1
|
Li X, Wen X, Luo Z, Wang X, Zhang Y, Wei J, Tian Y, Ling R, Duan Y. Simultaneous detection of volatile and non-volatile metabolites in urine using UPLC-Q-Exactive Orbitrap-MS and HS-SPME/GC-HRMS: A promising strategy for improving the breast cancer diagnosis accuracy. Talanta 2025; 291:127812. [PMID: 40023122 DOI: 10.1016/j.talanta.2025.127812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/16/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
Breast cancer (BC) is the primary cause of cancer-related deaths in women. Currently, the discovery of biomarkers primarily relies on single platform, which might overlook other potential biomarkers and lead to inaccurate diagnoses. This study aims to: (1) expand the detection range of biomarkers through multiple analytical techniques, thereby improving the accuracy of BC diagnosis, and (2) analyze the metabolic pathways of the biomarkers to explore the metabolic mechanisms underlying BC. Urine samples from BC patients and healthy controls were analyzed using two techniques: Ultra-high performance liquid chromatography combined with Quadrupole-Exactive-Orbitrap mass spectrometry (UPLC-Q-Exactive Orbitrap-MS), and headspace solid-phase microextraction combined with gas chromatography-high resolution mass spectrometry (HS-SPME/GC-HRMS). Data from each platform was analyzed independently using both univariate and multivariate statistical approaches to identify candidate biomarkers. Subsequently, a mid-level data fusion approach was applied to integrate the candidate biomarkers identified by each platform. The fused data were used to construct orthogonal partial least squares discriminant analysis (OPLS-DA) models and random forest (RF) models, which were then compared against models based on individual platform. The fused RF and OPLS-DA models demonstrated enhanced diagnostic accuracy compared to the individual model. Integrating GC-HRMS and UPLC-Q-Exactive Orbitrap-MS achieved the best performance, with an AUC value of 0.967, sensitivity of 86.37 %, and specificity of 89.19 %. Metabolic pathway analysis revealed that 10 metabolic pathways exert an impact on BC. Four pathways-pyruvate metabolism, sulfur metabolism, taurine and hypotaurine metabolism, and tyrosine metabolism-were found to be associated with BC in both metabolomics and volatolomics studies, indicating that these pathways play pivotal roles in BC. This study confirmed the potential of merging multi-platforms to enhance the accuracy of BC diagnosis, offering new avenues for understanding the metabolic mechanisms of BC.
Collapse
Affiliation(s)
- Xian Li
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, 726000, PR China; Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, PR China
| | - Xinxin Wen
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Xi'an, 710032, PR China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Xuejun Wang
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, 726000, PR China
| | - Yilin Zhang
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, 726000, PR China
| | - Jing Wei
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, 726000, PR China
| | - Yonghui Tian
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, PR China
| | - Rui Ling
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Xi'an, 710032, PR China.
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, PR China.
| |
Collapse
|
2
|
Sajeevan J SJ, Wahab MF, Aslani S, Armstrong DW. Selectivity modulation and its prediction in cyclofructan-6 phase for chaotropic ions. Anal Chim Acta 2025; 1347:343788. [PMID: 40024662 DOI: 10.1016/j.aca.2025.343788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/29/2025] [Accepted: 02/08/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Modifying additives to alter the selectivity of a single stationary phase and solvent system is appealing in mixed-mode separations. Silica-bonded cyclofructan-6 uniquely binds with cations strongly in the presence of organic solvents and is hydrolytically stable. Perchlorate with inorganic and organic quaternary ammonium cations could adjust retention for molecules with carboxylic acids, sulfonic acids, and nitrogen-containing functional groups, which are common in pharmaceutically relevant molecules. Perchlorate salts of ammonium, lithium, tetrabutylammonium, and tetramethylammonium were assessed for their selectivity in acetonitrile-water eluent systems. RESULTS This study provides a mathematical route to accomplish complex selectivity alterations by simply varying the perchlorate counterions. Two predictive tests based on l2-norm and principal component analysis (PCA) were proposed to choose the most distinct perchlorate additive pair for 17 test probes in retention time-space. The l2-norm provides a faster approach to measure variation caused by eluent additives for probe analytes. Ammonium and tetrabutylammonium perchlorate salts showed the maximum "distance" between them. The eluent additives strongly affected the elution times of carboxylic and sulfonic acids, and neutrals were mildly altered. A concentration study on these two additives with probe analytes ruled out a simple ion exchange interaction and suggested a multimodal retention mechanism. All additives yielded high-efficiency separations expected of 2.7 μm core-shell particles. SIGNIFICANCE The proposed mathematical tests will assist chromatographers in selecting distinct eluent additives for different classes of separations during method development. The applicability of the eluent selection strategy has been shown with the separation of three different biologically important classes of molecules containing analytes like cocaine, amphetamine, tianeptine, serotonin, lorazepam, and 5-fluorouracil.
Collapse
Affiliation(s)
| | - M Farooq Wahab
- Department of Chemistry and Biochemistry, University of Texas at Arlington, 76019, USA
| | - Saba Aslani
- Department of Chemistry and Biochemistry, University of Texas at Arlington, 76019, USA
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, University of Texas at Arlington, 76019, USA.
| |
Collapse
|
3
|
Sharma N, Turlington ZR, Zupko SP, Catoggio MN, Lukacs CM, Serbzhinskiy D, Abendroth J, Edwards TE, Lorimer DD, Barrera G, Willis S, Beyer O, Toay S, Da Li T, Torelli AT, Hicks KA, French JB. Structural and kinetic analysis of distinct active and inactive states of Burkholderia cenocepacia orotate phosphoribosyltransferase. Arch Biochem Biophys 2025; 766:110332. [PMID: 39938730 DOI: 10.1016/j.abb.2025.110332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/07/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
Orotate phosphoribosyltransferase (OPRT) catalyzes the reaction that adds the pyrimidine base to the ribose in the penultimate step of the de novo biosynthesis of pyrimidine nucleotides. The OPRT structure consists of an obligate dimer, conserved throughout the phosphoribosyltransferase family. Here, we describe the structural characterization of Burkholderia cenocepacia OPRT (BcOPRT), both by X-ray crystallography and Cryo electron microscopy (Cryo-EM). While the known dimer is present in the structure of BcOPRT, a putative hexameric form was also observed by multiple methods. Analyses by chromatography, Cryo-EM, and kinetics indicate that both dimeric and hexameric forms of this enzyme are present together in solution. Comparison of the kinetics of the native protein and two variants, which were specifically designed to prevent hexamerization, reveal that only the hexameric form is enzymatically active. Collectively, these data suggest that BcOPRT may use oligomerization to control overall enzymatic activity, thus contributing to the local regulation of pyrimidine biosynthesis in this organism.
Collapse
Affiliation(s)
- Nandini Sharma
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Zachary R Turlington
- Chemistry Department, State University of New York at Cortland, Cortland, NY, 13045, USA
| | - Sean P Zupko
- Chemistry Department, State University of New York at Cortland, Cortland, NY, 13045, USA
| | - Michael N Catoggio
- Chemistry Department, State University of New York at Cortland, Cortland, NY, 13045, USA
| | - Christine M Lukacs
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98104, USA
| | - Dmitry Serbzhinskiy
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98104, USA
| | - Jan Abendroth
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98104, USA; UCB Bioscences, Bainbridge Island, WA, 98104, USA
| | - Thomas E Edwards
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98104, USA; UCB Bioscences, Bainbridge Island, WA, 98104, USA
| | - Donald D Lorimer
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98104, USA; UCB Bioscences, Bainbridge Island, WA, 98104, USA
| | - George Barrera
- Department of Chemistry and Biochemistry, Weber State University, Ogden, UT, 84408, USA
| | - Sydney Willis
- Department of Chemistry, Rollins College, Winter Park, FL, 32789, USA
| | - Olive Beyer
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA
| | - Sarah Toay
- Department of Biological Chemistry, Grinnell College, Grinnell, IA, 50112, USA
| | - Teng Da Li
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Andrew T Torelli
- Department of Chemistry, Ithaca College, Ithaca, NY, 14850, USA.
| | - Katherine A Hicks
- Chemistry Department, State University of New York at Cortland, Cortland, NY, 13045, USA
| | - Jarrod B French
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA.
| |
Collapse
|
4
|
Sharma N, Otsuka Y, Scampavia L, Spicer TP, French JB. A high throughput assay for phosphoribosylformylglycinamidine synthase. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 31:100212. [PMID: 39824442 DOI: 10.1016/j.slasd.2025.100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/19/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Metabolic reprogramming of purine biosynthesis is a hallmark of cancer metabolism and represents a critical vulnerability. The enzyme phosphoribosylformylglycinamidine synthase (PFAS) catalyzes the fourth step in de novo purine biosynthesis and has been demonstrated to be prognostic for survival of liver cancer. Despite the importance of this protein as a drug target, there are no known specific inhibitors of PFAS activity. Here, we describe a new continuous, spectrophotometric assay for the synthase domain of PFAS that is amenable to high-throughput screening (HTS). This mechanism-based fluorescent assay makes use of the acid phosphatase substrate, 6,8-difluoro-4-methylumbelliferyl phosphate (DiFMUP). PFAS catalyzes the turnover of DiFMUP with a KM of 108 ± 7 µM. After optimization and miniaturization of the assay for 1,536-well format, we conducted a pilot HTS using the LOPAC1280 library. The assay performed extremely well, with an average Z' of 0.94 ± 0.02, average signal to noise of 5.01 ± 0.06, excellent inter plate correlation, and a hit rate of 1.18 %. This assay provides a critically needed tool to advance the study of PFAS enzymology and will be foundational for the discovery of small molecule inhibitors both as functional probes and for the basis of new drug development.
Collapse
Affiliation(s)
- Nandini Sharma
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Yuka Otsuka
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA
| | - Louis Scampavia
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA
| | - Timothy P Spicer
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA.
| | - Jarrod B French
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA.
| |
Collapse
|
5
|
Manna T, Maji S, Maity M, Debnath B, Panda S, Khan SA, Nath R, Akhtar MJ. Anticancer potential and structure activity studies of purine and pyrimidine derivatives: an updated review. Mol Divers 2025; 29:817-848. [PMID: 38856835 DOI: 10.1007/s11030-024-10870-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/02/2024] [Indexed: 06/11/2024]
Abstract
Cancer is the world's leading cause of death impacting millions of lives globally. The increasing research over the past several decades has focused on the development of new anticancer drugs, but still cancer continues to be a global health challenge. Thus, several new alternative therapeutic strategies have been tried for the drug design and discovery. Purine and pyrimidine heterocyclic compounds have received attention recently due to their potential in targeting various cancers. It is evident from the recently published data over the last decade that incorporation of the purine and pyrimidine rings in the synthesized derivatives resulted in the development of potent anticancer molecules. This review presents synthetic strategies encompassing several examples of recently developed purine and pyrimidine-containing compounds as anticancer agents. In addition, their structure-activity relationships are represented in the schemes indicating the fragment or groups that are essential for the enhanced anticancer activities. Purine and pyrimidines combined with other heterocyclic compounds have resulted in many novel anticancer molecules that address the challenges of drug resistance. The purine and pyrimidine derivatives showed significantly enhanced anticancer activities against targeted receptor proteins with numerous compounds with an IC50 value in the nanomolar range. The review will support medicinal chemists and contribute in progression and development of synthesis of more potent chemotherapeutic drug candidates to mitigate the burden of this dreadful disease.
Collapse
Affiliation(s)
- Tanushree Manna
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India
| | - Sumit Maji
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India
| | - Mousumi Maity
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India
| | - Biplab Debnath
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India
| | - Shambo Panda
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India
| | - Shah Alam Khan
- Department of Pharmaceutical Chemistry, National University of Science and Technology, PC 130, Azaiba, Bousher, PO 620, Muscat, Sultanate of Oman
| | - Rajarshi Nath
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India.
- JIS University, Agarpara Campus, Kolkata-81, Nilgunj Road, Agarpara, Kolkata, 700109, India.
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, National University of Science and Technology, PC 130, Azaiba, Bousher, PO 620, Muscat, Sultanate of Oman.
| |
Collapse
|
6
|
Gümüş A, Sadeghian N, Sadeghi M, Taslimi P, Gümüş S. Novel triazole bridged quinoline-anthracene derivatives: synthesis, characterization, molecular docking, evaluation of electronic and enzyme inhibitory properties. J Biomol Struct Dyn 2025; 43:843-858. [PMID: 37982719 DOI: 10.1080/07391102.2023.2283870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Two novel quinoline-anthracene conjugates comprising styrylquinoline and anthracene moieties linked by triazole bridges were designed and synthesized in good yields. These molecules were determined for some metabolic enzymes activities. Results indicated that the synthetic molecules exhibited powerful inhibitory actions against all aims as compared to the control molecules. Ki values of novel compound QA-1 for hCA I, hCA II, AChE, and α-glycosidase enzymes were obtained of 20.18 ± 2.46 µM, 14.63 ± 1.14 µM, 71.48 ± 7.76 nM, 401.35 ± 36.84 nM, respectively. Both compounds showed promising candidate complexes for drug development with considerable in vitro different enzymes inhibitory activities. The binding conformations patterns and interaction of QA-1 and QA-2 compounds with α-glucosidase, acetycholinesterase, carbonic anhydrase-I and carbonic anhydrase-II enzymes were investigated through molecular docking profiles. The docking outputs are consistent with the Ki and IC50 values of novel compounds. Three dimensional geometries and electronic properties of the title compounds were obtained by the applicational computational approach at B3LYP/6-31++G(d,p) level of theory.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ayşegül Gümüş
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Nastaran Sadeghian
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Morteza Sadeghi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Selçuk Gümüş
- Department of Basic Sciences, Faculty of Engineering, Architecture and Design, Bartin University, Bartin, Turkey
| |
Collapse
|
7
|
Sakander N, Ahmed QN. Stereoselective synthesis of 2-deoxy-2-bromo-hexopyrano-β-nucleosides: solvent-free Lewis acid catalysis. Org Biomol Chem 2025; 23:579-588. [PMID: 39601080 DOI: 10.1039/d4ob01788a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
An expedient solvent-free synthesis of 2-deoxy-2-bromo-hexopyrano-β-nucleosides stereo- and regioselectively from protected glycals and unactivated nucleobases using cheaper and easily available reagent systems has been developed. The synthesis is mediated by a Lewis acid and is solvent-free. The substrate scope of the reaction was analysed with ether, ester and silyl-protected glycals as donors and different pyrimidine and purine bases were taken into consideration. This method further finds application in the synthesis of 2-deoxynucleosides.
