1
|
Wiebe MA, Staubitz A, Manners I. Dehydrocoupling of Phosphine-Borane Adducts Under Ambient Conditions Using Aminoboranes as Hydrogen Acceptors. Chemistry 2025; 31:e202403849. [PMID: 39672795 PMCID: PMC11840660 DOI: 10.1002/chem.202403849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/29/2024] [Accepted: 12/12/2024] [Indexed: 12/15/2024]
Abstract
We report on the reactivity of aminoboranes (R2N=BH2; R = iPr, Et, Me) with phosphine-borane adducts (PhR'PH ⋅ BH3; R' = H, Ph): Sufficiently sterically unencumbered aminoboranes can accept hydrogen from phosphine-borane adducts. The hydrogen transfer results in the formation of amine-borane adducts (R2NH ⋅ BH3) and transient phosphinoboranes (PhR'P-BH2) in situ. These phosphinoboranes undergo subsequent reactivity to yield either polyphosphinoborane, [PhPH-BH2]n, or the linear dimer, Ph2PH ⋅ BH2-Ph2P ⋅ BH3. Unlike metal catalyzed phosphine-borane dehydrocoupling, which occurs at elevated temperatures (2 M, toluene, ≥100 °C, ≥24 h), these dehydrocoupling reactions occur under ambient conditions (2 M, Et2O or C6D6, 20 °C, ≤24 h). We performed a computational mechanistic study in which we identified that this transformation potentially occurs via a P-to-N and B-to-B hydrogen transfer through a 6-membered transition state.
Collapse
Affiliation(s)
- Matthew A. Wiebe
- Department of ChemistryUniversity of Victoria3800 Finnerty RdVictoria, BCV8P 5C2Canada
| | - Anne Staubitz
- Otto-Diels-Institute for Organic ChemistryUniversity of KielOtto-Hahn-Platz 4Kiel24118Germany
| | - Ian Manners
- Department of ChemistryUniversity of Victoria3800 Finnerty RdVictoria, BCV8P 5C2Canada
| |
Collapse
|
2
|
Heitmann M, Duvinage D, Golz C, Hupf E, Beckmann J, Fischer M. Structural Snapshots on Stepwise Anionic Oxoborane Formation: Access to an Acyclic BO Ketone Analogue and Its Metathesis Chemistry with CO 2 and CS 2. Inorg Chem 2025; 64:3028-3037. [PMID: 39905796 PMCID: PMC11836929 DOI: 10.1021/acs.inorgchem.4c05354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/08/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
In this work, we disclose the synthesis and characterization of non-acid/base-stabilized anionic oxoboranes [MesTer2BO][K(L)] (MesTer = -C6H3-2,6-(2,4,6-Me3-C6H2)2, L = [2.2.2]-cryptand or 18-crown-6), which are isoelectronic and isostructural with aryl-substituted ketones. The stepwise synthetic formation of these ion-separated oxoboranes is demonstrated on the one hand by the treatment of the parent borinic acid MesTer2BOH with N-heterocyclic carbenes (NHCs) to give [MesTer2BO][HNHC] derivatives, and on the other hand by a deprotonation-sequestration sequence. Bearing polarized boron-oxygen moieties, their inherent reactivity toward both carbon disulfide and carbon dioxide reveals a unique π-bond metathesis reactivity to yield [(MesTer)2B-μ-E2C=E][K(L)] (E = O, S) derivatives.
Collapse
Affiliation(s)
- Marius Heitmann
- Institut
für Anorganische Chemie, Georg-August-Universität
Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Daniel Duvinage
- Institut
für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Street 7, D-28359 Bremen, Germany
| | - Christopher Golz
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, D-37077 Göttingen, Germany
| | - Emanuel Hupf
- Institut
für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Street 7, D-28359 Bremen, Germany
| | - Jens Beckmann
- Institut
für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Street 7, D-28359 Bremen, Germany
| | - Malte Fischer
- Institut
für Anorganische Chemie, Georg-August-Universität
Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany
| |
Collapse
|
3
|
Spinnato D, Nöthling N, Leutzsch M, van Gastel M, Wagner L, Neese F, Cornella J. A trimetallic bismuth(I)-based allyl cation. Nat Chem 2025; 17:265-270. [PMID: 39762626 PMCID: PMC11794141 DOI: 10.1038/s41557-024-01691-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 11/01/2024] [Indexed: 02/06/2025]
Abstract
The chemistry of low-valent bismuth compounds has recently unlocked new concepts in catalysis and unique electronic structure fundamentals. In this work, we describe the synthesis and characterization of a highly reduced bismuth salt featuring a cationic core based on three contiguous Bi(I) centres. The triatomic bismuth-based core exhibits an electronic configuration that mimics the canonical description of the archetypical carbon-based π-allyl cation. Structural, spectroscopic and theoretical analyses validate the unique π-delocalization between the bismuth's highly diffused 6p orbitals, resulting in a bonding situation in which the three bismuth atoms are interconnected by two bonds, formally possessing a 1.5 bond order each. This electronic situation defines this complex as the heaviest and stable π-allyl cation of the periodic table. Furthermore, we demonstrate that the newly synthesized complex is able to act as a synthon for the transfer of a Bi(I) cation to forge other low-valent organobismuth complexes.
Collapse
Affiliation(s)
- Davide Spinnato
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Nils Nöthling
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | | | - Lucas Wagner
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany.
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany.
| |
Collapse
|
4
|
Won Moon H, Nöthling N, Leutzsch M, Kuziola J, Cornella J. Characterization of Iminobismuthanes and Catalytic Reduction of Organic Azides via Bi(I)/Bi(III) Redox Cycling. Angew Chem Int Ed Engl 2025; 64:e202417864. [PMID: 39445742 DOI: 10.1002/anie.202417864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 10/25/2024]
Abstract
We report the stoichiometric and catalytic reactivity of organobismuth(I) complexes with organic azides. Treatment of N,C,N-pincer bismuthinidenes with organic azides (acyl, sulfonyl, and bulky aryl) results in monomeric iminobismuthanes which can be structurally characterized -including the formal Bi=N double bond- by multinuclear NMR spectroscopy and single-crystal X-ray diffraction. Building upon the stoichiometric reactivity of the monomeric iminobismuthanes, catalytic reduction of a broad range of organic azides is developed. DFT calculations of the catalytic reaction pathway support the redox nature of the overall process.
Collapse
Affiliation(s)
- Hye Won Moon
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz1, 45470, Mülheim an der Ruhr, Germany
| | - Nils Nöthling
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz1, 45470, Mülheim an der Ruhr, Germany
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz1, 45470, Mülheim an der Ruhr, Germany
| | - Jennifer Kuziola
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz1, 45470, Mülheim an der Ruhr, Germany
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
5
|
LaPierre EA, Kehrig A, Patrick BO, Tuononen HM, Manners I. Synthesis of a Transient Cationic Phosphaborene and its Trapping by Facile Aliphatic C-H Bond Activation. Chemistry 2025:e202404514. [PMID: 39840901 DOI: 10.1002/chem.202404514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 01/23/2025]
Abstract
The synthesis of a transient cationic phosphaborene [(Mes*)P=B(CAAC)]+ (Mes*=2,4,6,-tri-tert-butylphenyl, CAAC=cyclic alkylamino carbene) by halide abstraction from the B-brominated analogue is reported. This species was found to undergo rapid and selective intramolecular aliphatic C-H bond activation to yield a phosphinoborenium cation, which undergoes facile deprotonation to give a cyclic base-stabilized phosphaborene. Computational investigation of the mechanism of C-H activation indicates a boron-centred activation route with an exceptionally low barrier of 8 kJ mol-1, followed by a nearly barrierless hydride migration from boron to phosphorus. This underscores the enhanced reactivity of phosphaborenes compared to their lighter iminoborane analogues and indicates that steric stabilization alone is likely insufficient to isolate persistent cationic phosphaborenes, necessitating the use of alternative design strategies.
Collapse
Affiliation(s)
- Etienne A LaPierre
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd, Victoria, British Columbia, V8P 5C2, Canada
| | - Anika Kehrig
- Department of Chemistry, NanoScience Centre, University of Jyväskylä, P. O. Box 35, FI-40014, Jyväskylä, Finland
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Brian O Patrick
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Heikki M Tuononen
- Department of Chemistry, NanoScience Centre, University of Jyväskylä, P. O. Box 35, FI-40014, Jyväskylä, Finland
| | - Ian Manners
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd, Victoria, British Columbia, V8P 5C2, Canada
| |
Collapse
|
6
|
Bairagi S, Giri S, Joshi G, Jemmis ED, Ghosh S. Stabilization of Ethane-Like Dianionic Diborane(6) in Monometallic Titanium Complexes and its Subsequent B(sp 3)-B(sp 3) Bond Cleavage. Angew Chem Int Ed Engl 2025; 64:e202417170. [PMID: 39475352 DOI: 10.1002/anie.202417170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Indexed: 11/27/2024]
Abstract
Treatment of [Cp*TiCl3] with [LiBH4 ⋅ THF] followed by thermolysis with [Ph2E2] (E=S or Se) resulted in the formation of classical diborane(6) complexes, [(Cp*Ti)(η4-B2H4LL')] (L=C6H4E; L'=C6H5E; 1 a: E=S, 1 b: E=Se), stabilized at titanium template. To the best of our knowledge, they are the first examples of mono-metallic classical diborane(6) complexes. The bonding analysis and theoretical studies suggest that the stabilization of these diborane(6) species is due to the presence of four bridging ligands in ĸ4-fashion, where two of them are phenyl thiolates/selenolates that provide more electrons to the electron-deficient titanium center. Reactions of these diborane(6) species with [M(CO)5 ⋅ THF] (M=Mo, W) led to the cleavage of the electron-precise B(sp3)-B(sp3) bond that yielded ĸ3-hydridoborato complexes [(Cp*Ti)(ĸ3-BH3R)(μ-EPh)2{M(CO)4}] (2 a-c: R=H, 3 a-c: R=Ph). In an attempt to isolate the Te-analogue of 1 a-b, a similar reaction was performed; however, the complex was too unstable to be isolated. Interestingly, the treatment of this unstable intermediate with [W(CO)5 ⋅ THF] yielded [(Cp*Ti)(ĸ3-BH3R)(μ-TePh)2{W(CO)4}] (2 d: R=H, 3 d: R=Ph) that are analogues of 2 a-c and 3 a-c, respectively. Formation of these species provide indirect evidence for the existence of unstable [(Cp*Ti)(η4-B2H4LL')] (L=C6H4Te; L'=C6H5Te; 1 c).
