1
|
Pal A, Bhattacharya S, Ma X, Ben Kiran A, Silvestru C, Kortz U. Fluorinated Arylarsonate-Containing Polyoxomolybdates: pH-Dependent Formation of Mo 6 vs Mo 12 Species and Their Solution Properties. Inorg Chem 2024; 63:18838-18846. [PMID: 39324758 PMCID: PMC11462504 DOI: 10.1021/acs.inorgchem.4c02951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
We report on the synthesis and structural characterization of six novel arylarsonate-containing polyoxomolybdates with fluorinated-functionalities in the para position of the phenyl ring. The reaction of the various arylarsonic acids, RAsO3H2 [R = 4-F-C6H4 (H2LF), 4-F3C-C6H4 (H2LCF3), 4-F3CO-C6H4 (H2LOCF3)] with Na2MoO4·2H2O in aqueous pH 3 solution resulted in the heteropoly-6-molybdates [{(4-F-C6H4)As}2Mo6O24(H2O)]4- (1), [{(4-F3C-C6H4)As}2Mo6O24]4- (2) and [{(4-F3CO-C6H4)As}2Mo6O24(H2O)]4- (3), which were isolated as guanidinium salts. When the reaction was performed in aqueous pH 1 solution the inverted-Keggin type heteropoly-12-molydates [{(4-F-C6H4)As}4Mo12O46]4- (4), [{(4-F3C-C6H4)As}4Mo12O46]4- (5) and [{(4-F3CO-C6H4)As}4Mo12O46]4- (6), were obtained and isolated as sodium salts. The 6-molybdates 1-3 and the 12-molybdates 4-6 can be easily interconverted reversibly in solution as a function of pH (3 vs 1). Polyanions 1 and 3 are isostructural and they exhibit a bent hexamolybdate ring, whereas the ring is flat for 2. The inverted-Keggin polyanions 4-6 are isostructural and the metal-oxo core is capped by four arylarsonate groups. All six polyanions have been characterized in the solid state by single-crystal X-ray diffraction, Fourier transform infrared spectroscopy, and hermogravimetric analysis as well as in solution by multinuclear NMR (1H, 19F). The synthetic procedures for the arsonic acids (4-F3C-C6H4)AsO3H2 (H2LCF3) and (4-F3CO-C6H4)AsO3H2 (H2LOCF3) are reported for the first time.
Collapse
Affiliation(s)
- Arun Pal
- School
of Science, Constructor University, Campus Ring 1, Bremen 28759, Germany
| | - Saurav Bhattacharya
- School
of Science, Constructor University, Campus Ring 1, Bremen 28759, Germany
- Department
of Chemistry, BITS Pilani K. K. Birla Goa
Campus, Zuarinagar 403726 Goa, India
| | - Xiang Ma
- School
of Science, Constructor University, Campus Ring 1, Bremen 28759, Germany
- Fujian
Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials,
College of Chemistry, Fuzhou University, Fuzhou 350108 Fujian, China
| | - Ahmad Ben Kiran
- Department
of Chemistry, Supramolecular Organic and Organometallic Chemistry
Centre (SOOMCC), Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos, Cluj-Napoca 400028, Romania
| | - Cristian Silvestru
- Department
of Chemistry, Supramolecular Organic and Organometallic Chemistry
Centre (SOOMCC), Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos, Cluj-Napoca 400028, Romania
| | - Ulrich Kortz
- School
of Science, Constructor University, Campus Ring 1, Bremen 28759, Germany
| |
Collapse
|
2
|
Iftikhar T, Rosnes MH. Covalent organic-inorganic polyoxometalate hybrids in catalysis. Front Chem 2024; 12:1447623. [PMID: 39268008 PMCID: PMC11391350 DOI: 10.3389/fchem.2024.1447623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Polyoxometalates (POMs) are a class of compounds known for the vast range of tunable structures and properties available, leading to applications in areas such as catalysis, energy, and advanced medicine. The ability to covalently functionalize POMs with organic components has been investigated extensively to tune the physical and chemical properties of the resulting hybrid materials. These hybrids, where the organic entity is covalently attached to the POM-core ( Class II hybrid POMs) result in a vast library of promising customizable catalytic systems, displaying tunable properties with a high level of synergy between the polyanion and the organic component. A number of Class II hybrids have been investigated for a wide range of catalytic applications, and here, we give a brief overview of Class II hybrids of the p-block elements and their applications in catalysis.
Collapse
Affiliation(s)
- Tuba Iftikhar
- Department of Chemistry, University of Bergen, Bergen, Norway
| | - Mali H Rosnes
- Department of Chemistry, University of Bergen, Bergen, Norway
| |
Collapse
|
3
|
Zhang XY, Fan JA, Chen ZH, Sun C, Zheng ST. The mechanism governing the formation of intermolecular charge transfer bands: a series of polyoxomolybdates as a case study. Dalton Trans 2024; 53:6162-6167. [PMID: 38488144 DOI: 10.1039/d4dt00108g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A series of proof-of-concept models of polyoxomolybdates with different protonated disubstituted aniline counterions and the same β-Mo8O26 polyanion were synthesized to study the mechanism governing the formation of the intermolecular charge transfer (inter-CT) band.
Collapse
Affiliation(s)
- Xiao-Yue Zhang
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China.
| | - Jin-Ai Fan
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China.
| | - Zhe-Hong Chen
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China.
| | - Cai Sun
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China.
| | - Shou-Tian Zheng
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China.
| |
Collapse
|
4
|
Ma T, Yan R, Wu X, Wang M, Yin B, Li S, Cheng C, Thomas A. Polyoxometalate-Structured Materials: Molecular Fundamentals and Electrocatalytic Roles in Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310283. [PMID: 38193756 DOI: 10.1002/adma.202310283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Polyoxometalates (POMs), a kind of molecular metal oxide cluster with unique physical-chemical properties, have made essential contributions to creating efficient and robust electrocatalysts in renewable energy systems. Due to the fundamental advantages of POMs, such as the diversity of molecular structures and large numbers of redox active sites, numerous efforts have been devoted to extending their application areas. Up to now, various strategies of assembling POM molecules into superstructures, supporting POMs on heterogeneous substrates, and POMs-derived metal compounds have been developed for synthesizing electrocatalysts. From a multidisciplinary perspective, the latest advances in creating POM-structured materials with a unique focus on their molecular fundamentals, electrocatalytic roles, and the recent breakthroughs of POMs and POM-derived electrocatalysts, are systematically summarized. Notably, this paper focuses on exposing the current states, essences, and mechanisms of how POM-structured materials influence their electrocatalytic activities and discloses the critical requirements for future developments. The future challenges, objectives, comparisons, and perspectives for creating POM-structured materials are also systematically discussed. It is anticipated that this review will offer a substantial impact on stimulating interdisciplinary efforts for the prosperities and widespread utilizations of POM-structured materials in electrocatalysis.
