme and the solid support.
Collapse
Affiliation(s)
- Hasan
T. Imam
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, UK, David Keir Building, Stranmillis Road, Belfast, Northern Ireland, United Kingdom BT9 5AG
| | - Kyle Hill
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, UK, David Keir Building, Stranmillis Road, Belfast, Northern Ireland, United Kingdom BT9 5AG
| | - Andrew Reid
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, UK, David Keir Building, Stranmillis Road, Belfast, Northern Ireland, United Kingdom BT9 5AG
| | - Stefan Mix
- Department
of Biocatalysis, Almac Bioscience, Almac
Group, Almac House, 20 Seagoe Industrial Estate, Craigavon, Belfast, Northern Ireland, United Kingdom BT63 5QD
| | - Patricia C. Marr
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, UK, David Keir Building, Stranmillis Road, Belfast, Northern Ireland, United Kingdom BT9 5AG
- E-mail:
| | - Andrew C. Marr
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, UK, David Keir Building, Stranmillis Road, Belfast, Northern Ireland, United Kingdom BT9 5AG
- E-mail:
| |
Collapse
|
13
|
Susini V, Ferraro G, Fierabracci V, Ursino S, Sanguinetti C, Caponi L, Romiti N, Rossi VL, Sanesi A, Paolicchi A, Franzini M, Fratini E. Orientation of capture antibodies on gold nanoparticles to improve the sensitivity of ELISA-based medical devices. Talanta 2023; 260:124650. [PMID: 37167679 DOI: 10.1016/j.talanta.2023.124650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
The sensitivity of ELISA-based devices strongly depends on the right orientation of antibodies on the sensor surface. The aim of this work was to increase the analytical performance of a commercial ELISA-based medical device (VIDAS®), thanks to the specific orientation of antibodies on gold nanostructured disposables. For this purpose, fPSA VIDAS® assay was used as model and the disposable providing the antigen binding surface (SPR®) was functionalized with gold nanostructures coated with monovalent half-fragment antibodies (reduced IgG, rIgG). The functionalization of polystyrene SPRs® with gold nanostructures was achieved through a one-step incubation of gold dispersions in a mixture of non-toxic solvents. Five different concentrations of gold nanoparticles (NPs) were tested with a maximum fluorescence enhancement for NPs density around 3-8 *103 NPs/μm2 (752 ± 11 RFV vs 316 ± 5 RFV of bare SPRs®). The comparison of the dose-response curve obtained with commercial and gold coated-SPRs® revealed a significant improvement (p < 0.0001) of the analytical sensitivity of the VIDAS® system using nanostructured disposables. This improved version of SPRs® allows to distinguish small variations of fPSA concentrations opening the way to the application of this biomarker to other kinds of cancer as recently described in the literature.
Collapse
Affiliation(s)
- Vanessa Susini
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Savi 10, Pisa, 56126, Italy.
| | - Giovanni Ferraro
- Department of Chemistry "Ugo Schiff" & Center for Colloid and Surface Science (CSGI), University of Florence, Via Della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy
| | - Vanna Fierabracci
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Savi 10, Pisa, 56126, Italy
| | - Silvia Ursino
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Savi 10, Pisa, 56126, Italy
| | - Chiara Sanguinetti
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Savi 10, Pisa, 56126, Italy
| | - Laura Caponi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Savi 10, Pisa, 56126, Italy
| | - Nadia Romiti
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Savi 10, Pisa, 56126, Italy
| | - Veronica Lucia Rossi
- BioMérieux Italia S.p.a., Via di Campigliano 58, Bagno a Ripoli, 50012, Florence, Italy
| | - Antonio Sanesi
- BioMérieux Italia S.p.a., Via di Campigliano 58, Bagno a Ripoli, 50012, Florence, Italy
| | - Aldo Paolicchi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Savi 10, Pisa, 56126, Italy
| | - Maria Franzini
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Savi 10, Pisa, 56126, Italy
| | - Emiliano Fratini
- Department of Chemistry "Ugo Schiff" & Center for Colloid and Surface Science (CSGI), University of Florence, Via Della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy
| |
Collapse
|
14
|
Zhu L, Chang Y, Li Y, Qiao M, Liu L. Biosensors Based on the Binding Events of Nitrilotriacetic Acid-Metal Complexes. BIOSENSORS 2023; 13:bios13050507. [PMID: 37232868 DOI: 10.3390/bios13050507] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
Molecular immobilization and recognition are two key events for the development of biosensors. The general ways for the immobilization and recognition of biomolecules include covalent coupling reactions and non-covalent interactions of antigen-antibody, aptamer-target, glycan-lectin, avidin-biotin and boronic acid-diol. Tetradentate nitrilotriacetic acid (NTA) is one of the most common commercial ligands for chelating metal ions. The NTA-metal complexes show high and specific affinity toward hexahistidine tags. Such metal complexes have been widely utilized in protein separation and immobilization for diagnostic applications since most of commercialized proteins have been integrated with hexahistidine tags by synthetic or recombinant techniques. This review focused on the development of biosensors with NTA-metal complexes as the binding units, mainly including surface plasmon resonance, electrochemistry, fluorescence, colorimetry, surface-enhanced Raman scattering spectroscopy, chemiluminescence and so on.
Collapse
Affiliation(s)
- Lin Zhu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yingying Li
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Mingyi Qiao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
15
|
Larkin JO, Jayanthi B, Segatori L, Ball ZT. Boronic Acid Resin for Selective Immobilization of Canonically Encoded Proteins. Biomacromolecules 2023; 24:2196-2202. [PMID: 37084390 DOI: 10.1021/acs.biomac.3c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
The use of transition-metal-mediated boronic acid chemistry presents a novel method of protein immobilization on a solid support. This is a one-step method that site-selectively immobilizes pyroglutamate-histidine (pGH)-tagged proteins. Herein, we describe the synthesis of alkenylboronic acid-functionalized poly(ethylene glycol) acrylamide (PEGA) resin and its subsequent reactions with pGH-tagged proteins to produce covalent linkages. The selectivity of immobilization is demonstrated within fluorescent studies, model mixtures, and lysates.
Collapse
Affiliation(s)
- James O Larkin
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Brianna Jayanthi
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Laura Segatori
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Zachary T Ball
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
16
|
Bednar RM, Karplus PA, Mehl RA. Site-specific dual encoding and labeling of proteins via genetic code expansion. Cell Chem Biol 2023; 30:343-361. [PMID: 36977415 PMCID: PMC10764108 DOI: 10.1016/j.chembiol.2023.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/10/2023] [Accepted: 03/03/2023] [Indexed: 03/29/2023]
Abstract
The ability to selectively modify proteins at two or more defined locations opens new avenues for manipulating, engineering, and studying living systems. As a chemical biology tool for the site-specific encoding of non-canonical amino acids into proteins in vivo, genetic code expansion (GCE) represents a powerful tool to achieve such modifications with minimal disruption to structure and function through a two-step "dual encoding and labeling" (DEAL) process. In this review, we summarize the state of the field of DEAL using GCE. In doing so, we describe the basic principles of GCE-based DEAL, catalog compatible encoding systems and reactions, explore demonstrated and potential applications, highlight emerging paradigms in DEAL methodologies, and propose novel solutions to current limitations.
Collapse
Affiliation(s)
- Riley M Bednar
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural and Life Sciences Building, Corvallis, OR 97331-7305, USA; GCE4All Research Center, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, OR 97331-7305, USA
| | - P Andrew Karplus
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural and Life Sciences Building, Corvallis, OR 97331-7305, USA; GCE4All Research Center, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, OR 97331-7305, USA
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural and Life Sciences Building, Corvallis, OR 97331-7305, USA; GCE4All Research Center, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, OR 97331-7305, USA.
| |
Collapse
|
17
|
Fu J, Qin W, Cao LQ, Chen ZS, Cao HL. Advances in receptor chromatography for drug discovery and drug-receptor interaction studies. Drug Discov Today 2023; 28:103576. [PMID: 37003514 DOI: 10.1016/j.drudis.2023.103576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/09/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Receptor chromatography involves high-throughput separation and accurate drug screening based on specific drug-receptor recognition and affinity, which has been widely used to screen active compounds in complex samples. This review summarizes the immobilization methods for receptors from three aspects: random covalent immobilization methods, site-specific covalent immobilization methods and dual-target receptor chromatography. Meanwhile, it focuses on its applications from three angles: screening active compounds in natural products, in natural-product-derived DNA-encoded compound libraries and drug-receptor interactions. This review provides new insights for the design and application of receptor chromatography, high-throughput and accurate drug screening, drug-receptor interactions and more. Teaser: This review summarizes the immobilization methods of receptors and the application of receptor chromatography, which will provide new insights for the design and application of receptor chromatography, rapid drug screening, drug-receptor interactions and more.