Collapse
Affiliation(s)
- Subhash Bairagi
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Soumen Giri
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Gaurav Joshi
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore, 560012, India
| | - Eluvathingal D Jemmis
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore, 560012, India
| | - Sundargopal Ghosh
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
7
|
García-Romero Á, Hu C, Pink M, Goicoechea JM. A Crystalline Unsupported Phosphagallene and Phosphaindene. J Am Chem Soc 2025; 147:1231-1239. [PMID: 39698785 DOI: 10.1021/jacs.4c15041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The synthesis and isolation of TerP═GaTer and TerP═InTer (Ter = 2,6-Dipp2-C6H3; Dipp = 2,6-diisopropylphenyl) is reported. These compounds feature unsupported P═Ga and P═In double bonds and two-coordinate triel element centers. Key to the stabilization of such compounds is the steric bulk of the terphenyl substituents, which serve to shield the highly reactive P═E bonds (E = Ga, In) and prevent further aggregation. When smaller aromatic substituents are employed on the phosphorus-containing precursor, the cyclic compounds Mes*P(ETer)2 (Mes* = 2,4,6-tBu3-C6H2) are isolated instead. These species contain weakly aromatic three-membered rings. The presence of an external base (PMe3) is required in order to stabilize a phosphagallene when the smaller Mes* substituent is used, allowing for the isolation of Mes*P═GaTer(PMe3).
Collapse
Affiliation(s)
- Álvaro García-Romero
- Department of Chemistry, Indiana University, 800 East Kirkwood Ave., Bloomington, Indiana 47405, United States
| | - Chenyang Hu
- Department of Chemistry, Indiana University, 800 East Kirkwood Ave., Bloomington, Indiana 47405, United States
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Rd., Oxford OX1 3TA, U.K
| | - Maren Pink
- Department of Chemistry, Indiana University, 800 East Kirkwood Ave., Bloomington, Indiana 47405, United States
| | - Jose M Goicoechea
- Department of Chemistry, Indiana University, 800 East Kirkwood Ave., Bloomington, Indiana 47405, United States
| |
Collapse
|
8
|
Thömmes AL, Büttner T, Morgenstern B, Janka O, Kickelbick G, Niebuur BJ, Kraus T, Gallei M, Scheschkewitz D. Near-Infinite-Chain Polymers with Ge=Ge Double Bonds. Angew Chem Int Ed Engl 2024; 63:e202415103. [PMID: 39441828 DOI: 10.1002/anie.202415103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/02/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Despite considerable interest in heteroatom-containing conjugated polymers, there are only few examples with heavier p-block elements in the conjugation path. The recently reported heavier acyclic diene metathesis (HADMET) allowed for the synthesis of a polymer containing Ge=Ge double bonds-albeit insoluble and with limited degree of polymerization. By incorporation of long alkyl chains, we now obtained soluble representatives, which exhibit degrees of polymerization near infinity according to diffusion-ordered NMR spectroscopy (DOSY) and dynamic light scattering (DLS). UV/Vis and NMR data confirm the presence of σ,π-conjugation across the silylene-phenylene linkers between the Ge=Ge double bonds. Favorable intermolecular dispersion interactions lead to ladder-like cylindrical assemblies as confirmed by X-ray diffraction (XRD), small angle X-ray scattering (SAXS) and DLS. AFM and TEM images of deposited thin films reveal lamellar ordering of extended polymer bundles.
Collapse
Affiliation(s)
- Anna-Lena Thömmes
- Krupp-Chair for General and Inorganic Chemistry, Saarland University, 66123, Saarbrücken, Germany
| | - Thomas Büttner
- Krupp-Chair for General and Inorganic Chemistry, Saarland University, 66123, Saarbrücken, Germany
| | - Bernd Morgenstern
- Inorganic Solid-State Chemistry, Saarland University, 66123, Saarbrücken, Germany
| | - Oliver Janka
- Inorganic Solid-State Chemistry, Saarland University, 66123, Saarbrücken, Germany
| | - Guido Kickelbick
- Inorganic Solid-State Chemistry, Saarland University, 66123, Saarbrücken, Germany
| | - Bart-Jan Niebuur
- INM-Leibniz-Institute for New Materials, 66123, Saarbrücken, Germany
| | - Tobias Kraus
- INM-Leibniz-Institute for New Materials, 66123, Saarbrücken, Germany
- Colloid and Interface Chemistry, Saarland University, 66123, Saarbrücken, Germany
| | - Markus Gallei
- Polymer Chemistry, Saarland University, 66123, Saarbrücken, Germany
| | - David Scheschkewitz
- Krupp-Chair for General and Inorganic Chemistry, Saarland University, 66123, Saarbrücken, Germany
| |
Collapse
|
9
|
Barthélemy A, Krossing I. Cationic Group 13 and 14 Element Clusters. Inorg Chem 2024; 63:21763-21787. [PMID: 39485314 DOI: 10.1021/acs.inorgchem.4c03251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Anionic and neutral clusters dominate the cluster chemistry of group 13 and 14 elements, many of which have become classic textbook examples of main group element clusters. However, facilitated by the development of unreactive, weakly coordinating anions, the number of known group 13 and 14 cationic cluster compounds has risen rapidly in recent years. Hence, this review aims to give an overview over this research field, which arouses increasing interest owing to the often unusual structures of the cationic clusters, as well as their application in bond activation chemistry. Challenges of the cluster formation are discussed and suitable starting materials are presented, as well as syntheses, structures and the rich follow-up chemistry of (also mixed) group 13 and 14 cluster cations.
Collapse
Affiliation(s)
- Antoine Barthélemy
- Institut für Anorganische und Analytische Chemie and Freiburg Materials Research Center FMF, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg i.Br., Germany
| | - Ingo Krossing
- Institut für Anorganische und Analytische Chemie and Freiburg Materials Research Center FMF, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg i.Br., Germany
| |
Collapse
|
10
|
Dankert F, Messelberger J, Authesserre U, Swain A, Scheschkewitz D, Morgenstern B, Munz D. A Lead(II) Substituted Triplet Carbene. J Am Chem Soc 2024; 146:29630-29636. [PMID: 39423155 PMCID: PMC11528407 DOI: 10.1021/jacs.4c10205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024]
Abstract
Reaction of the pincer-type ligand L3 supported complex [L3PbBr][BArF24] (1) with Li[(C(═N2)TMS)] furnishes [L3Pb(C(═N2)TMS)][BArF24] (2). Diazo-compound 2 eliminates dinitrogen upon irradiation affording formal plumba-alkyne 3, which persists in cold fluoroarene solutions. Variable temperature UV/Vis and NMR spectroscopies in combination with quantum-chemical calculations identify 3 as a metal-substituted triplet carbene. In-crystallo irradiation of [L3Pb(C(═N2)TMS)(tol)][BArF24] (2·tol) provides a snapshot of intermolecular C-H bond insertion with toluene (4).
Collapse
Affiliation(s)
- Fabian Dankert
- Saarland
University, Coordination Chemistry, Campus C4.1, D-66123 Saarbrücken, Germany
| | - Julian Messelberger
- Saarland
University, Coordination Chemistry, Campus C4.1, D-66123 Saarbrücken, Germany
| | - Ugo Authesserre
- Saarland
University, Coordination Chemistry, Campus C4.1, D-66123 Saarbrücken, Germany
| | - Abinash Swain
- Saarland
University, Coordination Chemistry, Campus C4.1, D-66123 Saarbrücken, Germany
| | - David Scheschkewitz
- Saarland
University, Inorganic and General
Chemistry, Campus C4.1, D-66123 Saarbrücken, Germany
| | - Bernd Morgenstern
- Saarland
University, Inorganic Solid-State
Chemistry, Campus C4.1, D-66123 Saarbrücken, Germany
| | - Dominik Munz
- Saarland
University, Coordination Chemistry, Campus C4.1, D-66123 Saarbrücken, Germany
| |
Collapse
|
11
|
Zhang ZF, Su MD. Mechanistic Insights into the Reactivity and Activation Barrier Origins for CO 2 Capture by Heavy Group-14 Imine Analogues. Inorg Chem 2024; 63:19687-19700. [PMID: 39385624 DOI: 10.1021/acs.inorgchem.4c02874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Using M06-2X-D3/def2-TZVP, the [2 + 2] cycloaddition reactions of carbon dioxide with the heavy imine analogues G14=N-Rea (G14 = Group 14 element) were investigated. The theoretical evidence reveals that the nature of the doubly bonded G14=N moiety in heavy imine analogues, G14=N-Rea (L1L2G14=N-L3), is characterized by the electron-sharing interaction between triplet L1L2G14 and triplet N-L3 fragments. Based on our theoretical studies, except for the carbon-based imine, all four heavy imine analogues with Si=N, Ge=N, Sn=N, and Pb=N groups can easily engage in [2 + 2] cycloaddition reactions with CO2. Energy decomposition analysis-natural orbitals for chemical valence analyses and the FMO theory strongly suggest that in the CO2 capture reaction by heavy imine analogues G14=N-Rea, the primary bonding interaction is the occupied p-π orbital (G14=N-Rea) → vacant p-π* orbital (CO2) interaction, instead of the empty p-π* orbital (G14=N-Rea) ← filled p-π orbital (CO2) interaction. The activation barrier of the CO2 capture reactions by G14=N-Rea molecules is primarily determined by the deformation energy of CO2. Shaik's valence bond state correlation diagram model, used to rationalize the computed results, indicates that the singlet-triplet energy splitting of G14=N-Rea is a key factor in determining the reaction barrier for the current CO2 capture reactions.
Collapse
Affiliation(s)
- Zheng-Feng Zhang
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
12
|
Liu Y, Ji Y, Li J, Liu X, Wang C, Zhang H, Tian R. An Unexpected Access to Phospholene Fused β-Phosphinolactams by the Reaction of α-C 2-Bridged Biphospholes and Nitrones. Org Lett 2024; 26:8747-8751. [PMID: 39378233 DOI: 10.1021/acs.orglett.4c03062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
An efficient and practical method for the preparation of the phospholene fused β-phosphinolactam skeleton from α-C2-bridged biphospholes and nitrones is described. The dissociation of biphospholes generates transient 1-phosphafulvenes, followed by oxidation with nitrones to give the 1-phosphafulvene oxides. The oxidation of 1-phosphafulvene boosts its reactivity toward imine, leading to the isolated products.