Collapse
Affiliation(s)
- Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Rui Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xizheng Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Bo Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Arne Thomas
- Department of Chemistry, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| |
Collapse
|
5
|
Murmu G, Samajdar S, Ghosh S, Shakeela K, Saha S. Tungsten-based Lindqvist and Keggin type polyoxometalates as efficient photocatalysts for degradation of toxic chemical dyes. CHEMOSPHERE 2024; 346:140576. [PMID: 38303401 DOI: 10.1016/j.chemosphere.2023.140576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 02/03/2024]
Abstract
Photocatalytic dye degradation employing polyoxometalates (POMs) has been a research focus for several years. We report the facile synthesis of tungsten-based Lindqvist and Keggin-type POMs that degrade toxic chemical dyes, methyl orange (MO) and methylene blue (MB), respectively. The Lindqvist POM, sodium hexatungstate, Na2W6O19, degrades MO under 100 W UV light irradiation within 15 min, whereas the Keggin POM, Ag4PW11VO40, degrades MB under 20 W visible light source within 180 min. The effect of various operating parameters, such as photocatalyst concentration, pH, time, and initial dye concentration, were assessed in the degradation of both dyes. The photoelectrochemical performance of the as-synthesized polyoxometalates shows that the Ag4PW11VO40 shows 2.4 times higher photocurrent density than Na2W6O19 at a potential of 0.9 V vs. Ag/AgCl. Electrochemical impedance analysis reveals that Ag4PW11VO40 exhibits much lower charge transfer resistance as compared to Na2W6O19, which indicates facile charge transfer at the electrode-electrolyte interface. Further Mott-Schottky measurements reveal that both the catalysts possess n-type semiconductivity and the charge carrier concentration of Ag4PW11VO40 (5.89 × 1019 cm-3) is 1.4 times higher as compared to Na2W6O19 (4.25 × 1019 cm-3). This work offers a new paradigm for designing polyoxometalates suitable for efficient photocatalytic degradation of organic dyes.
Collapse
Affiliation(s)
- Gajiram Murmu
- Materials Chemistry Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, Odisha 751013, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Soumita Samajdar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India; Energy Materials & Devices Division, CSIR - Central Glass and Ceramic Research Institute, Kolkata, 700032, India
| | - Srabanti Ghosh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India; Energy Materials & Devices Division, CSIR - Central Glass and Ceramic Research Institute, Kolkata, 700032, India
| | - K Shakeela
- B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, 600048, India.
| | - Sumit Saha
- Materials Chemistry Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, Odisha 751013, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
6
|
Dagar M, Dissanyake DMMM, Kesler DN, Corr M, McPherson JD, Brennessel WW, McKone JR, Matson EM. Improved solubility of titanium-doped polyoxovanadate charge carriers for symmetric non-aqueous redox flow batteries. Dalton Trans 2023; 53:93-104. [PMID: 38038996 DOI: 10.1039/d3dt03642a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Non-aqueous redox flow batteries constitute a promising solution for grid-scale energy storage due to the ability to achieve larger cell voltages than can be readily accessed in water. However, their widespread application is limited by low solubility of the electroactive species in organic solvents. In this work, we demonstrate that organic functionalization of titanium-substituted polyoxovanadate-alkoxide clusters increases the solubility of these assemblies over that of their homoleptic congeners by a factor of >10 in acetonitrile. Cyclic voltammetry, chronoamperometry, and charge-discharge cycling experiments are reported, assessing the electrochemical properties of these clusters relevant to their ability to serve as multielectron charge carriers for energy storage. The kinetic implications of ligand variation are assessed, demonstrating the role of ligand structure on the diffusivity and heterogeneous rates of electron transfer in mixed-metal charge carriers. Our results offer new insights into the impact of structural modifications on the physicochemical properties of these assemblies.
Collapse
Affiliation(s)
- Mamta Dagar
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
| | | | - Daniel N Kesler
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
| | - Molly Corr
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
| | - Joshua D McPherson
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
| | | | - James R McKone
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ellen M Matson
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
7
|
Peter CYM, Schreiber E, Proe KR, Matson EM. Surface ligand length influences kinetics of H-atom uptake in polyoxovanadate-alkoxide clusters. Dalton Trans 2023; 52:15775-15785. [PMID: 37850536 DOI: 10.1039/d3dt02074f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
The uptake of hydrogen atoms (H-atoms) at reducible metal oxide nanocrystal surfaces has implications in catalysis and energy storage. However, it is often difficult to gain insight into the physicochemical factors that dictate the thermodynamics and kinetics of H-atom transfer to the surface of these assemblies. Recently, our research group has demonstrated the formation of oxygen-atom (O-atom) defects in polyoxovanadate-alkoxide (POV-alkoxide) clusters via conversion of surface oxido moieties to aquo ligands, which can be accomplished via addition of two H-atom equivalents. Here, we present the dependence of O-atom defect formation via H-atom transfer at the surface of vanadium oxide clusters on the length of surface alkoxide ligands. Analysis of H-atom transfer reactions to low-valent POV-alkoxide clusters [V6O7(OR)12]1- (R = Me, Et, nPr, nBu) reveals that the length of primary alkoxide surface ligands does not significantly influence the thermodynamics of these processes. However, surface ligand length has a significant impact on the kinetics of these PCET reactions. Indeed, the methoxide-bridged cluster, [V6O7(OMe)12]1- reacts ∼20 times faster than the other derivatives evaluated. Interestingly, as the aliphatic linkages are increased in size from -C2H5 to -C4H9, reaction rates remain consistent, suggesting restricted access to available ligand conformers as a result of the incompatibility of the aliphatic ligands and acetonitrile may buffer further changes to the rate of reaction.
Collapse
Affiliation(s)
- Chari Y M Peter
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
| | - Eric Schreiber
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
| | - Kathryn R Proe
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
| | - Ellen M Matson
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
8
|
Xu H, Peng C, Xia L, Miao Z, He S, Chi C, Luo W, Chen G, Zeng B, Wang S, Dai L. A Novel Anderson-Type POMs-Based Hybrids Flame Retardant for Reducing Smoke Release and Toxicity of Epoxy Resins. Macromol Rapid Commun 2023; 44:e2300162. [PMID: 37114515 DOI: 10.1002/marc.202300162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Smoke emission and smoke toxicity have drawn more attention to improving the fire safety of polymers. In this work, a polyoxometalates (POMs)-based hybrids flame retardant (P-AlMo6 ) epoxy resin (EP) is prepared with toxicity-reduction and smoke-suppression properties via a peptide coupling reaction between POMs and organic molecules with double DOPO (bisDOPA). It combines the good compatibility of the organic molecule and the superior catalytic performance of POMs. Compared to pure EP, the glass transition temperature and flexural modulus of EP composite with 5 wt.% P-AlMo6 (EP/P-AlMo6 -5) are raised by 12.3 °C and 57.75%, respectively. Notably, at low flame-retardant addition, the average CO to CO2 ratio (Av-COY/Av-CO2 Y) is reduced by 33.75%. Total heat release (THR) and total smoke production (TSP) are lowered by 44.4% and 53.7%, respectively. The Limited Oxygen Index (LOI) value achieved 31.7% and obtained UL-94 V-0 rating. SEM, Raman, X-ray photoelectron spectroscopy, and TG-FTIR are applied to analyze the flame-retardant mechanism in condensed and gas phase. Outstanding flame retardant, low smoke toxicity properties are attained due to the catalytic carbonization ability of metal oxides Al2 O3 and MoO3 produced from the breakdown of POMs. This work advances the development of POMs-based hybrids flame retardants with low smoke toxicity properties.