Collapse
Affiliation(s)
- Norein Sakander
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Qazi Naveed Ahmed
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
8
|
He H, Zheng S, Jin S, Huang W, Wei E, Guan S, Yang C. Nucleotide metabolism-associated drug resistance gene NDUFA4L2 promotes colon cancer progression and 5-FU resistance. Sci Rep 2025; 15:570. [PMID: 39747340 PMCID: PMC11695588 DOI: 10.1038/s41598-024-84353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
Chemotherapy is an effective way to improve the prognosis of colorectal cancer patients, but patient resistance to chemotherapeutic agents is becoming a major obstacle to treatment. Nucleotide metabolism correlates with the progression of colorectal cancer and chemotherapy resistance, but the mechanisms involved need to be further investigated. We calculated the half-maximal inhibitory concentrations (IC50) of 5-Fluorouracil (5-FU) in colorectal cancer patients using the "oncopredict" package, screened nucleotide metabolism-related drug resistance genes, and constructed a risk score model. According to the Kaplan-Meier(KM) analysis, the overall survival (OS) and disease-free survival (PFS) of the high-risk group were significantly lower than those of the low-risk group. In addition, the nomogram we constructed had good performance in predicting OS in colon adenocarcinoma (COAD) patients. We validated NDUFA4L2 by cellular functionality experiments, animal tumorigenesis experiments and drug resistance experiments. It was demonstrated that NDUFA4L2 promoted the proliferation and migration of colon cancer cells, while the abnormal regulation of NDUFA4L2 affected the 5-FU resistance of colon cancer cells. In conclusion, we found that NDUFA4L2 promotes the progression and metastasis of colon cancer, as well as resistance to 5-FU chemotherapy.
Collapse
Affiliation(s)
- Hongxin He
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fuzhou, 350004, Fujian, Fujian, P.R. China
| | - Shiyao Zheng
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fuzhou, 350004, Fujian, Fujian, P.R. China
| | - Shangkun Jin
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fuzhou, 350004, Fujian, Fujian, P.R. China
| | - Weijie Huang
- Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
| | - Enhao Wei
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fuzhou, 350004, Fujian, Fujian, P.R. China
| | - Shen Guan
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fuzhou, 350004, Fujian, Fujian, P.R. China
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, 420# Fuma Road, 350011, Fuzhou, Fujian, China
| | - Chunkang Yang
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fuzhou, 350004, Fujian, Fujian, P.R. China.
- Fujian Key Laboratory of Translational Cancer Medicine, 350014, Fuzhou, P.R. China.
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, 420# Fuma Road, 350011, Fuzhou, Fujian, China.
| |
Collapse
|
9
|
Ha W, Shin SJ, Ji YS, Youn SW. KO tBu-Promoted [4+2] Annulation-Dehydration Cascade Enabling the Construction of Diverse 2-Pyridone-Fused Uracils. Org Lett 2024; 26:10409-10413. [PMID: 39570191 DOI: 10.1021/acs.orglett.4c04166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
A KOtBu-promoted [4+2] annulation-dehydration cascade reaction has been developed, enabling the efficient synthesis of diverse 2-pyridone-fused uracils through a vinylogous enolization strategy involving o-quinodimethane (oQDM) dienolate intermediates. This method provides a simple yet robust approach for constructing structurally interesting fused N-heterocycles that incorporate two privileged scaffolds, both of which are widely recognized in drug discovery. Consequently, these compounds hold significant potential for biological and pharmacological applications. Moreover, further transformations of the products obtained from this process allow access to highly functionalized and structurally diverse uracil derivatives, expanding the scope of accessible chemical diversity.
Collapse
Affiliation(s)
- Wonbin Ha
- Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Sang Jae Shin
- Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Yeong Shin Ji
- Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - So Won Youn
- Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
10
|
Wu D, Yang S, Yuan C, Zhang K, Tan J, Guan K, Zeng H, Huang C. Targeting purine metabolism-related enzymes for therapeutic intervention: A review from molecular mechanism to therapeutic breakthrough. Int J Biol Macromol 2024; 282:136828. [PMID: 39447802 DOI: 10.1016/j.ijbiomac.2024.136828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/02/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Purines are ancient metabolites with established and emerging metabolic and non-metabolic signaling attributes. The expression of purine metabolism-related genes is frequently activated in human malignancies, correlating with increased cancer aggressiveness and chemoresistance. Importantly, under certain stimulating conditions, the purine biosynthetic enzymes can assemble into a metabolon called "purinosomes" to enhance purine flux. Current evidence suggests that purine flux is regulated by a complex circuit that encompasses transcriptional, post-translational, metabolic, and association-dependent regulatory mechanisms. Furthermore, purines within the tumor microenvironment modulate cancer immunity through signaling mediated by purinergic receptors. The deregulation of purine metabolism has significant metabolic consequences, particularly hyperuricemia. Herbal-based therapeutics have emerged as valuable pharmacological interventions for the treatment of hyperuricemia by inhibiting the activity of hepatic XOD, modulating the expression of renal urate transporters, and suppressing inflammatory responses. This review summarizes recent advancements in the understanding of purine metabolism in clinically relevant malignancies and metabolic disorders. Additionally, we discuss the role of herbal interventions and the interaction between the host and gut microbiota in the regulation of purine homeostasis. This information will fuel the innovation of therapeutic strategies that target the disease-associated rewiring of purine metabolism for therapeutic applications.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Shengqiang Yang
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Chenyang Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Jiachen Tan
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| | - Hong Zeng
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
11
|
Salerno L, Notaro A, Consoli V, Affranchi F, Pittalà V, Sorrenti V, Vanella L, Giuliano M, Intagliata S. Evaluation of the anticancer effects exerted by 5-fluorouracil and heme oxygenase-1 inhibitor hybrids in HTC116 colorectal cancer cells. J Enzyme Inhib Med Chem 2024; 39:2337191. [PMID: 38634597 PMCID: PMC11028004 DOI: 10.1080/14756366.2024.2337191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
Colon cancer remains a clinical challenge in industrialised countries. Its treatment with 5-Flurouracil (5-FU) develops many side effects and resistance. Thus, several strategies have been undertaken so far, including the use of drug cocktails and polypharmacology. Heme oxygenase-1 (HO-1) is an emerging molecular target in the treatment of various cancers. We recently demonstrated that a combination of HO-1 inhibitors with 5-FU and the corresponding hybrids SI1/17, SI1/20, and SI1/22, possessed anticancer activity against prostate and lung cancer cells. In this work, we evaluated these hybrids in a model of colon cancer and found that SI1/22 and the respective combo have greater potency than 5-FU. Particularly, compounds inhibit HO-1 activity in cell lysates, increase ROS and the expression of HO-1, SOD, and Nrf2. Moreover, we observed a decrease of pro-caspase and an increase in cleaved PARP-1 and p62, suggesting apoptotic and autophagic cell death and potential application of these drugs as anticancer agents.
Collapse
Affiliation(s)
- Loredana Salerno
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Antonietta Notaro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Valeria Consoli
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Federica Affranchi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Department of Molecular Medicine, Arabian Gulf University, Manama, Bahrain
| | - Valeria Sorrenti
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Luca Vanella
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Michela Giuliano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | | |
Collapse
|
12
|
Lalhmangaihzuala S, Vanlaldinpuia K, Khiangte V, Laldinpuii Z, Liana T, Lalhriatpuia C, Pachuau Z. Therapeutic applications of carbohydrate-based compounds: a sweet solution for medical advancement. Mol Divers 2024; 28:4553-4579. [PMID: 38554170 DOI: 10.1007/s11030-024-10810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/10/2024] [Indexed: 04/01/2024]
Abstract
Carbohydrates, one of the most abundant biomolecules found in nature, have been seen traditionally as a dietary component of foods. Recent findings, however, have unveiled their medicinal potential in the form of carbohydrates-derived drugs. Their remarkable structural diversity, high optical purity, bioavailability, low toxicity and the presence of multiple functional groups have positioned them as a valuable scaffold and an exciting frontier in contemporary therapeutics. At present, more than 170 carbohydrates-based therapeutics have been granted approval by varying regulatory agencies such as United States Food and Drug Administration (FDA), Japan Pharmaceuticals and Medical Devices Agency (PMDA), Chinese National Medical Products Administration (NMPA), and the European Medicines Agency (EMA). This article explores an overview of the fascinating potential and impact of carbohydrate-derived compounds as pharmacological agents and drug delivery vehicles.
Collapse
Affiliation(s)
- Samson Lalhmangaihzuala
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
- Department of Chemistry, Mizoram University, Tanhril, Aizawl, Mizoram, 796004, India
| | - Khiangte Vanlaldinpuia
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India.
| | - Vanlalngaihawma Khiangte
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
- Department of Chemistry, Mizoram University, Tanhril, Aizawl, Mizoram, 796004, India
| | - Zathang Laldinpuii
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
- Department of Chemistry, Mizoram University, Tanhril, Aizawl, Mizoram, 796004, India
| | - Thanhming Liana
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
| | - Chhakchhuak Lalhriatpuia
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
| | - Zodinpuia Pachuau
- Department of Chemistry, Mizoram University, Tanhril, Aizawl, Mizoram, 796004, India
| |
Collapse
|
13
|
Ding C, Tao G, Chen G, Xie Y, Yang C, Qi S, Hou J, Jiang X, Deng X, Liao W. PFAS promotes colorectal cancer progression via regulating RIG-I-mediated innate immune signalling. Mol Immunol 2024; 176:73-83. [PMID: 39586166 DOI: 10.1016/j.molimm.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/16/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024]
Abstract
OBJECTIVE Phosphoribosylformylglycinamidine synthase (PFAS) is a critical enzyme in de novo synthesis of purine. Innate immunity recognizes tumor derived damage-associated molecular patterns (DAMPs) and initiates the anti-tumor adaptive responses. While the function of PFAS catalyzed de novo synthesis of purine is well proved, its effect on innate immune evasion in cancer is unclear and needs to be further explored. The purpose of this study was to investigate the specific mechanisms by which PFAS inhibits RIG-I receptor (RLR) -mediated NF-κB axis in CRC. MATERIALS AND METHODS quantitative real-time PCR (qRT-PCR), Immunohistochemical (IHC) staining and western blotting were conducted to study the expression of PFAS in CRC tissues. Survival analysis, COX regression analysis and receiver operating characteristic (ROC) curve analysis were respectively conducted to assess correlation between the PFAS expression and clinicopathological characteristics, investigate the percent survival based on PFAS level in different clinical CRC groups, identify factors influencing the prognosis of CRC, and illustrate the diagnostic ability of PFAS in CRC patients. Furthermore, the CCK8 and transwell assays were carried out to study CRC cell function affected by PFAS. Mechanistically, plaque assay was used to assess the regulation of PFAS on innate immune signalling. The inhibition of PFAS on RIG-I-mediated innate immune signalling was further investigated by qRT-PCR and reporter assays in thepresence of lentiviral-mediated PFAS stably knocking down and stably overexpressing. Lastly, the interaction between PFAS and RIG-I was verified by co-immunoprecipitation assay. RESULTS The expression of PFAS in CRC tissue was higher than in adjacent normal colorectal tissue. The level of PFAS expression was significantly associated with stage-AJCC, regional lymph nodes metastasis and recurrence in CRC. Low expression of gene PFAS caused better survival than high expression in CRC patients. PFAS could be considered as an independent prognostic risk factor of CRC. PFAS promote cell proliferation and invasion of CRC cell lines. According to ROC curve analysis, PFAS could be used as a diagnostic biomarker in CRC. Mechanistically, PFAS inhibit interferon-β (IFN-β) gene and interferon-stimulated gene 56 (ISG56) expression. Furthermore, we confirmed that PFAS target RIG-I to inhibit RIG-I-mediated innate immune signalling.