Collapse
Affiliation(s)
- Yanjie Liu
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Yu Ji
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Jiawei Li
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Xiaobing Liu
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Chunjie Wang
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Hui Zhang
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Rongqiang Tian
- College of Chemistry, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
13
|
Hadlington TJ. Heavier group 14-transition metal π-complex congeners. Chem Soc Rev 2024; 53:9718-9737. [PMID: 39189619 DOI: 10.1039/d4cs00497c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Since the dawn of organometallic chemistry, transition metal complexes of unsaturated organic molecules, namely π-complexes, have remained a central focus: our thorough understanding of the electronic nature of such species, and their importance in countless reactive processes continues to drive research in their synthesis and utilisation. Since the late 1900s, research regarding the related chemistry for the heavier group 14 elements has become increasingly more fervent. Today, heavier congeners of a vast array of classical π-complexes have been realised, from alkene to arene systems, involving Si, Ge, Sn, and Pb. This has given deeper insights into the bonding observed for these heavier elements, which typically involves a lessened degree of π-bonding and an increased polarisation. This review aims to summarise this field, identifying these disparities, and highlighting areas which we believe may be exciting for future exploration.
Collapse
Affiliation(s)
- Terrance J Hadlington
- Fakultät für Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany.
| |
Collapse
|
14
|
Burkhardt J, Li WL. Theoretical Investigation on One-Electron ϕ···ϕ Bonding in Diuranium Inverse Sandwich U 2B 6 Complex Enabled by a B 6 Ring. Inorg Chem 2024; 63:18313-18322. [PMID: 39285662 PMCID: PMC11445727 DOI: 10.1021/acs.inorgchem.4c03446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Traditional σ, π, and δ types of covalent chemical bonding have been extensively studied for nearly a century. In contrast, ϕ-type bonding involving nf (n = 4, 5) orbitals has received less attention due to their high contraction and minimal orbital overlap. Herein, we theoretically predict a singly occupied ϕ···ϕ bonding between two 5f orbitals, facilitated by B6 group orbitals in the hexa-boron diuranium inverse sandwich structure of U2B6. From ab initio quantum chemical calculations, the global minimum structure has a septuplet state with D6h symmetry. Chemical bonding analyses reveal that the 5f and 6d atomic orbitals of the two uranium atoms interact with the ligand orbitals of the central B6 ring, exhibiting favorable energy matching and symmetry compatibility to form delocalized σ-, π-, δ-, and ϕ-type bonding orbitals. Notably, even though the ϕ···ϕ bonding orbital is singly occupied, it still has a significant role in stability and cannot be overlooked. Furthermore, the U2B6 cluster model can be viewed as a building block of UB2 solid materials from both geometric and electronic perspectives. This work predicts the first example of ϕ···ϕ bonding, highlighting the complexity and diversity of chemical bonds formed in actinide boride clusters.
Collapse
Affiliation(s)
- Jordan Burkhardt
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, California 92093, United States
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Wan-Lu Li
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, California 92093, United States
- Program of Materials Science and Engineering, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
15
|
Kreimer LN, Hadlington TJ. Macrocyclic bis-diphosphenes demonstrating bimetallic exo- and endo-cyclic binding modes. Chem Sci 2024; 15:14154-14160. [PMID: 39268153 PMCID: PMC11389489 DOI: 10.1039/d4sc03516j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/15/2024] [Indexed: 09/15/2024] Open
Abstract
Macrocyclic bis-diphosphenes, formally heavier derivatives of macrocyclic azobenzenes, are accessed for the first time. These are synthesised in a reproducible fashion, through the nickel-mediated homocoupling of xanthene-derived NHC-stabilised bis-phosphinidene units. This gives direct access to target macrocyclic bis-diphosphenes 2, featuring exo-cyclic coordinated Ni0 fragments. The endo-cyclic binding mode in 3 is realised by NHC-abstraction using CuCl, so demonstrating two homometallic binding modes for this system. Additionally, reaction with CuCl in acetonitrile yields small amounts of a tetra-metallic NiII/CuI complex, which establishes simultaneous exo- and endo-cyclic metal binding. Fluctional solution state behavior in these systems is explored through variable temperature NMR spectroscopy, in addition to computational bonding analyses, giving the first insights into this novel class of compounds.
Collapse
Affiliation(s)
- Lisa N Kreimer
- Fakultät für Chemie, Technische Universität München Lichtenberg Strasse 4 85747 Garching Germany
| | - Terrance J Hadlington
- Fakultät für Chemie, Technische Universität München Lichtenberg Strasse 4 85747 Garching Germany
| |
Collapse
|
16
|
Mukherjee N, Majumdar M. Diverse Functionality of Molecular Germanium: Emerging Opportunities as Catalysts. J Am Chem Soc 2024; 146:24209-24232. [PMID: 39172926 DOI: 10.1021/jacs.4c05498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Fundamental research on germanium as the central element in compounds for bond activation chemistry and catalysis has achieved significant feats over the last two decades. Designing strategies for small molecule activations and the ultimate catalysts established capitalize on the orbital modalities of germanium, apparently imitating the transition-metal frontier orbitals. There is a growing body of examples in contemporary research implicating the tunability of the frontier orbitals through avant-garde approaches such as geometric constrained empowered reactivity, bimetallic orbital complementarity, cooperative reactivity, etc. The goal of this Perspective is to provide readers with an overview of the emerging opportunities in the field of germanium-based catalysis by perceiving the underlying key principles. This will help to convert the discrete set of findings into a more systematic vision for catalyst designs. Critical exposition on the germanium's frontier orbitals participations evokes the key challenges involved in innovative catalyst designs, wherein viewpoints are provided. We close by addressing the forward-looking directions for germanium-based catalytic manifold development. We hope that this Perspective will be motivational for applied research on germanium as a constituent of pragmatic catalysts.
Collapse
Affiliation(s)
- Nilanjana Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Moumita Majumdar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| |
Collapse
|
17
|
Zeitz S, Kuznetsova Y, Fässler TF. Large Number of Direct or Pseudo-Direct Band Gap Semiconductors among A3TrPn2 Compounds with A = Li, Na, K, Rb, Cs; Tr = Al, Ga, In; Pn = P, As. Molecules 2024; 29:4087. [PMID: 39274935 PMCID: PMC11397444 DOI: 10.3390/molecules29174087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Due to the high impact of semiconductors with respect to many applications for electronics and energy transformation, the search for new compounds and a deep understanding of the structure-property relationship in such materials has a high priority. Electron-precise Zintl compounds of the composition A3TrPn2 (A = Li - Cs, Tr = Al - In, Pn = P, As) have been reported for 22 possible element combinations and show a large variety of different crystal structures comprising zero-, one-, two- and three-dimensional polyanionic substructures. From Li to Cs, the compounds systematically lower the complexity of the anionic structure. For an insight into possible crystal-structure band-structure relations for all compounds (experimentally known or predicted), their band structures, density of states and crystal orbital Hamilton populations were calculated on a basis of DFT/PBE0 and SVP/TZVP basis sets. All but three (Na3AlP2, Na3GaP2 and Na3AlAs2) compounds show direct or pseudo-direct band gaps. Indirect band gaps seem to be linked to one specific structure type, but only for Al and Ga compounds. Arsenides show smaller band gaps than phosphides due to weaker Tr-As bonds. The bonding situation was confirmed by a Mullikan analysis, and most states close to the Fermi level were assigned to non-bonding orbitals.
Collapse
Affiliation(s)
- Sabine Zeitz
- Chair of Inorganic Chemistry with Focus on Novel Materials, School of Natural Science, Technical University of Munich, Lichtenbergstraße 4, D-85747 Garching, Germany
| | - Yulia Kuznetsova
- Chair of Inorganic Chemistry with Focus on Novel Materials, School of Natural Science, Technical University of Munich, Lichtenbergstraße 4, D-85747 Garching, Germany
| | - Thomas F Fässler
- Chair of Inorganic Chemistry with Focus on Novel Materials, School of Natural Science, Technical University of Munich, Lichtenbergstraße 4, D-85747 Garching, Germany
| |
Collapse
|
18
|
Sugamata K, Asakawa T, Minoura M. Reactivity of a Linear 2-Germapropadiene with Acids, Ketones, and Amines. Chem Asian J 2024; 19:e202400262. [PMID: 38647108 DOI: 10.1002/asia.202400262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
The reactivity of an isolable 2-germapropadiene with acids, ketones, and amines was investigated. The reactions of 2-germapropagiene 1 with hydrogen chloride and acetic acid afforded the corresponding dichlorogermane (2) and diacetoxygermane (3), respectively, indicating that the central germanium atom of 1 is electrophilic. The reaction of 1 with benzaldehyde proceeds via a formal [2+2] cycloaddition to afford the corresponding spiro compound (4). Moreover, 1 reacts smoothly with acetone to furnish germane 5, which contains a six-membered ring involving two acetone molecules. Furthermore, 1 undergoes N-H bond insertion with methylamine or aniline to afford diamino germanes 7 and 8, respectively. The reaction of 1 with urea selectively afforded the corresponding N-H-insertion product (8).
Collapse
Affiliation(s)
- Koh Sugamata
- College of Science, Department of Chemistry, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Teppei Asakawa
- College of Science, Department of Chemistry, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Mao Minoura
- College of Science, Department of Chemistry, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| |
Collapse
|
19
|
Akhtar R, Gaurav K, Khan S. Applications of low-valent compounds with heavy group-14 elements. Chem Soc Rev 2024; 53:6150-6243. [PMID: 38757535 DOI: 10.1039/d4cs00101j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Over the last two decades, the low-valent compounds of group-14 elements have received significant attention in several fields of chemistry owing to their unique electronic properties. The low-valent group-14 species include tetrylenes, tetryliumylidene, tetrylones, dimetallenes and dimetallynes. These low-valent group-14 species have shown applications in various areas such as organic transformations (hydroboration, cyanosilylation, N-functionalisation of amines, and hydroamination), small molecule activation (e.g. P4, As4, CO2, CO, H2, alkene, and alkyne) and materials. This review presents an in-depth discussion on low-valent group-14 species-catalyzed reactions, including polymerization of rac-lactide, L-lactide, DL-lactide, and caprolactone, followed by their photophysical properties (phosphorescence and fluorescence), thin film deposition (atomic layer deposition and vapor phase deposition), and medicinal applications. This review concisely summarizes current developments of low-valent heavier group-14 compounds, covering synthetic methodologies, structural aspects, and their applications in various fields of chemistry. Finally, their opportunities and challenges are examined and emphasized.