Collapse
Affiliation(s)
- Jia Fu
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, College of Pharmacy, Xi'an Medical University, Xi'an, China
| | - Wei Qin
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, College of Pharmacy, Xi'an Medical University, Xi'an, China
| | - Lu-Qi Cao
- College of Pharmacy and Health Sciences, St John's University, NY, USA
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St John's University, NY, USA.
| | - Hui-Ling Cao
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, College of Pharmacy, Xi'an Medical University, Xi'an, China.
| |
Collapse
|
18
|
Ye Q, Jin X, Zhu B, Gao H, Wei N. Lanmodulin-Functionalized Magnetic Nanoparticles as a Highly Selective Biosorbent for Recovery of Rare Earth Elements. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4276-4285. [PMID: 36790366 DOI: 10.1021/acs.est.2c08971] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Recovering rare earth elements (REEs) from waste streams represents a sustainable approach to diversify REE supply while alleviating the environmental burden. However, it remains a critical challenge to selectively separate and concentrate REEs from low-grade waste streams. In this study, we developed a new type of biosorbent by immobilizing Lanmodulin-SpyCatcher (LanM-Spycatcher) on the surface of SpyTag-functionalized magnetic nanoparticles (MNPs) for selective separation and recovery of REEs from waste streams. The biosorbent, referred to as MNP-LanM, had an adsorption activity of 6.01 ± 0.11 μmol-terbium/g-sorbent and fast adsorption kinetics. The adsorbed REEs could be desorbed with >90% efficiency. The MNP-LanM selectively adsorbed REEs in the presence of a broad range of non-REEs. The protein storage stability of the MNP-LanM increased by two-fold compared to free LanM-SpyCatcher. The MNP-LanM could be efficiently separated using a magnet and reused with high stability as it retained ∼95% of the initial activity after eight adsorption-desorption cycles. Furthermore, the MNP-LanM selectively adsorbed and concentrated REEs from the leachate of coal fly ash and geothermal brine, resulting in 967-fold increase of REE purity. This study provides a scientific basis for developing innovative biosorptive materials for selective and efficient separation and recovery of REEs from low-grade feedstocks.
Collapse
Affiliation(s)
- Quanhui Ye
- Department of Civil and Environmental Engineering, 3221 Newmark Civil Engineering Laboratory, University of Illinois at Urbana-Champaign, 205 N. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Xiuyu Jin
- Department of Civil and Environmental Engineering, 3221 Newmark Civil Engineering Laboratory, University of Illinois at Urbana-Champaign, 205 N. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Baotong Zhu
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, Indiana 46556, United States
| | - Haifeng Gao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Na Wei
- Department of Civil and Environmental Engineering, 3221 Newmark Civil Engineering Laboratory, University of Illinois at Urbana-Champaign, 205 N. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
19
|
Susmitha A, Arya JS, Sundar L, Maiti KK, Nampoothiri KM. Sortase E-mediated site-specific immobilization of green fluorescent protein and xylose dehydrogenase on gold nanoparticles. J Biotechnol 2023; 367:11-19. [PMID: 36972749 DOI: 10.1016/j.jbiotec.2023.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 02/13/2023] [Accepted: 03/20/2023] [Indexed: 03/28/2023]
Abstract
Sortase, a bacterial transpeptidase enzyme, is an attractive tool for protein engineering due to its ability to break a peptide bond at a specific site and then reform a new bond with an incoming nucleophile. Here, we present the immobilization of two recombinant proteins, enhanced green fluorescent protein (eGFP) and xylose dehydrogenase (XylB) over triglycine functionalized PEGylated gold nanoparticles (AuNPs) using C. glutamicum sortase E. For the first time, we used a new class of sortase from a non-pathogenic organism for sortagging. The site-specific conjugation of proteins with LAHTG-tagged sequences on AuNPs via covalent cross-linking was successfully detected by surface-enhanced Raman scattering (SERS) and UV-vis spectral analysis. The sortagging was initially validated by an eGFP model protein and later with the xylose dehydrogenase enzyme. The catalytic activity, stability, and reusability of the immobilized XylB were studied with the bioconversion of xylose to xylonic acid. When compared to the free enzyme, the immobilized XylB was able to retain 80% of its initial activity after four sequential cycles and exhibited no significant variations in instability after each cycle for about 72h. These findings suggest that C. glutamicum sortase could be useful for immobilizing site-specific proteins/enzymes in biotransformation applications for value-added chemical production.
Collapse
Affiliation(s)
- Aliyath Susmitha
- Microbial Processes and Technology Division, CSIR, National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jayadev S Arya
- Chemical Science and Technology Division, Organic Chemistry Section, CSIR, National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Lekshmi Sundar
- Microbial Processes and Technology Division, CSIR, National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kaustabh Kumar Maiti
- Chemical Science and Technology Division, Organic Chemistry Section, CSIR, National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India
| | - Kesavan Madhavan Nampoothiri
- Microbial Processes and Technology Division, CSIR, National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India.
| |
Collapse
|
20
|
Martin MP, Noble MEM. Exiting the tunnel of uncertainty: crystal soak to validated hit. Acta Crystallogr D Struct Biol 2022; 78:1294-1302. [PMID: 36322414 PMCID: PMC9629488 DOI: 10.1107/s2059798322009986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/12/2022] [Indexed: 11/28/2022] Open
Abstract
Crystallographic fragment screens provide an efficient and effective way to identify small-molecule ligands of a crystallized protein. Due to their low molecular weight, such hits tend to have low, often unquantifiable, affinity for their target, complicating the twin challenges of validating the hits as authentic solution-phase ligands of the target and identifying the `best' hit(s) for further elaboration. In this article, approaches that address these challenges are assessed. Using retrospective analysis of a recent ATAD2 hit-identification campaign, alongside other examples of successful fragment-screening campaigns, it is suggested that hit validation and prioritization are best achieved by a `triangulation' approach in which the results of multiple available biochemical and biophysical techniques are correlated to develop qualitative structure-activity relationships (SARs). Such qualitative SARs may indeed be the only means by which to navigate a project through the tunnel of uncertainty that prevails before on-scale biophysical, biochemical and/or biological measurements become possible.
Collapse
Affiliation(s)
- Mathew P. Martin
- Cancer Research UK Drug Discovery Unit, Newcastle University, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Martin E. M. Noble
- Cancer Research UK Drug Discovery Unit, Newcastle University, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
21
|
Ma C, Lu D, Gan H, Yao Z, Zhu DZ, Luo J, Fu Q, Kurup P. The critical experimental aspects for developing pathogen electrochemical biosensors: A lesson during the COVID-19 pandemic. Talanta 2022:124009. [PMCID: PMC9562616 DOI: 10.1016/j.talanta.2022.124009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Though the bitter global pandemic posed a severe public health threat, it set an unprecedented stage for different research teams to present various technologies for detecting SARS-CoV-2, providing a rare and hard-won lesson for one to comprehensively survey the core experimental aspects in developing pathogens electrochemical biosensors. Apart from collecting all the published biosensor studies, we focused on the effects and consequences of using different receptors, such as antibodies, aptamers, ACE 2, and MIPs, which are one of the core topics of developing a pathogen biosensor. In addition, we tried to find an appropriate and distinctive application scenario (e.g., wastewater-based epidemiology) to maximize the advantages of using electrochemical biosensors to detect pathogens. Based on the enormous amount of information from those published studies, features that fit and favor wastewater pathogen detection can be picked up and integrated into a specific strategy to perform quantitative measurements in wastewater samples.