Collapse
Affiliation(s)
- Chengming Ding
- The First Affiliated Hospital, Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Guangwei Tao
- The First Affiliated Hospital, Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Guodong Chen
- The First Affiliated Hospital, Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yi Xie
- The First Affiliated Hospital, Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Chunfen Yang
- The First Affiliated Hospital, Department of Gynaecology and Obstetrics, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shuo Qi
- The First Affiliated Hospital, Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jiafeng Hou
- The First Affiliated Hospital, Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xinmiao Jiang
- The First Affiliated Hospital, Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xin Deng
- The First Affiliated Hospital, Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Wenyan Liao
- The First Affiliated Hospital, Department of Gynaecology and Obstetrics, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
14
|
Myers JW, Park WY, Eddie AM, Shinde AB, Prasad P, Murphy AC, Leonard MZ, Pinette JA, Rampy JJ, Montufar C, Shaikh Z, Hickman TT, Reynolds GN, Winn NC, Lantier L, Peck SH, Coate KC, Stein RW, Carrasco N, Calipari ES, McReynolds MR, Zaganjor E. Systemic inhibition of de novo purine biosynthesis prevents weight gain and improves metabolic health by increasing thermogenesis and decreasing food intake. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620705. [PMID: 39553975 PMCID: PMC11566042 DOI: 10.1101/2024.10.28.620705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Objective Obesity is a major health concern, largely because it contributes to type 2 diabetes mellitus (T2DM), cardiovascular disease, and various malignancies. Increase in circulating amino acids and lipids, in part due to adipose dysfunction, have been shown to drive obesity-mediated diseases. Similarly, elevated purines and uric acid, a degradation product of purine metabolism, are found in the bloodstream and in adipose tissue. These metabolic changes are correlated with metabolic syndrome, but little is known about the physiological effects of targeting purine biosynthesis. Methods To determine the effects of purine biosynthesis on organismal health we treated mice with mizoribine, an inhibitor of inosine monophosphate dehydrogenase 1 and 2 (IMPDH1/2), key enzymes in this pathway. Mice were fed either a low-fat (LFD; 13.5% kcal from fat) or a high-fat (HFD; 60% kcal from fat) diet for 30 days during drug or vehicle treatment. We ascertained the effects of mizoribine on weight gain, body composition, food intake and absorption, energy expenditure, and overall metabolic health. Results Mizoribine treatment prevented mice on a HFD from gaining weight, but had no effect on mice on a LFD. Body composition analysis demonstrated that mizoribine significantly reduced fat mass but did not affect lean mass. Although mizoribine had no effect on lipid absorption, food intake was reduced. Furthermore, mizoribine treatment induced adaptive thermogenesis in skeletal muscle by upregulating sarcolipin, a regulator of muscle thermogenesis. While mizoribine-treated mice exhibited less adipose tissue than controls, we did not observe lipotoxicity. Rather, mizoribine-treated mice displayed improved glucose tolerance and reduced ectopic lipid accumulation. Conclusions Inhibiting purine biosynthesis prevents mice on a HFD from gaining weight, and improves their metabolic health, to a significant degree. We also demonstrated that the purine biosynthesis pathway plays a previously unknown role in skeletal muscle thermogenesis. A deeper mechanistic understanding of how purine biosynthesis promotes thermogenesis and decreases food intake may pave the way to new anti-obesity therapies. Crucially, given that many purine inhibitors have been FDA-approved for use in treating various conditions, our results indicate that they may benefit overweight or obese patients.
Collapse
Affiliation(s)
- Jacob W. Myers
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Woo Yong Park
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alexander M. Eddie
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Abhijit B. Shinde
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Praveena Prasad
- Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA
| | - Alexandria C. Murphy
- Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA
| | - Michael Z. Leonard
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Julia A. Pinette
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jessica J. Rampy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
| | - Claudia Montufar
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Zayedali Shaikh
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Tara T. Hickman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Garrett N. Reynolds
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Nathan C. Winn
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Mouse Metabolic Phenotyping Center, Nashville, TN, USA
| | - Sun H. Peck
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, TN, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Katie C. Coate
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Roland W. Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Nancy Carrasco
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Erin S. Calipari
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Melanie R. McReynolds
- Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Diabetes Research and Training Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
15
|
Weissberger D, Stenzel MH, Hunter L. Precious Cargo: The Role of Polymeric Nanoparticles in the Delivery of Covalent Drugs. Molecules 2024; 29:4949. [PMID: 39459317 PMCID: PMC11510600 DOI: 10.3390/molecules29204949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Covalent drugs can offer significant advantages over non-covalent drugs in terms of pharmacodynamics (i.e., target-binding properties). However, the development of covalent drugs is sometimes hampered by pharmacokinetic limitations (e.g., low bioavailability, rapid metabolism and toxicity due to off-target binding). Polymeric nanoparticles offer a potential solution to these limitations. Delivering covalent drugs via polymeric nanoparticles provides myriad benefits in terms of drug solubility, permeability, lifetime, selectivity, controlled release and the opportunity for synergistic administration alongside other drugs. In this short review, we examine each of these benefits in turn, illustrated through multiple case studies.
Collapse
Affiliation(s)
| | - Martina H. Stenzel
- School of Chemistry, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Luke Hunter
- School of Chemistry, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| |
Collapse
|
16
|
Toepfer S, Keniya MV, Lackner M, Monk BC. Azole Combinations and Multi-Targeting Drugs That Synergistically Inhibit Candidozyma auris. J Fungi (Basel) 2024; 10:698. [PMID: 39452650 PMCID: PMC11508803 DOI: 10.3390/jof10100698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024] Open
Abstract
Limited antifungal treatment options and drug resistance require innovative approaches to effectively combat fungal infections. Combination therapy is a promising strategy that addresses these pressing issues by concurrently targeting multiple cellular sites. The drug targets usually selected for combination therapy are from different cellular pathways with the goals of increasing treatment options and reducing development of resistance. However, some circumstances can prevent the implementation of combination therapy in clinical practice. These could include the increased risk of adverse effects, drug interactions, and even the promotion of drug resistance. Furthermore, robust clinical evidence supporting the superiority of combination therapy over monotherapy is limited and underscores the need for further research. Despite these challenges, synergies detected with different antifungal classes, such as the azoles and echinocandins, suggest that treatment strategies can be optimized by better understanding the underlying mechanisms. This review provides an overview of multi-targeting combination strategies with a primary focus on Candidozyma auris infections.
Collapse
Affiliation(s)
- Stephanie Toepfer
- Sir John Walsh Research Institute, University of Otago, Dunedin 9016, New Zealand;
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, 6020 Innsbruck, Austria;
| | - Mikhail V. Keniya
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
| | - Michaela Lackner
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, 6020 Innsbruck, Austria;
| | - Brian C. Monk
- Sir John Walsh Research Institute, University of Otago, Dunedin 9016, New Zealand;
| |
Collapse
|
17
|
Tan B, Hu K, Zhang C, Zhou X, Deng GJ, Chen S. Base-Promoted Tandem Cyclization of 2-(Indol-3-yl)naphthoquinones with Benzamidines toward Polysubstituted Pyrimido[4,5- b]indoles. Org Lett 2024; 26:8034-8039. [PMID: 39297762 DOI: 10.1021/acs.orglett.4c02847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
A novel and unique approach for the construction of polysubstituted pyrimido[4,5-b]indoles from 2-(indol-3-yl)naphthoquinones and benzamidines is described. Our strategy, promoted by an inorganic base, involves the ring opening and recyclization of naphthoquinone and produces three nitrogen heterocyclic rings via multiple C-N bond formations in one pot under transition-metal-free conditions.
Collapse
Affiliation(s)
- Bin Tan
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Kai Hu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Chao Zhang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Xinlin Zhou
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Shanping Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| |
Collapse
|
18
|
Al-Rawi DH, Lettera E, Li J, DiBona M, Bakhoum SF. Targeting chromosomal instability in patients with cancer. Nat Rev Clin Oncol 2024; 21:645-659. [PMID: 38992122 DOI: 10.1038/s41571-024-00923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2024] [Indexed: 07/13/2024]
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and a driver of metastatic dissemination, therapeutic resistance, and immune evasion. CIN is present in 60-80% of human cancers and poses a formidable therapeutic challenge as evidenced by the lack of clinically approved drugs that directly target CIN. This limitation in part reflects a lack of well-defined druggable targets as well as a dearth of tractable biomarkers enabling direct assessment and quantification of CIN in patients with cancer. Over the past decade, however, our understanding of the cellular mechanisms and consequences of CIN has greatly expanded, revealing novel therapeutic strategies for the treatment of chromosomally unstable tumours as well as new methods of assessing the dynamic nature of chromosome segregation errors that define CIN. In this Review, we describe advances that have shaped our understanding of CIN from a translational perspective, highlighting both challenges and opportunities in the development of therapeutic interventions for patients with chromosomally unstable cancers.
Collapse
Affiliation(s)
- Duaa H Al-Rawi
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emanuele Lettera
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jun Li
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melody DiBona
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel F Bakhoum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
19
|
Pérez E, Acosta J, Pisabarro V, Cordani M, dos Santos JCS, Sanz-Landaluze J, Gallo J, Bañobre-López M, Fernández-Lucas J. Novel Directed Enzyme Prodrug Therapy for Cancer Treatment Based on 2'-Deoxyribosyltransferase-Conjugated Magnetic Nanoparticles. Biomolecules 2024; 14:894. [PMID: 39199282 PMCID: PMC11352528 DOI: 10.3390/biom14080894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Directed enzyme prodrug therapy (DEPT) strategies show promise in mitigating chemotherapy side effects during cancer treatment. Among these, the use of immobilized enzymes on solid matrices as prodrug activating agents (IDEPT) presents a compelling delivery strategy, offering enhanced tumor targeting and reduced toxicity. Herein, we report a novel IDEPT strategy by employing a His-tagged Leishmania mexicana type I 2'-deoxyribosyltransferase (His-LmPDT) covalently attached to glutaraldehyde-activated magnetic iron oxide nanoparticles (MIONPs). Among the resulting derivatives, PDT-MIONP3 displayed the most favorable catalyst load/retained activity ratio, prompting its selection for further investigation. Substrate specificity studies demonstrated that PDT-MIONP3 effectively hydrolyzed a diverse array of 6-oxo and/or 6-amino purine 2'-deoxynucleosides, including 2-fluoro-2'-deoxyadenosine (dFAdo) and 6-methylpurine-2'-deoxyribose (d6MetPRib), both well-known prodrugs commonly used in DEPT. The biophysical characterization of both MIONPs and PDT-MIONPs was conducted by TEM, DLS, and single particle ICPMS techniques, showing an ideal nanosized range and a zeta potential value of -47.9 mV and -78.2 mV for MIONPs and PDT-MIONPs, respectively. The intracellular uptake of MIONPs and PDT-MIONPs was also determined by TEM and single particle ICPMS on HeLa cancer cell lines and NIH3T3 normal cell lines, showing a higher intracellular uptake in tumor cells. Finally, the selectivity of the PDT-MIONP/dFAdo IDEPT system was tested on HeLa cells (24 h, 10 µM dFAdo), resulting in a significant reduction in tumoral cell survival (11% of viability). Based on the experimental results, PDT-MIONP/dFAdo presents a novel and alternative IDEPT strategy, providing a promising avenue for cancer treatment.
Collapse
Affiliation(s)
- Elena Pérez
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, 28670 Villaviciosa de Odón, Spain; (E.P.); (J.A.); (V.P.)
| | - Javier Acosta
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, 28670 Villaviciosa de Odón, Spain; (E.P.); (J.A.); (V.P.)
| | - Victor Pisabarro
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, 28670 Villaviciosa de Odón, Spain; (E.P.); (J.A.); (V.P.)
| | - Marco Cordani
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid, C. de José Antonio Novais, 12, 28040 Madrid, Spain;
| | - José C. S. dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção 62790970, CE, Brazil;
| | - Jon Sanz-Landaluze
- Department of Analytical Chemistry, Faculty of Chemical Science, Universidad Complutense de Madrid, Avenida Complutense S/N, 28040 Madrid, Spain;
| | - Juan Gallo
- INL—International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (J.G.); (M.B.-L.)
| | - Manuel Bañobre-López
- INL—International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (J.G.); (M.B.-L.)
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, 28670 Villaviciosa de Odón, Spain; (E.P.); (J.A.); (V.P.)