Collapse
Affiliation(s)
- Ruksana Akhtar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Kumar Gaurav
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Shabana Khan
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| |
Collapse
|
20
|
Alnasr H, Mroß D, Platzek A, Nayyar B, Řičica T, Schollmeyer D, Jambor R, Hoffmann A, Jurkschat K. Intramolecularly O,N,O-Coordinated Tin(II) Salts: Syntheses, Structures, Cyclization, and Transition Metal Complexation. Chemistry 2024:e202400580. [PMID: 38838081 DOI: 10.1002/chem.202400580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
We report the syntheses of tin(II) salts of the types [L1SnX]SnX3 [L1=2,6-{(i-PrO)2(O)P}2C5H3N: 1, X=Cl; 2, X=Br], [L2SnCl]SnCl3 [L2=2-{(i-PrO)Ph(O)P}-6-{(i-PrO)2(O)P}C5H3N: 3], [L3SnX]SnX3 [L3=2,6-{MeO(O)C}2C5H3N: 4, X=Cl; 5, X=Br], [L4SnX]SnX3 [L4=2,6-{Et2N(O)C}2C5H3N: 6, X=Cl; 7, X=Br]. These compounds were obtained by addition of SnX2 to the corresponding ligand inducing autoionization of the respective tin(II) halide. The thermal stability of 1, 3, and 4 was elucidated, giving, under ester cleavage and cyclisation, the tin(II) derivatives 8-12. The reaction of [L1SnCl]SnCl3 (1) with W(CO)4(thf)2 afforded the tungsten tetracarbonyl complex [{L1SnCl}{SnCl3}W(CO)4] (13), representing the first example in which a tin(II) stannate anion and a tin(II) stannylium cation simultaneously coordinate to a transition metal centre. The compounds were characterized by single crystal X-ray diffraction analyses and in part by elemental analyses, IR and NMR spectroscopy, electrospray ionization mass spectrometry. DFT calculations accompany the experimental work.
Collapse
Affiliation(s)
- Hazem Alnasr
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, 44221, Dortmund, Germany
| | - David Mroß
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, 44221, Dortmund, Germany
| | - André Platzek
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, 44221, Dortmund, Germany
| | - Bastian Nayyar
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, 44221, Dortmund, Germany
| | - Tomáš Řičica
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, 44221, Dortmund, Germany
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic
| | - Dieter Schollmeyer
- Johannes Gutenberg-Universität Mainz, Department Chemie, Zentrale Analytik, Duesbergweg 10-14, 55099 Mainz, Germany
| | - Roman Jambor
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic
| | - Alexander Hoffmann
- RWTH Aachen University, Institut für Anorganische Chemie, Landoltweg 1a, 52074, Aachen, Germany
| | - Klaus Jurkschat
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, 44221, Dortmund, Germany
| |
Collapse
|
21
|
Shere HTW, Liu HY, Neale SE, Hill MS, Mahon MF, McMullin CL. The borylamino-diborata-allyl anion. Chem Sci 2024; 15:7999-8007. [PMID: 38817583 PMCID: PMC11134337 DOI: 10.1039/d4sc01953a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 04/28/2024] [Indexed: 06/01/2024] Open
Abstract
Reactions of β-diketiminato alkaline earth alkyldiboranate derivatives [(BDI)Ae{pinBB(R)pin}] (BDI = HC{(Me)CNDipp}2; Dipp = 2,6-i-Pr2C6H3; Ae = Mg, R = n-Bu or Ae = Ca, R = n-hexyl) with t-BuNC provide access to the respective group 2 derivatives of unprecedented diborata-allyl, {(pinB)2CNBpin(t-Bu)}-, anions. Although the necessary mode of B-C bond cleavage implicated in these transformations could not be elucidated, further studies of the reactivity of magnesium triboranates toward isonitriles delivered a more general and rational synthetic access to analogous anionic moieties. Extending this latter reactivity to a less symmetric triboranate variant also provided an isomeric Mg-C-bonded dibora-alkyl species and sufficient experimental insight to prompt theoretical evaluation of this reactivity. DFT calculations, thus, support a reaction pathway predicated on initial RNC attack at a peripheral boron centre and the intermediacy of such dibora-alkyl intermediates.
Collapse
Affiliation(s)
- Henry T W Shere
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Han-Ying Liu
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Samuel E Neale
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Michael S Hill
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Mary F Mahon
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Claire L McMullin
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| |
Collapse
|
22
|
Li J, Wang XF, Hu C, Liu LL. Carbene-Stabilized Phosphagermylenylidene: A Heavier Analog of Isonitrile. J Am Chem Soc 2024; 146:14341-14348. [PMID: 38726476 DOI: 10.1021/jacs.4c04434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Phosphagermylenylidenes (R-P═Ge), as heavier analogs of isonitriles, whether in their free state or as complexes with a Lewis base, have not been previously identified as isolable entities. In this study, we report the synthesis of a stable monomeric phosphagermylenylidene within the coordination sphere of a Lewis base under ambient conditions. This species was synthesized by Lewis base-induced dedimerization of a cyclic phosphagermylenylidene dimer or via Me3SiCl elimination from a phosphinochlorogermylene framework. The deliberate integration of a bulky, electropositive N-heterocyclic boryl group at the phosphorus site, combined with coordination stabilization by a cyclic (alkyl)(amino)carbene at the low-valent germanium site, effectively mitigated its natural tendency toward oligomerization. Structural analyses and theoretical calculations have demonstrated that this unprecedented species features a P═Ge double bond, characterized by conventional electron-sharing π and σ bonds, complemented by lone pairs at both the phosphorus and germanium atoms. Preliminary reactivity studies show that this base-stabilized phosphagermylenylidene demonstrates facile release of ligands at the Ge atom, coordination to silver through the lone pair on P, and versatile reactivity including both (cyclo)addition and cleavage of the P═Ge double bond.
Collapse
Affiliation(s)
- Jiancheng Li
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin-Feng Wang
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chaopeng Hu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liu Leo Liu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
23
|
Li W, Li CQ, Leng G, Yan YK, Ma Y, Xu Z, Yang L. Theoretical Investigation on Dialumenes toward Dihydrogen Activation: Mechanism and Ligand Effect. J Phys Chem A 2024; 128:3273-3284. [PMID: 38635947 DOI: 10.1021/acs.jpca.4c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Herein, we report a computation study based on the density functional theory calculations to understand the mechanism and ligand effect of the base-stabilized dialumenes toward dihydrogen activation. Among all of the examined modes of dihydrogen activation using the base-stabilized dialumene, we found that the concerted 1,2-hydrogenation of the Al═Al double bond is kinetically more preferable. The concerted 1,2-hydrogenation of the Al═Al double bond adopts an electron-transfer model with certain asynchrony. That is, the initial electron donation from the H-H σ bonding orbital to the empty 3p orbital of the Al1 center is followed by the backdonation from the lone pair electron of the Al2 center to the H-H σ antibonding orbital. Combined with the energy decomposition analysis on the transition states of the concerted 1,2-hydrogenation of the Al═Al double bond and the topographic steric mapping analysis on the free dialumenes, we ascribe the higher reactivity of the aryl-substituted dialumene over the silyl-substituted analogue in dihydrogen activation to the stronger electron-withdrawing effect of the aryl group, which not only increases the flexibility of the Al═Al double bond but also enhances the Lewis acidity of the Al═Al core. Consequently, the aryl-substituted dialumene fragment suffers less geometric deformation, and the orbital interactions between the dialumene and dihydrogen moieties are more attractive during the 1,2-hydrogenation process. Moreover, our calculations also predict that the Al═Al double bond has a good tolerance with the stronger electron-withdrawing group (-CF3) and the weaker σ-donating N-heterocyclic carbene (NHC) analogue (e.g., triazol carbene and NHSi). The reactivity of the dialumene in dihydrogen activation can be further improved by introducing these groups as the supporting ligand and the stabilizing base on the Al═Al core, respectively.
Collapse
Affiliation(s)
- Weiyi Li
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu, Sichuan 610039, P. R. China
| | - Cai-Qin Li
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, P. R. China
| | - Geng Leng
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- TIianfu Co-Innovation Center, University of Electronic Science and Technology of China, Chengdu 610299, P. R. China
| | - Ying-Kun Yan
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu, Sichuan 610039, P. R. China
| | - Yueyue Ma
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu, Sichuan 610039, P. R. China
| | - Ziyan Xu
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu, Sichuan 610039, P. R. China
| | - Lingsong Yang
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu, Sichuan 610039, P. R. China
| |
Collapse
|
24
|
Nasemann S, Franz R, Kargin D, Bruhn C, Kelemen Z, Gutmann T, Pietschnig R. At the limits of bisphosphonio-substituted stannylenes. Chem Asian J 2024; 19:e202300950. [PMID: 38091243 DOI: 10.1002/asia.202300950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/13/2023] [Indexed: 12/29/2023]
Abstract
Donor stabilization of Sn(II) and Pb(II) halides with 1,1'-ferrocenylene bridged bisphosphanes has been explored for Fe(C5H4P(C6H5)2)2 (dppf), and Fe(C5H4PH(C4H9))2. These bisphosphanes are reacted with SnBr2 and PbCl2 with and without additional Lewis acid (AlCl3) forming acyclic and cyclic donor adducts from which the latter represent bisphosphoniotetrylenes. Since dynamic exchange in solution is observed, characterization includes solution and solid-state NMR in addition to SC-XRD, amended by DFT calculations.