Collapse
Affiliation(s)
- Chen Ma
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China
| | - Dingnan Lu
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China,Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA,Corresponding author. Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China
| | - Huihui Gan
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China
| | - Zhiyuan Yao
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China
| | - David Z. Zhu
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China,Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Jiayue Luo
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China,Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA
| | - Qiang Fu
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA
| | - Pradeep Kurup
- Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA,Corresponding author
| |
Collapse
|
22
|
Cervantes-Salguero K, Freeley M, Gwyther REA, Jones DD, Chávez JL, Palma M. Single molecule DNA origami nanoarrays with controlled protein orientation. BIOPHYSICS REVIEWS 2022; 3:031401. [PMID: 38505279 PMCID: PMC10903486 DOI: 10.1063/5.0099294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/20/2022] [Indexed: 03/21/2024]
Abstract
The nanoscale organization of functional (bio)molecules on solid substrates with nanoscale spatial resolution and single-molecule control-in both position and orientation-is of great interest for the development of next-generation (bio)molecular devices and assays. Herein, we report the fabrication of nanoarrays of individual proteins (and dyes) via the selective organization of DNA origami on nanopatterned surfaces and with controlled protein orientation. Nanoapertures in metal-coated glass substrates were patterned using focused ion beam lithography; 88% of the nanoapertures allowed immobilization of functionalized DNA origami structures. Photobleaching experiments of dye-functionalized DNA nanostructures indicated that 85% of the nanoapertures contain a single origami unit, with only 3% exhibiting double occupancy. Using a reprogrammed genetic code to engineer into a protein new chemistry to allow residue-specific linkage to an addressable ssDNA unit, we assembled orientation-controlled proteins functionalized to DNA origami structures; these were then organized in the arrays and exhibited single molecule traces. This strategy is of general applicability for the investigation of biomolecular events with single-molecule resolution in defined nanoarrays configurations and with orientational control of the (bio)molecule of interest.
Collapse
Affiliation(s)
- K. Cervantes-Salguero
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - M. Freeley
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - R. E. A. Gwyther
- Division of Molecular Biosciences, School of Biosciences, Main Building, Cardiff University, Cardiff, Wales, United Kingdom
| | - D. D. Jones
- Division of Molecular Biosciences, School of Biosciences, Main Building, Cardiff University, Cardiff, Wales, United Kingdom
| | - J. L. Chávez
- Air Force Research Laboratory, 711th Human Performance Wing, Wright Patterson Air Force Base, Dayton, Ohio 45433-7901, USA
| | - M. Palma
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
23
|
Huang S, Chen G, Ouyang G. Confining enzymes in porous organic frameworks: from synthetic strategy and characterization to healthcare applications. Chem Soc Rev 2022; 51:6824-6863. [PMID: 35852480 DOI: 10.1039/d1cs01011e] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Enzymes are a class of natural catalysts with high efficiency, specificity, and selectivity unmatched by their synthetic counterparts and dictate a myriad of reactions that constitute various cascades in living cells. The development of suitable supports is significant for the immobilization of structurally flexible enzymes, enabling biomimetic transformation in the extracellular environment. Accordingly, porous organic frameworks, including metal organic frameworks (MOFs), covalent organic frameworks (COFs) and hydrogen-bonded organic frameworks (HOFs), have emerged as ideal supports for the immobilization of enzymes because of their structural features including ultrahigh surface area, tailorable porosity, and versatile framework compositions. Specially, organic framework-encased enzymes have shown significant enhancement in stability and reusability, and their tailorable pore opening provides a gatekeeper-like effect for guest sieving, which is beneficial for mimicking intracellular biocatalysis processes. This immobilization technique brings new insight into the development of next-generation enzyme materials and shows huge potential in healthcare applications, such as biomarker diagnosis, biostorage, and cancer and antibacterial therapies. In this review, we describe the state-of-the-art strategies for the structural immobilization of enzymes using the well-explored MOFs and burgeoning COFs and HOFs as scaffolds, with special emphasis on how these porous framework-confined technologies can provide a favorable microenvironment for mimicking natural biocatalysis. Subsequently, advanced characterization techniques for enzyme conformation, the effect of the confined microenvironment on the activity of enzymes, and the emerging healthcare applications will be surveyed.
Collapse
Affiliation(s)
- Siming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
24
|
Wang Z, Popowski KD, Zhu D, de Juan Abad BL, Wang X, Liu M, Lutz H, De Naeyer N, DeMarco CT, Denny TN, Dinh PUC, Li Z, Cheng K. Exosomes decorated with a recombinant SARS-CoV-2 receptor-binding domain as an inhalable COVID-19 vaccine. Nat Biomed Eng 2022; 6:791-805. [PMID: 35788687 PMCID: PMC10782831 DOI: 10.1038/s41551-022-00902-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/20/2022] [Indexed: 02/05/2023]
Abstract
The first two mRNA vaccines against infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that were approved by regulators require a cold chain and were designed to elicit systemic immunity via intramuscular injection. Here we report the design and preclinical testing of an inhalable virus-like-particle as a COVID-19 vaccine that, after lyophilisation, is stable at room temperature for over three months. The vaccine consists of a recombinant SARS-CoV-2 receptor-binding domain (RBD) conjugated to lung-derived exosomes which, with respect to liposomes, enhance the retention of the RBD in both the mucus-lined respiratory airway and in lung parenchyma. In mice, the vaccine elicited RBD-specific IgG antibodies, mucosal IgA responses and CD4+ and CD8+ T cells with a Th1-like cytokine expression profile in the animals' lungs, and cleared them of SARS-CoV-2 pseudovirus after a challenge. In hamsters, two doses of the vaccine attenuated severe pneumonia and reduced inflammatory infiltrates after a challenge with live SARS-CoV-2. Inhalable and room-temperature-stable virus-like particles may become promising vaccine candidates.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, NC, USA
| | - Kristen D Popowski
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Dashuai Zhu
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, NC, USA
| | | | - Xianyun Wang
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, NC, USA
| | - Mengrui Liu
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, NC, USA
| | - Halle Lutz
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Nicole De Naeyer
- Immunology and Virology Quality Assessment Center, Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - C Todd DeMarco
- Immunology and Virology Quality Assessment Center, Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Thomas N Denny
- Immunology and Virology Quality Assessment Center, Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Phuong-Uyen C Dinh
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Zhenhua Li
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA.
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, NC, USA.
- Department of Pulmonary and Critical Care Medicine, Dongguan Institute of Respiratory and Critical Care Medicine, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, China.
| | - Ke Cheng
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA.
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, NC, USA.
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
25
|
Li Q, Yin G, Wang J, Li L, Liang Q, Zhao X, Chen Y, Zheng X, Zhao X. An emerging paradigm to develop analytical methods based on immobilized transmembrane proteins and its applications in drug discovery. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
26
|
Walz A, Stoiber K, Huettig A, Schlichting H, Barth JV. Navigate Flying Molecular Elephants Safely to the Ground: Mass-Selective Soft Landing up to the Mega-Dalton Range by Electrospray Controlled Ion-Beam Deposition. Anal Chem 2022; 94:7767-7778. [PMID: 35609119 PMCID: PMC9178560 DOI: 10.1021/acs.analchem.1c04495] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The prototype of a highly versatile and efficient preparative mass spectrometry system used for the deposition of molecules in ultrahigh vacuum (UHV) is presented, along with encouraging performance data obtained using four model species that are thermolabile or not sublimable. The test panel comprises two small organic compounds, a small and very large protein, and a large DNA species covering a 4-log mass range up to 1.7 MDa as part of a broad spectrum of analyte species evaluated to date. Three designs of innovative ion guides, a novel digital mass-selective quadrupole (dQMF), and a standard electrospray ionization (ESI) source are combined to an integrated device, abbreviated electrospray controlled ion-beam deposition (ES-CIBD). Full control is achieved by (i) the square-wave-driven radiofrequency (RF) ion guides with steadily tunable frequencies, including a dQMF allowing for investigation, purification, and deposition of a virtually unlimited m/z range, (ii) the adjustable landing energy of ions down to ∼2 eV/z enabling integrity-preserving soft landing, (iii) the deposition in UHV with high ion beam intensity (up to 3 nA) limiting contaminations and deposition time, and (iv) direct coverage control via the deposited charge. The maximum resolution of R = 650 and overall efficiency up to Ttotal = 4.4% calculated from the solution to UHV deposition are advantageous, whereby the latter can be further enhanced by optimizing ionization performance. In the setup presented, a scanning tunneling microscope (STM) is attached for in situ UHV investigations of deposited species, demonstrating a selective, structure-preserving process and atomically clean layers.
Collapse
Affiliation(s)
- Andreas Walz
- Physics Department E20, Technical University of Munich, 85748 Garching, Germany
| | - Karolina Stoiber
- Physics Department E20, Technical University of Munich, 85748 Garching, Germany
| | - Annette Huettig
- Physics Department E20, Technical University of Munich, 85748 Garching, Germany
| | - Hartmut Schlichting
- Physics Department E20, Technical University of Munich, 85748 Garching, Germany
| | - Johannes V Barth
- Physics Department E20, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
27
|
Rouvière L, Al-Hajj N, Hunel J, Aupetit C, Buffeteau T, Vellutini L, Genin E. Silane-Based SAMs Deposited by Spin Coating as a Versatile Alternative Process to Solution Immersion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6464-6471. [PMID: 35544953 DOI: 10.1021/acs.langmuir.2c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Functionalization of silica surfaces with silane-based self-assembled monolayers (SAMs) is widely used in material sciences to tune surface properties and introduce terminal functional groups enabling subsequent chemical surface reactions and immobilization of (bio)molecules. Here, we report on the synthesis of four organotrimethoxysilanes with various molecular structures and we compare their grafting by spin coating with the one performed by the conventional solution immersion method. Strikingly, this study clearly demonstrates that the spin coating technique is a versatile, fast, and more convenient alternative process to prepare robust, smooth, and homogeneous SAMs with similar properties and quality as those deposited via immersion. SAMs were characterized by PM-IRRAS, AFM, and wettability measurements. SAMs can undergo several chemical surface modifications, and the reactivity of amine-terminated SAM was confirmed by PM-IRRAS and fluorescence measurements.