Collapse
Affiliation(s)
- Hui Xu
- Fujian Provincial Key Laboratory of Fire-Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Chaohua Peng
- Fujian Provincial Key Laboratory of Fire-Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Long Xia
- Fujian Provincial Key Laboratory of Fire-Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhongxi Miao
- Fujian Provincial Key Laboratory of Fire-Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Siyuan He
- Fujian Provincial Key Laboratory of Fire-Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Cheng Chi
- Fujian Provincial Key Laboratory of Fire-Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Weiang Luo
- Fujian Provincial Key Laboratory of Fire-Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
- Xiamen Key Laboratory of Fire-Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Guorong Chen
- Fujian Provincial Key Laboratory of Fire-Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
- Xiamen Key Laboratory of Fire-Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Birong Zeng
- Fujian Provincial Key Laboratory of Fire-Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
- Xiamen Key Laboratory of Fire-Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Shuchuan Wang
- Institution of Research and Development, T&H Novel Materials Co., Ltd, Quanzhou, 362000, P. R. China
| | - Lizong Dai
- Fujian Provincial Key Laboratory of Fire-Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
- Xiamen Key Laboratory of Fire-Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
9
|
Kapurwan S, Sahu PK, Raizada M, Kharel R, Konar S. [α-AsW 9O 33] 9- bridged hexagonal clusters of Ln(III) showing field induced SMM behavior: experimental and theoretical insight. Dalton Trans 2023. [PMID: 37357913 DOI: 10.1039/d3dt00406f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Polyoxometalates (POM), as inorganic polydentate oxygen donors, provide binding opportunities for oxophilic lanthanide metal centers to construct novel Ln-substituted POM materials with exciting structures and attractive properties. Herein, we have reported four arsenotungstate [α-AsW9O33]9- based lanthanide-containing polyoxometalates [CsxK36-x{Ln6(H2O)12(α-AsW9O33)6}]·yH2O (Ln = Er (1), Gd (2), Ho (3), and Tb (4)), which are synthesized in an alkaline medium. Complexes 1-3 are the dimeric structures of [Ln3(H2O)6(α-AsW9O33)3]18- polyanions, whereas complex 4 is a hexamer of the polyanion [Tb (H2O)2(α-AsW9O33)]6- as a building unit. In all the complexes, [α-AsW9O33]9- units are staggered up and down and give rise to the chair conformation, where one [α-AsW9O33]9- unit bridges two Ln(III) centers through four μ2-oxygen and two terminal oxygen atoms, resulting in the hexagonal arrangement of lanthanides. The dynamic magnetic measurement indicates that only complex 1 exhibits slow relaxation of magnetization with an applied dc field (1500 Oe). To gain insight into the slow relaxation of magnetization in complex 1, the ligand-field parameters and the splitting of the ground-state multiplet of the Er(III) ions have been estimated. The ab initio calculation results confirm that the ground state wave function of these molecules (1, 3, and 4) is mainly composed of a mixture of mJ states, and the non-axial crystal field (CF) terms are more predominant than the axial CF term. The solid-state fluorescence spectra of 1-4 reveal that the photoexcitation O → M ligand-to-metal charge-transfer (LMCT) of arsenotungstate fragments is effectively quenched due to the spatial coordination environment around the Ln(III) ion.
Collapse
Affiliation(s)
- Sandhya Kapurwan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal By-pass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Pradip Kumar Sahu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal By-pass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Mukul Raizada
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal By-pass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Ranjan Kharel
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal By-pass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal By-pass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| |
Collapse
|
10
|
Research progress of POMs constructed by 1,3,5-benzene-tricarboxylic acid: From synthesis to application. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Zhang H, Li A, Li K, Wang Z, Xu X, Wang Y, Sheridan MV, Hu HS, Xu C, Alekseev EV, Zhang Z, Yan P, Cao K, Chai Z, Albrecht-Schönzart TE, Wang S. Ultrafiltration separation of Am(VI)-polyoxometalate from lanthanides. Nature 2023; 616:482-487. [PMID: 37076728 PMCID: PMC10115636 DOI: 10.1038/s41586-023-05840-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 02/14/2023] [Indexed: 04/21/2023]
Abstract
Partitioning of americium from lanthanides (Ln) present in used nuclear fuel plays a key role in the sustainable development of nuclear energy1-3. This task is extremely challenging because thermodynamically stable Am(III) and Ln(III) ions have nearly identical ionic radii and coordination chemistry. Oxidization of Am(III) to Am(VI) produces AmO22+ ions distinct with Ln(III) ions, which has the potential to facilitate separations in principle. However, the rapid reduction of Am(VI) back to Am(III) by radiolysis products and organic reagents required for the traditional separation protocols including solvent and solid extractions hampers practical redox-based separations. Herein, we report a nanoscale polyoxometalate (POM) cluster with a vacancy site compatible with the selective coordination of hexavalent actinides (238U, 237Np, 242Pu and 243Am) over trivalent lanthanides in nitric acid media. To our knowledge, this cluster is the most stable Am(VI) species in aqueous media observed so far. Ultrafiltration-based separation of nanoscale Am(VI)-POM clusters from hydrated lanthanide ions by commercially available, fine-pored membranes enables the development of a once-through americium/lanthanide separation strategy that is highly efficient and rapid, does not involve any organic components and requires minimal energy input.
Collapse
Affiliation(s)
- Hailong Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Ao Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Kai Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Zhipeng Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, China
| | - Xiaocheng Xu
- Department of Chemistry and Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, China
| | - Yaxing Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China.
| | - Matthew V Sheridan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Han-Shi Hu
- Department of Chemistry and Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, China
| | - Chao Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, China.
| | | | - Zhenyi Zhang
- Bruker (Beijing) Scientific Technology Co., Ltd, Shanghai, China
| | - Pu Yan
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, China
| | - Kecheng Cao
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Thomas E Albrecht-Schönzart
- Department of Chemistry and Nuclear Science & Engineering Center, Colorado School of Mines, Golden, CO, USA.
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China.
| |
Collapse
|
12
|
Breibeck J, Gumerova NI, Rompel A. Oxo-Replaced Polyoxometalates: There Is More than Oxygen. ACS ORGANIC & INORGANIC AU 2022; 2:477-495. [PMID: 36510613 PMCID: PMC9732882 DOI: 10.1021/acsorginorgau.2c00014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 02/02/2023]
Abstract
The presence of oxo-ligands is one of the main required characteristics for polyoxometalates (POMs), although some oxygen ions in a metallic environment can be replaced by other nonmetals, while maintaining the POM structure. The replacement of oxo-ligands offers a valuable approach to tune the charge distribution and connected properties like reducibility and hydrolytic stability of POMs for the development of tailored compounds. By assessing the reported catalytic and biological applications and connecting them to POM structures, the present review provides a guideline for synthetic approaches and aims to stimulate further applications where the oxo-replaced compounds are superior to their oxo-analogues. Oxo-replacement in POMs deserves more attention as a valuable tool to form chemically activated precursors for the synthesis of novel structures or to upgrade established structures with extraordinary properties for challenging applications.
Collapse
|
13
|
Pardiwala A, Kumar S, Jangir R. Insights into organic-inorganic hybrid molecular materials: organoimido functionalized polyoxomolybdates. Dalton Trans 2022; 51:4945-4975. [PMID: 35246674 DOI: 10.1039/d1dt04376e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Polyoxometalates (POMs) are polyatomic anions that comprise transition metal group 5 (V, Nb, Ta) or group 6 (Mo, W) oxyanions connected together by shared oxygen atoms. POMs are fascinating because of their exclusive and remarkable characteristics. One of the most interesting features of POMs is their capability to function as an electron relay by performing stepwise multi-electron redox reactions while maintaining their structural integrity. Functionalization of POMs with amino organic compounds results in organoimido derivatives of polyoxometalates, which have aroused interest due to augmentation of their properties. Comprehensive study has shown that the synthesis methodologies to obtain desired organoimido derivatives of POMs by employing various imido-releasing reagents have progressed drastically in recent decades, particularly the innovative DCC-dehydrating technique. These organoimido functionalized POMs have been used as major building blocks to develop unique nanostructured organic-inorganic hybrid molecular materials. Many conventional organic synthesis processes such as Pd-catalyzed carbon-carbon coupling and esterification reactions have been performed with organoimido functionalized POMs where the presence of POM triggered the reaction process. Thus, investigation of the reactivity of organoimido derivatives of POMs foreshadows the intriguing future of POMs chemistry.