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid, C. de José Antonio Novais, 12, 28040 Madrid, Spain;
- Grupo de Investigación en Ciencias Naturales y Exactas—GICNEX, Universidad de la Costa, CUC, Calle 58 # 55–66, Barranquilla 080002, Colombia
| |
Collapse
|
20
|
Li YN, Su JL, Tan SH, Chen XL, Cheng TL, Jiang Z, Luo YZ, Zhang LM. Machine learning based on metabolomics unveils neutrophil extracellular trap-related metabolic signatures in non-small cell lung cancer patients undergoing chemoimmunotherapy. World J Clin Cases 2024; 12:4091-4107. [PMID: 39015934 PMCID: PMC11235537 DOI: 10.12998/wjcc.v12.i20.4091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the primary form of lung cancer, and the combination of chemotherapy with immunotherapy offers promising treatment options for patients suffering from this disease. However, the emergence of drug resistance significantly limits the effectiveness of these therapeutic strategies. Consequently, it is imperative to devise methods for accurately detecting and evaluating the efficacy of these treatments. AIM To identify the metabolic signatures associated with neutrophil extracellular traps (NETs) and chemoimmunotherapy efficacy in NSCLC patients. METHODS In total, 159 NSCLC patients undergoing first-line chemoimmunotherapy were enrolled. We first investigated the characteristics influencing clinical efficacy. Circulating levels of NETs and cytokines were measured by commercial kits. Liquid chromatography tandem mass spectrometry quantified plasma metabolites, and differential metabolites were identified. Least absolute shrinkage and selection operator, support vector machine-recursive feature elimination, and random forest algorithms were employed. By using plasma metabolic profiles and machine learning algorithms, predictive metabolic signatures were established. RESULTS First, the levels of circulating interleukin-8, neutrophil-to-lymphocyte ratio, and NETs were closely related to poor efficacy of first-line chemoimmunotherapy. Patients were classed into a low NET group or a high NET group. A total of 54 differential plasma metabolites were identified. These metabolites were primarily involved in arachidonic acid and purine metabolism. Three key metabolites were identified as crucial variables, including 8,9-epoxyeicosatrienoic acid, L-malate, and bis(monoacylglycerol)phosphate (18:1/16:0). Using metabolomic sequencing data and machine learning methods, key metabolic signatures were screened to predict NET level as well as chemoimmunotherapy efficacy. CONCLUSION The identified metabolic signatures may effectively distinguish NET levels and predict clinical benefit from chemoimmunotherapy in NSCLC patients.
Collapse
Affiliation(s)
- Yu-Ning Li
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan Province, China
- Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha 410013, Hunan Province, China
| | - Jia-Lin Su
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan Province, China
- Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha 410013, Hunan Province, China
| | - Shu-Hua Tan
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan Province, China
| | - Xing-Long Chen
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan Province, China
- Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha 410013, Hunan Province, China
| | - Tian-Li Cheng
- Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha 410013, Hunan Province, China
| | - Zhou Jiang
- Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha 410013, Hunan Province, China
| | - Yong-Zhong Luo
- Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha 410013, Hunan Province, China
| | - Le-Meng Zhang
- Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha 410013, Hunan Province, China
| |
Collapse
|
21
|
Allegrini S, Camici M, Garcia-Gil M, Pesi R, Tozzi MG. Interplay between mTOR and Purine Metabolism Enzymes and Its Relevant Role in Cancer. Int J Mol Sci 2024; 25:6735. [PMID: 38928439 PMCID: PMC11203890 DOI: 10.3390/ijms25126735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Tumor cells reprogram their metabolism to meet the increased demand for nucleotides and other molecules necessary for growth and proliferation. In fact, cancer cells are characterized by an increased "de novo" synthesis of purine nucleotides. Therefore, it is not surprising that specific enzymes of purine metabolism are the targets of drugs as antineoplastic agents, and a better knowledge of the mechanisms underlying their regulation would be of great help in finding new therapeutic approaches. The mammalian target of the rapamycin (mTOR) signaling pathway, which is often activated in cancer cells, promotes anabolic processes and is a major regulator of cell growth and division. Among the numerous effects exerted by mTOR, noteworthy is its empowerment of the "de novo" synthesis of nucleotides, accomplished by supporting the formation of purinosomes, and by increasing the availability of necessary precursors, such as one-carbon formyl group, bicarbonate and 5-phosphoribosyl-1-pyrophosphate. In this review, we highlight the connection between purine and mitochondrial metabolism, and the bidirectional relation between mTOR signaling and purine synthesis pathways.
Collapse
Affiliation(s)
- Simone Allegrini
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy; (M.C.); (R.P.); (M.G.T.)
- Centro di Ricerca Interdipartimentale Nutrafood “Nutraceuticals and Food for Health”, Università di Pisa, 56126 Pisa, Italy;
- CISUP, Centro per l’Integrazione Della Strumentazione Dell’Università di Pisa, 56127 Pisa, Italy
| | - Marcella Camici
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy; (M.C.); (R.P.); (M.G.T.)
| | - Mercedes Garcia-Gil
- Centro di Ricerca Interdipartimentale Nutrafood “Nutraceuticals and Food for Health”, Università di Pisa, 56126 Pisa, Italy;
- CISUP, Centro per l’Integrazione Della Strumentazione Dell’Università di Pisa, 56127 Pisa, Italy
- Unità di Fisiologia Generale, Dipartimento di Biologia, Università di Pisa, Via San Zeno 31, 56127 Pisa, Italy
| | - Rossana Pesi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy; (M.C.); (R.P.); (M.G.T.)
| | - Maria Grazia Tozzi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy; (M.C.); (R.P.); (M.G.T.)
| |
Collapse
|
22
|
Xu ZJ, Li JA, Cao ZY, Xu HX, Ying Y, Xu ZH, Liu RJ, Guo Y, Zhang ZX, Wang WQ, Liu L. Construction of S100 family members prognosis prediction model and analysis of immune microenvironment landscape at single-cell level in pancreatic adenocarcinoma: a tumor marker prognostic study. Int J Surg 2024; 110:3591-3605. [PMID: 38498399 PMCID: PMC11175822 DOI: 10.1097/js9.0000000000001293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024]
Abstract
Pancreatic adenocarcinoma characterized by a mere 10% 5-year survival rate, poses a formidable challenge due to its specific anatomical location, making tumor tissue acquisition difficult. This limitation underscores the critical need for novel biomarkers to stratify this patient population. Accordingly, this study aimed to construct a prognosis prediction model centered on S100 family members. Leveraging six S100 genes and their corresponding coefficients, an S100 score was calculated to predict survival outcomes. The present study provided comprehensive internal and external validation along with power evaluation results, substantiating the efficacy of the proposed model. Additionally, the study explored the S100-driven potential mechanisms underlying malignant progression. By comparing immune cell infiltration proportions in distinct patient groups with varying prognoses, the research identified differences driven by S100 expression. Furthermore, the analysis explored significant ligand-receptor pairs between malignant cells and immune cells influenced by S100 genes, uncovering crucial insights. Notably, the study identified a novel biomarker capable of predicting the sensitivity of neoadjuvant chemotherapy, offering promising avenues for further research and clinical application.
Collapse
Affiliation(s)
- Zi-jin Xu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University
- Cancer Center, Zhongshan Hospital, Fudan University
- Department of Oncology, Shanghai Medical College, Fudan University
- Department of General Surgery, QingPu Branch of Zhongshan Hospital, Fudan University
| | - Jian-ang Li
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University
- Cancer Center, Zhongshan Hospital, Fudan University
- Department of Oncology, Shanghai Medical College, Fudan University
| | - Ze-yuan Cao
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, People’s Republic of China
| | - Hua-xiang Xu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University
- Cancer Center, Zhongshan Hospital, Fudan University
- Department of Oncology, Shanghai Medical College, Fudan University
| | - Ying Ying
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University
- Cancer Center, Zhongshan Hospital, Fudan University
- Department of Oncology, Shanghai Medical College, Fudan University
| | - Zhi-hang Xu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University
- Cancer Center, Zhongshan Hospital, Fudan University
- Department of Oncology, Shanghai Medical College, Fudan University
| | - Run-jie Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University
- Cancer Center, Zhongshan Hospital, Fudan University
- Department of Oncology, Shanghai Medical College, Fudan University
| | - Yuquan Guo
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University
- Cancer Center, Zhongshan Hospital, Fudan University
- Department of Oncology, Shanghai Medical College, Fudan University
| | - Zi-xin Zhang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University
- Cancer Center, Zhongshan Hospital, Fudan University
- Department of Oncology, Shanghai Medical College, Fudan University
| | - Wen-quan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University
- Cancer Center, Zhongshan Hospital, Fudan University
- Department of Oncology, Shanghai Medical College, Fudan University
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University
- Cancer Center, Zhongshan Hospital, Fudan University
- Department of Oncology, Shanghai Medical College, Fudan University
| |
Collapse
|
23
|
Bhattacharya A, Dasgupta AK. Multifaceted perspectives of detecting and targeting solid tumors. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:1-66. [PMID: 39396844 DOI: 10.1016/bs.ircmb.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Solid tumors are the most prevalent form of cancer. Considerable technological and medical advancements had been achieved for the diagnosis of the disease. However, detection of the disease in an early stage is of utmost importance, still far from reality. On the contrary, the treatment and therapeutic area to combat solid tumors are still in its infancy. Conventional treatments like chemotherapy and radiation therapy pose challenges due to their indiscriminate impact on healthy and cancerous cells. Contextually, efficient drug targeting is a pivotal approach in solid tumor treatment. This involves the precise delivery of drugs to cancer cells while minimizing harm to healthy cells. Targeted drugs exhibit superior efficacy in eradicating cancer cells while impeding tumor growth and mitigate side effects by optimizing absorption which further diminishes the risk of resistance. Furthermore, tailoring targeted therapies to a patient's tumor-specific molecular profile augments treatment efficacy and reduces the likelihood of relapse. This chapter discuss about the distinctive characteristics of solid tumors, the possibility of early detection of the disease and potential therapeutic angle beyond the conventional approaches. Additionally, the chapter delves into a hitherto unknown attribute of magnetic field effect to target cancer cells which exploit the relatively less susceptibility of normal cells compared to cancer cells to magnetic fields, suggesting a future potential of magnetic nanoparticles for selective cancer cell destruction. Lastly, bioinformatics tools and other unconventional methodologies such as AI-assisted codon bias analysis have a crucial role in comprehending tumor biology, aiding in the identification of futuristic targeted therapies.
Collapse
Affiliation(s)
- Abhishek Bhattacharya
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Anjan Kr Dasgupta
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, India.
| |
Collapse
|
24
|
Fleuti M, Sanchez-Quirante T, Poštová Slavětínská L, Tloušt'ová E, Tichý M, Gurská S, Džubák P, Hajdúch M, Hocek M. Synthesis and Biological Profiling of Quinolino-Fused 7-Deazapurine Nucleosides. ACS OMEGA 2024; 9:20557-20570. [PMID: 38737052 PMCID: PMC11080019 DOI: 10.1021/acsomega.4c02031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/14/2024]
Abstract
A series of quinolino-fused 7-deazapurine (pyrimido[5',4':4,5]pyrrolo[3,2-f]quinoline) ribonucleosides were designed and synthesized. The synthesis of the key 11-chloro-pyrimido[5',4':4,5]pyrrolo[3,2-f]quinoline was based on the Negishi cross-coupling of iodoquinoline with zincated 4,6-dichloropyrimidine followed by azidation and thermal or photochemical cyclization. Vorbrüggen glycosylation of the tetracyclic heterocycle followed by cross-coupling or substitution reactions at position 11 gave the desired set of final nucleosides that showed moderate to weak cytostatic activity and fluorescent properties. The corresponding fused adenosine derivative was converted to the triphosphate and successfully incorporated to RNA using in vitro transcription with T7 RNA polymerase.
Collapse
Affiliation(s)
- Marianne Fleuti
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague 2 CZ-12843, Czech Republic
- Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6 CZ-16610, Czech Republic
| | - Tania Sanchez-Quirante
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague 2 CZ-12843, Czech Republic
- Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6 CZ-16610, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6 CZ-16610, Czech Republic
| | - Eva Tloušt'ová
- Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6 CZ-16610, Czech Republic
| | - Michal Tichý
- Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6 CZ-16610, Czech Republic
| | - Soňa Gurská
- Institute
of Molecular and Translational Medicine, Palacky University and University
Hospital in Olomouc, Faculty of Medicine and Dentistry, Hněvotínská
5, Olomouc CZ-77515, Czech Republic
| | - Petr Džubák
- Institute
of Molecular and Translational Medicine, Palacky University and University
Hospital in Olomouc, Faculty of Medicine and Dentistry, Hněvotínská
5, Olomouc CZ-77515, Czech Republic
| | - Marián Hajdúch
- Institute
of Molecular and Translational Medicine, Palacky University and University
Hospital in Olomouc, Faculty of Medicine and Dentistry, Hněvotínská
5, Olomouc CZ-77515, Czech Republic
| | - Michal Hocek
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague 2 CZ-12843, Czech Republic
- Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6 CZ-16610, Czech Republic
| |
Collapse
|
25
|
Nevrlka F, Bědroň A, Valenta M, Tranová L, Stýskala J. Study of Direct N7 Regioselective tert-Alkylation of 6-Substituted Purines and Their Modification at Position C6 through O, S, N, and C Substituents. ACS OMEGA 2024; 9:17368-17378. [PMID: 38645315 PMCID: PMC11024948 DOI: 10.1021/acsomega.4c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/26/2024] [Accepted: 03/27/2024] [Indexed: 04/23/2024]
Abstract
A new N7 direct regioselective method allowing the introduction of tert-alkyl groups into appropriate 6-substituted purine derivatives is developed. This method is based on a reaction of N-trimethylsilylated purines with a tert-alkyl halide using SnCl4 as a catalyst. In this work, we study the structure and optimal reaction conditions leading to the N7 isomer and in some cases also to the N9 isomer. The main goal is devoted to preparing 7-(tert-butyl)-6-chloropurine as a suitable compound for other purine transformations. The stability of the tert-butyl group at the N7 position is tested for classic model reactions, leading to the preparation of new 6,7-disubstituted purine derivatives, which is also interesting from the point of view of possible biological activity.