Collapse
Affiliation(s)
- Lisa Rouvière
- Université Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Nisreen Al-Hajj
- Université Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
- Department of Chemistry, Faculty of Science, An-Najah National University, P.O. Box 7, 400 Nablus, Palestine
| | - Julien Hunel
- Université Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Christian Aupetit
- Université Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Thierry Buffeteau
- Université Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Luc Vellutini
- Université Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Emilie Genin
- Université Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| |
Collapse
|
28
|
Wu Y, Xu R, Feng Y, Song H. Rational Design of a De Novo Enzyme Cascade for Scalable Continuous Production of Antidepressant Prodrugs. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yunbin Wu
- College of Chemistry & Molecular Science, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Rui Xu
- College of Chemistry & Molecular Science, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Yuxin Feng
- College of Chemistry & Molecular Science, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Heng Song
- College of Chemistry & Molecular Science, Wuhan University, Wuhan, Hubei Province 430072, China
| |
Collapse
|
29
|
Habibi N, Mauser A, Ko Y, Lahann J. Protein Nanoparticles: Uniting the Power of Proteins with Engineering Design Approaches. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104012. [PMID: 35077010 PMCID: PMC8922121 DOI: 10.1002/advs.202104012] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/12/2021] [Indexed: 05/16/2023]
Abstract
Protein nanoparticles, PNPs, have played a long-standing role in food and industrial applications. More recently, their potential in nanomedicine has been more widely pursued. This review summarizes recent trends related to the preparation, application, and chemical construction of nanoparticles that use proteins as major building blocks. A particular focus has been given to emerging trends related to applications in nanomedicine, an area of research where PNPs are poised for major breakthroughs as drug delivery carriers, particle-based therapeutics or for non-viral gene therapy.
Collapse
Affiliation(s)
- Nahal Habibi
- Biointerfaces InstituteDepartment of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Ava Mauser
- Biointerfaces InstituteDepartment of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Yeongun Ko
- Biointerfaces InstituteDepartment of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Joerg Lahann
- Biointerfaces InstituteDepartments of Chemical EngineeringMaterial Science and EngineeringBiomedical Engineeringand Macromolecular Science and EngineeringUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
30
|
Recent Advances in the Development of Laccase-Based Biosensors via Nano-Immobilization Techniques. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020058] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Monitoring phenolic compounds is critical in the environmental, food, and medical sectors. Among many recent advanced detection platforms, laccase-based biosensing platforms gave very rapid, effective, online, and in situ sensing of phenolic compounds. In laccase-based biosensors, laccase immobilization techniques have a vital role. However, a detailing of the advancements in laccase immobilization techniques employed in laccase-based biosensors is lacking in the literature. Thus, in this review, we assessed how the nano-immobilization techniques shaped the laccase biosensing platforms. We discussed novel developments in laccase immobilization techniques such as entrapment, adsorption, cross-linking, and covalent over new nanocomposites in laccase biosensors. We made a comprehensive assessment based on the current literature for future perspectives of nano-immobilized laccase biosensors. We found the important key areas toward which future laccase biosensor research seems to be heading. These include 1. A focus on the development of multi-layer laccase over electrode surface, 2. The need to utilize more covalent immobilization routes, as they change the laccase specificity toward phenolic compounds, 3. The advancement in polymeric matrices with electroconductive properties, and 4. novel entrapment techniques like biomineralization using laccase molecules. Thus, in this review, we provided a detailed account of immobilization in laccase biosensors and their feasibility in the future for the development of highly specific laccase biosensors in industrial, medicinal, food, and environmental applications.
Collapse
|
31
|
Sensitive recognition of Shiga toxin using biosensor technology: An efficient platform towards bioanalysis of pathogenic bacterial. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Pillai S, Upadhyay A, Sayson D, Nguyen BH, Tran SD. Advances in Medical Wearable Biosensors: Design, Fabrication and Materials Strategies in Healthcare Monitoring. Molecules 2021; 27:165. [PMID: 35011400 PMCID: PMC8746599 DOI: 10.3390/molecules27010165] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
In the past decade, wearable biosensors have radically changed our outlook on contemporary medical healthcare monitoring systems. These smart, multiplexed devices allow us to quantify dynamic biological signals in real time through highly sensitive, miniaturized sensing platforms, thereby decentralizing the concept of regular clinical check-ups and diagnosis towards more versatile, remote, and personalized healthcare monitoring. This paradigm shift in healthcare delivery can be attributed to the development of nanomaterials and improvements made to non-invasive biosignal detection systems alongside integrated approaches for multifaceted data acquisition and interpretation. The discovery of new biomarkers and the use of bioaffinity recognition elements like aptamers and peptide arrays combined with the use of newly developed, flexible, and conductive materials that interact with skin surfaces has led to the widespread application of biosensors in the biomedical field. This review focuses on the recent advances made in wearable technology for remote healthcare monitoring. It classifies their development and application in terms of electrochemical, mechanical, and optical modes of transduction and type of material used and discusses the shortcomings accompanying their large-scale fabrication and commercialization. A brief note on the most widely used materials and their improvements in wearable sensor development is outlined along with instructions for the future of medical wearables.
Collapse
Affiliation(s)
- Sangeeth Pillai
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (S.P.); (A.U.); (D.S.)
| | - Akshaya Upadhyay
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (S.P.); (A.U.); (D.S.)
| | - Darren Sayson
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (S.P.); (A.U.); (D.S.)
| | - Bich Hong Nguyen
- Department of Pediatrics, CHU Sainte Justine Hospital, Montreal, QC H3T 1C5, Canada;
| | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (S.P.); (A.U.); (D.S.)
| |
Collapse
|
33
|
Muchiri RN, van Breemen RB. Drug discovery from natural products using affinity selection-mass spectrometry. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 40:59-63. [PMID: 34916024 DOI: 10.1016/j.ddtec.2021.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/22/2022]
Abstract
As a starting point for drug discovery, affinity selection-mass spectrometry (AS-MS) is ideal for the discovery of lead compounds from chemically diverse sources such as botanical, fungal and microbial extracts. Based on binding interactions between macromolecular receptors and ligands of low molecular mass, AS-MS enables the rapid isolation of pharmacologically active small molecules from complex mixtures for mass spectrometric characterization and identification. Unlike conventional high-throughput screening, AS-MS requires no radiolabels, no UV or fluorescent chromophores, and is compatible with all classes of receptors, enzymes, incubation buffers, cofactors, and ligands. The most successful types of AS-MS include pulsed ultrafiltration (PUF) AS-MS, size exclusion chromatography (SEC) AS-MS, and magnetic microbead affinity selection screening (MagMASS), which differ in their approaches for separating the ligand-receptor complexes from the non-binding compounds in mixtures. After affinity isolation, the ligand(s) from the mixture are characterized using high resolution UHPLC-MS and tandem mass spectrometry. Based on these elemental composition and structural data, the identities of the lead compounds are determined by searching on-line databases for known natural products and by comparison with standards. The structures of novel natural products are determined using a combination of spectroscopic techniques including two-dimensional NMR and MS.
Collapse
Affiliation(s)
- Ruth N Muchiri
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, United States; College of Pharmacy, Oregon State University, Corvallis, OR 97331, United States
| | - Richard B van Breemen
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, United States; College of Pharmacy, Oregon State University, Corvallis, OR 97331, United States
| |
Collapse
|
34
|
Recent advances in carbon nanotubes-based biocatalysts and their applications. Adv Colloid Interface Sci 2021; 297:102542. [PMID: 34655931 DOI: 10.1016/j.cis.2021.102542] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/23/2022]
Abstract
Enzymes have been incorporated into a wide variety of fields and industries as they catalyze many biochemical and chemical reactions. The immobilization of enzymes on carbon nanotubes (CNTs) for generating nano biocatalysts with high stability and reusability is gaining great attention among researchers. Functionalized CNTs act as excellent support for effective enzyme immobilization. Depending on the application, the enzymes can be tailored using the various surface functionalization techniques on the CNTs to extricate the desirable characteristics. Aiming at the preparation of efficient, stable, and recyclable nanobiocatalysts, this review provides an overview of the methods developed to immobilize the various enzymes. Various applications of carbon nanotube-based biocatalysts in water purification, bioremediation, biosensors, and biofuel cells have been comprehensively reviewed.