Collapse
Affiliation(s)
- Ankita Pardiwala
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | - Shubham Kumar
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | - Ritambhara Jangir
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| |
Collapse
|
14
|
Mir S, Yadollahi B, Omidyan R. Theoretical comparative survey on the structure and electronic properties of first row transition metal substituted Keggin type polyoxometalates. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Cao Z, Yang W, Min X, Liu J, Cao X. Recent advances in synthesis and anti-tumor effect of organism-modified polyoxometalates inorganic organic hybrids. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Chakraborty S, Schreiber E, Sanchez-Lievanos KR, Tariq M, Brennessel WW, Knowles KE, Matson EM. Modelling local structural and electronic consequences of proton and hydrogen-atom uptake in VO 2 with polyoxovanadate clusters. Chem Sci 2021; 12:12744-12753. [PMID: 34703561 PMCID: PMC8494032 DOI: 10.1039/d1sc02809j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/24/2021] [Indexed: 11/21/2022] Open
Abstract
We report the synthesis and characterisation of a series of siloxide-functionalised polyoxovanadate-alkoxide (POV-alkoxide) clusters, [V6O6(OSiMe3)(OMe)12] n (n = 1-, 2-), that serve as molecular models for proton and hydrogen-atom uptake in vanadium dioxide, respectively. Installation of a siloxide moiety on the surface of the Lindqvist core was accomplished via addition of trimethylsilyl trifluoromethylsulfonate to the fully-oxygenated cluster [V6O7(OMe)12]2-. Characterisation of [V6O6(OSiMe3)(OMe)12]1- by X-ray photoelectron spectroscopy reveals that the incorporation of the siloxide group does not result in charge separation within the hexavanadate assembly, an observation that contrasts directly with the behavior of clusters bearing substitutional dopants. The reduced assembly, [V6O6(OSiMe3)(OMe)12]2-, provides an isoelectronic model for H-doped VO2, with a vanadium(iii) ion embedded within the cluster core. Notably, structural analysis of [V6O6(OSiMe3)(OMe)12]2- reveals bond perturbations at the siloxide-functionalised vanadium centre that resemble those invoked upon H-atom uptake in VO2 through ab initio calculations. Our results offer atomically precise insight into the local structural and electronic consequences of the installation of hydrogen-atom-like dopants in VO2, and challenge current perspectives of the operative mechanism of electron-proton co-doping in these materials.
Collapse
Affiliation(s)
| | - Eric Schreiber
- Department of Chemistry, University of Rochester Rochester NY 14627 USA
| | | | - Mehrin Tariq
- Department of Chemistry, University of Rochester Rochester NY 14627 USA
| | | | - Kathryn E Knowles
- Department of Chemistry, University of Rochester Rochester NY 14627 USA
| | - Ellen M Matson
- Department of Chemistry, University of Rochester Rochester NY 14627 USA
| |
Collapse
|
17
|
State-of-the-art advances in the structural diversities and catalytic applications of polyoxoniobate-based materials. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213966] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
Lamare R, Ruppert R, Boudon C, Ruhlmann L, Weiss J. Porphyrins and Polyoxometalate Scaffolds. Chemistry 2021; 27:16071-16081. [PMID: 34459527 DOI: 10.1002/chem.202102277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Indexed: 11/09/2022]
Abstract
Polyoxometalates (POMs) can act as unique reservoirs for multiple electron transfers. As POMs display only weak absorption in the visible spectrum, they can be associated with chromophores such as porphyrins and porphyrin antennae. In this Minireview, the research dedicated to the combination of porphyrins and polyoxometalates is put in context and the state of the art identifying the challenges addressed in the optimization of hybrid materials for applications is detailed.
Collapse
Affiliation(s)
- Raphaël Lamare
- Institut de Chimie de Strasbourg, UMR 7177 CNRS-Université de Strasbourg, 4, rue Blaise Pascal, 67000, Strasbourg, France
| | - Romain Ruppert
- Institut de Chimie de Strasbourg, UMR 7177 CNRS-Université de Strasbourg, 4, rue Blaise Pascal, 67000, Strasbourg, France
| | - Corinne Boudon
- Institut de Chimie de Strasbourg, UMR 7177 CNRS-Université de Strasbourg, 4, rue Blaise Pascal, 67000, Strasbourg, France
| | - Laurent Ruhlmann
- Institut de Chimie de Strasbourg, UMR 7177 CNRS-Université de Strasbourg, 4, rue Blaise Pascal, 67000, Strasbourg, France
| | - Jean Weiss
- Institut de Chimie de Strasbourg, UMR 7177 CNRS-Université de Strasbourg, 4, rue Blaise Pascal, 67000, Strasbourg, France
| |
Collapse
|
19
|
Lan J, Wang Y, Huang B, Xiao Z, Wu P. Application of polyoxometalates in photocatalytic degradation of organic pollutants. NANOSCALE ADVANCES 2021; 3:4646-4658. [PMID: 36134316 PMCID: PMC9417141 DOI: 10.1039/d1na00408e] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/24/2021] [Indexed: 05/30/2023]
Abstract
Organic pollutants are highly toxic, accumulative, and difficult to degrade or eliminate. As a low-cost, high-efficiency and energy-saving environmental purification technology, photocatalytic technology has shown great advantages in solving increasingly serious environmental pollution problems. The development of efficient and durable photocatalysts for the degradation of organic pollutants is the key to the extensive application of photocatalysis technology. Polyoxometalates (POMs) are a kind of discrete metal-oxide clusters with unique photo/electric properties which have shown promising applications in photocatalytic degradation. This review summarizes the recent advances in the design and synthesis of POM-based photocatalysts, as well as their application in the degradation of organic dyes, pesticides and other pollutants. In-depth perspective views are also proposed in this review.
