1
|
Zeng F, Cen W. Machine-learning-accelerated structure prediction of PtSnO nanoclusters under working conditions. Phys Chem Chem Phys 2024. [PMID: 39466360 DOI: 10.1039/d4cp03769c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Credible property exploration or prediction can not be achieved without well-established compositions and structures of catalysts under working conditions. We construct surrogate models via combination of machine learning (ML), genetic algorithm (GA) and ab initio thermodynamics (AITD) to accelerate global optimization of PtSn binary metal oxides, which are typically used for CO2-assisted propane dehydrogenation to propylene. This challenging case illustrates that the subtle oxidized states of PtSnO clusters can be predicted in a large chemical space including a wide range of reaction conditions. The oxidation patterns, phase diagrams and atomic charge distributions of the PtSnO clusters have been discussed. The Sn decorating mechanism to Pt in PtSnO has been explained. These results also indicate that the oxidation of PtSn clusters is more feasible under working conditions, and that previous understanding obtained only with a fully reduced PtSn alloy may be incomplete.
Collapse
Affiliation(s)
- Fanke Zeng
- Institute of New Energy and Low-Carbon Technology, National Engineering Research Center for Flue Gas Desulfurization, Sichuan University, Chengdu, 610207, China.
| | - Wanglai Cen
- Institute of New Energy and Low-Carbon Technology, National Engineering Research Center for Flue Gas Desulfurization, Sichuan University, Chengdu, 610207, China.
| |
Collapse
|
2
|
Tian J, Kong R, Deng B, Cheng Y, Hu K, Zhong Z, Sun T, Tan M, Chen L, Zhao J, Wang Y, Li X, Zhu Y. Non-Classical Deactivation Mechanism in a Supported Intermetallic Catalyst for Propane Dehydrogenation. Angew Chem Int Ed Engl 2024; 63:e202409556. [PMID: 38988065 DOI: 10.1002/anie.202409556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024]
Abstract
Platinum-based supported intermetallic alloys (IMAs) demonstrate exceptional performance in catalytic propane dehydrogenation (PDH) primarily because of their remarkable resistance to coke formation. However, these IMAs still encounter a significant hurdle in the form of catalyst deactivation. Understanding the complex deactivation mechanism of supported IMAs, which goes beyond conventional coke deposition, requires meticulous microscopic structural elucidation. In this study, we unravel a nonclassical deactivation mechanism over a PtZn/γ-Al2O3 PDH catalyst, dictated by the PtZn to Pt3Zn nanophase transformation accompanied with dezincification. The physical origin lies in the metal support interaction (MSI) that enables strong chemical bonding between hydroxyl groups on the support and Zn sites on the PtZn phase to selectively remove Zn species followed by the reconstruction towards Pt3Zn phase. Building on these insights, we have devised a solution to circumvent the deactivation by passivating the MSI through surface modification of γ-Al2O3 support. By exchanging protons of hydroxyl groups with potassium ions (K) on the γ-Al2O3 support, such a strategy significantly minimizes the dezincification of PtZn IMA via diminished metal-support bonding, which dramatically reduces the deactivation rate from 0.2044 to 0.0587 h-1. These findings decode the nonclassical PDH deactivation mechanism over supported IMA catalysts and elaborate a new logic for the design of high-performance IMA based PDH catalysts with long-term stability.
Collapse
Affiliation(s)
- Jinshu Tian
- Center for Electron Microscopy, College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and Institute for Frontier and Interdisciplinary Sciences, Zhejiang University of Technology, Hangzhou, 3100144, P. R. China
| | - Ru Kong
- Center for Electron Microscopy, College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and Institute for Frontier and Interdisciplinary Sciences, Zhejiang University of Technology, Hangzhou, 3100144, P. R. China
| | - Bin Deng
- Center for Electron Microscopy, College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and Institute for Frontier and Interdisciplinary Sciences, Zhejiang University of Technology, Hangzhou, 3100144, P. R. China
| | - Yi Cheng
- Center for Electron Microscopy, College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and Institute for Frontier and Interdisciplinary Sciences, Zhejiang University of Technology, Hangzhou, 3100144, P. R. China
| | - Kerou Hu
- Center for Electron Microscopy, College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and Institute for Frontier and Interdisciplinary Sciences, Zhejiang University of Technology, Hangzhou, 3100144, P. R. China
| | - Zhangnan Zhong
- Center for Electron Microscopy, College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and Institute for Frontier and Interdisciplinary Sciences, Zhejiang University of Technology, Hangzhou, 3100144, P. R. China
| | - Tulai Sun
- Center for Electron Microscopy, College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and Institute for Frontier and Interdisciplinary Sciences, Zhejiang University of Technology, Hangzhou, 3100144, P. R. China
| | - Mingwu Tan
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Luwei Chen
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Jia Zhao
- Center for Electron Microscopy, College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and Institute for Frontier and Interdisciplinary Sciences, Zhejiang University of Technology, Hangzhou, 3100144, P. R. China
| | - Yong Wang
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Xiaonian Li
- Center for Electron Microscopy, College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and Institute for Frontier and Interdisciplinary Sciences, Zhejiang University of Technology, Hangzhou, 3100144, P. R. China
| | - Yihan Zhu
- Center for Electron Microscopy, College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and Institute for Frontier and Interdisciplinary Sciences, Zhejiang University of Technology, Hangzhou, 3100144, P. R. China
| |
Collapse
|
3
|
Liu Y, Bhowmick A, Liu D, Caratzoulas S, Vlachos DG. Propane Dehydrogenation on Pt xZn y Active Sites in Silicalite-1. Angew Chem Int Ed Engl 2024:e202414578. [PMID: 39283725 DOI: 10.1002/anie.202414578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Indexed: 11/01/2024]
Abstract
The improvement of Pt-based catalysts for propane dehydrogenation (PDH) has progressed by recent investigations that have identified Zn as a promising promoter for Pt subnanometer catalysts. It is desirable to gain insights into the structure, stability, and activity of such active sites and the factors that influence them, such as Zn : Pt ratio, Pt coordination and nuclearity. Here, we employ density functional theory and microkinetic simulations to investigate the stability of PtxZny (x=1-3, y=0-3) active sites grafted on silanols of Silicalite-1 and the PDH activity of Pt. We find that the coordination of a Pt atom to a nest of grafted Zn(II) atoms increases the stability of the Pt1Zny sites, whose activity is similar for y=0-2 and drops dramatically for y>2. We further demonstrate, via linear scaling relations and microkinetic simulations, that the turnover frequency obeys a volcano law as a function of propylene binding strength. The Pt2Zn1 and Pt3Zn1 sites are stable and exhibit activity similar to Pt1Zn2, but only Pt1Zn2 manifests reaction kinetics consistent with experimental data, strongly suggesting the active site composition in the synthesized catalyst samples. The methodology presented here suggests a general strategy for deducing active site information such as composition through simple kinetic experiments.