Collapse
Affiliation(s)
- Sina Nasemann
- Department of Chemistry, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany
| | - Roman Franz
- Department of Chemistry, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany
| | - Denis Kargin
- Department of Chemistry, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany
| | - Clemens Bruhn
- Department of Chemistry, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany
| | - Zsolt Kelemen
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem Rkp. 3, H-1111, Budapest, Hungary
| | - Torsten Gutmann
- Eduard Zintl Institute for Inorganic and Physical Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 8, 64287, Darmstadt, Germany
| | - Rudolf Pietschnig
- Department of Chemistry, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany
| |
Collapse
|
25
|
Zeitz S, Antoniuk H, Hlukhyy V, Fässler TF. Electronic Structure Analysis of the A 10Tt 2P 6 System (A=Li-Cs; Tt=Si, Ge, Sn) and Synthesis of the Direct Band Gap Semiconductor K 10Sn 2P 6. Chemistry 2024; 30:e202400002. [PMID: 38320961 DOI: 10.1002/chem.202400002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/08/2024]
Abstract
Investigating the relationship between atomic and electronic structures is a powerful tool to screen the wide variety of Zintl phases for interesting (opto-)electronic properties. To get an insight in such relations, the A10Tt2P6 system (A=Li-Cs; Tt=Si-Sn) was picked as model system to analyse the influence of structural motives, combination of elements and their properties on type and width of the band gaps. Those compounds comprise two interesting structural motives of their anions, which are either monomeric trigonal planar TtP3 5- units which are isostructural to CO3 2- or [Tt2P6]10- dimers which correspond to two edge-sharing TtP4 tetrahedra. The A10Tt2P6 compounds were structurally optimized for both polymorphs and subsequent frequency analysis, band structure as well as density of states calculations were performed. The Gibbs free energies were compared to determine temperature dependent stability, where Na10Si2P6, Na10Ge2P6 and K10Sn2P6 were found to be candidates for a high temperature phase transition between the two polymorphs. Additionally, the unknown, but predicted compound K10Sn2P6 was synthesized and characterized by single crystal and powder x-ray diffraction. It crystalizes in the monoclinic space group P 21/n and incorporates [Sn2P6]10- edge sharing double tetrahedra. It was determined to be a direct band gap semiconductor with a band gap of 2.57 eV.
Collapse
Affiliation(s)
- Sabine Zeitz
- School of Natural Science, Technical University of Munich, Chair of Inorganic Chemistry with Focus on Novel Materials, Lichtenbergstraße 4, D-85747, Garching, Germany
| | - Hanna Antoniuk
- School of Natural Science, Technical University of Munich, Chair of Inorganic Chemistry with Focus on Novel Materials, Lichtenbergstraße 4, D-85747, Garching, Germany
| | - Viktor Hlukhyy
- School of Natural Science, Technical University of Munich, Chair of Inorganic Chemistry with Focus on Novel Materials, Lichtenbergstraße 4, D-85747, Garching, Germany
| | - T F Fässler
- School of Natural Science, Technical University of Munich, Chair of Inorganic Chemistry with Focus on Novel Materials, Lichtenbergstraße 4, D-85747, Garching, Germany
| |
Collapse
|
26
|
Helling C, Döhler L, Kysliak O, Görls H, Liebing P, Wölper C, Kretschmer R, Schulz S. Metal-metal cooperativity boosts Lewis basicity and reduction properties of the bis(gallanediyl) CyL 2Ga 2. Dalton Trans 2024; 53:4922-4929. [PMID: 38410991 DOI: 10.1039/d4dt00172a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The interplay of two proximate gallium centres equips the bimetallic complex CyL2Ga2 (1, CyL2 = 1,2-trans-Cy[NC(Me)C(H)C(Me)N(Dip)]2, Dip = 2,6-i-Pr2C6H3) with increased Lewis basicity and higher reducing power compared to the monometallic gallanediyl LGa (2, L = HC[MeCN(Dip)]2) as evidenced by cross-over experiments. Quantum chemical calculations were employed to support the experimental findings.
Collapse
Affiliation(s)
- Christoph Helling
- Institute of Inorganic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany.
| | - Lotta Döhler
- Institute of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Oleksandr Kysliak
- Institute of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Helmar Görls
- Institute of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Phil Liebing
- Institute of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Christoph Wölper
- Institute of Inorganic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany.
| | - Robert Kretschmer
- Institute of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, 07743 Jena, Germany
- Institute of Chemistry, Chemnitz University of Technology, 09111 Chemnitz, Germany
| | - Stephan Schulz
- Institute of Inorganic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany.
- Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45117 Essen, Germany
| |
Collapse
|
27
|
Torstensen K, Ghosh A. From Diaminosilylenes to Silapyramidanes: Making Sense of the Stability of Divalent Silicon Compounds. ACS ORGANIC & INORGANIC AU 2024; 4:102-105. [PMID: 38344019 PMCID: PMC10853992 DOI: 10.1021/acsorginorgau.3c00041] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 01/08/2025]
Abstract
Since the discovery of decamethylsilicocene over three decades ago, chemists have successfully isolated a variety of divalent silicon compounds by orchestrating steric and electronic effects to their advantage. Two broad strategies of electronic stabilization appear to have been widely deployed, namely, π-conjugation as in diaminosilylenes and π-complexation as in decamethylsilicocene and silapyramidanes. Herein, we attempted to identify quantitative metrics for the electronic stabilization of silylenes. Singlet-triplet gaps and electron affinities, both physical observables, proved useful in this regard. Thus, the most stable silylenes exhibit unusually large singlet-triplet gaps and very low or negative gas-phase electron affinities. Both metrics signify low electrophilicity, i.e., a low susceptibility to nucleophilic attack. The chemical significance of the ionization potential associated with the Si-based lone pair, on the other hand, remains unclear.
Collapse
Affiliation(s)
- Kristian Torstensen
- Department of Chemistry, UiT − The Arctic University of Norway, N-9037 Tromso̷, Norway
| | - Abhik Ghosh
- Department of Chemistry, UiT − The Arctic University of Norway, N-9037 Tromso̷, Norway
| |
Collapse
|
28
|
Ebeler F, Vishnevskiy YV, Neumann B, Stammler HG, Ghadwal RS. Isolation of an Anionic Dicarbene Embedded Sn 2 P 2 Cluster and Reversible CO 2 Uptake. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305545. [PMID: 38018314 PMCID: PMC10837339 DOI: 10.1002/advs.202305545] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/15/2023] [Indexed: 11/30/2023]
Abstract
Decarbonylation of a cyclic bis-phosphaethynolatostannylene [(ADC)Sn(PCO)]2 based on an anionic dicarbene framework (ADC = PhC{N(Dipp)C}2 ; Dipp = 2,6-iPr2 C6 H3 ) under UV light results in the formation of a Sn2 P2 cluster compound [(ADC)SnP]2 as a green crystalline solid. The electronic structure of [(ADC)SnP]2 is analyzed by quantum-chemical calculations. At room temperature, [(ADC)SnP]2 reversibly binds with CO2 and forms [(ADC)2 {SnOC(O)P}SnP]. [(ADC)SnP]2 enables catalytic hydroboration of CO2 and reacts with elemental selenium and Fe2 (CO)9 to afford [(ADC)2 {Sn(Se)P2 }SnSe] and [(ADC)Sn{Fe(CO)4 }P]2 , respectively. All compounds are characterized by multinuclear NMR spectroscopy and their solid-state molecular structures are determined by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Falk Ebeler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Yury V Vishnevskiy
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| |
Collapse
|
29
|
Kawase Y, Tsujimoto S, Obayashi T, Kimura S, Ito K, Ikoma S, Ota K, Hashizume D, Matsuo T. Selective monooxygenation of diphosphenes with molecular oxygen. Dalton Trans 2024; 53:1956-1960. [PMID: 38235826 DOI: 10.1039/d3dt04348g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The O2 splitting mediated by the bulky Rind-based diphosphenes resulted in the clean formation of the mixed-valent diphosphorus compounds, diphosphene oxides, with P2O moieties. Their structural features and electronic properties have been clearly characterized by experimental and theoretical methods.
Collapse
Affiliation(s)
- Yuria Kawase
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Shota Tsujimoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Tomohiro Obayashi
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Satoshi Kimura
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Kanta Ito
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Shotaro Ikoma
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Kei Ota
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tsukasa Matsuo
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| |
Collapse
|
30
|
Xia SH, He J, Liu Z, Liu Y, Zhang Y, Xie Y, Lahm ME, Robinson GH, Schaefer HF. Structures and Energetics of E 2H 3+ (E = As, Sb, and Bi) Cations. J Phys Chem A 2024; 128:563-571. [PMID: 38227954 PMCID: PMC10823464 DOI: 10.1021/acs.jpca.3c05945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
E2H2 (E = As, Sb, Bi) structures involving multiple bonds have attracted much attention recently. The E2H3+ cations (protonated E2H2) are predicted to be viable with substantial proton affinities (>180 kcal/mol). Herein, the bonding characters and energetics of a number of E2H3+ isomers are explored through CCSD(T) and DFT methods. For the As2H3+ system, the CCSD(T)/cc-pVQZ-PP method predicts that the vinylidene-like structure lies lowest in energy, with the trans and cis isomers higher by 6.7 and 9.3 kcal/mol, respectively. However, for Sb2H3+ and Bi2H3+ systems, the trans isomer is the global minimum, while the energies of the cis and vinylidene-like structures are higher, respectively, by 2.0 and 2.4 kcal/mol for Sb2H3+ and 1.6 and 15.0 kcal/mol for Bi2H3+. Thus, the vinyledene-like structure is the lowest energy for the arsenic system but only a transition state of the bismuth system. With permanent dipole moments, all minima may be observable in microwave experiments. Besides, we have also obtained transition states and planar-cis structures with higher energies. The current results should provide new insights into the various isomers and provide a number of predictions for future experiments.
Collapse
Affiliation(s)
- Shu-Hua Xia
- College
of Life and Environmental Sciences, Minzu
University of China, Beijing 100081, China
| | - Jihuan He
- College
of Life and Environmental Sciences, Minzu
University of China, Beijing 100081, China
| | - Zhuoqun Liu
- College
of Life and Environmental Sciences, Minzu
University of China, Beijing 100081, China
| | - Yunhan Liu
- College
of Life and Environmental Sciences, Minzu
University of China, Beijing 100081, China
| | - Yan Zhang
- College
of Life and Environmental Sciences, Minzu
University of China, Beijing 100081, China
| | - Yaoming Xie
- Department
of Chemistry and Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Mitchell E. Lahm
- Department
of Chemistry and Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Gregory H. Robinson
- Department
of Chemistry and Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Henry F. Schaefer
- Department
of Chemistry and Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
31
|
Walsgrove HTG, Percival PW, Gates DP. Probing Radical Addition to 1-Phosphabutadienes by Employing Muonium as a "Light Isotope" of Hydrogen. Chemistry 2024; 30:e202302869. [PMID: 37837229 DOI: 10.1002/chem.202302869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/15/2023]
Abstract
Understanding free radical addition to multiple bonds is important to elucidating the mechanistic details of addition polymerization reactions, albeit the fleeting radical intermediates are very difficult to detect by conventional methodologies. Muon spin spectroscopy (μSR) is a highly sensitive method that can detect radical species at 106 spins (cf. EPR: 1012 spins, NMR: 1018 spins). Herein, we employ μSR to detect the radical-addition products from three 1-phosphabutadiene monomers, P-analogues of isoprene. We show that muonium (Mu), a "light" H-atom surrogate, adds predominantly at the C4 position of the P1 =C2 -C3 =C4 moiety to give unprecedented 1-phosphaallyl radicals as the major products. Our structural assignments are supported by assignment of muon, phosphorus and proton hyperfine coupling constants using DFT-calculations. A minor radical product is also detected that is tentatively assigned to an PC3 -heterocyclic free radical. On the basis of DFT-predictions, we speculate that its formation may involve initial addition of Mu+ at the C3 position followed by electron capture. These studies provide rare insights into the prospective radical (or cationic) polymerization of 1-phosphabutadienes, which have previously been polymerized using anionic initiation.