Collapse
Affiliation(s)
- Filip Nevrlka
- Department of Organic Chemistry, Faculty
of Science, Palacký University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Adam Bědroň
- Department of Organic Chemistry, Faculty
of Science, Palacký University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Michal Valenta
- Department of Organic Chemistry, Faculty
of Science, Palacký University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Lenka Tranová
- Department of Organic Chemistry, Faculty
of Science, Palacký University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Jakub Stýskala
- Department of Organic Chemistry, Faculty
of Science, Palacký University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
26
|
Zhang T, Chen R, Su X, Wang M, Lu Q. Integrated analysis of purine metabolism assists in predicting prognosis and treatment decisions for patients with lung adenocarcinoma. Heliyon 2024; 10:e29290. [PMID: 38601636 PMCID: PMC11004420 DOI: 10.1016/j.heliyon.2024.e29290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
The incidence of lung cancer, especially lung adenocarcinoma (LUAD), has recently increased. Targeted therapy and immunotherapy combined with conventional treatment have shown surprising benefits in enhancing the LUAD patient's prognosis. For the purpose of guiding treatment planning and the prognosis of LUAD, more research is required. The particular aim of this work was to establish a purine metabolism scoring (PMS) model for the purpose of individually forecasting treatment outcomes and overall survival for patients who have LUAD. Clinical and whole genome data were obtained from the TCGA-LUAD cohort via "UCSC". The 25 driver purine metabolism-related prognostic genes were determined founded on univariate Cox regression. Then PMS was developed through stepwise LASSO Cox regression. Survival analysis indicated that patients who have PMS experienced worse outcomes. We validated the PGM2 effect on lung adenocarcinoma malignancy in in vitro experiments. Univariate as well as multivariate Cox regression suggested that PMS was an independent prognostic indicator for LUAD patients, which was confirmed in subgroup analysis. Functional assay demonstrated that immune response as well as cytotoxicity pathways have a connection with lower PMS, and patients who have low PMS possess an active immune microenvironment. Moreover, the LUAD patients who have low PMS showed greater sensitivity to immunotherapy, targeted therapy, as well as chemotherapy. Knockdown of PGM2 was discovered to decrease the proliferation, invasion, as well as migration of lung adenocarcinoma cells in an in vitro assay. Pertaining to this particular research, we created a PMS model and conducted a thorough analysis of purine metabolism in LUAD in order to determine prognosis and offer recommendations for treatment. This finding offered a fresh concept for the clinical management of LUAD and novel therapy protocols.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Respiratory and Critical Care Medicine, Yixing Hospital Affiliated to Jiangsu University, Wuxi, 214221, China
| | - Ruhua Chen
- Department of Respiratory and Critical Care Medicine, Yixing Hospital Affiliated to Jiangsu University, Wuxi, 214221, China
| | - Xiangyu Su
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 21009, China
| | - Meng Wang
- Department of Respiratory and Critical Care Medicine, Yixing Hospital Affiliated to Jiangsu University, Wuxi, 214221, China
| | - Qin Lu
- Department of Respiratory and Critical Care Medicine, Yixing Hospital Affiliated to Jiangsu University, Wuxi, 214221, China
| |
Collapse
|
27
|
Park SY, Gowda Saralamma VV, Nale SD, Kim CJ, Jo YS, Baig MH, Cho J. Design, synthesis, and evaluation of purine and pyrimidine-based KRAS G12D inhibitors: Towards potential anticancer therapy. Heliyon 2024; 10:e28495. [PMID: 38617914 PMCID: PMC11015380 DOI: 10.1016/j.heliyon.2024.e28495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/16/2024] Open
Abstract
Oncogenic RAS mutations, commonly observed in human tumors, affect approximately 30% of cancer cases and pose a significant challenge for effective cancer treatment. Current strategies to inhibit the KRAS G12D mutation have shown limited success, emphasizing the urgent need for new therapeutic approaches. In this study, we designed and synthesized several purine and pyrimidine analogs as inhibitors for the KRAS G12D mutation. Our synthesized compounds demonstrated potent anticancer activity against cell lines with the KRAS G12D mutation, effectively impeding their growth. They also exhibited low toxicity in normal cells, indicating their selective action against cancer cells harboring the KRAS G12D mutation. Notably, the lead compound, PU1-1 induced the programmed cell death of KRAS G12D-mutated cells and reduced the levels of active KRAS and its downstream signaling proteins. Moreover, PU1-1 significantly shrunk the tumor size in a pancreatic xenograft model induced by the KRAS G12D mutation, further validating its potential as a therapeutic agent. These findings highlight the potential of purine-based KRAS G12D inhibitors as candidates for targeted cancer therapy. However, further exploration and optimization of these compounds are essential to meet the unmet clinical needs of patients with KRAS-mutant cancers.
Collapse
Affiliation(s)
- So-Youn Park
- College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - Venu Venkatarame Gowda Saralamma
- Department of Family Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211 Eonju-Ro, Gangnam-Gu, Seoul 06273, Republic of Korea
| | - Sagar Dattatraya Nale
- BNJBiopharma, 2nd Floor Memorial Hall, 85, Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Chang Joong Kim
- Department of Biotechnology, Graduate School, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Yun Seong Jo
- Department of Family Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211 Eonju-Ro, Gangnam-Gu, Seoul 06273, Republic of Korea
| | - Mohammad Hassan Baig
- Department of Family Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211 Eonju-Ro, Gangnam-Gu, Seoul 06273, Republic of Korea
| | - JungHwan Cho
- College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea
| |
Collapse
|
28
|
Spiliopoulou P, Kazmi F, Aroldi F, Holmes T, Thompson D, Griffiths L, Qi C, Parkes M, Lord S, Veal GJ, Harrison DJ, Coyle VM, Graham J, Jeffry Evans TR, Blagden SP. A phase I open-label, dose-escalation study of NUC-3373, a targeted thymidylate synthase inhibitor, in patients with advanced cancer (NuTide:301). J Exp Clin Cancer Res 2024; 43:100. [PMID: 38566164 PMCID: PMC10986017 DOI: 10.1186/s13046-024-03010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
PURPOSE 5-fluorouracil (5-FU) is inefficiently converted to the active anti-cancer metabolite, fluorodeoxyuridine-monophosphate (FUDR-MP), is associated with dose-limiting toxicities and challenging administration schedules. NUC-3373 is a phosphoramidate nucleotide analog of fluorodeoxyuridine (FUDR) designed to overcome these limitations and replace fluoropyrimidines such as 5-FU. PATIENTS AND METHODS NUC-3373 was administered as monotherapy to patients with advanced solid tumors refractory to standard therapy via intravenous infusion either on Days 1, 8, 15 and 22 (Part 1) or on Days 1 and 15 (Part 2) of 28-day cycles until disease progression or unacceptable toxicity. Primary objectives were maximum tolerated dose (MTD) and recommended Phase II dose (RP2D) and schedule of NUC-3373. Secondary objectives included pharmacokinetics (PK), and anti-tumor activity. RESULTS Fifty-nine patients received weekly NUC-3373 in 9 cohorts in Part 1 (n = 43) and 3 alternate-weekly dosing cohorts in Part 2 (n = 16). They had received a median of 3 prior lines of treatment (range: 0-11) and 74% were exposed to prior fluoropyrimidines. Four experienced dose-limiting toxicities: two Grade (G) 3 transaminitis; one G2 headache; and one G3 transient hypotension. Commonest treatment-related G3 adverse event of raised transaminases occurred in < 10% of patients. NUC-3373 showed a favorable PK profile, with dose-proportionality and a prolonged half-life compared to 5-FU. A best overall response of stable disease was observed, with prolonged progression-free survival. CONCLUSION NUC-3373 was well-tolerated in a heavily pre-treated solid tumor patient population, including those who had relapsed on prior 5-FU. The MTD and RP2D was defined as 2500 mg/m2 NUC-3373 weekly. NUC-3373 is currently in combination treatment studies. TRIAL REGISTRATION Clinicaltrials.gov registry number NCT02723240. Trial registered on 8th December 2015. https://clinicaltrials.gov/study/NCT02723240 .
Collapse
Affiliation(s)
- Pavlina Spiliopoulou
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Beatson West of Scotland Cancer Centre, Glasgow, UK
| | - Farasat Kazmi
- Early Phase Clinical Trials Unit, Churchill Hospital, Oxford University Hospitals, Oxford, UK
| | - Francesca Aroldi
- Early Phase Clinical Trials Unit, Churchill Hospital, Oxford University Hospitals, Oxford, UK
| | - Thomas Holmes
- Department of Oncology, Oncology Clinical Trials Office, University of Oxford, Oxford, UK
| | - David Thompson
- Department of Oncology, Oncology Clinical Trials Office, University of Oxford, Oxford, UK
| | - Lucinda Griffiths
- Department of Oncology, Oncology Clinical Trials Office, University of Oxford, Oxford, UK
| | - Cathy Qi
- Centre for Statistics in Medicine and Oxford Clinical Trials Research Unit (OCTRU), Oxford, UK
| | - Matthew Parkes
- Centre for Statistics in Medicine and Oxford Clinical Trials Research Unit (OCTRU), Oxford, UK
| | - Simon Lord
- Early Phase Clinical Trials Unit, Churchill Hospital, Oxford University Hospitals, Oxford, UK
| | - Gareth J Veal
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - David J Harrison
- School of Medicine, University of St Andrews, St Andrews, UK
- NuCana plc, 3 Lochside Way, Edinburgh, UK
| | - Vicky M Coyle
- Patrick G. Johnston Centre for Cancer Research, Queens University Belfast, Belfast, UK
| | - Jill Graham
- Beatson West of Scotland Cancer Centre, Glasgow, UK
| | - Thomas R Jeffry Evans
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Beatson West of Scotland Cancer Centre, Glasgow, UK
| | - Sarah P Blagden
- Early Phase Clinical Trials Unit, Churchill Hospital, Oxford University Hospitals, Oxford, UK.
- Department of Oncology, Oncology Clinical Trials Office, University of Oxford, Oxford, UK.
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK.
| |
Collapse
|
29
|
Ritere A, Jeminejs A, Bizde̅na E, Turks M, Novosjolova I. Synthesis of 6-Selanyl-2-triazolylpurine Derivatives Using 2,6-Bistriazolylpurines as Starting Materials. ACS OMEGA 2024; 9:6366-6380. [PMID: 38371834 PMCID: PMC10870272 DOI: 10.1021/acsomega.3c04994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/18/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024]
Abstract
Two pathways toward 6-selanyl-2-triazolylpurine derivatives were designed. The first method involved the synthesis of 2-chloro-6-selanylpurine derivatives, further SNAr reaction with NaN3, and following CuAAC using different alkynes. The second method was based on the synthesis of 2,6-bistriazolylpurine derivatives as starting materials followed by SNAr reaction with commercial or in situ generated selenols as nucleophiles. A series of 2-chloro-6-selanylpurine derivatives were obtained in yields up to 84%. It was found that in the latter compounds, 6-selanyl moiety was the better leaving group compared to 2-chlorosubstituent in SNAr reactions. On the other hand, the SNAr reaction between 2,6-bistriazolylpurines and selenols or diselenides was successful, and 13 examples of 6-selanyl-2-triazolylpurine derivatives were obtained in yields up to 87%. This direct approach for the Se-C bond formation proved the ability of the 1,2,3-triazolyl ring at the C6 position of purine to act as a good leaving group.
Collapse
Affiliation(s)
- Agnija Ritere
- Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena Str. 3, Riga LV 1048, Latvia
| | - Andris Jeminejs
- Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena Str. 3, Riga LV 1048, Latvia
| | - E̅rika Bizde̅na
- Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena Str. 3, Riga LV 1048, Latvia
| | - Ma̅ris Turks
- Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena Str. 3, Riga LV 1048, Latvia
| | - Irina Novosjolova
- Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena Str. 3, Riga LV 1048, Latvia
| |
Collapse
|
30
|
Mushtaq A, Wu P, Naseer MM. Recent drug design strategies and identification of key heterocyclic scaffolds for promising anticancer targets. Pharmacol Ther 2024; 254:108579. [PMID: 38160914 DOI: 10.1016/j.pharmthera.2023.108579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Cancer, a noncommunicable disease, is the leading cause of mortality worldwide and is anticipated to rise by 75% in the next two decades, reaching approximately 25 million cases. Traditional cancer treatments, such as radiotherapy and surgery, have shown limited success in reducing cancer incidence. As a result, the focus of cancer chemotherapy has switched to the development of novel small molecule antitumor agents as an alternate strategy for combating and managing cancer rates. Heterocyclic compounds are such agents that bind to specific residues in target proteins, inhibiting their function and potentially providing cancer treatment. This review focuses on privileged heterocyclic pharmacophores with potent activity against carbonic anhydrases and kinases, which are important anticancer targets. Evaluation of ongoing pre-clinical and clinical research of heterocyclic compounds with potential therapeutic value against a variety of malignancies as well as the provision of a concise summary of the role of heterocyclic scaffolds in various chemotherapy protocols have also been discussed. The main objective of the article is to highlight key heterocyclic scaffolds involved in recent anticancer drug design that demands further attention from the drug development community to find more effective and safer targeted small-molecule anticancer agents.