Collapse
Affiliation(s)
- Yilang Liu
- RAPID Manufacturing Institute, Catalysis Center for Energy Innovation, Delaware Energy Institute, Center for Plastics Innovation, University of Delaware, 221 Academy St., Newark, DE, 19716, USA
| | - Antara Bhowmick
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE, 19716, USA
| | - Dongxia Liu
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE, 19716, USA
| | - Stavros Caratzoulas
- RAPID Manufacturing Institute, Catalysis Center for Energy Innovation, Delaware Energy Institute, Center for Plastics Innovation, University of Delaware, 221 Academy St., Newark, DE, 19716, USA
| | - Dionisios G Vlachos
- RAPID Manufacturing Institute, Catalysis Center for Energy Innovation, Delaware Energy Institute, Center for Plastics Innovation, University of Delaware, 221 Academy St., Newark, DE, 19716, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE, 19716, USA
| |
Collapse
|
4
|
Li C, Meyer RJ, Yacob S, Gomez E, Lopez-Haro M, Calvino JJ, Moliner M, Serna P, Corma A. Highly Stable Subnanometric PtIn Clusters for the Selective Dehydrogenation of Alkanes. CHEMSUSCHEM 2024:e202401284. [PMID: 39183705 DOI: 10.1002/cssc.202401284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Subnanometric PtIn clusters have been synthesized within pure silica MFI zeolites by post-synthetic incorporation of In to Pt@K-MFI. The optimized PtIn@K-MFI catalyst outcompetes state-of-the-art PtSn formulations in ethane and propane dehydrogenations, avoiding the need of large excess of Pt promoters and harsh reductive conditions.
Collapse
Affiliation(s)
- Chengeng Li
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022, València, Spain
| | - Randall J Meyer
- ExxonMobilTechnology and Engineering Company, Annandale, New Jersey, 08801, United States
| | - Sara Yacob
- ExxonMobilTechnology and Engineering Company, Annandale, New Jersey, 08801, United States
| | - Elaine Gomez
- ExxonMobilTechnology and Engineering Company, Annandale, New Jersey, 08801, United States
| | - Miguel Lopez-Haro
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, 11003, Cádiz, Spain
| | - Jose J Calvino
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, 11003, Cádiz, Spain
| | - Manuel Moliner
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022, València, Spain
| | - Pedro Serna
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022, València, Spain
- ExxonMobilTechnology and Engineering Company, Annandale, New Jersey, 08801, United States
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022, València, Spain
| |
Collapse
|
5
|
Wang X, Ma Y, Li Y, Wang L, Chi L. Discovery of highly efficient dual-atom catalysts for propane dehydrogenation assisted by machine learning. Phys Chem Chem Phys 2024; 26:22286-22291. [PMID: 39136548 DOI: 10.1039/d4cp02219j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Propane dehydrogenation (PDH) is a highly efficient approach for industrial production of propylene, and the dual-atom catalysts (DACs) provide new pathways in advancing atomic catalysis for PDH with dual active sites. In this work, we have developed an efficient strategy to identify promising DACs for PDH reaction by combining high-throughput density functional theory (DFT) calculations and the machine-learning (ML) technique. By choosing the γ-Al2O3(100) surface as the substrate to anchor dual metal atoms, 435 kinds of DACs have been considered to evaluate their PDH catalytic activity. Four ML algorithms are employed to predict the PDH activity and determine the relationship between the intrinsic characteristics of DACs and the catalytic activity. The promising catalysts of CuFe, CuCo and CoZn DACs are finally screened out, which are further validated by the whole kinetic reaction calculations, and the highly efficient performance of DACs is attributed to the synergistic effects and interactions between the paired active sites.
Collapse
Affiliation(s)
- Xianpeng Wang
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Yanxia Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Youyong Li
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Lu Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Lifeng Chi
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
6
|
Yuan Y, Huang E, Hwang S, Liu P, Chen JG. Confining platinum clusters in indium-modified ZSM-5 zeolite to promote propane dehydrogenation. Nat Commun 2024; 15:6529. [PMID: 39095363 PMCID: PMC11297129 DOI: 10.1038/s41467-024-50709-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
Designing highly active and stable catalytic sites is often challenging due to the complex synthesis procedure and the agglomeration of active sites during high-temperature reactions. Here, we report a facile two-step method to synthesize Pt clusters confined by In-modified ZSM-5 zeolite. In-situ characterization confirms that In is located at the extra-framework position of ZSM-5 as In+, and the Pt clusters are stabilized by the In-ZSM-5 zeolite. The resulting Pt clusters confined in In-ZSM-5 show excellent propane conversion, propylene selectivity, and catalytic stability, outperforming monometallic Pt, In, and bimetallic PtIn alloys. The incorporation of In+ in ZSM-5 neutralizes Brønsted acid sites to inhibit side reactions, as well as tunes the electronic properties of Pt clusters to facilitate propane activation and propylene desorption. The strategy of combining precious metal clusters with metal cation-exchanged zeolites opens the avenue to develop stable heterogeneous catalysts for other reaction systems.
Collapse
Grants
- DE-SC0012704 DOE | SC | Chemical Sciences, Geosciences, and Biosciences Division (Chemical Sciences, Geosciences, and Energy Biosciences)
- DE-SC0012704 DOE | SC | Chemical Sciences, Geosciences, and Biosciences Division (Chemical Sciences, Geosciences, and Energy Biosciences)
- DE-SC0012704 DOE | SC | Chemical Sciences, Geosciences, and Biosciences Division (Chemical Sciences, Geosciences, and Energy Biosciences)
- DE-SC0012704 DOE | SC | Chemical Sciences, Geosciences, and Biosciences Division (Chemical Sciences, Geosciences, and Energy Biosciences)
- DE-SC0012704 DOE | SC | Chemical Sciences, Geosciences, and Biosciences Division (Chemical Sciences, Geosciences, and Energy Biosciences)
- DE-SC0012704 and DE-SC0012653 DOE | LDRD | Brookhaven National Laboratory (BNL)
- DE-SC0012335 DOE | SC | Basic Energy Sciences (BES)
- DE-SC0012335 DOE | SC | Basic Energy Sciences (BES)
- DE-AC02-05CH11231 DOE | Office of Science (SC)
- DE-AC02-05CH11231 DOE | Office of Science (SC)
- DE-AC02-05CH11231 DOE | Office of Science (SC)
Collapse
Affiliation(s)
- Yong Yuan
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, USA
| | - Erwei Huang
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, USA
| | - Sooyeon Hwang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA
| | - Ping Liu
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, USA.
| | - Jingguang G Chen
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, USA.
- Department of Chemical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
7
|
Li W, Zheng X, Xu BB, Yang Y, Zhang Y, Cai L, Wang ZJ, Yao YF, Nan B, Li L, Wang XL, Feng X, Antonietti M, Chen Z. Atomic Ruthenium-Promoted Cadmium Sulfide for Photocatalytic Production of Amino Acids from Biomass Derivatives. Angew Chem Int Ed Engl 2024; 63:e202320014. [PMID: 38598078 DOI: 10.1002/anie.202320014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/11/2024]
Abstract
Amino acids are the building blocks of proteins and are widely used as important ingredients for other nitrogen-containing molecules. Here, we report the sustainable production of amino acids from biomass-derived hydroxy acids with high activity under visible-light irradiation and mild conditions, using atomic ruthenium-promoted cadmium sulfide (Ru1/CdS). On a metal basis, the optimized Ru1/CdS exhibits a maximal alanine formation rate of 26.0 molAla ⋅ gRu -1 ⋅ h-1, which is 1.7 times and more than two orders of magnitude higher than that of its nanoparticle counterpart and the conventional thermocatalytic process, respectively. Integrated spectroscopic analysis and density functional theory calculations attribute the high performance of Ru1/CdS to the facilitated charge separation and O-H bond dissociation of the α-hydroxy group, here of lactic acid. The operando nuclear magnetic resonance further infers a unique "double activation" mechanism of both the CH-OH and CH3-CH-OH structures in lactic acid, which significantly accelerates its photocatalytic amination toward alanine.