Collapse
Affiliation(s)
- Henry T G Walsgrove
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Paul W Percival
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
- Centre for Molecular and Materials Science TRIUMF, Vancouver, British Columbia, V6T 2A3, Canada
| | - Derek P Gates
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| |
Collapse
|
32
|
Chen H, Chen Y, Li T, Wang D, Xu L, Tan G. Synthesis and Reactivity of N-Heterocyclic Carbene Coordinated Formal Germanimidoyl-Phosphinidenes. Inorg Chem 2023; 62:20906-20912. [PMID: 38095884 DOI: 10.1021/acs.inorgchem.3c03353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Treatment of N-heterocyclic carbene (NHC) ligated germylidenylphosphinidene MsFluidtBu-GeP(NHCiPr) (where MsFluidtBu is a bulky hydrindacene substituent, and NHCiPr is 1,3-diisopropyl-4,5-dimethyl-imidazolin-2-ylidene) with mesityl azide and 4-tertbutylphenyl azide afforded NHC coordinated formal germanimidoyl-phosphinidenes, which represent the first compounds bearing both Ge═N double bond and phosphinidene functionalities. Studies of the chemical properties revealed that the reactions preferred to occur at the Ge═N double bond, which underwent [2 + 2] cycloadditions with CO2 and ethyl isocyanate, and coordinated with coinage metals through the nitrogen atom.
Collapse
Affiliation(s)
- Haonan Chen
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yizhen Chen
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tong Li
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Dongmin Wang
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lei Xu
- Jiangsu Key Lab of Data Engineering and Knowledge Service, Key Laboratory of Data Intelligence and Interdisciplinary Innovation, Nanjing University, Nanjing 210023, China
| | - Gengwen Tan
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
33
|
Bischoff IA, Morgenstern B, Zimmer M, Koldemir A, Pöttgen R, Schäfer A. Bis(tetrelocenes) - fusing tetrelocenes into close proximity. Dalton Trans 2023; 52:17928-17933. [PMID: 37981853 DOI: 10.1039/d3dt02664g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
We report the synthesis and structure of two bis(germanocenes) and a bis(stannocene), obtained by the reaction of unsymmetric ansa bis(cyclopentadienyl) ligands with germanium and tin dichloride. DFT calculations show that the formation of these bis(tetrelocenes) is energetically favoured over the formation of the corresponding [1]tetrelocenophanes. In the crystal structure authenticated structural motif, the two tetrel(II) centers are forced into close proximity to each other, resulting in weak donor-acceptor interactions, according to Natural Bond Orbital (NBO) and Atoms in Molecules (AIM) analyses.
Collapse
Affiliation(s)
- Inga-Alexandra Bischoff
- Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany.
| | - Bernd Morgenstern
- Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany.
| | - Michael Zimmer
- Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany.
| | - Aylin Koldemir
- Institute of Inorganic and Analytical Chemistry, Faculty of Chemistry and Pharmacy, University of Münster, Corrensstrasse 30, 48149 Münster, Germany
| | - Rainer Pöttgen
- Institute of Inorganic and Analytical Chemistry, Faculty of Chemistry and Pharmacy, University of Münster, Corrensstrasse 30, 48149 Münster, Germany
| | - André Schäfer
- Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany.
| |
Collapse
|
34
|
Zheng X, Crumpton AE, Ellwanger MA, Aldridge S. A planar per-borylated digermene. Dalton Trans 2023; 52:16591-16595. [PMID: 37961827 DOI: 10.1039/d3dt03416j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
A tetraboryl digermene synthesized by the reaction between a dianionic digermanide nucleophile and a boron halide electrophile is dimeric both in the solid state and in hydrocarbon solution. It features both a planar 'alkene-like' geometry for the Ge2B4 core, and an exceptionally short GeGe double bond. These structural features are consistent with the known electronic properties of the boryl group, and with lowest energy (in silico) fragmentation into two triplet bis(boryl)germylene fragments.
Collapse
Affiliation(s)
- Xiongfei Zheng
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | - Agamemnon E Crumpton
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | - Mathias A Ellwanger
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | - Simon Aldridge
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| |
Collapse
|
35
|
Barthélemy A, Scherer H, Daub M, Bugnet A, Krossing I. Structures, Bonding Analyses and Reactivity of a Dicationic Digallene and Diindene Mimicking trans-bent Ditetrylenes. Angew Chem Int Ed Engl 2023; 62:e202311648. [PMID: 37728006 DOI: 10.1002/anie.202311648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
The reaction of bisdicyclohexylphosphinoethane (dcpe) and the subvalent MI sources [MI (PhF)2 ][pf] (M=Ga+ , In+ ; [pf]- =[Al(ORF )4 ]- ; RF =C(CF3 )3 ) yielded the salts [{M(dcpe)}2 ][pf]2 , containing the first dicationic, trans-bent digallene and diindene structures reported so far. The non-classical MI ⇆MI double bonds are surprisingly short and display a ditetrylene-like structure. The bonding situation was extensively analyzed by quantum chemical calculations, QTAIM (Quantum Theory of Atoms in Molecules) and EDA-NOCV (Energy Decomposition Analysis with the combination of Natural Orbitals for Chemical Valence) analyses and is compared to that in the isoelectronic and isostructural, but neutral digermenes and distannenes. The dissolved [{Ga(dcpe)}2 ]2+ ([pf]- )2 readily reacts with 1-hexene, cyclooctyne, diphenyldisulfide, diphenylphosphine and under mild conditions at room temperature. This reactivity is analyzed and rationalized.
Collapse
Affiliation(s)
- Antoine Barthélemy
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Harald Scherer
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Michael Daub
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Alexis Bugnet
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Ingo Krossing
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| |
Collapse
|
36
|
Baradzenka AG, Vyboishchikov SF, Pilkington M, Nikonov GI. Base-Stabilized Phosphinidene Oxide, Imide and Sulfide. Chemistry 2023; 29:e202301842. [PMID: 37490421 DOI: 10.1002/chem.202301842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 07/27/2023]
Abstract
Oxidation of a base-stabilized phosphinidene (κ2 -NNP)P (12, NNP=phosphinoamidinate) with N2 O afforded a labile phosphinidene oxide (κ2 -NNP)P=O (16) which was characterized by NMR spectroscopy. Further oxidation of 16 by N2 O or reaction of 12 with two equivalents of pyridine oxide afforded the isolable dioxide (κ2 -NNP)PO2 which was characterized by NMR and SC XRD. Trapping of 16 with tolyl isocyanate resulted in P=O/N=C metathesis, eventually affording a urea-ligated phosphine (κ1 -NNP)P(NTol)2 C=O (17) The mechanism of this reaction was elucidated by DFT calculations. Reactions of phosphinidene 12 with azides generated transient imines (NNP)P=NR, which in the case of R=Tol underwent cycloaddition with tolyl Isocyanate to afford the urea product 17, and in the case of R=SiMe3 reacts with N3 SiMe3 via the addition of N-Si across the P=N bond affording, after the extrusion of dinitrogen, a P,N-heterocyclic compound. Both products of the reactions with azides have been fully characterized, both in solution and the solid-state. Finally, reaction of phosphinidene 12 with one equivalent of sulfur resulted in the isolation of the base-stabilized phosphinidene sulfide (κ2 -NNP)P=S that has also been fully characterized.
Collapse
Affiliation(s)
- Aliona G Baradzenka
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada
| | - Sergei F Vyboishchikov
- Institut de Química Computacional i Catàlisi and Departament de Química Universitat de Girona, Carrer Maria Aurèlia Capmany 69, 17003, Girona, Spain
| | - Melanie Pilkington
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada
| | - Georgii I Nikonov
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada
| |
Collapse
|
37
|
Zhang H, Wang Y, Lu Q, Song J, Duan Y, Zeng Y, Mo Y. Stretched Central Double Bonds in Dialumene and Disilene by Amino Substituents: A Case of Lone Pair Repulsion. Chemistry 2023; 29:e202301862. [PMID: 37506171 DOI: 10.1002/chem.202301862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 07/30/2023]
Abstract
There have been remarkable advances in the syntheses and applications of groups 13 and 14 homonuclear ethene analogues. However, successes are largely limited to aryl- and/or silyl-substituted species. Analogues bearing two or more heteroatoms are still scarce. In this work, the block-localized wavefunction (BLW) method at the density functional theory (DFT) level was employed to study dialumene and disilene bearing two amino substituents whose optimal geometries exhibit significantly stretched central M=M (M=Al or Si) double bonds compared with aryl- and/or silyl-substituted species. Computational analyses showed that the repulsion between the lone electron pairs of amino substituents and M=M π bond plays a critical role in the elongation of the M=M bonds. Evidently, replacing the substituent groups -NH2 with -BH2 can enhance the planarity and shorten the central double bonds due to the absence of lone pair electrons in BH2 .