Collapse
Affiliation(s)
- Jin Lan
- Institute of POM-based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology Wuhan 430068 China
| | - Yu Wang
- Institute of POM-based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology Wuhan 430068 China
| | - Bo Huang
- Institute of POM-based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology Wuhan 430068 China
| | - Zicheng Xiao
- Institute of POM-based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology Wuhan 430068 China
| | - Pingfan Wu
- Institute of POM-based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology Wuhan 430068 China
| |
Collapse
|
20
|
Jelinek L, Mištová E, Kubeil M, Stephan H. Polyoxometalates in Extraction and Sorption Processes. SOLVENT EXTRACTION AND ION EXCHANGE 2021. [DOI: 10.1080/07366299.2021.1874107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ludek Jelinek
- Department of Power Engineering, University of Chemistry and Technology, Prague 6, Czech Republic
| | - Eva Mištová
- Department of Power Engineering, University of Chemistry and Technology, Prague 6, Czech Republic
| | - Manja Kubeil
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| |
Collapse
|
21
|
Manna P, Bhattacharya S, Kortz U. Arylarsonate- and Phosphonate-Capped Polyoxomolybdates, [(RC 6H 4As) 2Mo 6O 24] n- and [(R'C 6H 4P) 2Mo 5O 21] n. Inorg Chem 2021; 60:7161-7167. [PMID: 33847118 DOI: 10.1021/acs.inorgchem.1c00245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We report on the synthesis and structural characterization of four arylarsonate- and phosphonate-capped polyoxomolybdates that exhibit different organic substituents in the para position of the phenyl group. The reaction of arylarsonates (RAsO3, wherein R = 4-BrC6H4 or 4-N3C6H4) with molybdate in aqueous pH 3.5 media resulted in the cyclic hexamolybdates [(BrC6H4As)2Mo6O24]4- (Mo6As2La) and [(N3C6H4As)2Mo6O24]4- (Mo6As2Lb), whereas the reaction of arylphosphonates (R'PO3, wherein R' = 4-O2CC6H4 or 4-O2CC6H4CH2) with molybdate in aqueous pH 3 media resulted in the cyclic pentamolybdates [(O2CC6H4P)2Mo5O21]6- (Mo5P2Lc) and [(HO2CC6H4CH2P)2Mo5O21]4- (Mo5P2Ld), respectively. Polyanions Mo6As2La and Mo6As2Lb comprise a ring of six MoO6 octahedra that is capped on either side by an organoarsonate group, whereas Mo5P2Lc and Mo5P2Ld consist of a ring of five MoO6 octahedra that is capped on either side by an organophosphonate group, with the organic arms protruding away from the metal-oxo core of the polyanions. All four polyanions Mo6As2La, Mo6As2Lb, Mo5P2Lc, and Mo5P2Ld have been characterized in the solid state by single-crystal X-ray diffraction, IR spectroscopy, and thermogravimetric and elemental analysis and in solution by multinuclear NMR (31P, 13C, and 1H). The synthetic procedure of (4-bromophenyl)arsonic acid, BrC6H4AsO3H2, is reported here for the first time.
Collapse
Affiliation(s)
- Paulami Manna
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, Bremen 28759, Germany
| | - Saurav Bhattacharya
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, Bremen 28759, Germany
| | - Ulrich Kortz
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, Bremen 28759, Germany
| |
Collapse
|
22
|
Saha S, Zakharov LN, Captain B, Keszler DA. Synthesis and Structural Analysis of Novel Phosphonium Hexatungstate Complexes. J CLUST SCI 2021. [DOI: 10.1007/s10876-020-01835-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Wu P, Wang Y, Huang B, Xiao Z. Anderson-type polyoxometalates: from structures to functions. NANOSCALE 2021; 13:7119-7133. [PMID: 33889922 DOI: 10.1039/d1nr00397f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Anderson-type polyoxometalates (POMs) are one of the most important groups of the POM family. In the past decade, the functionalization of Anderson-type POMs has achieved significant progress and these materials have already shown unique charm in catalysis, molecular devices, energy materials, and inorganic biochemical drugs. In particular, their highly flexible topological structure and diverse functionalization methods make them the most convenient and universal platforms for rational design and controllable synthesis. This review provides a deep discussion on the recent progress in the synthetic methodology, structural exploration, and promising applications of Anderson-type POMs. It also summarizes the latest research directions and provides future prospects.
Collapse
Affiliation(s)
- Pingfan Wu
- Institute of POM-based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| | | | | | | |
Collapse
|
24
|
Fertig AA, Rabbani SMG, Koch MD, Brennessel WW, Miró P, Matson EM. Physicochemical implications of surface alkylation of high-valent, Lindqvist-type polyoxovanadate-alkoxide clusters. NANOSCALE 2021; 13:6162-6173. [PMID: 33734254 DOI: 10.1039/d0nr09201k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report a rare example of the direct alkylation of the surface of a plenary polyoxometalate cluster by leveraging the increased nucleophilicity of vanadium oxide assemblies. Addition of methyl trifluoromethylsulfonate (MeOTf) to the parent polyoxovanadate cluster, [V6O13(TRIOLR)2]2- (TRIOL = tris(hydroxymethyl)methane; R = Me, NO2) results in functionalisation of one or two bridging oxide ligands of the cluster core to generate [V6O12(OMe)(TRIOLR)2]1- and [V6O11(OMe)2(TRIOLR)2]2-, respectively. Comparison of the electronic absorption spectra of the functionalised and unfunctionalised derivatives indicates the decreased overall charge of the complex results in a decrease in the energy required for ligand to metal charge transfer events to occur, while simultaneously mitigating the inductive effects imposed by the capping TRIOL ligand. Electrochemical analysis of the family of organofunctionalised polyoxovanadate clusters reveals the relationship of ligand environment and the redox properties of the cluster core: increased organofunctionalisation of the surface of the vanadium oxide assembly translates to anodic shifts in the reduction events of the Lindqvist ion. Overall, this work provides insight into the electronic effects induced upon atomically precise modifications to the surface structure of nanoscopic, redox-active metal oxide assemblies.
Collapse
Affiliation(s)
- Alex A Fertig
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Chakraborty S, Petel BE, Schreiber E, Matson EM. Atomically precise vanadium-oxide clusters. NANOSCALE ADVANCES 2021; 3:1293-1318. [PMID: 36132875 PMCID: PMC9419539 DOI: 10.1039/d0na00877j] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/19/2021] [Indexed: 05/08/2023]
Abstract
Polyoxovanadate (POV) clusters are an important subclass of polyoxometalates with a broad range of molecular compositions and physicochemical properties. One relatively underdeveloped application of these polynuclear assemblies involves their use as atomically precise, homogenous molecular models for bulk metal oxides. Given the structural and electronic similarities of POVs and extended vanadium oxide materials, as well as the relative ease of modifying the homogenous congeners, investigation of the chemical and physical properties of pristine and modified cluster complexes presents a method toward understanding the influence of structural modifications (e.g. crystal structure/phase, chemical makeup of surface ligands, elemental dopants) on the properties of extended solids. This review summarises recent advances in the use of POV clusters as atomically precise models for bulk metal oxides, with particular focus on the assembly of vanadium oxide clusters and the consequences of altering the molecular composition of the assembly via organofunctionalization and the incorporation of elemental "dopants".
Collapse
Affiliation(s)
| | - Brittney E Petel
- University of Rochester, Department of Chemistry Rochester NY 14627 USA
| | - Eric Schreiber
- University of Rochester, Department of Chemistry Rochester NY 14627 USA
| | - Ellen M Matson
- University of Rochester, Department of Chemistry Rochester NY 14627 USA
| |
Collapse
|
26
|
Mukhacheva AA, Komarov VY, Kokovkin VV, Novikov AS, Abramov PA, Sokolov MN. Unusual π–π interactions directed by the [{(C 6H 6)Ru} 2W 8O 30(OH) 2] 6− hybrid anion. CrystEngComm 2021. [DOI: 10.1039/d1ce00319d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The [{(C6H6)Ru}2W8O30(OH)2]6− hybrid anion as a new type of π–π stacking induced building block and methanol oxidation precatalyst.
Collapse
|
27
|
Mialane P, Mellot-Draznieks C, Gairola P, Duguet M, Benseghir Y, Oms O, Dolbecq A. Heterogenisation of polyoxometalates and other metal-based complexes in metal–organic frameworks: from synthesis to characterisation and applications in catalysis. Chem Soc Rev 2021; 50:6152-6220. [DOI: 10.1039/d0cs00323a] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review provides a thorough overview of composites with molecular catalysts (polyoxometalates, or organometallic or coordination complexes) immobilised into MOFs via non-covalent interactions.