Collapse
Affiliation(s)
- Wulin Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037, China
| | - Xiuhui Zheng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changjiang West Road 66, Qingdao, 266580, China
| | - Bei-Bei Xu
- Physics Department, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, China
- School of New Energy, Nanjing University of Science and Technology, Wu Xi Shi, Jiangyin, 214400, China
| | - Yue Yang
- School of Physical Science and Technology, Shanghai Tech University, Huaxia Middle Road 393, Shanghai, 201210, China
| | - Yifei Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037, China
| | - Lingchao Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037, China
| | - Zhu-Jun Wang
- School of Physical Science and Technology, Shanghai Tech University, Huaxia Middle Road 393, Shanghai, 201210, China
| | - Ye-Feng Yao
- Physics Department, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, China
| | - Bing Nan
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Zhangheng Road 293, Shanghai, 201204, China
| | - Lina Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Zhangheng Road 293, Shanghai, 201204, China
| | - Xue-Lu Wang
- Physics Department, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, China
| | - Xiang Feng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changjiang West Road 66, Qingdao, 266580, China
| | - Markus Antonietti
- Department of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Research Campus Golm, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Zupeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037, China
| |
Collapse
|
8
|
Yin P, Shi J, Zuo M, Zhang W, Peng B, Jiang B, Fu XZ, Liang HW. Phase-Transition-Induced Surface Reconstruction of Rh 1 Site in Intermetallic Alloy for Propane Dehydrogenation. J Phys Chem Lett 2024; 15:4501-4507. [PMID: 38634716 DOI: 10.1021/acs.jpclett.4c00719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The fine-tuning of the geometric and electronic structures of active sites plays a crucial role in catalysis. However, the intricate entanglement between the two aspects results in a lack of interpretable design for active sites, posing a challenge in developing high-performance catalysts. Here, we find that surface reconstruction induced by phase transition in intermetallic alloys enables synergistic geometric and electronic structure modulation, creating a desired active site microenvironment for propane dehydrogenation. The resulting electron-rich four-coordinate Rh1 site in the RhGe0.5Ga0.5 intermetallic alloy can accelerate the desorption of propylene and suppress the side reaction and thus exhibits a propylene selectivity of ∼98% with a low deactivation constant of 0.002 h-1 under propane dehydrogenation at 550 °C. Furthermore, we design a computational workflow to validate the rationality of the microenvironment modulation induced by the phase transition in an intermetallic alloy.
Collapse
Affiliation(s)
- Peng Yin
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jialong Shi
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ming Zuo
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Wanqun Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Bo Peng
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| | - Bin Jiang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xian-Zhu Fu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hai-Wei Liang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
9
|
Zhang M, Feng H, Wang S, Liu T, Deng Y, Han J, Zhang X. Screening and Mechanism Exploration of Non-Noble Metal Ni 3M Catalysts for Propane Dehydrogenation: The Excellence of Synergistic Effects. J Phys Chem Lett 2024; 15:3785-3795. [PMID: 38557057 DOI: 10.1021/acs.jpclett.4c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The development of cost-effective and anti-coking catalysts for propane dehydrogenation (PDH) is crucial. Here, non-noble metal-incorporated Ni-based catalysts (Ni3M, M = Sc, Ti, V, Mn, Fe, Co, Cu, Zn, Ga, Zr, Nb, Mo, In, Sn) were employed in the PDH process. The introduction of V, Nb, and Mo, with their strong carbon binding ability, created unique Ni-M cooperative sites, enhancing the catalytic performance. Other non-noble metals influenced the electronic structure of Ni, affecting the overall catalytic behavior. V and Nb exhibited a balanced combination of activity, selectivity, and stability, making them potential catalyst candidates. Microkinetic simulations revealed that Ni3V and Ni3Nb displayed high selectivity toward olefins with low apparent activation energies. This study emphasizes the significance of bimetallic synergy in enhancing PDH performance and provides new directions for the development of efficient alkane dehydrogenation catalyst development.
Collapse
Affiliation(s)
- Meng Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Haisong Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Si Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Tianyong Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Yuan Deng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Juan Han
- College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Xin Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
10
|
Pei C, Chen S, Fu D, Zhao ZJ, Gong J. Structured Catalysts and Catalytic Processes: Transport and Reaction Perspectives. Chem Rev 2024; 124:2955-3012. [PMID: 38478971 DOI: 10.1021/acs.chemrev.3c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The structure of catalysts determines the performance of catalytic processes. Intrinsically, the electronic and geometric structures influence the interaction between active species and the surface of the catalyst, which subsequently regulates the adsorption, reaction, and desorption behaviors. In recent decades, the development of catalysts with complex structures, including bulk, interfacial, encapsulated, and atomically dispersed structures, can potentially affect the electronic and geometric structures of catalysts and lead to further control of the transport and reaction of molecules. This review describes comprehensive understandings on the influence of electronic and geometric properties and complex catalyst structures on the performance of relevant heterogeneous catalytic processes, especially for the transport and reaction over structured catalysts for the conversions of light alkanes and small molecules. The recent research progress of the electronic and geometric properties over the active sites, specifically for theoretical descriptors developed in the recent decades, is discussed at the atomic level. The designs and properties of catalysts with specific structures are summarized. The transport phenomena and reactions over structured catalysts for the conversions of light alkanes and small molecules are analyzed. At the end of this review, we present our perspectives on the challenges for the further development of structured catalysts and heterogeneous catalytic processes.
Collapse
Affiliation(s)
- Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Sai Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Donglong Fu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, China
| |
Collapse
|
11
|
Dong C, Lai Z, Wang H. Design of MoS 2 edge-anchored single-atom catalysts for propane dehydrogenation driven by DFT and microkinetic modeling. Phys Chem Chem Phys 2024; 26:5303-5310. [PMID: 38268420 DOI: 10.1039/d3cp05197h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The design of efficient catalysts for direct propane dehydrogenation (PDH) to inhibit coke formation and deactivation of traditional Pt-based catalysts are challenging tasks. Herein, by exploiting the unique geometric feature and tunability of single atom catalysts (SACs), a wide range of 3d-5d transition metals anchored on the MoS2 edge in the single atom form (TM1-S4/edge) are comprehensively investigated for the PDH application by first-principles calculations, ab initio molecular dynamics (AIMD) simulations and microkinetic modeling. Five criteria are assessed in terms of the feasibility of preparation, practical stability, feasibility of recovery after air oxidation, activity and selectivity. We identified Ru1-S4/edge SAC as the most promising candidate with activity six times higher than that of the conventional Pt(111) catalyst. Interestingly, AIMD simulations show that the motif region of the highly reactive TM1-S4/edge SACs (such as Ru, Os, Rh, and Ir) exhibits a dynamic change, with a TM-coordinated S atom tending to flutter at reaction temperatures and return to its initial position when the species is adsorbed on TMs, thereby affecting the PDH activities. In addition to identifying the potential PDH catalyst from a practical application point of view, we believe that this study also provides a comprehensive picture for the theoretical screening of low-coordination single-atom catalysts.