Collapse
Affiliation(s)
- Alia Mushtaq
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Peng Wu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany
| | - Muhammad Moazzam Naseer
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan; Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany.
| |
Collapse
|
31
|
Poslu AH, Aslan ŞE, Koz G, Senturk E, Koz Ö, Senturk M, Nalbantsoy A, Öztekin A, Ekinci D. Synthesis and biological evaluation of novel salicylidene uracils: Cytotoxic activity on human cancer cell lines and inhibitory action on enzymatic activity. Arch Pharm (Weinheim) 2024; 357:e2300374. [PMID: 37902389 DOI: 10.1002/ardp.202300374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 10/31/2023]
Abstract
A series of salicylidene uracil (1-18) derived from 5-aminouracil and substituted salicylaldehydes were analyzed for cytotoxic activity and enzyme inhibitory potency. Nine out of eighteen derivatives (6-8, 10, 12-15, 18) are novel molecules synthesized for the first time in this work, and other derivatives were previously synthesized by our group. The compounds were characterized by Proton nuclear magnetic resonance, carbon nuclear magnetic resonance, fourier transform infrared spectroscopy, and elemental analysis. All compounds were tested for their in vitro cytotoxicity against PC-3 (human prostate adenocarcinoma), A549 (human alveolar adenocarcinoma), and SHSY-5Y (human neuroblastoma) cancer cell lines and the nontumorigenic HEK293 (human embryonic kidney cells) cell line. The 3,5-di-tert-butylsalicylaldehyde derived compound (8) was toxic to PC-3 human prostate adenocarcinoma cells, showing a promising IC50 value at 7.05 ± 0.76 μM. The present study also aimed to evaluate the inhibitory effects of the compounds against several key enzymes, namely carbonic anhydrase I and II (CA I and CA II), acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and glutathione reductase (GR), which are implicated in various global disorders, such as Alzheimer's disease, epilepsy, cancer, malaria, diabetes, and glaucoma. The inhibitory profiles of the tested compounds were assessed by determining their Ki values, which ranged from 2.96 to 9.24 nM for AChE, 3.78 to 12.57 nM for BChE, 8.42 to 25.74 nM for CA I, 7.24 to 19.74 nM for CA II, and 0.541 to 1.124 μM for GR. Molecular docking studies were also performed for all compounds. Most derivatives exhibited much more effective inhibitory action compared with clinically used standards. Thus, our findings indicate that the salicylidene derivatives presented in this study are promising drug candidates that need further evaluation.
Collapse
Affiliation(s)
- Ayşe Halıç Poslu
- Department of Chemistry, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Turkey
| | - Şafak Esra Aslan
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Turkey
- Technology Transfer Office, Giresun University, Giresun, Turkey
| | - Gamze Koz
- Department of Chemistry, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Turkey
| | - Esra Senturk
- Department of Physiology, Faculty of Medicine, Agri Ibrahim Cecen University, Agri, Turkey
| | - Ömer Koz
- Department of Chemistry, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Turkey
| | - Murat Senturk
- Faculty of Pharmacy, Agri Ibrahim Cecen University, Agri, Turkey
| | - Ayşe Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
| | - Aykut Öztekin
- Health Services of Vocational School, Agri Ibrahim Cecen University, Agri, Turkey
| | - Deniz Ekinci
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
32
|
Rana N, Grover P, Singh H. Recent Developments and Future Perspectives of Purine Derivatives as a Promising Scaffold in Drug Discovery. Curr Top Med Chem 2024; 24:541-579. [PMID: 38288806 DOI: 10.2174/0115680266290152240110074034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 05/31/2024]
Abstract
Numerous purine-containing compounds have undergone extensive investigation for their medical efficacy across various diseases. The swift progress in purine-based medicinal chemistry has brought to light the therapeutic capabilities of purine-derived compounds in addressing challenging medical conditions. Defined by a heterocyclic ring comprising a pyrimidine ring linked with an imidazole ring, purine exhibits a diverse array of therapeutic attributes. This review systematically addresses the multifaceted potential of purine derivatives in combating various diseases, including their roles as anticancer agents, antiviral compounds (anti-herpes, anti-HIV, and anti-influenzae), autoimmune and anti-inflammatory agents, antihyperuricemic and anti-gout solutions, antimicrobial agents, antitubercular compounds, anti-leishmanial agents, and anticonvulsants. Emphasis is placed on the remarkable progress made in developing purine-based compounds, elucidating their significant target sites. The article provides a comprehensive exploration of developments in both natural and synthetic purines, offering insights into their role in managing a diverse range of illnesses. Additionally, the discussion delves into the structure-activity relationships and biological activities of the most promising purine molecules. The intriguing capabilities revealed by these purine-based scaffolds unequivocally position them at the forefront of drug candidate development. As such, this review holds potential significance for researchers actively involved in synthesizing purine-based drug candidates, providing a roadmap for the continued advancement of this promising field.
Collapse
Affiliation(s)
- Neha Rana
- School of Pharmacy (SOP), Noida International University, Yamuna Expressway, Gautam Budh Nagar, 203201, India
| | - Parul Grover
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, India
| | - Hridayanand Singh
- Dr. K. N. Modi Institute of Pharmaceutical Education and Research, Modinagar, 201204, Uttar Pradesh, India
| |
Collapse
|
33
|
Gehlot P, Vyas VK. A Patent Review of Human Dihydroorotate Dehydrogenase (hDHODH) Inhibitors as Anticancer Agents and their Other Therapeutic Applications (1999-2022). Recent Pat Anticancer Drug Discov 2024; 19:280-297. [PMID: 37070439 DOI: 10.2174/1574892818666230417094939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 04/19/2023]
Abstract
Highly proliferating cells, such as cancer cells, are in high demand of pyrimidine nucleotides for their proliferation, accomplished by de novo pyrimidine biosynthesis. The human dihydroorotate dehydrogenase (hDHODH) enzyme plays a vital role in the rate-limiting step of de novo pyrimidine biosynthesis. As a recognised therapeutic target, hDHODH plays a significant role in cancer and other illness. In the past two decades, small molecules as inhibitors hDHODH enzyme have drawn much attention as anticancer agents, and their role in rheumatoid arthritis (RA), and multiple sclerosis (MS). In this patent review, we have compiled patented hDHODH inhibitors published between 1999 and 2022 and discussed the development of hDHODH inhibitors as anticancer agents. Therapeutic potential of small molecules as hDHODH inhibitors for the treatment of various diseases, such as cancer, is very well recognised. Human DHODH inhibitors can rapidly cause intracellular uridine monophosphate (UMP) depletion to produce starvation of pyrimidine bases. Normal cells can better endure a brief period of starvation without the side effects of conventional cytotoxic medication and resume synthesis of nucleic acid and other cellular functions after inhibition of de novo pathway using an alternative salvage pathway. Highly proliferative cells such as cancer cells do not endure starvation because they are in high demand of nucleotides for cell differentiation, which is fulfilled by de novo pyrimidine biosynthesis. In addition, hDHODH inhibitors produce their desired activity at lower doses rather than a cytotoxic dose of other anticancer agents. Thus, inhibition of de novo pyrimidine biosynthesis will create new prospects for the development of novel targeted anticancer agents, which ongoing preclinical and clinical experiments define. Our work brings together a comprehensive patent review of the role of hDHODH in cancer, as well as various patents related to the hDHODH inhibitors and their anticancer and other therapeutic potential. This compiled work on patented DHODH inhibitors will guide researchers in pursuing the most promising drug discovery strategies against the hDHODH enzyme as anticancer agents.
Collapse
Affiliation(s)
- Pinky Gehlot
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujrat, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujrat, India
| |
Collapse
|
34
|
Bilget Guven E, Durmaz Sahin I, Altiparmak D, Servili B, Essiz S, Cetin-Atalay R, Tuncbilek M. Newly synthesized 6-substituted piperazine/phenyl-9-cyclopentyl containing purine nucleobase analogs act as potent anticancer agents and induce apoptosis via inhibiting Src in hepatocellular carcinoma cells. RSC Med Chem 2023; 14:2658-2676. [PMID: 38107180 PMCID: PMC10718522 DOI: 10.1039/d3md00440f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/10/2023] [Indexed: 12/19/2023] Open
Abstract
Newly synthesized 6-substituted piperazine/phenyl-9-cyclopentyl-containing purine nucleobase analogs were tested for their in vitro anticancer activity against human cancer cells. Compounds 15, 17-24, 49, and 56 with IC50 values less than 10 μM were selected for further examination on an enlarged panel of liver cancer cell lines. Experiments revealed that compound 19 utilizes its high cytotoxic potential (IC50 < 5 μM) to induce apoptosis in vitro. Compound 19 displayed a KINOMEscan selectivity score S35 of 0.02 and S10 of 0.01 and demonstrated a significant selectivity against anaplastic lymphoma kinase (ALK) and Bruton's tyrosine kinase (BTK) over other kinases. Compounds 19, 21, 22, 23, and 56 complexed with ALK, BTK, and (discoidin domain-containing receptor 2) DDR2 were analyzed structurally for binding site interactions and binding affinities via molecular docking and molecular dynamics simulations. Compounds 19 and 56 displayed similar interactions with the activation loop of the kinases, while only compound 19 reached toward the multiple subsites of the active site. Cell cycle and signaling pathway analyses exhibited that compound 19 decreases phosho-Src, phospho-Rb, cyclin E, and cdk2 levels in liver cancer cells, eventually inducing apoptosis.
Collapse
Affiliation(s)
- Ebru Bilget Guven
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University 06560, Yenimahalle Ankara Turkey
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University 34083, Cibali-Fatih Istanbul Turkey
| | - Irem Durmaz Sahin
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University 06800, Bilkent Ankara Turkey
- School of Medicine, Koc University 34450, Sarıyer İstanbul Turkey
| | - Duygu Altiparmak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University 06560, Yenimahalle Ankara Turkey
| | - Burak Servili
- Graduate School of Science and Engineering, Bioinformatics and Genetics Program, Kadir Has University Fatih 34083 Istanbul Turkey
| | - Sebnem Essiz
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University 34083, Cibali-Fatih Istanbul Turkey
- Graduate School of Science and Engineering, Bioinformatics and Genetics Program, Kadir Has University Fatih 34083 Istanbul Turkey
| | - Rengul Cetin-Atalay
- Cancer System Biology Laboratory, CanSyL, Graduate School of Informatics, Middle East Technical University 06800 Ankara Turkey
- Section of Pulmonary and Critical Care Medicine, The University of Chicago Chicago IL 60637 USA
| | - Meral Tuncbilek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University 06560, Yenimahalle Ankara Turkey
| |
Collapse
|
35
|
Sato M, Sakano S, Nakahara M, Tamura Y, Hara K, Hashimoto H, Tang Y, Watanabe K. Uncommon Arrangement of Self-resistance Allows Biosynthesis of de novo Purine Biosynthesis Inhibitor that Acts as an Immunosuppressor. J Am Chem Soc 2023; 145:26883-26889. [PMID: 38051581 PMCID: PMC10868411 DOI: 10.1021/jacs.3c09600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
(-)-FR901483 (1) isolated from the fungus Cladobotryum sp. No.11231 achieves immunosuppression via nucleic acid biosynthesis inhibition rather than IL-2 production inhibition as accomplished by FK506 and cyclosporin A. Recently, we identified the frz gene cluster for the biosynthesis of 1. It contains frzK, a gene homologous to phosphoribosyl pyrophosphate amidotransferase (PPAT)that catalyzes the initial step of de novo purine biosynthesis. We speculated that frzK encodes a PPAT that escapes inhibition by 1 and functions as a self-resistance enzyme (SRE) for the producing host. Nevertheless, details remained elusive. Here, we report the biochemical and structural analyses of FrzK and its Escherichia coli counterpart, PurF. Recombinantly produced FrzK exhibited PPAT activity, albeit weaker than PurF, but evaded strong inhibition by 1. These results confirmed that the target of 1 is PPAT, and FrzK acts as an SRE by maintaining the de novo purine biosynthetic capability in the presence of 1. To understand how FrzK evades inhibition by 1, we determined the crystal structure of PurF in the complex with 1 and constructed a homology model of FrzK. Sequence and structural analyses of various PPATs identified that many residues unique to FrzK occur near the Flexible Loop that remains disordered when inactive but becomes ordered and covers up the active site upon activation by substrate binding. Kinetic characterizations of mutants of the unique residues revealed that the resistance of FrzK against 1 may be conferred by structurally predisposing the Flexible Loop to the active, closed conformation even in the presence of 1.