Collapse
|
35
|
Si D, Nie G, Hurst TK, Fierke CA, Kopelman R. Combining Active Carbonic Anhydrase with Nanogels: Enzyme Protection and Zinc Sensing. Int J Nanomedicine 2021; 16:6645-6660. [PMID: 34611401 PMCID: PMC8486011 DOI: 10.2147/ijn.s321099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/03/2021] [Indexed: 11/23/2022] Open
Abstract
Background Due to its excellent biocompatibility, the polyacrylamide (PAAm) hydrogel has shown great potential for the immobilization of enzymes used in biomedical applications. The major challenge involved is to preserve, during the immobilization process, both the biological activity and the structural integrity of the enzymes. Here we report, for the first time, a proof-of-concept study for embedding active carbonic anhydrase (CA) into polyacrylamide (PAAm) nanogels. By immobilizing CA in these nanogels, we hope to provide important advantages, such as matrix protection of the CA as well as its targeted delivery, and also for potentially using these nanogels as zinc nano-biosensors, both in-vitro and in-vivo. Methods and Results Two methods are reported here for CA immobilization: encapsulation and surface conjugation. In the encapsulation method, the common process was improved, so as to best preserve the CA, by 1) using a novel biofriendly nonionic surfactant system (Span 80/Tween 80/Brij 30) and 2) using an Al2O3 adsorptive filtration purification procedure. In the surface conjugation method, blank PAAm nanogels were activated by N-hydroxysuccinimide and the CA was cross-linked to the nanogels. The amount of active CA immobilized in the nanoparticles was quantified for both methods. Per 1 g nanogels, the CA encapsulated nanogels contain 11.3 mg active CA, while the CA conjugated nanogels contain 22.5 mg active CA. Also, the CA conjugated nanoparticles successfully measured free Zn2+ levels in solution, with the Zn2+ dissociation constant determined to be 9 pM. Conclusion This work demonstrates universal methods for immobilizing highly fragile bio-macromolecules inside nanoparticle carriers, while preserving their structural integrity and biological activity. The advantages and limitations are discussed, as well as the potential biomedical applications.
Collapse
Affiliation(s)
- Di Si
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Guochao Nie
- School of Physics and Telecommunication Engineering, Yulin Normal University, Yulin, People's Republic of China.,China-Ukraine Joint Research Center for Nano Carbon Black, Yulin, People's Republic of China.,Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, People's Republic of China
| | - Tamiika K Hurst
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Carol A Fierke
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Raoul Kopelman
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
36
|
Kozminsky M, Scheideler OJ, Li B, Liu NK, Sohn LL. Multiplexed DNA-Directed Patterning of Antibodies for Applications in Cell Subpopulation Analysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46421-46430. [PMID: 34546726 PMCID: PMC8817232 DOI: 10.1021/acsami.1c15047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antibodies provide the functional biospecificity that has enabled the development of sensors, diagnostic tools, and assays in both laboratory and clinical settings. However, as multimarker screening becomes increasingly necessary due to the heterogeneity and complexity of human pathology, new methods must be developed that are capable of coordinating the precise assembly of multiple, distinct antibodies. To address this technological challenge, we engineered a bottom-up, high-throughput method in which DNA patterns, comprising unique 20-base pair oligonucleotides, are patterned onto a substrate using photolithography. These microfabricated surface patterns are programmed to hybridize with, and instruct the multiplexed assembly of, antibodies conjugated with the complementary DNA strands. We demonstrate that this simple, yet robust, approach preserves the antibody-binding functionality in two common applications: antibody-based cell capture and label-free surface marker screening. Using a simple proof-of-concept capture device, we achieved high purity separation of a breast cancer cell line, MCF-7, from a blood cell line, Jurkat, with capture purities of 77.4% and 96.6% when using antibodies specific for the respective cell types. We also show that antigen-antibody interactions slow cell trajectories in flow in the next-generation microfluidic node-pore sensing (NPS) device, enabling the differentiation of MCF-7 and Jurkat cells based on EpCAM surface-marker expression. Finally, we use a next-generation NPS device patterned with antibodies against E-cadherin, N-cadherin, and β-integrin-three markers that are associated with epithelial-mesenchymal transitions-to perform label-free surface marker screening of MCF10A, MCF-7, and Hs 578T breast epithelial cells. Our high-throughput, highly versatile technique enables rapid development of customized, antibody-based assays across a host of diverse diseases and research thrusts.
Collapse
Affiliation(s)
- Molly Kozminsky
- California Institute of Quantitative Biosciences, University of California, Berkeley, 174 Stanley Hall, Berkeley, California 94720, United States
| | - Olivia J Scheideler
- The UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley, 306 Stanley Hall, Berkeley, California 94720, United States
| | - Brian Li
- The UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley, 306 Stanley Hall, Berkeley, California 94720, United States
| | - Nathaniel K Liu
- Department of Mechanical Engineering, University of California, Berkeley, 5118 Etcheverry Hall, Berkeley, California 94720, United States
| | - Lydia L Sohn
- California Institute of Quantitative Biosciences, University of California, Berkeley, 174 Stanley Hall, Berkeley, California 94720, United States
- The UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley, 306 Stanley Hall, Berkeley, California 94720, United States
- Department of Mechanical Engineering, University of California, Berkeley, 5118 Etcheverry Hall, Berkeley, California 94720, United States
| |
Collapse
|
37
|
Li Q, Pan Y, Li H, Lenertz M, Reed K, Jordahl D, Bjerke T, Ugrinov A, Chen B, Yang Z. Cascade/Parallel Biocatalysis via Multi-enzyme Encapsulation on Metal-Organic Materials for Rapid and Sustainable Biomass Degradation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43085-43093. [PMID: 34478257 DOI: 10.1021/acsami.1c12209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multiple-enzyme cooperation simultaneously is an effective approach to biomass conversion and biodegradation. The challenge, however, lies in the interference of the involved enzymes with each other, especially when a protease is needed, and thus, the difficulty in reusing the enzymes; while extracting/synthesizing new enzymes costs energy and negative impact on the environment. Here, we present a unique approach to immobilize multiple enzymes, including a protease, on a metal-organic material (MOM) via co-precipitation in order to enhance the reusability and sustainability. We prove our strategy on the degradation of starch-containing polysaccharides (require two enzymes to degrade) and food proteins (require a protease to digest) before the quantification of total dietary fiber. As compared to the widely adopted "official" method, which requires the sequential addition of three enzymes under different conditions (pH/temperature), the three enzymes can be simultaneously immobilized on the surface of our MOM crystals to allow for contact with the large substrates (starch), while MOMs offer sufficient protection to the enzymes so that the reusability and long-term storage are improved. Furthermore, the same biodegradation can be carried out without adjusting the reaction condition, further reducing the reaction time. Remarkably, the simultaneous presence of all enzymes enhances the reaction efficiency by a factor of ∼3 as compared to the official method. To our best knowledge, this is the first experimental demonstration of using aqueous-phase co-precipitation to immobilize multiple enzymes for large-substrate biocatalysis. The significantly enhanced efficiency can potentially impact the food industry by reducing the labor requirement and enhancing enzyme cost efficiency, leading to reduced food cost. The reduced energy cost of extracting enzymes and adjusting reaction conditions minimize the negative impact on the environment. The strategy to prevent protease damage in a multi-enzyme system can be adapted to other biocatalytic reactions involving proteases.