Collapse
Affiliation(s)
- Chunguang Dong
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Zhuangzhuang Lai
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Haifeng Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| |
Collapse
|
12
|
de la Croix T, Claes N, Eyley S, Thielemans W, Bals S, De Vos D. Heterogeneous Pt-catalyzed transfer dehydrogenation of long-chain alkanes with ethylene. Catal Sci Technol 2023; 13:7123-7135. [PMID: 38089937 PMCID: PMC10712281 DOI: 10.1039/d3cy00370a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2024]
Abstract
The dehydrogenation of long-chain alkanes to olefins and alkylaromatics is a challenging endothermic reaction, typically requiring harsh conditions which can lead to low selectivity and coking. More favorable thermodynamics can be achieved by using a hydrogen acceptor, such as ethylene. In this work, the potential of heterogeneous platinum catalysts for the transfer dehydrogenation of long-chain alkanes is investigated, using ethylene as a convenient hydrogen acceptor. Pt/C and Pt-Sn/C catalysts were prepared via a simple polyol method and characterized with CO pulse chemisorption, HAADF-STEM, and EDX measurements. Conversion of ethylene was monitored via gas-phase FTIR, and distribution of liquid products was analyzed via GC-FID, GC-MS, and 1H-NMR. Compared to unpromoted Pt/C, Sn-promoted catalysts show lower initial reaction rates, but better resistance to catalyst deactivation, while increasing selectivity towards alkylaromatics. Both reaction products and ethylene were found to inhibit the reaction significantly. At 250 °C for 22 h, TON up to 28 and 86 mol per mol Pt were obtained for Pt/C and PtSn2/C, respectively, with olefin selectivities of 94% and 53%. The remaining products were mainly unbranched alkylaromatics. These findings show the potential of simple heterogeneous catalysts in alkane transfer dehydrogenation, for the preparation of valuable olefins and alkylaromatics, or as an essential step in various tandem reactions.
Collapse
Affiliation(s)
- Tim de la Croix
- Department of Microbial and Molecular Systems, Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven 3001 Leuven Belgium
| | - Nathalie Claes
- Electron Microscopy for Materials Science (EMAT) and NANOLab Center of Excellence, University of Antwerp 2020 Antwerp Belgium
| | - Samuel Eyley
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven Campus Kulak Kortrijk 8500 Kortrijk Belgium
| | - Wim Thielemans
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven Campus Kulak Kortrijk 8500 Kortrijk Belgium
| | - Sara Bals
- Electron Microscopy for Materials Science (EMAT) and NANOLab Center of Excellence, University of Antwerp 2020 Antwerp Belgium
| | - Dirk De Vos
- Department of Microbial and Molecular Systems, Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven 3001 Leuven Belgium
| |
Collapse
|
13
|
Kwak Y, Wang C, Kavale CA, Yu K, Selvam E, Mallada R, Santamaria J, Julian I, Catala-Civera JM, Goyal H, Zheng W, Vlachos DG. Microwave-assisted, performance-advantaged electrification of propane dehydrogenation. SCIENCE ADVANCES 2023; 9:eadi8219. [PMID: 37713491 PMCID: PMC10881033 DOI: 10.1126/sciadv.adi8219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/15/2023] [Indexed: 09/17/2023]
Abstract
Nonoxidative propane dehydrogenation (PDH) produces on-site propylene for value-added chemicals. While commercial, its modest selectivity and catalyst deactivation hamper the process efficiency and limit operation to lower temperatures. We demonstrate PDH in a microwave (MW)-heated reactor over PtSn/SiO2 catalyst pellets loaded in a SiC monolith acting as MW susceptor and a heat distributor while ensuring comparable conditions with conventional reactors. Time-on-stream experiments show active and stable operation at 500°C without hydrogen addition. Upon increasing temperature or feed partial pressure at high space velocity, catalysts under MWs show resistance in coking and sintering, high activity, and selectivity, starkly contrasting conventional reactors whose catalyst undergoes deactivation. Mechanistic differences in coke formation are exposed. Gas-solid temperature gradients are computationally investigated, and nanoscale temperature inhomogeneities are proposed to rationalize the different performances of the heating modes. The approach highlights the great potential of electrification of endothermic catalytic reactions.
Collapse
Affiliation(s)
- Yeonsu Kwak
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE 19716, USA
- RAPID Manufacturing Institute, Catalysis Center for Energy Innovation and Delaware Energy Institute, 221 Academy St., Newark, DE 19716, USA
| | - Cong Wang
- RAPID Manufacturing Institute, Catalysis Center for Energy Innovation and Delaware Energy Institute, 221 Academy St., Newark, DE 19716, USA
| | - Chaitanya A. Kavale
- Department of Chemical Engineering, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036, India
| | - Kewei Yu
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE 19716, USA
- RAPID Manufacturing Institute, Catalysis Center for Energy Innovation and Delaware Energy Institute, 221 Academy St., Newark, DE 19716, USA
| | - Esun Selvam
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE 19716, USA
- RAPID Manufacturing Institute, Catalysis Center for Energy Innovation and Delaware Energy Institute, 221 Academy St., Newark, DE 19716, USA
| | - Reyes Mallada
- Instituto de Nanociencia y Materiales de Aragón (INMA), Consejo Superior de Investigaciones Científicas (CSIC-Universidad de Zaragoza), Zaragoza 50018, Spain
| | - Jesus Santamaria
- Instituto de Nanociencia y Materiales de Aragón (INMA), Consejo Superior de Investigaciones Científicas (CSIC-Universidad de Zaragoza), Zaragoza 50018, Spain
| | | | | | - Himanshu Goyal
- Department of Chemical Engineering, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036, India
| | - Weiqing Zheng
- RAPID Manufacturing Institute, Catalysis Center for Energy Innovation and Delaware Energy Institute, 221 Academy St., Newark, DE 19716, USA
| | - Dionisios G. Vlachos
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE 19716, USA
- RAPID Manufacturing Institute, Catalysis Center for Energy Innovation and Delaware Energy Institute, 221 Academy St., Newark, DE 19716, USA
| |
Collapse
|
14
|
Zhang Y, Chen Q, Zhang H. Mechanism research reveals the role of Fe n ( n = 2-5) supported C 2N as single-cluster catalysts (SCCs) for the non-oxidative propane dehydrogenation in the optimization of catalytic performance. Phys Chem Chem Phys 2023; 25:24143-24154. [PMID: 37655603 DOI: 10.1039/d3cp03204c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Single cluster catalysts show excellent potential for propane dehydrogenation, compensating for the limited catalytic performance of single-atom catalysts in reactions involving multiple reaction steps and intermediates. Herein, density functional theory is used to investigate the catalytic activity and mechanism for non-oxidized propane dehydrogenation on Fen-C2N (n = 2-5). Firstly, the stability of Fen-C2N (n = 2-5) is evaluated by comparing the mean values of binding energy and cohesive energy. The results show that Fen-C2N (n = 2-4) can exist stably, which is also verified by the molecular dynamics calculation at 873 K. Band structure analysis shows that the screened catalysts have metal properties, which are conducive to charge transfer. Fukui function analysis is used to predict the optimal adsorption site. The electronic properties of propane and propylene adsorbed on catalysts are further studied by the partial density of states and deformation charge density. The activation barrier (Ea) and reaction energy (ΔE) of the main reaction steps are evaluated. The results show that Fe2-C2N (Ea = 0.97 eV, ΔE= 0.22 eV) has the best catalytic activity. The Ea for further propylene dehydrogenation is also used to evaluate the yield of propylene. Compared with Fe-C2N, Fe2-C2N can regulate the adsorption strength of propane and propylene, showing better catalytic ability and higher selectivity for propylene. The above research provides ideas for the design of new catalysts with high selectivity and activity for non-oxidative propane dehydrogenation.