Collapse
Affiliation(s)
- P. Mialane
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| | - C. Mellot-Draznieks
- Laboratoire de Chimie des Processus Biologiques
- UMR CNRS 8229
- Collège de France
- Sorbonne Université
- PSL Research University
| | - P. Gairola
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| | - M. Duguet
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| | - Y. Benseghir
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| | - O. Oms
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| | - A. Dolbecq
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| |
Collapse
|
28
|
Chhipa H, Srinivasa Reddy T, Soni SK, Selvakannan PR, Bhargava SK. Self-assembled nanostructures of phosphomolybdate, nucleobase and metal ions synthesis and their in vitro cytotoxicity studies on cancer cell lines. J Mater Chem B 2020; 8:11044-11054. [PMID: 33196727 DOI: 10.1039/d0tb01945c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability of the multidentate nucleobases, adenine and thymine, to coordinate polyoxometalate and metal ions leading to the formation of self-assembled nanostructures and their strong cytotoxicity toward cancer cell lines have been demonstrated. A unique synthetic approach is developed to make a series of functional nanoscale hybrid materials consisting of nucleobases (adenine and thymine) and phosphomolybdic acid (PMA) through solid state chemical reaction and self-assembly process. Adenine was protonated through its ring nitrogen, while the ketone group in thymine was protonated during the addition of PMA to these nucleobases. The self-assembled nanostructures formed as a result of the electrostatic interaction between the protonated nucleobases and polyanionic PMA. To promote the base pairing between the nucleobases, chloroaurate ions and silver ions were added to each PMA/adenine and PMA/thymine nanostructures. The complexation between the nucleobases and the added metal ions was found to drive the formation of subsequent self-assembled nanostructures. All the materials were screened for their anticancer activity against breast (MDAMB-231) and prostate (PC-3) cancer cells, and non-cancerous keratinocyte cells HaCaT. PMA/adenine/[AuCl4]- and PMA/thymine/Ag+ nanostructures were found to have strong anti-cancer activity, while PMA/adenine/Ag+, PMA/thymine/[AuCl4]-, and PMA/pdenine, PMA/thymine nanostructures did not exhibit such activity. The unique redox properties of these materials and the self-assembly of the PMA and metal ions were the major factors responsible for the cytotoxicity. This unique approach of making functional nanomaterials incorporate the nucleobase, PMA and metal ions using solid state self-assembly and their anti-cancer applications are considered to be an effective approach for the development of inorganic nucleoside analogue bio-pharmaceutical agents.
Collapse
Affiliation(s)
- Hemraj Chhipa
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, Melbourne, Australia.
| | - T Srinivasa Reddy
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, Melbourne, Australia.
| | - Sarvesh K Soni
- BioSciences and Food Technology, School of Science, RMIT University, Melbourne, Australia
| | - P R Selvakannan
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, Melbourne, Australia.
| | - Suresh K Bhargava
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, Melbourne, Australia.
| |
Collapse
|
29
|
Guo YH, Cui LP, Lv JH, Yu K, Ma YJ, Zhang EM, Zhong R, Zhou BB. A 3D supramolecular photo-/ electro-catalytic material based on 2D monoarsenate capped Dawson layer and metal-organic sheets with rich π–π interactions. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
30
|
Wang W, Izarova NV, van Leusen J, Kögerler P. Polyoxometalates with separate lacuna sites. Chem Commun (Camb) 2020; 56:14857-14860. [PMID: 33174872 DOI: 10.1039/d0cc05791f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bi-functionalizion of Wells-Dawson-type polyoxotungstates with exo-coordinated rare earth metal ions (M = DyIII, YIII) and phenylphosphonate induces the formation of a separate second lacunary site in the pre-functionalized [α2-P2W17O61(PhPO)2]6- precursor. The resulting [{(H2O)xM2(α2,α2'-P2W16O60)(PhPO)2}2]8- dimer clusters are stable in solution, exhibit interesting electrochemical behavior, and, for the DyIII derivative, single ion-magnet characteristics.
Collapse
Affiliation(s)
- Wenyan Wang
- Institute of Inorganic Chemistry, RWTH Aachen University, D-52074 Aachen, Germany.
| | - Natalya V Izarova
- Institute of Inorganic Chemistry, RWTH Aachen University, D-52074 Aachen, Germany. and Jülich-Aachen Research Alliance (JARA-FIT) and Peter Grünberg Institute - PGI 6, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Jan van Leusen
- Institute of Inorganic Chemistry, RWTH Aachen University, D-52074 Aachen, Germany.
| | - Paul Kögerler
- Institute of Inorganic Chemistry, RWTH Aachen University, D-52074 Aachen, Germany. and Jülich-Aachen Research Alliance (JARA-FIT) and Peter Grünberg Institute - PGI 6, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
31
|
Xu Q, Liang X, Xu B, Wang J, He P, Ma P, Feng J, Wang J, Niu J. 36-Nuclearity Organophosphonate-Functionalized Polyoxomolybdates: Synthesis, Characterization and Selective Catalytic Oxidation of Sulfides. Chemistry 2020; 26:14896-14902. [PMID: 32543759 DOI: 10.1002/chem.202001468] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 01/02/2023]
Abstract
The crown-shaped 36-molybdate cluster organophosphonate-functionalized polyoxomolybdates with the highest nuclearity in organophosphonate-based polyoxometalate chemistry, (NH4 )19 Na7 H10 [Cu(H2 O)TeMo6 O21 {N(CH2 PO3 )3 }]6 ⋅31 H2 O, has been reported for the first time. The synthesized 36-molybdate cluster was characterized by routine techniques and tested as a heterogeneous catalyst for selective oxidation of sulfides with impressive catalytic and selective performances after heat treatment. High efficiency (TON=15333) was achieved in the selective oxidation of sulfides to sulfoxides, caused by the synergic effect between copper and polyoxomolybdates and the generation of the cuprous species during the heat treatment.
Collapse
Affiliation(s)
- Qiaofei Xu
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Xinmiao Liang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Baijie Xu
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Jiawei Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Peipei He
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Jiwen Feng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, 475004, P. R. China
| |
Collapse
|
32
|
Mir S, Yadollahi B, Omidyan R, Azimi G. DFT study of α-Keggin, lacunary Keggin, and iron II-VI substituted Keggin polyoxometalates: the effect of oxidation state and axial ligand on geometry, electronic structures and oxygen transfer. RSC Adv 2020; 10:33718-33730. [PMID: 35519024 PMCID: PMC9056712 DOI: 10.1039/d0ra05189f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/03/2020] [Indexed: 11/21/2022] Open
Abstract
Herein, the geometry, electronic structure, Fe-ligand bonding nature and simulated IR spectrum of α-Keggin, lacunary Keggin, iron(ii/iii)-substituted and the important oxidized high-valent iron derivatives of Keggin type polyoxometalates have been studied using the density functional theory (DFT/OPTX-PBE) method and natural bond orbital (NBO) analysis. The effects of different Fe oxidation states (ii-vi) and H2O/OH-/O2- ligand interactions have been addressed concerning their geometry and electronic structures. It has been revealed that the d-atomic orbitals of Fe and 2p orbitals of polyoxometalate's oxygen-atoms contribute in ligand binding. Compared with other high valent species, the considered polyoxometalate system of [PW11O39(FeVO)]4-, possesses a high reactivity for oxygen transfer.