Collapse
Affiliation(s)
- Qiaobin Li
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Yanxiong Pan
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Hui Li
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Mary Lenertz
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Kailyn Reed
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Drew Jordahl
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Taylor Bjerke
- Sheyenne High School, West Fargo, North Dakota 58078, United States
| | - Angel Ugrinov
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| |
Collapse
|
38
|
Liu H, Kumar R, Zhong C, Gorji S, Paniushkina L, Masood R, Wittel UA, Fuchs H, Nazarenko I, Hirtz M. Rapid Capture of Cancer Extracellular Vesicles by Lipid Patch Microarrays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008493. [PMID: 34309083 PMCID: PMC11468818 DOI: 10.1002/adma.202008493] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/12/2021] [Indexed: 06/13/2023]
Abstract
Extracellular vesicles (EVs) contain various bioactive molecules such as DNA, RNA, and proteins, and play a key role in the regulation of cancer progression. Furthermore, cancer-associated EVs carry specific biomarkers and can be used in liquid biopsy for cancer detection. However, it is still technically challenging and time consuming to detect or isolate cancer-associated EVs from complex biofluids (e.g., blood). Here, a novel EV-capture strategy based on dip-pen nanolithography generated microarrays of supported lipid membranes is presented. These arrays carry specific antibodies recognizing EV- and cancer-specific surface biomarkers, enabling highly selective and efficient capture. Importantly, it is shown that the nucleic acid cargo of captured EVs is retained on the lipid array, providing the potential for downstream analysis. Finally, the feasibility of EV capture from patient sera is demonstrated. The demonstrated platform offers rapid capture, high specificity, and sensitivity, with only a small need in analyte volume and without additional purification steps. The platform is applied in context of cancer-associated EVs, but it can easily be adapted to other diagnostic EV targets by use of corresponding antibodies.
Collapse
Affiliation(s)
- Hui‐Yu Liu
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Ravi Kumar
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Chunting Zhong
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Saleh Gorji
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
- Joint Research Laboratory Nanomaterials (KIT and TUD) at Technische Universität Darmstadt (TUD)Jovanka‐Bontschits‐Str. 264287DarmstadtGermany
| | - Liliia Paniushkina
- Institute for Infection Prevention and Hospital EpidemiologyMedical CentreFaculty of MedicineUniversity of FreiburgBreisacher Straße 115 B79106FreiburgGermany
| | - Ramsha Masood
- Institute for Infection Prevention and Hospital EpidemiologyMedical CentreFaculty of MedicineUniversity of FreiburgBreisacher Straße 115 B79106FreiburgGermany
| | - Uwe A. Wittel
- Department of General and Visceral SurgeryCentre of SurgeryMedical CentreFaculty of MedicineUniversity of FreiburgBreisacher Str. 8679110FreiburgGermany
| | - Harald Fuchs
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
- Physikalisches Institut & Center for Nanotechnology (CeNTech)Westfälische Wilhelms‐UniversitätWilhelm‐Klemm‐Straße 1048149MünsterGermany
| | - Irina Nazarenko
- Institute for Infection Prevention and Hospital EpidemiologyMedical CentreFaculty of MedicineUniversity of FreiburgBreisacher Straße 115 B79106FreiburgGermany
- German Cancer Consortium (DKTK)Partner Site Freiburg and German Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
| | - Michael Hirtz
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| |
Collapse
|
39
|
Matveeva VG, Bronstein LM. Magnetic Nanoparticle-Containing Supports as Carriers of Immobilized Enzymes: Key Factors Influencing the Biocatalyst Performance. NANOMATERIALS 2021; 11:nano11092257. [PMID: 34578573 PMCID: PMC8469579 DOI: 10.3390/nano11092257] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/23/2022]
Abstract
In this short review (Perspective), we identify key features of the performance of biocatalysts developed by the immobilization of enzymes on the supports containing magnetic nanoparticles (NPs), analyzing the scientific literature for the last five years. A clear advantage of magnetic supports is their easy separation due to the magnetic attraction between magnetic NPs and an external magnetic field, facilitating the biocatalyst reuse. This allows for savings of materials and energy in the biocatalytic process. Commonly, magnetic NPs are isolated from enzymes either by polymers, silica, or some other protective layer. However, in those cases when iron oxide NPs are in close proximity to the enzyme, the biocatalyst may display a fascinating behavior, allowing for synergy of the performance due to the enzyme-like properties shown in iron oxides. Another important parameter which is discussed in this review is the magnetic support porosity, especially in hierarchical porous supports. In the case of comparatively large pores, which can freely accommodate enzyme molecules without jeopardizing their conformation, the enzyme surface ordering may create an optimal crowding on the support, enhancing the biocatalytic performance. Other factors such as surface-modifying agents or special enzyme reactor designs can be also influential in the performance of magnetic NP based immobilized enzymes.
Collapse
Affiliation(s)
- Valentina G. Matveeva
- Department of Biotechnology and Chemistry, Tver State Technical University, 22 A. Nikitina St, 170026 Tver, Russia;
- Regional Technological Centre, Tver State University, Zhelyabova Str., 33, 170100 Tver, Russia
| | - Lyudmila M. Bronstein
- Department of Biotechnology and Chemistry, Tver State Technical University, 22 A. Nikitina St, 170026 Tver, Russia;
- Department of Chemistry, Indiana University, 800 E. Kirkwood Av., Bloomington, IN 47405, USA
- Department of Physics, Faculty of Science, King Abdulaziz University, P.O. Box 80303, Jeddah 21589, Saudi Arabia
- Correspondence:
| |
Collapse
|
40
|
Gironda-Martínez A, Donckele EJ, Samain F, Neri D. DNA-Encoded Chemical Libraries: A Comprehensive Review with Succesful Stories and Future Challenges. ACS Pharmacol Transl Sci 2021; 4:1265-1279. [PMID: 34423264 PMCID: PMC8369695 DOI: 10.1021/acsptsci.1c00118] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 12/27/2022]
Abstract
DNA-encoded chemical libraries (DELs) represent a versatile and powerful technology platform for the discovery of small-molecule ligands to protein targets of biological and pharmaceutical interest. DELs are collections of molecules, individually coupled to distinctive DNA tags serving as amplifiable identification barcodes. Thanks to advances in DNA-compatible reactions, selection methodologies, next-generation sequencing, and data analysis, DEL technology allows the construction and screening of libraries of unprecedented size, which has led to the discovery of highly potent ligands, some of which have progressed to clinical trials. In this Review, we present an overview of diverse approaches for the generation and screening of DEL molecular repertoires. Recent success stories are described, detailing how novel ligands were isolated from DEL screening campaigns and were further optimized by medicinal chemistry. The goal of the Review is to capture some of the most recent developments in the field, while also elaborating on future challenges to further improve DEL technology as a therapeutic discovery platform.
Collapse
Affiliation(s)
| | | | - Florent Samain
- Philochem
AG, Libernstrasse 3, CH-8112 Otelfingen, Switzerland
| | - Dario Neri
- Department
of Chemistry and Applied Biosciences, Swiss
Federal Institute of Technology, CH-8093 Zürich, Switzerland
- Philogen
S.p.A, 53100 Siena, Italy
| |
Collapse
|
41
|
Zhao X, Fu X, Yuan X, Shayiranbieke A, Xu R, Cao F, Ren J, Liang Q, Zhao X. Development and characterization of a selective chromatographic approach to the rapid discovery of ligands binding to muscarinic-3 acetylcholine receptor. J Chromatogr A 2021; 1653:462443. [PMID: 34365202 DOI: 10.1016/j.chroma.2021.462443] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/07/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
The pursuit of new ligands binding to muscarinic-3 acetylcholine receptor (M3R) is viewed as challenging due to the lack of screening methods with high efficiency. To address such challenges, this work developed and characterized an approach to the rapid discovery of M3R ligands using the immobilized receptor as the chromatographic stationary phase. We fused haloalkane dehalogenase (Halo) as a tag at the C-terminus of M3R. The fusion M3R was immobilized on 6-chlorocaproic acid-activated ammino-microspheres by the specific covalent reaction between the Halo-tag and the linker. Comprehensive characterizations of the immobilized M3R were performed by scanning electron microscope, X-ray photoelectron spectroscopy, and the investigation on the binding of three specific ligands to the receptor. The feasibility of the immobilized M3R in complex matrices was tested by screening the bioactive compounds in Zhisou oral liquid, assessing the interaction between the screened compounds and the receptor using zonal elution, and evaluating the in vivo activity of the targeted compounds. The results evidenced that the immobilized M3R has high specificity, good stability, and the capacity to separate M3R ligands from complex matrices. These allowed us to identify naringin, hesperidin, liquiritigenin, platycodin D, and glycyrrhizic acid as the potential ligands of M3R. The association constants of the five compounds to M3R were 4.44 × 104, 1.11 × 104, 7.20 × 104, 4.15 × 104, and 3.36 × 104 M-1. The synergistic application of the five compounds exhibited an equivalent expectorant activity to the original formula. We reasoned that the current method is possible to provide a highly efficient strategy for the discovery of receptor ligands.