Collapse
Affiliation(s)
- Yu Zhang
- Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China.
| | - Qin Chen
- Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China.
| | - Hui Zhang
- Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China.
| |
Collapse
|
15
|
Zhou N, Liu W, Jan F, Han Z, Li B. Efficient Screening of Metal Promoters of Pt Catalysts for C-H Bond Activation in Propane Dehydrogenation from a Combined First-Principles Calculations and Machine-Learning Study. ACS OMEGA 2023; 8:23982-23990. [PMID: 37426229 PMCID: PMC10324074 DOI: 10.1021/acsomega.3c02675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023]
Abstract
Platinum-based materials are the most widely used catalysts in propane direct dehydrogenation, which could achieve a balanced activity between both propane conversion and propene formation. One of the core issues of Pt catalysts is how to efficiently activate the strong C-H bond. It has been suggested that adding second metal promoters could greatly solve this problem. In the current work, first-principles calculations combined with machine learning are performed in order to obtain the most promising metal promoters and identify key descriptors for control performance. The combination of three different modes of adding metal promoters and two ratios between promoters and platinum sufficiently describes the system under investigation. The activity of propane activation and the formation of propene are reflected by the increase or decrease of the adsorption energy and C-H bond activation of propane and propene after the addition of promoters. The data of adsorption energy and kinetic barriers from first-principles calculations are streamed into five machine-learning methods including gradient boosting regressor (GBR), K neighbors regressor (KNR), random forest regressor (RFR), and AdaBoost regressor (ABR) together with the sure independence screening and sparsifying operator (SISSO). The metrics (RMSE and R2) from different methods indicated that GBR and SISSO have the most optimal performance. Furthermore, it is found that some descriptors derived from the intrinsic properties of metal promoters can determine their properties. In the end, Pt3Mo is identified as the most active catalyst. The present work not only provides a solid foundation for optimizing Pt catalysts but also provides a clear roadmap to screen metal alloy catalysts.
Collapse
Affiliation(s)
- Nuodan Zhou
- Shenyang
National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, People’s
Republic of China
- School
of Materials Science and Engineering, University
of Science and Technology of China, Shenyang 110016, Liaoning, People’s Republic of China
| | - Wen Liu
- School
of Materials Science and Engineering, Zhejiang
University, Hangzhou 310027, China
| | - Faheem Jan
- Shenyang
National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, People’s
Republic of China
- School
of Materials Science and Engineering, University
of Science and Technology of China, Shenyang 110016, Liaoning, People’s Republic of China
| | - ZhongKang Han
- School
of Materials Science and Engineering, Zhejiang
University, Hangzhou 310027, China
| | - Bo Li
- Institute
of Catalysis for Energy and Environment, College of Chemistry and
Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| |
Collapse
|
16
|
Chang X, Lu Z, Wang X, Zhao ZJ, Gong J. Tracking C-H bond activation for propane dehydrogenation over transition metal catalysts: work function shines. Chem Sci 2023; 14:6414-6419. [PMID: 37325145 PMCID: PMC10266452 DOI: 10.1039/d3sc01057k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
The activation of the C-H bond in heterogeneous catalysis plays a privileged role in converting light alkanes into commodity chemicals with a higher value. In contrast to traditional trial-and-error approaches, developing predictive descriptors via theoretical calculations can accelerate the process of catalyst design. Using density functional theory (DFT) calculations, this work describes tracking C-H bond activation of propane over transition metal catalysts, which is highly dependent on the electronic environment of catalytic sites. Furthermore, we reveal that the occupancy of the antibonding state for metal-adsorbate interaction is the key factor in determining the ability to activate the C-H bond. Among 10 frequently used electronic features, the work function (W) exhibits a strong negative correlation with C-H activation energies. We demonstrate that e-W can effectively quantify the ability of C-H bond activation, surpassing the predictive capacity of the d-band center. The C-H activation temperatures of the synthesized catalysts also confirm the effectiveness of this descriptor. Apart from propane, e-W applies to other reactants like methane.
Collapse
Affiliation(s)
- Xin Chang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
| | - Zhenpu Lu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
| | - Xianhui Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University, Binhai New City Fuzhou 350207 China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University, Binhai New City Fuzhou 350207 China
| |
Collapse
|
17
|
Chang X, Zhao ZJ, Lu Z, Chen S, Luo R, Zha S, Li L, Sun G, Pei C, Gong J. Designing single-site alloy catalysts using a degree-of-isolation descriptor. NATURE NANOTECHNOLOGY 2023; 18:611-616. [PMID: 36973396 DOI: 10.1038/s41565-023-01344-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Geometrically isolated metal atoms in alloy catalysts can target efficient and selective catalysis. However, the geometric and electronic disturbance between the active atom and its neighbouring atoms, that is, diverse microenvironments, makes the active site ambiguous. Herein, we demonstrate a methodology to describe the microenvironment and determine the effectiveness of active sites in single-site alloys. A simple descriptor, degree-of-isolation, is proposed, considering both electronic regulation and geometric modulation within a PtM ensemble (M = transition metal). The catalytic performance of PtM single-site alloy is examined thoroughly using this descriptor for an industrially important reaction, propane dehydrogenation. The volcano-shaped isolation-selectivity plot reveals a Sabatier-type principle for designing selective single-site alloys. Specifically, for a single-site alloy with a high degree-of-isolation, alternation of the active centre has a great impact on tuning selectivity, validated by the outstanding consistency between experimental propylene selectivity and the computational descriptor.
Collapse
Affiliation(s)
- Xin Chang
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, China
| | - Zhi-Jian Zhao
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, China
- Joint School of National University of Singapore and Tianjin University, Fuzhou, China
| | - Zhenpu Lu
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, China
| | - Sai Chen
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, China
| | - Ran Luo
- Joint School of National University of Singapore and Tianjin University, Fuzhou, China
| | - Shenjun Zha
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, China
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Lulu Li
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, China
| | - Guodong Sun
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, China
| | - Chunlei Pei
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, China
| | - Jinlong Gong
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin, China.
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China.
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, China.