Collapse
Affiliation(s)
- Soheila Mir
- Department of Chemistry, University of Isfahan Isfahan 81746-73441 Iran
| | - Bahram Yadollahi
- Department of Chemistry, University of Isfahan Isfahan 81746-73441 Iran
| | - Reza Omidyan
- Department of Chemistry, University of Isfahan Isfahan 81746-73441 Iran
| | - Gholamhasan Azimi
- Department of Chemistry, University of Isfahan Isfahan 81746-73441 Iran
| |
Collapse
|
33
|
Cai L, Hu J, Li M, Yin P. Hybrid catalysts of molybdovanadophosphoric acid and g-C 3N 4 with tunable bandgaps. Dalton Trans 2020; 49:10724-10728. [PMID: 32720655 DOI: 10.1039/d0dt02138e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The integration of semiconductors and polyoxometalates provides promising benefits for the rational tuning of hybrid materials' electronic band structures; however, the intrinsic influence of certain hybridization approaches on the resulting bandgaps of their complexes has seldom been noted. Herein, graphitic carbon nitride and a series of phosphovanadomolybdates (H3+xPMo12-xVxO40, x = 0-3) have been complexed through electrostatic charge attraction, and their optical and electronic properties are fully explored to investigate the effect of minor variations of the polyoxometalate structures on the hybrid bandgaps and electronic structures. The conduction band edge of the hybrids increases along with the expansion of the number of vanadium centers in the phosphovanadomolybdate, providing potential guidance for the design of hybrid catalysts.
Collapse
Affiliation(s)
- Linkun Cai
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510641, P. R. China. and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, P. R. China.
| | - Jie Hu
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510641, P. R. China. and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, P. R. China.
| | - Mu Li
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510641, P. R. China. and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, P. R. China.
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510641, P. R. China. and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, P. R. China.
| |
Collapse
|
34
|
Ma X, Wang P, Liu Z, Xin C, Wang S, Jia J, Ma P, Niu J, Wang J. Oxyfunctionalization of Alkanes Based on a Tricobalt(II)-Substituted Dawson-Type Rhenium Carbonyl Derivative as Catalyst. Inorg Chem 2020; 59:8690-8698. [DOI: 10.1021/acs.inorgchem.0c00111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xinyi Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, P. R. China
| | - Ping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, P. R. China
| | - Zhihao Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, P. R. China
| | - Changhui Xin
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, P. R. China
| | - Siyu Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, P. R. China
| | - Jiage Jia
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, P. R. China
| |
Collapse
|
35
|
Adhikary SD, Mandal D. Polyoxometalate catalyzed imine synthesis: Investigation of mechanistic pathways. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Xu J, Zhu Z, Su T, Liao W, Deng C, Hao D, Zhao Y, Ren W, Lü H. Green aerobic oxidative desulfurization of diesel by constructing an Fe-Anderson type polyoxometalate and benzene sulfonic acid-based deep eutectic solvent biomimetic cycle. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63500-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Ma T, Yang P, Dammann I, Lin Z, Mougharbel AS, Li MX, Adǎscǎliţei F, Mitea R, Silvestru C, Thorstenson C, Ullrich MS, Cseh K, Jakupec MA, Keppler BK, Donalisio M, Cavalli R, Lembo D, Kortz U. Tetra-(p-tolyl)antimony(III)-Containing Heteropolytungstates, [{(p-tolyl)SbIII}4(A-α-XW9O34)2]n− (X = P, As, or Ge): Synthesis, Structure, and Study of Antibacterial and Antitumor Activity. Inorg Chem 2020; 59:2978-2987. [DOI: 10.1021/acs.inorgchem.9b03322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tian Ma
- Department of Life Sciences and Chemistry, Jacobs University, 28759 Bremen, Germany
| | - Peng Yang
- Department of Life Sciences and Chemistry, Jacobs University, 28759 Bremen, Germany
| | - Inga Dammann
- Department of Life Sciences and Chemistry, Jacobs University, 28759 Bremen, Germany
| | - Zhengguo Lin
- Department of Life Sciences and Chemistry, Jacobs University, 28759 Bremen, Germany
| | - Ali S. Mougharbel
- Department of Life Sciences and Chemistry, Jacobs University, 28759 Bremen, Germany
| | - Ming-Xing Li
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Florin Adǎscǎliţei
- Department of Chemistry, Supramolecular Organic and Organometallic Chemistry Centre (SOOMCC), Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 400028 Cluj-Napoca, Romania
| | - Raluca Mitea
- Department of Chemistry, Supramolecular Organic and Organometallic Chemistry Centre (SOOMCC), Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 400028 Cluj-Napoca, Romania
| | - Cristian Silvestru
- Department of Chemistry, Supramolecular Organic and Organometallic Chemistry Centre (SOOMCC), Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 400028 Cluj-Napoca, Romania
| | - Candice Thorstenson
- Department of Life Sciences and Chemistry, Jacobs University, 28759 Bremen, Germany
| | - Matthias S. Ullrich
- Department of Life Sciences and Chemistry, Jacobs University, 28759 Bremen, Germany
| | - Klaudia Cseh
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Michael A. Jakupec
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Bernhard K. Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Manuela Donalisio
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Turin, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy
| | - David Lembo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Turin, Italy
| | - Ulrich Kortz
- Department of Life Sciences and Chemistry, Jacobs University, 28759 Bremen, Germany
| |
Collapse
|
38
|
Auvray T, Matson EM. Polyoxometalate-based complexes as ligands for the study of actinide chemistry. Dalton Trans 2020; 49:13917-13927. [PMID: 32966461 DOI: 10.1039/d0dt02755c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The complexation of actinide cations by polyoxometalates (POMs) has been extensively studied over the past 50 years. In this perspective article, we present the rich structural diversity of actinide-POM complexes and their contribution to the extension of our knowledges of actinide chemistry, especially regarding aspect of their redox chemistry, as well as application for the capture and separation of these cations in the context of nuclear fuel remediation. These heterometallic assemblies have also proven highly valuable as model for heterogeneous systems based on actinides supported by metal oxide surfaces. In particular, activation of the An-O bond of actinyl fragments upon complexation with lacunary POMs has been reported, creating opportunities for future developments regarding the reactivity of these heterometallic assemblies.
Collapse
Affiliation(s)
- Thomas Auvray
- University of Rochester, Department of Chemistry, Rochester, NY 14627, USA.
| | - Ellen M Matson
- University of Rochester, Department of Chemistry, Rochester, NY 14627, USA.
| |
Collapse
|
39
|
Chen H, Xiao Z, Yan B, Wu H, Ma P, Wang J, Niu J. H-shaped oxalate-bridging lanthanoid-incorporated arsenotungstates. Dalton Trans 2020; 49:15731-15738. [DOI: 10.1039/d0dt02792h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A series of oxalate-bridging di-Ln3+-incorporated H-shaped polyoxometalates were synthesized and their stability in solution was evidenced by Raman spectroscopy.
Collapse
Affiliation(s)
- Hanhan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
- P. R. China
| | - Zikang Xiao
- Henan Key Laboratory of Polyoxometalate Chemistry
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
- P. R. China
| | - Bing Yan
- Henan Key Laboratory of Polyoxometalate Chemistry
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
- P. R. China
| | - Hechen Wu
- Henan Key Laboratory of Polyoxometalate Chemistry
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
- P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
- P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
- P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
- P. R. China
| |
Collapse
|
40
|
Petel BE, Matson EM. Oxygen-atom vacancy formation and reactivity in polyoxovanadate clusters. Chem Commun (Camb) 2020; 56:13477-13490. [DOI: 10.1039/d0cc05920j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Overview of recent work detailing oxygen-deficient polyoxovanadate clusters as models for reducible metal oxides: toward gaining a fundamental understanding the consequences of vacancy formation on metal oxide surfaces during catalysis.