Collapse
Affiliation(s)
- Huaiyu Zhang
- Institute of Computational Quantum Chemistry, and Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yating Wang
- Institute of Computational Quantum Chemistry, and Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Qingrui Lu
- Institute of Computational Quantum Chemistry, and Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jinshuai Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yandong Duan
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, School of Sciences, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Yanli Zeng
- Institute of Computational Quantum Chemistry, and Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yirong Mo
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| |
Collapse
|
38
|
Parvathy P, Parameswaran P. Inorganometallic allenes [(Mn(η 5-C 5H 5)(CO) 2) 2(μ-E)] (E = Si-Pb): bis-allylic anionic delocalisation similar to organometallic allene but differential σ-donation and π-backdonation. Phys Chem Chem Phys 2023; 25:26526-26537. [PMID: 37752826 DOI: 10.1039/d3cp03211f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The chemistry of heavy group-14 tetrel atoms is known to diverge from that of the lighter congener carbon. Here, we report the structure and bonding in inorganometallic allenes [(MnCp(CO)2)2(μ-E)] (2E, E = Si-Pb; Cp = η5-C5H5). These inorganometallic allenes are structurally similar to the lighter organometallic analog [(MnCp(CO)2)2(μ-C)] (2C). The bonding analysis of these compounds at the M06/def2-TZVPP//BP86/def2-SVP level of theory identifies a linear Mn-E-Mn spine with delocalised, mutually orthogonal π-systems across this back-bone. This results in a bis-allylic anionic bonding scenario. However, the strength of the Mn-E bonding is found to be weaker in these inorganometallic allenes. The energy decomposition analysis at the BP86/TZ2P//BP86/def2-SVP level of theory further reveals that the bonding in these compounds cannot be represented by one unique heuristic bonding model, but multiple bonding models. For all 2E (E = C-Pb), the Dewar-Chatt-Duncanson bonding model is one of the best bonding representations, where the central tetrel atom acts as a 4e- σ-donor and 4e- π-acceptor. The bonding analysis indicates that the carbon atom in the organometallic allene acts as a better π-acceptor than σ-donor, while the heavier tetrel atoms in the inorganometallic allenes are better σ-donors than π-acceptors. The npz-orbital is found to be a better σ-donor than the valence ns-orbital. However, when the bonding representation is changed to a traditional electron-sharing model, the contribution from the ns-orbital was found to be the largest in comparison to the interaction from the remaining three valence np-orbitals. It can be suggested that the ns-orbitals contribute more towards chemical bonding when participating via an electron-sharing interaction than a donor-acceptor interaction.
Collapse
Affiliation(s)
- Parameswaran Parvathy
- Department of Chemistry, National Institute of Technology Calicut, Kerala, 673601, India.
| | - Pattiyil Parameswaran
- Department of Chemistry, National Institute of Technology Calicut, Kerala, 673601, India.
| |
Collapse
|
39
|
Lin J, Liu S, Zhang J, Grützmacher H, Su CY, Li Z. Room temperature stable E, Z-diphosphenes: their isomerization, coordination, and cycloaddition chemistry. Chem Sci 2023; 14:10944-10952. [PMID: 37829033 PMCID: PMC10566463 DOI: 10.1039/d3sc04506d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/09/2023] [Indexed: 10/14/2023] Open
Abstract
E,Z-isomers display distinct physical properties and chemical reactivities. However, investigations on heavy main group elements remain limited. In this work, we present the isolation and X-ray crystallographic characterization of N-heterocyclic vinyl (NHV) substituted diphosphenes as both E- and Z-isomers (L[double bond, length as m-dash]CH-P[double bond, length as m-dash]P-CH[double bond, length as m-dash]L, E,Z-2b; L = N-heterocyclic carbene). E-2b is thermodynamically more stable and undergoes reversible photo-stimulated isomerization to Z-2b. The less stable Z-isomer Z-2b can be thermally reverted to E-2b. Theoretical studies support the view that this E ↔ Z isomerization proceeds via P[double bond, length as m-dash]P bond rotation, reminiscent of the isomerization observed in alkenes. Furthermore, both E,Z-2b coordinate to an AuCl fragment affording the complex [AuCl(η2-Z-2b)] with the diphosphene ligand in Z-conformation, exclusively. In contrast, E,Z-2b undergo [2 + 4] and [2 + 1] cycloadditions with dienes or diazo compounds, respectively, yielding identical cycloaddition products in which the phosphorus bound NHV groups are in trans-position to each other. DFT calculations provide insight into the E/Z-isomerisation and stereoselective formation of Au(i) complexes and cycloaddition products.
Collapse
Affiliation(s)
- Jieli Lin
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Shihua Liu
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Jie Zhang
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Hansjörg Grützmacher
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1 Zürich 8093 Switzerland
| | - Cheng-Yong Su
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Zhongshu Li
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| |
Collapse
|
40
|
Li Y, Dong S, Guo J, Ding Y, Zhang J, Zhu J, Cui C. π-Aromaticity Dominating in a Saturated Ring: Neutral Aromatic Silicon Analogues of Cyclobutane-1,3-diyls. J Am Chem Soc 2023; 145:21159-21164. [PMID: 37724997 DOI: 10.1021/jacs.3c06555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The synthesis, structures, and reactivity of the first neutral 2π-aromatic Si4 rings [LSiSiAr(X)]2 (3: X = Br; 4: X = Cl; L = PhC(NtBu)2, Ar = 2,4,6-Me3C6H2) were described. Compounds 3 and 4 were obtained by 1,3-halogenation of tetrasilacyclobutadiene (LSiSiAr)2 (2), which was prepared by the reductive cross-coupling of trisilane (ArSiCl2)2SiHAr with two equiv of chlorosilylene LSiCl. The reaction of 3 with two equiv of PhLi yielded the corresponding substitution Si4 ring [LSiSiAr(Ph)]2 (5). Single-crystal X-ray diffraction analysis of 3 disclosed that it adopts both puckered (3a) and planar (3b) structures in the solid state, whereas 4 and 5 exhibit only a puckered structure. DFT calculations suggested that the puckered 3a features almost the same electronic structure with fully delocalized 2π planar 3b. The dominant 2π-aromaticity of 3 in a σ-frame has been demonstrated by DFT calculations, providing the first example of aromatics featuring both planar and puckered structures.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Shicheng Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Junjie Guo
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Yazhou Ding
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Jianying Zhang
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Jun Zhu
- Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, People's Republic of China
| |
Collapse
|
41
|
Luo H, Wang J, Tian R, Duan Z. 2H-Phosphindole-Enabled Dearomatization and [4+2] Cycloaddition of (Hetero)Arenes. Chemistry 2023; 29:e202301898. [PMID: 37501587 DOI: 10.1002/chem.202301898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
The heavier main group multiple bonds offer an effective tool for small molecule activation. Transient 2H-phosphinidole working as a reactive phosphadiene system undergoes phospha-Diels-Alder reaction with a wide range of non-activated aromatic carbocycles and heterocycles, including naphthalene, anthracene, phenanthrene, furan, thiophene, pyrrole, pyridine, and benzo-fused heterocycles, affording concise access to a range of polycyclic fused rings feature with phosphorus at the bridgehead. These results demonstrate that non-activated (hetero)arenes are capable of acting as 2π systems in [4+2] cycloaddition with highly reactive 2H-phosphindole complex.
Collapse
Affiliation(s)
- Haotian Luo
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Junjian Wang
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Rongqiang Tian
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zheng Duan
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
42
|
Szlosek R, Seidl M, Balázs G, Scheer M. A General Pathway towards NHC ⋅ GaH 2 (OTf) Adducts - The Key for the Synthesis of NHC-Stabilized Cationic 13/15 Chain Compounds of Gallium. Chemistry 2023; 29:e202301752. [PMID: 37401824 DOI: 10.1002/chem.202301752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/05/2023]
Abstract
A general pathway towards NHC (NHC=N-heterocyclic carbene)-stabilized galliummonotriflates NHC ⋅ GaH2 (OTf) (NHC=IDipp, 1 a; IPr2 Me2 , 1 b; IMes, 1 c; IDipp=1,3-bis(2,6-diisopropylphenyl)-imidazolin-2-ylidene, IPr2 Me2 =1,3-bis-(diisopropyl)-4,5-dimethyl-imidazolin-2-ylidene, IMes=1,3-bis(2,4,6-trimethylphenyl)-imidazolin-2-ylidene) is reported. Quantum chemical calculations give detailed insight into the underlying reaction pathway. The obtained NHC ⋅ GaH2 (OTf) compounds were employed in reactions with donor-stabilized pnictogenylboranes to synthesize the elusive cationic parent 13/15/13 chain compounds [IDipp ⋅ GaH2 ER2 E'H2 ⋅ D][OTf] (3 a: D=IDipp, E=P, E'=B, R=H; 3 b: D=NMe3 , E=P, E'=B, R=H, 3 c: D=NMe3 , E=P, E'=B, R=Ph, 3 d: D=IDipp, E=P, E'=Ga, R=H). Supporting computational studies highlight the electronic features of the products.
Collapse
Affiliation(s)
- Robert Szlosek
- Institut für Anorganische Chemie, Universität Regensburg, 93053, Regensburg, Germany
| | - Michael Seidl
- Institut für Anorganische Chemie, Universität Regensburg, 93053, Regensburg, Germany
| | - Gábor Balázs
- Institut für Anorganische Chemie, Universität Regensburg, 93053, Regensburg, Germany
| | - Manfred Scheer
- Institut für Anorganische Chemie, Universität Regensburg, 93053, Regensburg, Germany
| |
Collapse
|
43
|
Bashkurov R, Fridman N, Bravo-Zhivotovskii D, Apeloig Y. The First Planar, Not Twisted, Distannene - A Structural Alkene Analog. Synthesis, Isolation and X-ray Crystallography Characterization. Chemistry 2023:e202302678. [PMID: 37675971 DOI: 10.1002/chem.202302678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/08/2023]
Abstract
The tetrasilyl-substituted distannene, (tBu2 HSi)2 Sn=Sn(SiHtBu2 )2 6, was synthesized by mild thermolysis (70 °C in hexane) of tris(di-tert-butyl-hydridosilyl)stannane 4. The X-ray crystallography structure of 6 reveals the following unusual structural properties: a planar geometry around both Sn atoms (Σ∡Sn=359.87°), a non-twisted Sn=Sn double bond, and the shortest Sn=Sn double bond of 2.599 Å among all acyclic distannenes. Thus, compound 6 is the first reported distannene having a structure closely analogous to a classic alkene. Reactions of 6 with CCl4 or with 2,3-dimethylbuta-1,3-diene to produce 1,2-dichlorodistannane 9 and the [2+4] cycloadduct 10, respectively, are characteristic for a Sn=Sn double bond.