- Joint School of National University of Singapore and Tianjin University, Fuzhou, China.
| |
Collapse
|
18
|
Zuo C, Su Q. Research Progress on Propylene Preparation by Propane Dehydrogenation. Molecules 2023; 28:molecules28083594. [PMID: 37110826 PMCID: PMC10142202 DOI: 10.3390/molecules28083594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
At present, the production of propylene falls short of the demand, and, as the global economy grows, the demand for propylene is anticipated to increase even further. As such, there is an urgent requirement to identify a novel method for producing propylene that is both practical and reliable. The primary approaches for preparing propylene are anaerobic and oxidative dehydrogenation, both of which present issues that are challenging to overcome. In contrast, chemical looping oxidative dehydrogenation circumvents the limitations of the aforementioned methods, and the performance of the oxygen carrier cycle in this method is superior and meets the criteria for industrialization. Consequently, there is considerable potential for the development of propylene production by means of chemical looping oxidative dehydrogenation. This paper provides a review of the catalysts and oxygen carriers employed in anaerobic dehydrogenation, oxidative dehydrogenation, and chemical looping oxidative dehydrogenation. Additionally, it outlines current directions and future opportunities for the advancement of oxygen carriers.
Collapse
Affiliation(s)
- Cheng Zuo
- College of Chemistry & Chemical and Environmental Engineering, Weifang University, Weifang 261000, China
| | - Qian Su
- College of Chemistry & Chemical and Environmental Engineering, Weifang University, Weifang 261000, China
| |
Collapse
|
19
|
Sun Y, Feng B, Lian Q, Xie C, Xiong J, Song W, Liu J, Wei Y. Ordered Hierarchical Porous Structure of PtSn/3DOMM-Al 2O 3 Catalyst for Promoting Propane Non-Oxidative Dehydrogenation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:728. [PMID: 36839096 PMCID: PMC9959180 DOI: 10.3390/nano13040728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Herein, the hierarchical porous catalyst of 3-dimensional ordered macro-mesoporous (3DOMM) Al2O3 supported active PtSn nanoparticles (NPs) was prepared by the combined synthesized path of evaporation-induced self-assembly with colloid crystal template (EISA-CCT) methods. The hierarchical macro-mesoporous composite structure can markedly increase the specific surface area, accommodate the diffusion of propene, and decrease the number of surface acid sites. In addition, the special surface property and pore structure of 3DOMM-Al2O3 can modify the interaction between metals and substrates, as well as stabilize the metal nanoparticle, which promotes the formation of a highly active and stable PtSn phase. The PtSn/3DOMM-Al2O3 catalyst exhibits higher productivity and stability than PtSn/Al2O3 catalysts with macropore and mesopore structures. The PtSn/3DOMM-Al2O3 catalyst displays the best catalytic performance with propylene selectivity over 95% at a propane conversion of 33.9%. The study of the ordered hierarchical porous structure of PtSn/3DOMM-Al2O3 catalysts can contribute to obtaining improved catalysts in industrial processes.
Collapse
Affiliation(s)
- Yuanqing Sun
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Bohan Feng
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Qian Lian
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Chengshu Xie
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Jing Xiong
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
- Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Jian Liu
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Yuechang Wei
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
- Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, China
| |
Collapse
|
20
|
Liu Y, Zong X, Patra A, Caratzoulas S, Vlachos DG. Propane Dehydrogenation on Pt xSn y ( x, y ≤ 4) Clusters on Al 2O 3(110). ACS Catal 2023. [DOI: 10.1021/acscatal.2c05671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Yilang Liu
- RAPID Manufacturing Institute, Catalysis Center for Energy Innovation, Delaware Energy Institute, Center for Plastics Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Xue Zong
- RAPID Manufacturing Institute, Catalysis Center for Energy Innovation, Delaware Energy Institute, Center for Plastics Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware 19716, United States
| | - Abhirup Patra
- RAPID Manufacturing Institute, Catalysis Center for Energy Innovation, Delaware Energy Institute, Center for Plastics Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Stavros Caratzoulas
- RAPID Manufacturing Institute, Catalysis Center for Energy Innovation, Delaware Energy Institute, Center for Plastics Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Dionisios G. Vlachos
- RAPID Manufacturing Institute, Catalysis Center for Energy Innovation, Delaware Energy Institute, Center for Plastics Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware 19716, United States
| |
Collapse
|
21
|
Effects of Synthesis Procedures on Pt–Sn Alloy Formation and Their Catalytic Activity for Propane Dehydrogenation. Catal Letters 2023. [DOI: 10.1007/s10562-022-04263-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
22
|
Zhou Y, Wei F, Qi H, Chai Y, Cao L, Lin J, Wan Q, Liu X, Xing Y, Lin S, Wang A, Wang X, Zhang T. Peripheral-nitrogen effects on the Ru1 centre for highly efficient propane dehydrogenation. Nat Catal 2022. [DOI: 10.1038/s41929-022-00885-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Effect of Bulk and Surface Composition of Ni+Ga Intermetallic Compound Catalysts in Propane Steam/Wet Reforming: Origins of Nearly Ideal Experimental Product Selectivity. J Catal 2022. [DOI: 10.1016/j.jcat.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Zhang W, Guo J, Ma H, Wen J, He C. Anchoring of transition metals to CN as efficient single-atom catalysts for propane dehydrogenation. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Feng S, Geng Y, Liu H, Li H. Targeted Intermetallic Nanocatalysts for Sustainable Biomass and CO 2 Valorization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shumei Feng
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin300130, China
| | - Yanyan Geng
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin300130, China
| | - Hongyan Liu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin300130, China
| | - Hao Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin300130, China
| |
Collapse
|
26
|
Choi YS, Kim JR, Hwang JH, Roh HS, Koh HL. Effect of reduction temperature on the activity of Pt-Sn/Al2O3 catalysts for propane dehydrogenation. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Dendritic Mesoporous Silica Nanoparticle Supported PtSn Catalysts for Propane Dehydrogenation. Int J Mol Sci 2022; 23:ijms232112724. [DOI: 10.3390/ijms232112724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
PtSn catalysts were synthesized by incipient-wetness impregnation using a dendritic mesoporous silica nanoparticle support. The catalysts were characterized by XRD, N2 adsorption–desorption, TEM, XPS and Raman, and their catalytic performance for propane dehydrogenation was tested. The influences of Pt/Sn ratios were investigated. Changing the Pt/Sn ratios influences the interaction between Pt and Sn. The catalyst with a Pt/Sn ratio of 1:2 possesses the highest interaction between Pt and Sn. The best catalytic performance was obtained for the Pt1Sn2/DMSN catalyst with an initial propane conversion of 34.9%. The good catalytic performance of this catalyst is ascribed to the small nanoparticle size of PtSn and the favorable chemical state and dispersion degree of Pt and Sn species.