Collapse
|
41
|
Oda S, Kohara S, Tsutsui R, Kasasaku M, Kozuka H. Structure and glass transition of amorphous materials composed of titanium-oxo oligomers chemically modified with benzoylacetone. RSC Adv 2020; 10:15665-15669. [PMID: 35493678 PMCID: PMC9052434 DOI: 10.1039/d0ra01047b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/13/2020] [Indexed: 11/21/2022] Open
Abstract
Titanium-n-butoxide was hydrolyzed in the presence of benzoylacetone, and the resulting solution was concentrated and dried at 120 or 140 °C to obtain transparent amorphous materials.
Collapse
Affiliation(s)
- Shinya Oda
- Graduate School of Science and Engineering
- Kansai University
- Suita
- Japan
| | - Shinji Kohara
- Synchrotron X-ray Group
- Light/Quantum Beam Field Research Center for Advanced Measurement and Characterization
- NIMS
- Japan
| | - Ryo Tsutsui
- Graduate School of Science and Engineering
- Kansai University
- Suita
- Japan
| | - Mamoru Kasasaku
- Graduate School of Science and Engineering
- Kansai University
- Suita
- Japan
| | - Hiromitsu Kozuka
- Faculty of Chemistry and Materials Engineering
- Kansai University
- Suita
- Japan
| |
Collapse
|
42
|
Patel A, Patel K. Polyoxometalate based hybrid chiral material: Synthesis, characterizations and aerobic asymmetric oxidation reaction. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1691723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Anjali Patel
- Polyoxometalates and Catalysis Laboratory, Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Ketan Patel
- Polyoxometalates and Catalysis Laboratory, Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
43
|
Senevirathna DC, Werrett MV, Kubeil M, Stephan H, Andrews PC. Synthesis, structural characterisation, and cytotoxicity studies of Bi, W, and Mo containing homo- and hetero-bimetallic polyoxometalates. Dalton Trans 2019; 48:15962-15969. [PMID: 31592521 DOI: 10.1039/c9dt03288f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Three new and different homo- and hetero-bimetallic polyoxometalate (POM) species have been synthesised by simple one-pot synthetic methods utilising naturally occurring bismite (Bi2O3) (or Bi(NO3)3·5H2O) and aryl sulfonic acids. The POM species isolated are (NH4)14[Bi2W22O76]·14H2O (1·14H2O), (NH4)[Bi(DMSO)7][Mo8O26]·H2O (2·H2O) and [(NH4)4(Mo36O108(OH)4·16H2O)]·45H2O (3·45H2O). The compounds have been characterised by X-ray crystallography, energy dispersive X-ray spectroscopy (EDX), powdered X-ray diffraction (PXRD), mass spectrometry (ESI-MS), Raman spectroscopy, thermogravimetric (TGA) and ICP analyis. In vitro cytoxicity and proliferation studies conducted on 1 and 3, highlight the low toxicity of these species.
Collapse
Affiliation(s)
| | - Melissa V Werrett
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia.
| | - Manja Kubeil
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, D-01328 Dresden, Germany
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, D-01328 Dresden, Germany
| | - Philip C Andrews
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia.
| |
Collapse
|
44
|
Batrice RJ, Wacker JN, Glass EN, Jilani SZ, Tong YJ, Nyman M, Knope KE. Template-free cyclic hexavanadate: Synthesis, characterization, solid-state structure, and solution-state dynamics. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
VanGelder LE, Brennessel WW, Matson EM. Ligand derivatization of titanium-functionalized polyoxovanadium–alkoxide clusters. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.04.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Li XH, Chen WL, Li YG, He P, Di Y, Wei M, Wang EB. Multi-functional rare earth-containing polyoxometalates achieving high-efficiency tumor therapy and visual fluorescence monitoring. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.03.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
47
|
Synthesis and Characterization of a Novel POM-Based Compound Contained Bi-Capped Bi Keggin Anion and Organic Ligand for Multifunctional Catalytic Property. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01525-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Wei MJ, Fu JQ, Li B, Shao KZ, Zang HY, Wang XH, Su ZM. Metal–oxygen clusters as peroxidase mimics for their multifarious applications in colorimetric sensors. NEW J CHEM 2019. [DOI: 10.1039/c9nj02748c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Metal–oxygen cluster (Fe28) was certified to own inherent peroxidase-like performance, which displayed multi-functional applications in H2O2, glucose and dopamine detection.
Collapse
Affiliation(s)
- Mei-Jie Wei
- Key Lab of Polyoxometalate Science of Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- China
| | - Jia-Qi Fu
- Key Lab of Polyoxometalate Science of Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- China
| | - Bo Li
- Key Lab of Polyoxometalate Science of Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- China
| | - Kui-Zhan Shao
- Key Lab of Polyoxometalate Science of Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- China
| | - Hong-Ying Zang
- Key Lab of Polyoxometalate Science of Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- China
| | - Xiao-Hong Wang
- Key Lab of Polyoxometalate Science of Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- China
| | - Zhong-Min Su
- Key Lab of Polyoxometalate Science of Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- China
| |
Collapse
|
49
|
Li S, Zhao Y, Qi H, Zhou Y, Liu S, Ma X, Zhang J, Chen X. Boronic acid derivatized lanthanide–polyoxometalates with novel B–OH–Ln and B–O–Nb bridges. Chem Commun (Camb) 2019; 55:2525-2528. [PMID: 30742150 DOI: 10.1039/c8cc09872g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Boronic acid derivatized Ln–POMs were synthesized by pH-controlled formation of B–OH–Ln and B–O–Nb bridges.
Collapse
Affiliation(s)
- Shujun Li
- School of Chemistry and Chemical Engineering
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials
- Henan Normal University
- Xinxiang
- China
| | - Yue Zhao
- School of Chemistry and Chemical Engineering
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials
- Henan Normal University
- Xinxiang
- China
| | - Huihui Qi
- School of Chemistry and Chemical Engineering
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials
- Henan Normal University
- Xinxiang
- China
| | - Yanfang Zhou
- School of Chemistry and Chemical Engineering
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials
- Henan Normal University
- Xinxiang
- China
| | - Shuxia Liu
- Key Laboratory of Polyoxometalates Science of Ministry of Education
- College of Chemistry
- Northeast Normal University
- Changchun
- China
| | - Xiaoming Ma
- School of Chemistry and Chemical Engineering
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials
- Henan Normal University
- Xinxiang
- China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials
- Henan Normal University
- Xinxiang
- China
| | - Xuenian Chen
- School of Chemistry and Chemical Engineering
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials
- Henan Normal University
- Xinxiang
- China
| |
Collapse
|
50
|
Lu J, Feng J, Ma X, Wang P, Xu B, He P, Jia J, Ma P, Niu J, Wang J. A new phosphotungstate-supported rhenium carbonyl derivative: synthesis, characterization and catalytic selective oxidation of thiophenes. CrystEngComm 2019. [DOI: 10.1039/c9ce01124b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We synthesized a new phosphotungstate-supported rhenium carbonyl derivative, [N(CH3)4]6H4[P2W17O62{Re(CO)3}2]·25H2O, existing the first {Re2} fragment. Moreover, it also exhibits high efficiency for the selective oxidation of thiophenes.
Collapse
|