Collapse
Affiliation(s)
- Xue Zhao
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xiaoying Fu
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xinyi Yuan
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | | | - Ru Xu
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Fang Cao
- Shaanxi Pharmaceutical Holding Group Shanhaidan Pharmaceutical Co., Ltd., Xi'an 710075, China
| | - Jianping Ren
- Medicine Researchinstitution of Shaanxi Pharmaceutical Holding Cooperation, Xi'an 710065, China
| | - Qi Liang
- College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Xinfeng Zhao
- College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
42
|
Temperature-resistant and solvent-tolerant lipases as industrial biocatalysts: Biotechnological approaches and applications. Int J Biol Macromol 2021; 187:127-142. [PMID: 34298046 DOI: 10.1016/j.ijbiomac.2021.07.101] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/21/2022]
Abstract
The development of new biocatalytic systems to replace the chemical catalysts, with suitable characteristics in terms of efficiency, stability under high temperature reactions and in the presence of organic solvents, reusability, and eco-friendliness is considered a very important step to move towards the green processes. From this basis, the use of lipase as a catalyst is highly desired for many industrial applications because it offers the reactions in which could be used, stability in harsh conditions, reusability and a greener process. Therefore, the introduction of temperature-resistant and solvent-tolerant lipases have become essential and ideal for industrial applications. Temperature-resistant and solvent-tolerant lipases have been involved in many large-scale applications including biodiesel, detergent, food, pharmaceutical, organic synthesis, biosensing, pulp and paper, textile, animal feed, cosmetics, and leather industry. So, the present review provides a comprehensive overview of the industrial use of lipase. Moreover, special interest in biotechnological and biochemical techniques for enhancing temperature-resistance and solvent-tolerance of lipases to be suitable for the industrial uses.
Collapse
|
43
|
Fruncillo S, Su X, Liu H, Wong LS. Lithographic Processes for the Scalable Fabrication of Micro- and Nanostructures for Biochips and Biosensors. ACS Sens 2021; 6:2002-2024. [PMID: 33829765 PMCID: PMC8240091 DOI: 10.1021/acssensors.0c02704] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since the early 2000s, extensive research has been performed to address numerous challenges in biochip and biosensor fabrication in order to use them for various biomedical applications. These biochips and biosensor devices either integrate biological elements (e.g., DNA, proteins or cells) in the fabrication processes or experience post fabrication of biofunctionalization for different downstream applications, including sensing, diagnostics, drug screening, and therapy. Scalable lithographic techniques that are well established in the semiconductor industry are now being harnessed for large-scale production of such devices, with additional development to meet the demand of precise deposition of various biological elements on device substrates with retained biological activities and precisely specified topography. In this review, the lithographic methods that are capable of large-scale and mass fabrication of biochips and biosensors will be discussed. In particular, those allowing patterning of large areas from 10 cm2 to m2, maintaining cost effectiveness, high throughput (>100 cm2 h-1), high resolution (from micrometer down to nanometer scale), accuracy, and reproducibility. This review will compare various fabrication technologies and comment on their resolution limit and throughput, and how they can be related to the device performance, including sensitivity, detection limit, reproducibility, and robustness.
Collapse
Affiliation(s)
- Silvia Fruncillo
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
| | - Xiaodi Su
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
- Department of Chemistry, National University of Singapore, Block S8, Level 3, 3 Science Drive, Singapore 117543, Singapore
| | - Hong Liu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
| | - Lu Shin Wong
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
44
|
Abstract
Cyclopentadiene is one of the most reactive dienes in normal electron-demand Diels-Alder reactions. The high reactivities and yields of cyclopentadiene cycloadditions make them ideal as click reactions. In this review, we discuss the history of the cyclopentadiene cycloaddition as well as applications of cyclopentadiene click reactions. Our emphasis is on experimental and theoretical studies on the reactivity and stability of cyclopentadiene and cyclopentadiene derivatives.
Collapse
Affiliation(s)
- Brian J. Levandowski
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
45
|
Fracassi A, Ray A, Nakatsuka N, Passiu C, Tanriver M, Schauenburg D, Scherrer S, Ouald Chaib A, Mandal J, Ramakrishna SN, Bode JW, Spencer ND, Rossi A, Yamakoshi Y. KAT Ligation for Rapid and Facile Covalent Attachment of Biomolecules to Surfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29113-29121. [PMID: 34105349 DOI: 10.1021/acsami.1c05652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The efficient and bioorthogonal chemical ligation reaction between potassium acyltrifluoroborates (KATs) and hydroxylamines (HAs) was used for the surface functionalization of a self-assembled monolayer (SAM) with biomolecules. An alkane thioether molecule with one terminal KAT group (S-KAT) was synthesized and adsorbed onto a gold surface, placing a KAT group on the top of the monolayer (KAT-SAM). As an initial test case, an aqueous solution of a hydroxylamine (HA) derivative of poly(ethylene glycol) (PEG) (HA-PEG) was added to this KAT-SAM at room temperature to perform the surface KAT ligation. Quartz crystal microbalance with dissipation (QCM-D) monitoring confirmed the rapid attachment of the PEG moiety onto the SAM. By surface characterization methods such as contact angle and ellipsometry, the attachment of PEG layer was confirmed, and covalent amide-bond formation was established by X-ray photoelectron spectroscopy (XPS). In a proof-of-concept study, the applicability of this surface KAT ligation for the attachment of biomolecules to surfaces was tested using a model protein, green fluorescent protein (GFP). A GFP was chemically modified with an HA linker to synthesize HA-GFP and added to the KAT-SAM under aqueous dilute conditions. A rapid attachment of the GFP on the surface was observed in real time by QCM-D. Despite the fact that such biomolecules have a variety of unprotected functional groups within their structures, the surface KAT ligation proceeded rapidly in a chemoselective manner. Our results demonstrate the versatility of the KAT ligation for the covalent attachment of a variety of water-soluble molecules onto SAM surfaces under dilute and biocompatible conditions to form stable, natural amide bonds.
Collapse
Affiliation(s)
- Alessandro Fracassi
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Ankita Ray
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Nako Nakatsuka
- Laboratory of Biosensors and Bioelectronics, ETH Zürich, Gloriastrasse 35, CH-8092 Zürich, Switzerland
| | - Cristiana Passiu
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, CH-8093 Zürich, Switzerland
| | - Matthias Tanriver
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Dominik Schauenburg
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Simon Scherrer
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Anissa Ouald Chaib
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Joydeb Mandal
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, CH-8093 Zürich, Switzerland
- School of Chemistry, IISER Thiruvananthapuram, Maruthamala PO, Thiruvananthapuram, Kerala 695551, India
| | - Shivaprakash N Ramakrishna
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, CH-8093 Zürich, Switzerland
| | - Jeffrey W Bode
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Nicholas D Spencer
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, CH-8093 Zürich, Switzerland
| | - Antonella Rossi
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, CH-8093 Zürich, Switzerland
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, I-09100 Cagliari, Italy
| | - Yoko Yamakoshi
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| |
Collapse
|
46
|
Kamathewatta NJB, Nguyen TM, Lietz R, Hughes T, Taktak Karaca B, Deay DO, Richter ML, Tamerler C, Berrie CL. Probing Selective Self-Assembly of Putrescine Oxidase with Controlled Orientation Using a Genetically Engineered Peptide Tag. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7536-7547. [PMID: 34102059 DOI: 10.1021/acs.langmuir.1c01033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Controlling enzyme orientation and location on surfaces is a critical step for their successful deployment in diverse applications from biosensors to lab-on-a-chip devices. Functional activity of the enzymes on the surface will largely depend on the spatial arrangement and orientation. Solid binding peptides have been proven to offer versatility for immobilization of biomolecules on inorganic materials including metals, oxides, and minerals. Previously, we demonstrated the utility of a gold binding peptide genetically incorporated into the enzyme putrescine oxidase (PutOx-AuBP), enabling self-enzyme assembly on gold substrates. PutOx is an attractive biocatalyst among flavin oxidases, using molecular oxygen as an electron acceptor without requiring a dissociable coenzyme. Here, we explore the selective self-assembly of this enzyme on a range of surfaces using atomic force microscopy (AFM) along with the assessment of functional activity. This work probes the differences in surface coverage, distribution, size, shape, and activity of PutOx-AuBP in comparison to those of native putrescine oxidase (PutOx) on multiple surfaces to provide insight for material-selective enzymatic assembly. Surfaces investigated include metal (templated-stripped gold (TSG)), oxide (native SiO2 on Si(111)), minerals (mica and graphite), and self-assembled monolayers (SAMs) with a range of hydrophobicity and charge. Supported by both the coverage and the dimensions of immobilized enzymes, our results indicate that of the surfaces investigated, material-selective binding takes place with orientation control only for PutOx-AuBP onto the TSG substrate. These differences are consistent with the measurements of surface-bound enzymatic activities. Substrate-dependent differences observed indicate significant variations in enzyme-surface interactions ranging from peptide-directed self-assembly to enzyme aggregation. The implications of this study provide insight for the fabrication of enzymatic patterns directed by self-assembling peptide tags onto localized surface regions. Enabling functional enzyme-based nanoscale materials offers a fascinating path for utilization of sustainable biocatalysts integrated into multiscale devices.