Collapse
|
28
|
Chen X, Peng M, Xiao D, Liu H, Ma D. Fully Exposed Metal Clusters: Fabrication and Application in Alkane Dehydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xiaowen Chen
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People’s Republic of China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
| | - Mi Peng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Dequan Xiao
- Center for Integrative Materials Discovery, Department of Chemistry and Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Hongyang Liu
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People’s Republic of China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
29
|
Song C, Wang J, Wang S, Wen J. Experimental and Theoretical Study of the Impact of Operating Conditions on Catalytic Propane Dehydrogenation in a Fluidized Bed Reactor. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chen Song
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Jiarui Wang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Simin Wang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Jian Wen
- School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| |
Collapse
|
30
|
Ko J, Ma H, Schneider WF. Kinetic Origins of High Selectivity of Metal Phosphides for Ethane Dehydrogenation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jeonghyun Ko
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Hanyu Ma
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - William F. Schneider
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
31
|
Zhang Y, Chen X, Ali AM, Zhang H. Screening of transition metal doped two-dimensional C2N (TM-C2N) as high-performance catalyst for the non-oxidative propane dehydrogenation. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
32
|
Wrasman CJ, Zhou C, Aitbekova A, Goodman ED, Cargnello M. Recycling of Solvent Allows for Multiple Rounds of Reproducible Nanoparticle Synthesis. J Am Chem Soc 2022; 144:11646-11655. [PMID: 35737471 DOI: 10.1021/jacs.2c02837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal nanoparticles have superior properties for a variety of applications. In many cases, the improved performance of metal nanoparticles is tightly correlated with their size and atomic composition. To date, colloidal synthesis is the most commonly used technique to produce metal nanoparticles. However, colloidal synthesis is currently a laboratory scale technique that has not been applied at larger scales. One of the greatest challenges facing large-scale colloidal synthesis of metal nanoparticles is the large volume of long-chain hydrocarbon solvents and surfactants needed for the synthesis, which can dominate the cost of nanoparticle production. In this work, we demonstrate a protocol, based on solvent distillation, which enables the reuse of colloidal nanoparticle synthesis surfactants and solvents for over 10 rounds of successive syntheses and demonstrates that pure solvents and surfactants are not necessarily needed to produce uniform nanocrystals. We show that this protocol can be applied to the production of a wide variety of mono- and bimetallic nanoparticles with reproducible sizes and compositions, which leads to reproducible performance as heterogeneous catalysts. A techno-economic assessment demonstrates the potential of this technique to greatly reduce the solvent-related costs of colloidal metal nanoparticle synthesis, which could contribute to its wider application at commercial scale.
Collapse
Affiliation(s)
- Cody J Wrasman
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, Stanford, California 94305, United States
| | - Chengshuang Zhou
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, Stanford, California 94305, United States
| | - Aisulu Aitbekova
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, Stanford, California 94305, United States
| | - Emmett D Goodman
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, Stanford, California 94305, United States
| | - Matteo Cargnello
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
33
|
Unveiling the catalyst deactivation mechanism in the non-oxidative dehydrogenation of light alkanes on Rh(111): Density functional theory and kinetic Monte Carlo study. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Bian K, Zhang G, Zhu J, Wang X, Wang M, Lou F, Liu Y, Song C, Guo X. Promoting Propane Dehydrogenation with CO 2 over the PtFe Bimetallic Catalyst by Eliminating the Non-selective Fe(0) Phase. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Kai Bian
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Guanghui Zhang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Jie Zhu
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xiang Wang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Mingrui Wang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Feijian Lou
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yi Liu
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Chunshan Song
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
- Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Shatin, NT Hong Kong 999077, China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|
35
|
Zeolite-confined subnanometric PtSn mimicking mortise-and-tenon joinery for catalytic propane dehydrogenation. Nat Commun 2022; 13:2716. [PMID: 35581210 PMCID: PMC9114386 DOI: 10.1038/s41467-022-30522-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/28/2022] [Indexed: 11/08/2022] Open
Abstract
Heterogeneous catalysts are often composite materials synthesized via several steps of chemical transformation, and thus the atomic structure in composite is a black-box. Herein with machine-learning-based atomic simulation we explore millions of structures for MFI zeolite encapsulated PtSn catalyst, demonstrating that the machine-learning enhanced large-scale potential energy surface scan offers a unique route to connect the thermodynamics and kinetics within catalysts' preparation procedure. The functionalities of the two stages in catalyst preparation are now clarified, namely, the oxidative clustering and the reductive transformation, which form separated Sn4O4 and PtSn alloy clusters in MFI. These confined clusters have high thermal stability at the intersection voids of MFI because of the formation of "Mortise-and-tenon Joinery". Among, the PtSn clusters with high Pt:Sn ratios (>1:1) are active for propane dehydrogenation to propene, ∼103 in turnover-of-frequency greater than conventional Pt3Sn metal. Key recipes to optimize zeolite-confined metal catalysts are predicted.
Collapse
|
36
|
Du Y, Behera RK, Maligal-Ganesh RV, Chen M, Zhao TY, Huang W, Bowers CR. Mesoporous Silica Encapsulated Platinum-Tin Intermetallic Nanoparticles Catalyze Hydrogenation with an Unprecedented 20% Pairwise Selectivity for Parahydrogen Enhanced Nuclear Magnetic Resonance. J Phys Chem Lett 2022; 13:4125-4132. [PMID: 35506614 DOI: 10.1021/acs.jpclett.2c00581] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Supported noble metals offer key advantages over homogeneous catalysts for in vivo applications of parahydrogen-based hyperpolarization. However, their performance is compromised by randomization of parahydrogen spin order resulting from rapid hydrogen adatom diffusion. The diffusion on Pt surfaces can be suppressed by introduction of Sn to form Pt-Sn intermetallic phases. Herein, an unprecedented pairwise selectivity of 19.7 ± 1.1% in the heterogeneous hydrogenation of propyne using silica encapsulated Pt-Sn intermetallic nanoparticles is reported. This high level of selectivity exceeds that of all supported metal catalysts by at least a factor of 3. Moreover, the pairwise selectivity for alkyne hydrogenation is about 2 times higher than for alkene hydrogenation, an observation attributed to the higher coverage of the former and its effect on diffusion. Lastly, PtSn@mSiO2 nanoparticles exhibited improved coking resistance, and any loss of activity is shown to be fully reversible through high-temperature oxidation-reduction cycling.