Collapse
Affiliation(s)
- Roman Bashkurov
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Natalia Fridman
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | | | - Yitzhak Apeloig
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| |
Collapse
|
44
|
Nazish M, Legendre CM, Herbst-Irmer R, Muhammed S, Parameswaran P, Stalke D, Roesky HW. Synthesis and Characterization of Substituted Phosphasilenes and its Rare Homologue Stibasilene >Si=Sb. Chemistry 2023; 29:e202300791. [PMID: 37382048 DOI: 10.1002/chem.202300791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
Herein we report the reduction of R-EX2 (E=P, Sb) with two equivalents of KC8 in the presence of silylene (LSiR; L=PhC(NtBu)2 ) to give Trip-P=SiL(C6 H4 PPh2 ) (1), Ter Ph-P=(tBu)SiL (2) and Ter Ph-Sb=(tBu)SiL (3). The last (3) belongs to a new class of heavier analogues of Schiff bases (>C=N-), containing a formal >Si=Sb- double bond. The theoretical calculations suggest that lone pairs on the dicoordinated group-15 centers are stabilized by hyperconjugative interactions resulting in pseudo-Si-P/Si-Sb multiple bonds which are highly reactive as indicated by the high first and second proton affinities.
Collapse
Affiliation(s)
- Mohd Nazish
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstraße 4, 37077, Göttingen, Germany
| | - Christina M Legendre
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstraße 4, 37077, Göttingen, Germany
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstraße 4, 37077, Göttingen, Germany
| | - Shahila Muhammed
- National Institute of Technology Calicut, Kozhikode, Kerala, 673601, India
| | | | - Dietmar Stalke
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstraße 4, 37077, Göttingen, Germany
| | - Herbert W Roesky
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstraße 4, 37077, Göttingen, Germany
| |
Collapse
|
45
|
Lamprecht A, Lindl F, Endres L, Krummenacher I, Braunschweig H. Coinage metal complexes of BN analogues of m-terphenyl ligands. Chem Commun (Camb) 2023; 59:10149-10152. [PMID: 37530102 DOI: 10.1039/d3cc03467d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
We report the synthesis of a series of group 11 metal complexes with sterically demanding anionic nitrogen ligands based on the 1,2-azaborinine motif. The ligands, which share structural similarities with m-terphenyls, have been used to stabilize two-coordinate phosphine complexes and dimeric complexes with close contacts between the metal centers. Spectroscopic, crystallographic, and theoretical investigations reveal close parallels to the related m-terphenyl complexes, including metallophilic interactions in the dimers.
Collapse
Affiliation(s)
- Anna Lamprecht
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Felix Lindl
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Lukas Endres
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Ivo Krummenacher
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| |
Collapse
|
46
|
Mears KL, Power PP. London Dispersion Effects on the Stability of Heavy Tetrel Molecules. Chemistry 2023; 29:e202301247. [PMID: 37263972 DOI: 10.1002/chem.202301247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/03/2023]
Abstract
London dispersion (LD) interactions, which stem from long-range electron correlations arising from instantaneously induced dipoles can occur between neighboring atoms or molecules, for example, between H atoms within ligand C-H groups. These interactions are currently of interest as a new method of stabilizing long bonds and species with unusual oxidation states. They can also limit reactivity by installing LD enhanced groups into organic frameworks or ligand substituents. Here, we address the most recent advances in the design of LD enhanced ligands, the sterically counterintuitive structures that can be generated and the consequences that these interactions can have on the structures and reactivity of sterically crowded heavy group 14 species.
Collapse
Affiliation(s)
- Kristian L Mears
- Department of Chemistry, University of California One Shields Avenue, Davis, California, 95616, USA
| | - Philip P Power
- Department of Chemistry, University of California One Shields Avenue, Davis, California, 95616, USA
| |
Collapse
|
47
|
Taeufer T, Dankert F, Michalik D, Pospech J, Bresien J, Hering-Junghans C. Photochemical formation and reversible base-induced cleavage of a phosphagallene. Chem Sci 2023; 14:3018-3023. [PMID: 36937589 PMCID: PMC10016425 DOI: 10.1039/d2sc06292e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
The reactivity of Cp*Ga (Cp* = C5Me5) towards phosphanylidenephosphoranes of the type ArTerP(PMe3) (ArTer = DipTer 2,6-(2,6-iPr2C6H3)2C6H3), TipTer 2,6-(2,4,6-iPr3C6H2)2C6H3 was investigated. While no thermal reaction was observed (in line with DFT results), irradiation at 405 nm at low temperatures resulted in the formation of phosphagallenes DipTerP = GaCp* (1a) and TipTerP = GaCp* (1b) accompanied by release of PMe3. When warming the reaction mixture to ambient temperatures without irradiation, the clean re-formation of ArTerP(PMe3) and Cp*Ga in a second-order reaction was observed. Upon removal of PMe3, 1a and 1b were isolated and fully characterized. Both derivatives were found to be labile and decomposed to the phosphafluorenes 2a and 2b, indicating generation of the transient phosphinidene ArTerP along with Cp*Ga. First reactivity studies show that CO2 and H2O cleanly reacted with 1a, affording DipTerPCO (3) and DipTerPH2 (4), respectively.
Collapse
Affiliation(s)
- T Taeufer
- Leibniz Institut für Katalyse e.V. (LIKAT) A.-Einstein.-Str. 29a 18059 Rostock Germany https://www.catalysis.de/forschung/katalytische-funktionalisierungen https://www.catalysis.de/forschung/katalyse-mit-erneuerbaren-rohstoffen/bioinspirierte-katalyse
| | - F Dankert
- Leibniz Institut für Katalyse e.V. (LIKAT) A.-Einstein.-Str. 29a 18059 Rostock Germany https://www.catalysis.de/forschung/katalytische-funktionalisierungen https://www.catalysis.de/forschung/katalyse-mit-erneuerbaren-rohstoffen/bioinspirierte-katalyse
| | - D Michalik
- Leibniz Institut für Katalyse e.V. (LIKAT) A.-Einstein.-Str. 29a 18059 Rostock Germany https://www.catalysis.de/forschung/katalytische-funktionalisierungen https://www.catalysis.de/forschung/katalyse-mit-erneuerbaren-rohstoffen/bioinspirierte-katalyse
- Institute of Chemistry, University of Rostock A.-Einstein.-Str. 3a 18059 Rostock Germany https://www.chemie.uni-rostock.de/arbeitsgruppen/anorganische-chemie/dr-jonas-bresien/
| | - J Pospech
- Leibniz Institut für Katalyse e.V. (LIKAT) A.-Einstein.-Str. 29a 18059 Rostock Germany https://www.catalysis.de/forschung/katalytische-funktionalisierungen https://www.catalysis.de/forschung/katalyse-mit-erneuerbaren-rohstoffen/bioinspirierte-katalyse
| | - J Bresien
- Institute of Chemistry, University of Rostock A.-Einstein.-Str. 3a 18059 Rostock Germany https://www.chemie.uni-rostock.de/arbeitsgruppen/anorganische-chemie/dr-jonas-bresien/
| | - C Hering-Junghans
- Leibniz Institut für Katalyse e.V. (LIKAT) A.-Einstein.-Str. 29a 18059 Rostock Germany https://www.catalysis.de/forschung/katalytische-funktionalisierungen https://www.catalysis.de/forschung/katalyse-mit-erneuerbaren-rohstoffen/bioinspirierte-katalyse
| |
Collapse
|
48
|
Zhu H, Hanusch F, Inoue S. Facile Bond Activation of Small Molecules by an Acyclic Imino(silyl)silylene. Isr J Chem 2023. [DOI: 10.1002/ijch.202300012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Huaiyuan Zhu
- School of Natural Sciences Department of Chemistry Catalysis Research Center and Institute of Silicon Chemistry Technische Universität München Lichtenbergstraße 4 85748 Garching bei München Germany
| | - Franziska Hanusch
- School of Natural Sciences Department of Chemistry Catalysis Research Center and Institute of Silicon Chemistry Technische Universität München Lichtenbergstraße 4 85748 Garching bei München Germany
| | - Shigeyoshi Inoue
- School of Natural Sciences Department of Chemistry Catalysis Research Center and Institute of Silicon Chemistry Technische Universität München Lichtenbergstraße 4 85748 Garching bei München Germany
| |
Collapse
|
49
|
Wang Y, Robinson GH. Counterintuitive Chemistry: Carbene Stabilization of Zero-Oxidation State Main Group Species. J Am Chem Soc 2023; 145:5592-5612. [PMID: 36876997 DOI: 10.1021/jacs.2c13574] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Carbenes have evolved from transient laboratory curiosities to a robust, diverse, and surprisingly impactful ligand class. A variety of different carbenes have significantly contributed to the development of low-oxidation state main group chemistry. This Perspective focuses upon advances in the chemistry of carbene complexes containing main group element cores in the formal oxidation state of zero, including their diverse synthetic strategies, unusual bonding and structural motifs, and utility in transition metal coordination chemistry and activation of small molecules.
Collapse
Affiliation(s)
- Yuzhong Wang
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556, United States
| | - Gregory H Robinson
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556, United States
| |
Collapse
|
50
|
Sikora P, Naumann R, Förster C, Heinze K. Excited state energy landscape of phosphorescent group 14 complexes. Chem Sci 2023; 14:2489-2500. [PMID: 36908954 PMCID: PMC9993841 DOI: 10.1039/d2sc06984a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Great progress has been achieved on phosphorescent or photoactive complexes of the Earth-abundant transition metals, while examples for phosphorescent heavy main group element complexes are rare, in particular for group 14 complexes in the oxidation state +II. The known compounds often show only weak phosphorescence with fast non-radiative deactivation. The underlying photophysical processes and the nature of the phosphorescent electronic states have remained essentially unexplored. The present combined photophysical and theoretical study on tin(ii) and lead(ii) complexes E(bpep) with the dianionic tridentate ligand bpep2- (E = Sn, Pb; H2bpep = 2-[1,1-bis(1H-pyrrol-2-yl)ethyl]pyridine) provides unprecedented insight in the excited state energy landscape of tetrel(ii) complexes. The tin complex shows green intraligand charge transfer (ILCT) phosphorescence both in solution and in the solid state. In spite of its larger heavy-atom effect, the lead complex only shows very weak red phosphorescence from a strongly distorted ligand-to-metal charge transfer (LMCT) state at low temperatures in the solid state. Detailed (TD-)DFT calculations explain these observations and delineate the major path of non-radiative deactivation via distorted LMCT states. These novel insights provide rational design principles for tetrel(ii) complexes with long-lived phosphorescence.
Collapse
Affiliation(s)
- Philipp Sikora
- Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany
| | - Robert Naumann
- Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany
| | - Christoph Förster
- Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany
| | - Katja Heinze
- Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|