Collapse
Affiliation(s)
| | - Tyler M Nguyen
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Rachel Lietz
- Institute for Bioengineering Research, University of Kansas, Lawrence, Kansas 66045, United States
| | - Talisa Hughes
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Banu Taktak Karaca
- Institute for Bioengineering Research, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Electrical and Electronics Engineering, Istanbul Technical University, Istanbul 34469, Turkey
| | - Dwight O Deay
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Mark L Richter
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Candan Tamerler
- Institute for Bioengineering Research, University of Kansas, Lawrence, Kansas 66045, United States
- Bioengineering Program, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Mechanical Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Cindy L Berrie
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Institute for Bioengineering Research, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
47
|
Tang TMS, Luk LYP. Asparaginyl endopeptidases: enzymology, applications and limitations. Org Biomol Chem 2021; 19:5048-5062. [PMID: 34037066 PMCID: PMC8209628 DOI: 10.1039/d1ob00608h] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022]
Abstract
Asparaginyl endopeptidases (AEP) are cysteine proteases found in mammalian and plant cells. Several AEP isoforms from plant species were found to exhibit transpeptidase activity which is integral for the key head-to-tail cyclisation reaction during the biosynthesis of cyclotides. Since many plant AEPs exhibit excellent enzyme kinetics for peptide ligation via a relatively short substrate recognition sequence, they have become appealing tools for peptide and protein modification. In this review, research focused on the enzymology of AEPs and their applications in polypeptide cyclisation and labelling will be presented. Importantly, the limitations of using AEPs and opportunities for future research and innovation will also be discussed.
Collapse
Affiliation(s)
- T M Simon Tang
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Louis Y P Luk
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK. and Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| |
Collapse
|
48
|
Nunes YL, de Menezes FL, de Sousa IG, Cavalcante ALG, Cavalcante FTT, da Silva Moreira K, de Oliveira ALB, Mota GF, da Silva Souza JE, de Aguiar Falcão IR, Rocha TG, Valério RBR, Fechine PBA, de Souza MCM, Dos Santos JCS. Chemical and physical Chitosan modification for designing enzymatic industrial biocatalysts: How to choose the best strategy? Int J Biol Macromol 2021; 181:1124-1170. [PMID: 33864867 DOI: 10.1016/j.ijbiomac.2021.04.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/16/2022]
Abstract
Chitosan is one of the most abundant natural polymer worldwide, and due to its inherent characteristics, its use in industrial processes has been extensively explored. Because it is biodegradable, biocompatible, non-toxic, hydrophilic, cheap, and has good physical-chemical stability, it is seen as an excellent alternative for the replacement of synthetic materials in the search for more sustainable production methodologies. Thus being, a possible biotechnological application of Chitosan is as a direct support for enzyme immobilization. However, its applicability is quite specific, and to overcome this issue, alternative pretreatments are required, such as chemical and physical modifications to its structure, enabling its use in a wider array of applications. This review aims to present the topic in detail, by exploring and discussing methods of employment of Chitosan in enzymatic immobilization processes with various enzymes, presenting its advantages and disadvantages, as well as listing possible chemical modifications and combinations with other compounds for formulating an ideal support for this purpose. First, we will present Chitosan emphasizing its characteristics that allow its use as enzyme support. Furthermore, we will discuss possible physicochemical modifications that can be made to Chitosan, mentioning the improvements obtained in each process. These discussions will enable a comprehensive comparison between, and an informed choice of, the best technologies concerning enzyme immobilization and the application conditions of the biocatalyst.
Collapse
Affiliation(s)
- Yale Luck Nunes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Fernando Lima de Menezes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Isamayra Germano de Sousa
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Antônio Luthierre Gama Cavalcante
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | | | - Katerine da Silva Moreira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil
| | - André Luiz Barros de Oliveira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil
| | - Gabrielly Ferreira Mota
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - José Erick da Silva Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Italo Rafael de Aguiar Falcão
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Thales Guimaraes Rocha
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Roberta Bussons Rodrigues Valério
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Pierre Basílio Almeida Fechine
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Maria Cristiane Martins de Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - José C S Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil; Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil.
| |
Collapse
|
49
|
Subramanian RH, Suzuki Y, Tallorin L, Sahu S, Thompson M, Gianneschi NC, Burkart MD, Tezcan FA. Enzyme-Directed Functionalization of Designed, Two-Dimensional Protein Lattices. Biochemistry 2021; 60:1050-1062. [PMID: 32706243 PMCID: PMC7855359 DOI: 10.1021/acs.biochem.0c00363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The design and construction of crystalline protein arrays to selectively assemble ordered nanoscale materials have potential applications in sensing, catalysis, and medicine. Whereas numerous designs have been implemented for the bottom-up construction of protein assemblies, the generation of artificial functional materials has been relatively unexplored. Enzyme-directed post-translational modifications are responsible for the functional diversity of the proteome and, thus, could be harnessed to selectively modify artificial protein assemblies. In this study, we describe the use of phosphopantetheinyl transferases (PPTases), a class of enzymes that covalently modify proteins using coenzyme A (CoA), to site-selectively tailor the surface of designed, two-dimensional (2D) protein crystals. We demonstrate that a short peptide (ybbR) or a molecular tag (CoA) can be covalently tethered to 2D arrays to enable enzymatic functionalization using Sfp PPTase. The site-specific modification of two different protein array platforms is facilitated by PPTases to afford both small molecule- and protein-functionalized surfaces with no loss of crystalline order. This work highlights the potential for chemoenzymatic modification of large protein surfaces toward the generation of sophisticated protein platforms reminiscent of the complex landscape of cell surfaces.
Collapse
Affiliation(s)
- Rohit H. Subramanian
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Yuta Suzuki
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- Current address: Hakubi Center for Advanced Research, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto, Japan, 606-8501
| | - Lorillee Tallorin
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Swagat Sahu
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Matthew Thompson
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- Departments of Chemistry, Materials Science & Engineering, Biomedical Engineering, Chemistry of Life Processes Institute, International Institute for Nanotechnology, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, USA
| | - Nathan C. Gianneschi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- Departments of Chemistry, Materials Science & Engineering, Biomedical Engineering, Chemistry of Life Processes Institute, International Institute for Nanotechnology, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, USA
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- Materials Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
50
|
Vasconcelos H, Coelho LCC, Matias A, Saraiva C, Jorge PAS, de Almeida JMMM. Biosensors for Biogenic Amines: A Review. BIOSENSORS-BASEL 2021; 11:bios11030082. [PMID: 33805834 PMCID: PMC8000219 DOI: 10.3390/bios11030082] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 01/11/2023]
Abstract
Biogenic amines (BAs) are well-known biomolecules, mostly for their toxic and carcinogenic effects. Commonly, they are used as an indicator of quality preservation in food and beverages since their presence in higher concentrations is associated with poor quality. With respect to BA’s metabolic pathways, time plays a crucial factor in their formation. They are mainly formed by microbial decarboxylation of amino acids, which is closely related to food deterioration, therefore, making them unfit for human consumption. Pathogenic microorganisms grow in food without any noticeable change in odor, appearance, or taste, thus, they can reach toxic concentrations. The present review provides an overview of the most recent literature on BAs with special emphasis on food matrixes, including a description of the typical BA assay formats, along with its general structure, according to the biorecognition elements used (enzymes, nucleic acids, whole cells, and antibodies). The extensive and significant amount of research that has been done to the investigation of biorecognition elements, transducers, and their integration in biosensors, over the years has been reviewed.
Collapse
Affiliation(s)
- Helena Vasconcelos
- School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal; (H.V.); (C.S.)
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science and Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (L.C.C.C.); (A.M.); (P.A.S.J.)
| | - Luís C. C. Coelho
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science and Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (L.C.C.C.); (A.M.); (P.A.S.J.)
| | - Ana Matias
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science and Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (L.C.C.C.); (A.M.); (P.A.S.J.)
| | - Cristina Saraiva
- School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal; (H.V.); (C.S.)
| | - Pedro A. S. Jorge
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science and Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (L.C.C.C.); (A.M.); (P.A.S.J.)
- Department. of Physics and Astronomy, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - José M. M. M. de Almeida
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science and Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (L.C.C.C.); (A.M.); (P.A.S.J.)
- Department of Physics, School of Science and Technology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
- Correspondence:
| |
Collapse
|