Collapse
Affiliation(s)
- Yong Du
- Department of Chemistry and National High Magnetic Field Laboratory, University of Florida, Gainesville, Florida 32611, United States
| | - Ranjan K Behera
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | | | - Minda Chen
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Tommy Yunpu Zhao
- Department of Chemistry and National High Magnetic Field Laboratory, University of Florida, Gainesville, Florida 32611, United States
| | - Wenyu Huang
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Clifford R Bowers
- Department of Chemistry and National High Magnetic Field Laboratory, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
37
|
Wang C, Wang Z, Mao S, Chen Z, Wang Y. Coordination environment of active sites and their effect on catalytic performance of heterogeneous catalysts. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63924-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
38
|
Yu P, Yang Z, Gu Z, Wong HW. Catalytic reaction coupling of propane dehydrogenation with nitrobenzene hydrogenation over Pt/Al2O3. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
39
|
Bian W, Shen X, Tan H, Fan X, Liu Y, Lin H, Li Y. The triggering of catalysis via structural engineering at atomic level: Direct propane dehydrogenation on Fe-N3P-C. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Wang X, Hu H, Zhang N, Song J, Fan X, Zhao Z, Kong L, Xiao X, Xie Z. One‐Pot Synthesis of MgAlO Support for PtSn Catalysts over Propane Dehydrogenation. ChemistrySelect 2022. [DOI: 10.1002/slct.202104367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaohan Wang
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Beijing 102249 China
| | - Huimin Hu
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
| | - Ning Zhang
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
| | - Jiaxin Song
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
| | - Xiaoqiang Fan
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Beijing 102249 China
| | - Lian Kong
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
| | - Xia Xiao
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
| | - Zean Xie
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
| |
Collapse
|
41
|
Nakaya Y, Furukawa S. Tailoring Single-Atom Platinum for Selective and Stable Catalysts in Propane Dehydrogenation. Chempluschem 2022; 87:e202100560. [PMID: 35194957 DOI: 10.1002/cplu.202100560] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/12/2022] [Indexed: 11/08/2022]
Abstract
Propane dehydrogenation has been a promising method for producing propylene that has the potentials to meet the increasing global demand for propylene. However, owing to the restricted equilibrium conversion caused by the high endothermicity, even the Pt-based catalysts, which exhibit high activity and selectivity, severely suffer significantly from coke formation and/or nanoparticle sintering at realistic reaction temperatures, resulting in a short catalyst lifetime. As a result, few innovative catalysts in terms of catalytic activity, selectivity, and stability, have been produced. In this Review, we focus on the characteristics of single-atom-like Pt sites for PDH and attempt to provide suggestions for developing highly efficient catalysts. First, we briefly describe the fundamental strategies. Following that, the remarkable catalysis is addressed by three different distinct sorts of state-of-the-art single-atom-like Pt catalysts are discussed. Additionally, we present other promising catalyst design approaches that are not based on single-atom-like Pt catalysts, as well as future research challenges in this field.
Collapse
Affiliation(s)
- Yuki Nakaya
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, Kita-ku, 001-0021, Japan
| | - Shinya Furukawa
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, Kita-ku, 001-0021, Japan
- Department of Research Promotion, Japan Science and Technology Agency, Chiyoda, Tokyo, 102-0076, Japan
| |
Collapse
|
42
|
Lin X, Zhang J, Tang J, Yang Y, Liu C, Huang J. Atomically precise structures of Pt 2(S-Adam) 4(PPh 3) 2 complexes and catalytic application in propane dehydrogenation. NANOSCALE 2022; 14:2482-2489. [PMID: 35103280 DOI: 10.1039/d1nr07286b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As a bridge between single metal atoms and metal nanoclusters, atomically precise metal complexes are of great significance for controlled synthesis and catalytic applications at the atomic level. Herein, novel Pt2(S-Adam)4(PPh3)2 complexes were prepared via the conventional synthetic methods of metal nanoclusters. The atomically precise crystal structures of the binuclear Pt complexes with three kinds of packing modes in a unit cell were determined by X-ray crystallography. The two Pt atoms are bridged by two S atoms of thiolates, constructing a rhombus on a plane. Moreover, the ultraviolet visible absorption spectra of Pt2(S-Adam)4(PPh3)2 complexes show an apparent absorption peak centered at 454 nm. Furthermore, the Pt complexes were used as precursors to prepare catalysts for non-oxidative propane dehydrogenation. The as-prepared Pt-based catalysts with a particle size of approximately 1 nm demonstrated a propane conversion of about 18% and significantly enhanced selectivity for propylene, up to 93%. Our work will be beneficial to the basic understanding of platinum complexes, as well as the improvement of the catalytic dehydrogenation of propane.
Collapse
Affiliation(s)
- Xinzhang Lin
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junying Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Jie Tang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Jiahui Huang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
43
|
Yang Y, Song R, Fan X, Liu Y, Kong N, Lin H, Li Y. A mechanistic study of selective propane dehydrogenations on MoS2 supported single Fe atoms. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Synthesis, structural elucidation, and catalytic activity of bimetallic rhenium-tin complexes containing Schiff base ligand. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Robbins JP, Ezeonu L, Tang Z, Yang X, Koel BE, Podkolzin SG. Propane Dehydrogenation to Propylene and Propylene Adsorption on Ni and Ni‐Sn Catalysts. ChemCatChem 2022. [DOI: 10.1002/cctc.202101546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jason P. Robbins
- Stevens Institute of Technology Department of Chemical Engineering and Materials Science UNITED STATES
| | - Lotanna Ezeonu
- Stevens Institute of Technology Department of Chemical Engineering and Materials Science UNITED STATES
| | - Ziyu Tang
- Stevens Institute of Technology Department of Chemical Engineering and Materials Science UNITED STATES
| | - Xiaofang Yang
- Princeton University Department of Chemical and Biological Engineering UNITED STATES
| | - Bruce E. Koel
- Princeton University Department of Chemical and Biological Engineering UNITED STATES
| | - Simon George Podkolzin
- Stevens Institute of Technology Department of Chemical Engineering and Materials Science Castle Point on Hudson 07030-5991 Hoboken UNITED STATES
| |
Collapse
|
46
|
Qu Z, Sun Q. Advances in Zeolite-Supported Metal Catalysts for Propane Dehydrogenation. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00653g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Propylene is one of the building blocks of the modern industrial mansion, which is the feeding stock for polypropylene, acrylonitrile, and other important chemicals. Propane dehydrogenation (PDH) is one of...
Collapse
|
47
|
Hirai H, Jinnouchi R. Discovering surface reaction pathways using accelerated molecular dynamics and network analysis tools. RSC Adv 2022; 12:23274-23283. [PMID: 36090391 PMCID: PMC9382359 DOI: 10.1039/d2ra04343b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/10/2022] [Indexed: 11/21/2022] Open
Abstract
We present an automated method that maps surface reaction pathways with no experimental data and with minimal human interventions. In this method, bias potentials promoting surface reactions are applied to enable statistical samplings of the surface reaction within the timescale of ab initio molecular dynamics (MD) simulations, and elementary reactions are extracted automatically using an extension of the method constructed for gas- or liquid-phase reactions. By converting the extracted elementary reaction data to directed graph data, MD trajectories can be efficiently mapped onto reaction pathways using a network analysis tool. To demonstrate the power of the method, it was applied to the steam reforming of methane on the Rh(111) surface and to propane reforming on the Pt(111) and Pt3Sn(111) surfaces. We discover new energetically favorable pathways for both reactions and reproduce the experimentally-observed materials-dependence of the surface reaction activity and the selectivity for the propane reforming reactions. We present an automated method that maps surface reaction pathways with no experimental data and with minimal human interventions.![]()
Collapse
Affiliation(s)
- Hirotoshi Hirai
- Toyota Central R&D Labs., Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Ryosuke Jinnouchi
- Toyota Central R&D Labs., Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192, Japan
| |
Collapse
|
48
|
He Y, Shi H, Johnson O, Joseph B, Kuhn JN. Selective and Stable In-Promoted Fe Catalyst for Syngas Conversion to Light Olefins. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04334] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yang He
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - Hanzhong Shi
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - Olusola Johnson
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - Babu Joseph
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - John N. Kuhn
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
49
|
Rational design of intermetallic compound catalysts for propane dehydrogenation from a descriptor-based microkinetic analysis. J Catal 2021. [DOI: 10.1016/j.jcat.2021.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
C3N Non-metallic Catalyst for Propane Dehydrogenation: A Density Functional Theory Study. Catal Letters 2021. [DOI: 10.1007/s10562-021-03564-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|