Collapse
Affiliation(s)
- Michio Sato
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Sakurako Sakano
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Miku Nakahara
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Yui Tamura
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Kodai Hara
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Hiroshi Hashimoto
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | | | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| |
Collapse
|
36
|
Lukose L, Shantaram PM, Raj A, Nair G, Shaju AM, K Subeesh V. Purine antimetabolites associated Pneumocystis jirovecii pneumonia. Pharmacoepidemiol Drug Saf 2023; 32:1244-1251. [PMID: 37265365 DOI: 10.1002/pds.5647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/06/2023] [Accepted: 05/28/2023] [Indexed: 06/03/2023]
Abstract
PURPOSE To detect the possible safety signal of purine antimetabolites associated with Pneumocystis jirovecii pneumonia through disproportionality analysis in the FDA Adverse Event Reporting System (FAERS) Database. METHODS A case/non-case retrospective disproportionality analysis was performed in the publicly available FAERS database using AERSmine (2004Q1-2021Q3). Four models were developed to explore the signal strength of PAs among different populations with possible confounding factors. Reporting odds ratio (ROR) and Proportional reporting ratio (PRR) was used as the data mining algorithm for the analysis. A value of ROR-1.96SE > 1 and PRR ≥ 2 with an associated X2 value of 4 or more was considered the threshold for a signal. RESULTS A total of 7073 reports associated with Pneumocystis jirovecii pneumonia were present in the database, of which 899 reports were associated with purine antimetabolites. A crude signal strength of ROR 15.76(14.70-16.91) was obtained for purine antimetabolites associated PJP, with the highest signal strength reported with fludarabine and thioguanine [ROR 19.63(17.42-22.13); 19.45(13.21-28.63)]. Stratifying the cases based on autoimmune disorders and the cancer population revealed an ROR of 3.33(2.46-4.50) and 2.93(2.26-3.79) respectively. The highest risk of PJP with use of PAs was observed amongst children with a higher risk of nearly 2 times than the adult population [ROR 11.57(9.16-14.62)]. CONCLUSIONS Our study provided evidence on the occurrence of PJP with the use of purine antimetabolites among the autoimmune and cancer population. We identified signals for PJP with azathioprine, mercaptopurine, thioguanine, cladribine, fludarabine, and clofarabine. More research with a superior epidemiological study design of a defined population is required to validate these findings.
Collapse
Affiliation(s)
- Lipin Lukose
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Pawar Mansi Shantaram
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Alan Raj
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Gouri Nair
- Faculty of Pharmacy, Department of Pharmacology, MS Ramaiah University of Applied Sciences, Bengaluru, India
| | - Aina M Shaju
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Viswam K Subeesh
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
37
|
Wang P, Cheng T, Pan J. Nucleoside Analogs: A Review of Its Source and Separation Processes. Molecules 2023; 28:7043. [PMID: 37894522 PMCID: PMC10608831 DOI: 10.3390/molecules28207043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Nucleoside analogs play a crucial role in the production of high-value antitumor and antimicrobial drugs. Currently, nucleoside analogs are mainly obtained through nucleic acid degradation, chemical synthesis, and biotransformation. However, these methods face several challenges, such as low concentration of the main product, the presence of complex matrices, and the generation of numerous by-products that significantly limit the development of new drugs and their pharmacological studies. Therefore, this work aims to summarize the universal separation methods of nucleoside analogs, including crystallization, high-performance liquid chromatography (HPLC), column chromatography, solvent extraction, and adsorption. The review also explores the application of molecular imprinting techniques (MITs) in enhancing the identification of the separation process. It compares existing studies reported on adsorbents of molecularly imprinted polymers (MIPs) for the separation of nucleoside analogs. The development of new methods for selective separation and purification of nucleosides is vital to improving the efficiency and quality of nucleoside production. It enables us to obtain nucleoside products that are essential for the development of antitumor and antiviral drugs. Additionally, these methods possess immense potential in the prevention and control of serious diseases, offering significant economic, social, and scientific benefits to the fields of environment, biomedical research, and clinical therapeutics.
Collapse
Affiliation(s)
| | | | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (P.W.); (T.C.)
| |
Collapse
|
38
|
Galyamina MA, Pobeguts OV, Gorbachev AY. The role of mycoplasmas as an infectious agent in carcinogenesis. ADVANCES IN MOLECULAR ONCOLOGY 2023; 10:36-49. [DOI: 10.17650/2313-805x-2023-10-3-36-49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The review presents data on studies of the role of mycoplasmas as infectious agents in carcinogenesis, as well as their participation in cancer drug therapy and the impact on the outcome of treatment. Mycoplasmas are of particular interest because they have unique abilities to readily attach to and enter eukaryotic cells, modulate their functional state, and induce chronic inflammation while evading the host’s immune system. The review will highlight the data confirming the increased colonization of tumor tissue by mycoplasmas compared to healthy ones, describe the molecular mechanisms by which mycoplasmas activate the expression of oncogenes and growth factors, inactivate tumor suppressors, promote NF-κB-dependent migration of cancer cells and modulate apoptosis, which results in abnormal growth and transformation of host cells. The review also presents data on the effectiveness of anticancer drugs in mycoplasmal infections.
Collapse
Affiliation(s)
- M. A. Galyamina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency
| | - O. V. Pobeguts
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency
| | - A. Yu. Gorbachev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency
| |
Collapse
|
39
|
Belfon KK, Sharma N, Zigweid R, Bolejack M, Davies D, Edwards TE, Myler PJ, French JB. Structure-Guided Discovery of N 5-CAIR Mutase Inhibitors. Biochemistry 2023; 62:2587-2596. [PMID: 37552766 PMCID: PMC10484210 DOI: 10.1021/acs.biochem.2c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/20/2023] [Indexed: 08/10/2023]
Abstract
Because purine nucleotides are essential for all life, differences between how microbes and humans metabolize purines can be exploited for the development of antimicrobial therapies. While humans biosynthesize purine nucleotides in a 10-step pathway, most microbes utilize an additional 11th enzymatic activity. The human enzyme, aminoimidazole ribonucleotide (AIR) carboxylase generates the product 4-carboxy-5-aminoimidazole ribonucleotide (CAIR) directly. Most microbes, however, require two separate enzymes, a synthetase (PurK) and a mutase (PurE), and proceed through the intermediate, N5-CAIR. Toward the development of therapeutics that target these differences, we have solved crystal structures of the N5-CAIR mutase of the human pathogens Legionella pneumophila (LpPurE) and Burkholderia cenocepacia (BcPurE) and used a structure-guided approach to identify inhibitors. Analysis of the structures reveals a highly conserved fold and active site architecture. Using this data, and three additional structures of PurE enzymes, we screened a library of FDA-approved compounds in silico and identified a set of 25 candidates for further analysis. Among these, we identified several new PurE inhibitors with micromolar IC50 values. Several of these compounds, including the α1-blocker Alfuzosin, inhibit the microbial PurE enzymes much more effectively than the human homologue. These structures and the newly described PurE inhibitors are valuable tools to aid in further studies of this enzyme and provide a foundation for the development of compounds that target differences between human and microbial purine metabolism.
Collapse
Affiliation(s)
- Kafi K.
J. Belfon
- Department
of Biochemistry and Cell Biology, Stony
Brook University, Stony
Brook, New York 11794, United States
| | - Nandini Sharma
- The
Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| | - Rachael Zigweid
- Seattle
Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Hospital, 307 Westlake Ave N Ste 500, Seattle, Washington 98109, United States
| | - Madison Bolejack
- Seattle
Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
| | - Doug Davies
- Seattle
Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
- UCB-Bainbridge, Bainbridge Island, Washington 98110, United States
| | - Thomas E. Edwards
- Seattle
Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
- UCB-Bainbridge, Bainbridge Island, Washington 98110, United States
| | - Peter J. Myler
- Seattle
Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Hospital, 307 Westlake Ave N Ste 500, Seattle, Washington 98109, United States
- Department
of Global Health and Department of Biomedical Informatics and Medical
Education, University of Washington, Seattle, Washington 98195, United States
| | - Jarrod B. French
- The
Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| |
Collapse
|
40
|
Li F, Huang H, Xu J, Tao L, Zhou L, Hsueh C, Gong H, Zhang M. Fusobacterium nucleatum-triggered purine metabolic reprogramming drives tumorigenesis in head and neck carcinoma. Discov Oncol 2023; 14:120. [PMID: 37393565 DOI: 10.1007/s12672-023-00727-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023] Open
Abstract
BACKGROUND Fusobacterium nucleatum (F. nucleatum) is a vital pro-oncogenic bacterium. Our previous study revealed that a high abundance of F. nucleatum in head and neck squamous cell carcinoma (HNSCC) is correlated with poor patient prognosis. However, the impact of F. nucleatum on metabolic reprogramming and tumor progression in HNSCC awaits more exploration. METHODS Liquid chromatography‒mass spectrometry (LC‒MS) was applied to analyze the altered metabolites in a head and neck carcinoma cell line (AMC-HN-8) after coculture with F. nucleatum for 24 hrs and 48 hrs. Both univariate and multivariate analyses were used to screen for differential metabolites. Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway enrichment analysis was further used to explore the metabolic changes. RESULTS We observed a significantly altered metabolic profile in AMC-HN-8 cells over time after coculture with F. nucleatum. Among the several enriched pathways, the purine metabolic pathway was the most significantly enriched (P = 0.0005), with downregulation of purine degradation. Furthermore, uric acid, the end product of purine metabolism, significantly reversed F. nucleatum-triggered tumor progression and altered the intracellular reactive oxygen species (ROS) level. Moreover, the negative correlation between the serum uric acid level and the abundance of F. nucleatum was verified in 113 HNSCC patients (P = 0.0412, R = - 0.1924). CONCLUSIONS Our study revealed obviously aberrant purine metabolism driven by F. nucleatum in HNSCC, which was closely related to tumor progression and patient prognosis. These findings indicate the possibility of targeting F. nucleatum-induced purine metabolism reprogramming in the future treatment of HNSCC.
Collapse
Affiliation(s)
- Feiran Li
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fen Yang Road, Shanghai, China
| | - Huiying Huang
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fen Yang Road, Shanghai, China
| | - Jing Xu
- Department of Nursing, Eye & ENT Hospital, Fudan University, 83 Fen Yang Road, Shanghai, China
| | - Lei Tao
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fen Yang Road, Shanghai, China
| | - Liang Zhou
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fen Yang Road, Shanghai, China
| | - Chiyao Hsueh
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fen Yang Road, Shanghai, China.
| | - Hongli Gong
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fen Yang Road, Shanghai, China.
| | - Ming Zhang
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fen Yang Road, Shanghai, China.
| |
Collapse
|
41
|
Zhang J, Song J, Tang S, Zhao Y, Wang L, Luo Y, Tang J, Ji Y, Wang X, Li T, Zhang H, Shao W, Sheng J, Liang T, Bai X. Multi-omics analysis reveals the chemoresistance mechanism of proliferating tissue-resident macrophages in PDAC via metabolic adaptation. Cell Rep 2023; 42:112620. [PMID: 37285267 DOI: 10.1016/j.celrep.2023.112620] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/16/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer that typically demonstrates resistance to chemotherapy. Tumor-associated macrophages (TAMs) are essential in tumor microenvironment (TME) regulation, including promoting chemoresistance. However, the specific TAM subset and mechanisms behind this promotion remain unclear. We employ multi-omics strategies, including single-cell RNA sequencing (scRNA-seq), transcriptomics, multicolor immunohistochemistry (mIHC), flow cytometry, and metabolomics, to analyze chemotherapy-treated samples from both humans and mice. We identify four major TAM subsets within PDAC, among which proliferating resident macrophages (proliferating rMφs) are strongly associated with poor clinical outcomes. These macrophages are able to survive chemotherapy by producing more deoxycytidine (dC) and fewer dC kinases (dCKs) to decrease the absorption of gemcitabine. Moreover, proliferating rMφs promote fibrosis and immunosuppression in PDAC. Eliminating them in the transgenic mouse model alleviates fibrosis and immunosuppression, thereby re-sensitizing PDAC to chemotherapy. Consequently, targeting proliferating rMφs may become a potential treatment strategy for PDAC to enhance chemotherapy.
Collapse
Affiliation(s)
- Junlei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Jinyuan Song
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Shima Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Yaxing Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Lin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Yandong Luo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Jianghui Tang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Yongtao Ji
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Xun Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Taohong Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Hui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Wei Shao
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210000, China.
| | - Jianpeng Sheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China.
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China.
| |
Collapse
|
42
|
Davuluri GVN, Chan CH. Regulation of intrinsic and extrinsic metabolic pathways in tumour-associated macrophages. FEBS J 2023; 290:3040-3058. [PMID: 35486022 PMCID: PMC10711806 DOI: 10.1111/febs.16465] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/08/2022] [Accepted: 04/26/2022] [Indexed: 02/03/2023]
Abstract
Tumour-associated macrophages (TAMs) are highly plastic and are broadly grouped into two major functional states, namely the pro-inflammatory M1-type and the pro-tumoural M2-type. Conversion of the functional states of TAMs is regulated by various cytokines, chemokines growth factors and other secreted factors in the microenvironment. Dysregulated metabolism is a hallmark of cancer. Emerging evidence suggests that metabolism governs the TAM differentiation and functional conversation in support of tumour growth and metastasis. Aside from the altered metabolism reprogramming in TAMs, extracellular metabolites secreted by cancer, stromal and/or other cells within the tumour microenvironment have been found to regulate TAMs through passive competition for metabolite availability and direct regulation via receptor/transporter-mediated signalling reaction. In this review, we focus on the regulatory roles of different metabolites and metabolic pathways in TAM conversion and function. We also discuss if the dysregulated metabolism in TAMs can be exploited for the development of new therapeutic strategies against cancer.
Collapse
Affiliation(s)
| | - Chia-Hsin Chan
- Department of Molecular and Cellular Biology, Roswell Park Cancer Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
43
|
Zhivkov AM, Popov TT, Hristova SH. Composite Hydrogels with Included Solid-State Nanoparticles Bearing Anticancer Chemotherapeutics. Gels 2023; 9:gels9050421. [PMID: 37233012 DOI: 10.3390/gels9050421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Hydrogels have many useful physicochemical properties which, in combination with their biocompatibility, suggest their application as a drug delivery system for the local and prorogated release of drugs. However, their drug-absorption capacity is limited because of the gel net's poor adsorption of hydrophilic molecules and in particular, hydrophobic molecules. The absorption capacity of hydrogels can be increased with the incorporation of nanoparticles due to their huge surface area. In this review, composite hydrogels (physical, covalent and injectable) with included hydrophobic and hydrophilic nanoparticles are considered as suitable for use as carriers of anticancer chemotherapeutics. The main focus is given to the surface properties of the nanoparticles (hydrophilicity/hydrophobicity and surface electric charge) formed from metal and dielectric substances: metals (gold, silver), metal-oxides (iron, aluminum, titanium, zirconium), silicates (quartz) and carbon (graphene). The physicochemical properties of the nanoparticles are emphasized in order to assist researchers in choosing appropriate nanoparticles for the adsorption of drugs with hydrophilic and hydrophobic organic molecules.
Collapse
Affiliation(s)
- Alexandar M Zhivkov
- Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 11, 1113 Sofia, Bulgaria
| | - Trifon T Popov
- Medical Faculty, Medical University-Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria
| | - Svetlana H Hristova
- Department of Medical Physics and Biophysics, Medical Faculty, Medical University-Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria
| |
Collapse
|
44
|
Zhang H, D'Alessandro A, Li M, Reisz JA, Riddle S, Muralidhar A, Bull T, Zhao L, Gerasimovskaya E, Stenmark KR. Histone deacetylase inhibitors synergize with sildenafil to suppress purine metabolism and proliferation in pulmonary hypertension. Vascul Pharmacol 2023; 149:107157. [PMID: 36849042 PMCID: PMC10067337 DOI: 10.1016/j.vph.2023.107157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
RATIONALE Sildenafil, a well-known vasodilator known to interfere with purinergic signaling through effects on cGMP, is a mainstay in the treatment of pulmonary hypertension (PH). However, little is known regarding its effects on the metabolic reprogramming of vascular cells, which is a hallmark of PH. Purine metabolism, especially intracellular de novo purine biosynthesis is essential for vascular cell proliferation. Since adventitial fibroblasts are critical contributors to proliferative vascular remodeling in PH, in this study we aimed to investigate if sildenafil, beyond its well-known vasodilator role in smooth muscle cells, impacts intracellular purine metabolism and proliferation of fibroblasts derived from human PH patients. METHODS Integrated omics approaches (plasma and cell metabolomics) and pharmacological inhibitor approaches were employed in plasma samples and cultured pulmonary artery fibroblasts from PH patients. MEASUREMENTS AND MAIN RESULTS Plasma metabolome analysis of 27 PH patients before and after treatment with sildenafil, demonstrated a partial, but specific effect of sildenafil on purine metabolites, especially adenosine, adenine, and xanthine. However, circulating markers of cell stress, including lactate, succinate, and hypoxanthine were only decreased in a small subset of sildenafil-treated patients. To better understand potential effects of sildenafil on pathological changes in purine metabolism (especially purine synthesis) in PH, we performed studies on pulmonary fibroblasts from PAH patients (PH-Fibs) and corresponding controls (CO-Fibs), since these cells have previously been shown to demonstrate stable and marked PH associated phenotypic and metabolic changes. We found that PH-Fibs exhibited significantly increased purine synthesis. Treatment of PH-Fibs with sildenafil was insufficient to normalize cellular metabolic phenotype and only modestly attenuated the proliferation. However, we observed that treatments which have been shown to normalize glycolysis and mitochondrial abnormalities including a PKM2 activator (TEPP-46), and the histone deacetylase inhibitors (HDACi), SAHA and Apicidin, had significant inhibitory effects on purine synthesis. Importantly, combined treatment with HDACi and sildenafil exhibited synergistic inhibitory effects on proliferation and metabolic reprogramming in PH-Fibs. CONCLUSIONS While sildenafil alone partially rescues metabolic alterations associated with PH, treatment with HDACi, in combination with sildenafil, represent a promising and potentially more effective strategy for targeting vasoconstriction, metabolic derangement and pathological vascular remodeling in PH.
Collapse
Affiliation(s)
- Hui Zhang
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado School of Medicine, Denver, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Denver, USA
| | - Min Li
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado School of Medicine, Denver, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Denver, USA
| | - Suzette Riddle
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado School of Medicine, Denver, USA
| | - Akshay Muralidhar
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Denver, USA
| | - Todd Bull
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Denver, USA
| | - Lan Zhao
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Evgenia Gerasimovskaya
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado School of Medicine, Denver, USA
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado School of Medicine, Denver, USA.
| |
Collapse
|
45
|
Messa F, Perrone S, Salomone A. 3-Cyclohexyl-6-phenyl-1-(p-tolyl)pyrimidine-2,4(1H,3H)-dione. MOLBANK 2023. [DOI: 10.3390/m1611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
The synthesis of a novel uracil derivative, 3-cyclohexyl-6-phenyl-1-(p-tolyl)pyrimidine-2,4(1H,3H)-dione (4), is reported via a four-component reaction involving an α-chloroketone (1), an aliphatic isocyanate (2), a primary aromatic amine (3) and carbon monoxide. The proposed reaction mechanism involves a Pd-catalyzed carbonylation of 2-chloro-1-phenylethan-1-one (1), leading to a β-ketoacylpalladium key intermediate, and, at the same time, in situ formation of non-symmetrical urea deriving from cyclohexyl isocyanate (2) and p-toluidine (3). After a chemo-selective acylation of the non-symmetrical urea and the subsequent cyclization of the acylated intermediate, 3-cyclohexyl-6-phenyl-1-(p-tolyl)pyrimidine-2,4(1H,3H)-dione (4) is formed. Uracil derivative 4 was isolated in good yield (73%) and fully characterized by 1H, 13C, 2D 1H-13C HSQC and 2D 1H-13C HMBC NMR, FT-IR spectroscopy and GC-MS spectrometry.
Collapse
|
46
|
Ahmed A, Sakander N, Mukherjee D. Lewis Acid Catalysed Regioselective Access of Novel C‐2 Homo‐Pyranose Nucleosides From 2‐Acetoxy Methyl Glycals. ChemistrySelect 2023. [DOI: 10.1002/slct.202300578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Ajaz Ahmed
- Natural Product and Medicinal Chemistry Division Indian Institute of Integrative Medicine (IIIM), Canal Road Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Norein Sakander
- Natural Product and Medicinal Chemistry Division Indian Institute of Integrative Medicine (IIIM), Canal Road Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Debaraj Mukherjee
- Natural Product and Medicinal Chemistry Division Indian Institute of Integrative Medicine (IIIM), Canal Road Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Department of Chemistry Bose Institute EN 80, Sector V, Bidhan Nagar Kolkata 700091 WB India
| |
Collapse
|
47
|
Kciuk M, Mujwar S, Marciniak B, Gielecińska A, Bukowski K, Mojzych M, Kontek R. Genotoxicity of Novel Pyrazolo[4,3- e]tetrazolo[1,5- b][1,2,4]triazine Sulfonamides in Normal and Cancer Cells In Vitro. Int J Mol Sci 2023; 24:ijms24044053. [PMID: 36835469 PMCID: PMC9966268 DOI: 10.3390/ijms24044053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides constitute a novel group of heterocyclic compounds with broad biological activities including anticancer properties. The compounds investigated in this study (MM134, -6, -7, and 9) were found to have antiproliferative activity against BxPC-3 and PC-3 cancer cell lines in micromolar concentrations (IC50 0.11-0.33 µM). Here, we studied the genotoxic potential of the tested compounds with alkaline and neutral comet assays, accompanied by immunocytochemical detection of phosphorylated γH2AX. We found that pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides induce significant levels of DNA damage in BxPC-3 and PC-3 cells without causing genotoxic effects in normal human lung fibroblasts (WI-38) when used in their respective IC50 concentrations (except for MM134) and showed a dose-dependent increase in DNA damage following 24 h incubation of tested cancer cells with these agents. Furthermore, the influence of MM compounds on DNA damage response (DDR) factors was assessed using molecular docking and molecular dynamics simulation.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
- Correspondence:
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Beata Marciniak
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Karol Bukowski
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
48
|
Krasnov VP, Vozdvizhenskaya OA, Baryshnikova MA, Pershina AG, Musiyak VV, Matveeva TV, Nevskaya KV, Brikunova OY, Gruzdev DA, Levit GL. Synthesis and Cytotoxic Activity of the Derivatives of N-(Purin-6-yl)aminopolymethylene Carboxylic Acids and Related Compounds. Molecules 2023; 28:molecules28041853. [PMID: 36838839 PMCID: PMC9962735 DOI: 10.3390/molecules28041853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Testing a number of N-[omega-(purin-6-yl)aminoalkanoyl] derivatives of 7,8-difluoro-3,4-dihydro-3-methyl-2H-[1,4]benzoxazine in a panel of nine tumor cell lines has shown that the studied compounds exhibit high cytotoxic activity, especially against 4T1 murine mammary carcinoma, COLO201 human colorectal adenocarcinoma, SNU-1 human gastric carcinoma, and HepG2 human hepatocellular carcinoma cells. Synthesis and study of structural analogs of these compounds made it possible to find that the presence of both a difluorobenzoxazine fragment and a purine residue bound via a linker of a certain length is crucial for the manifestation of the cytotoxic activity of this group of compounds. The study of the effect of the most promising compound on the cell cycle of the human tumor cell lines, the most sensitive and least sensitive to cytotoxic action (MDA-MB-231 breast adenocarcinoma and COLO201 colorectal adenocarcinoma, respectively), allows us to conclude that this compound is an inhibitor of DNA biosynthesis. The found group of purine conjugates may be of interest in the design of new antitumor agents.
Collapse
Affiliation(s)
- Victor P. Krasnov
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620108 Ekaterinburg, Russia
- Correspondence:
| | - Olga A. Vozdvizhenskaya
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620108 Ekaterinburg, Russia
| | - Maria A. Baryshnikova
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115522 Moscow, Russia
| | - Alexandra G. Pershina
- Center of Bioscience and Bioengineering, Siberian State Medical University, 634050 Tomsk, Russia
- Research School of Chemical and Biomedical Engineering, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Vera V. Musiyak
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620108 Ekaterinburg, Russia
| | - Tatyana V. Matveeva
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620108 Ekaterinburg, Russia
| | - Kseniya V. Nevskaya
- Center of Bioscience and Bioengineering, Siberian State Medical University, 634050 Tomsk, Russia
| | - Olga Y. Brikunova
- Center of Bioscience and Bioengineering, Siberian State Medical University, 634050 Tomsk, Russia
| | - Dmitry A. Gruzdev
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620108 Ekaterinburg, Russia
| | - Galina L. Levit
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620108 Ekaterinburg, Russia
| |
Collapse
|
49
|
Wang Y, Cao Z, He Q, Huang X, Liu J, Neumann H, Chen G, Beller M. Activation of perfluoroalkyl iodides by anions: extending the scope of halogen bond activation to C(sp 3)-H amidation, C(sp 2)-H iodination, and perfluoroalkylation reactions. Chem Sci 2023; 14:1732-1741. [PMID: 36819859 PMCID: PMC9930934 DOI: 10.1039/d2sc06145g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/29/2022] [Indexed: 01/26/2023] Open
Abstract
A simple, efficient, and convenient activation of perfluoroalkyl iodides by tBuONa or KOH, without expensive photo- or transition metal catalysts, allows the promotion of versatile α-sp3 C-H amidation reactions of alkyl ethers and benzylic hydrocarbons, C-H iodination of heteroaryl compounds, and perfluoroalkylations of electron-rich π bonds. Mechanistic studies show that these novel protocols are based on the halogen bond interaction between perfluoroalkyl iodides and tBuONa or KOH, which promote homolysis of perfluoroalkyl iodides under mild conditions.
Collapse
Affiliation(s)
- Yaxin Wang
- College of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 China .,Leibniz-Institute for Catalysis Albert-Einstein-Str. 29a Rostock 18059 Germany
| | - Zehui Cao
- College of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Qin He
- College of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Xin Huang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai UniversityTianjin 300071China
| | - Jiaxi Liu
- College of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Helfried Neumann
- Leibniz-Institute for Catalysis Albert-Einstein-Str. 29a Rostock 18059 Germany
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai UniversityTianjin 300071China
| | - Matthias Beller
- Leibniz-Institute for Catalysis Albert-Einstein-Str. 29a Rostock 18059 Germany
| |
Collapse
|
50
|
Li L, Liu Y, Zhou S, Li J, Qi C, Zhang F. Synthesis of 4-hydroxy-3-benzoylpyridin-2(1 H)-one derivatives using pyrrolidine as catalyst. SYNTHETIC COMMUN 2023. [DOI: 10.1080/00397911.2023.2177872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- Linbo Li
- School of Pharmacy, Jiamusi University, Jiamusi, China
| | - Yuxiao Liu
- School of Pharmacy, Jiamusi University, Jiamusi, China
| | - Shujing Zhou
- School of Pharmacy, Jiamusi University, Jiamusi, China
| | - Jinjing Li
- School of Pharmacy, Jiamusi University, Jiamusi, China
| | - Chenze Qi
- School of Pharmacy, Jiamusi University, Jiamusi, China
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, China
| | - Furen Zhang
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, China
| |
Collapse
|