1
|
Ao Q, Jiang L, Song Y, Tong X, Jiang T, Lv X, Tang J. Base on photothermal interfacial molecular transfer for efficient biodiesel catalysis via enzyme@cyclodextrin metal-organic frameworks loaded MXene. Carbohydr Polym 2024; 343:122454. [PMID: 39174132 DOI: 10.1016/j.carbpol.2024.122454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 08/24/2024]
Abstract
Efficient, green and stable catalysis has always been the core concept of enzyme catalysis in industrial processes for manufacturing. Therefore, we construct a new strategy with photothermal interfacial molecular transfer for green and efficient biodiesel catalysis. We encapsulate Candida albicans lipase B (CalB) in a γ-cyclodextrin metal-organic framework (γ-CD-MOF) loading with Ti3C2TX by in situ growth and electrostatic assembly. The γ-CD-MOF not only protects the fragile enzyme, but also enhances the catalytic performance through the synergistic effects of porous adsorption (MOF pore structure) and interfacial enrichment (cyclodextrins host-guest assembly structure) for accelerating substrate transfer (642.6 %). The CalB@γ-CD-MOF/MXene-i activity can be regulated up to 274.6 % by exposure to near-infrared (NIR). Importantly, CalB@γ-CD-MOF/MXene-i achieves 93.3 % biodiesel conversion under NIR and maintained 86.9 % activity after 6 cycles. Meanwhile, the MXene after the CalB@γ-CD-MOF/MXene catalytic cycle can be almost completely recovered. We verify the mechanism of high catalytic activity of γ-CD-MOF and rationalize the mechanism of CD molecular channel by DFT. Therefore, this highly selective enzyme catalytic platform offers new possibilities for green and efficient preparation of bioenergy.
Collapse
Affiliation(s)
- Qi Ao
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China
| | - Lin Jiang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ying Song
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xinglai Tong
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China
| | - Tuohao Jiang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiaoxiao Lv
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jun Tang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
2
|
Sun MY, Cheung SC, Wang XZ, Jin JK, Guo J, Li D, He J. Structural Reassignment of Covalent Organic Framework-Supported Palladium Species: Heterogenized Palladacycles as Efficient Catalysts for Sustainable C-H Activation. ACS CENTRAL SCIENCE 2024; 10:1848-1860. [PMID: 39463833 PMCID: PMC11503496 DOI: 10.1021/acscentsci.4c00660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 10/29/2024]
Abstract
Recent decades have witnessed remarkable progress in ligand-promoted C-H activation with palladium catalysts. While a number of transformations have been achieved with a fairly broad substrate scope, the general requirements for high palladium loadings and enormous challenges in catalyst recycling severely limit the practical applications of C-H activation methodologies in organic synthesis. Herein, we incorporate N,C-ligand-chelated palladacycles into rigid, porous, and crystalline covalent organic frameworks for the C-H arylation of indole and pyrrole derivatives. These heterogeneous palladium catalysts exhibit superior stability and recyclability compared to their homogeneous counterparts. We not only produce several highly reactive palladacycles embedded on new framework supports to facilitate C-H activation/C-C bond-forming reactions but also reassign heterogenized palladium species on frameworks containing a benzaldehyde-derived imine moiety as imine-based palladacycles via comprehensive characterization. Our findings provide guidance for the rational design of framework-supported metallacycles in the development of heterogeneous transition-metal catalysis.
Collapse
Affiliation(s)
- Meng-Ying Sun
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
| | - Sheung Chit Cheung
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
| | - Xue-Zhi Wang
- College
of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory
of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P.R. China
| | - Ji-Kang Jin
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
- College
of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory
of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P.R. China
| | - Jun Guo
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
| | - Dan Li
- College
of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory
of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P.R. China
| | - Jian He
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
- State
Key Laboratory of Synthetic Chemistry, The
University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
| |
Collapse
|
3
|
Ghanbari H, Derakhshankhah H, Bahrami K, Keshavarzi S, Mohammadi K, Hayati P, Centore R, Parisi E. Synthesis, characterization, and biological activity of a fresh class of sonochemically synthesized Cu 2+ complexes. Sci Rep 2024; 14:21325. [PMID: 39266594 PMCID: PMC11393119 DOI: 10.1038/s41598-024-72345-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024] Open
Abstract
The synthesis and characterization of metal complexes have garnered significant attention due to their versatile applications in scientific and biomedical fields. In this research, two novel copper (Cu) complexes, [Cu(L)(L')(H2O)2] (1) and [Cu(L)(Im)H2O] (2), where L = pyridine-2,6-dicarboxylic acid, L' = 2,4-diamino-6-hydroxypyrimidine, and Im = imidazole, were investigated concerning their sonochemical synthesis, spectroscopic analysis, and biological activity. The complexes' structural characterization was achieved using analytical techniques, including single-crystal X-ray structure determination, FTIR, PXRD, TGA and DTA, SEM, TEM, and EDS. Complex (1) displayed a six-coordinated Cu2+ ion, while complex (2) exhibited a five-coordinated Cu2+ ion. The crystal structures revealed monoclinic (C2/c) and triclinic (P-1) space groups, respectively. Both complexes showcased zero-dimensional (0D) supramolecular networks, primarily driven by hydrogen bonding and π-π stacking interactions, which played pivotal roles in stabilizing the structures and shaping the unique supramolecular architecture. Both complexes demonstrated significant antioxidant activity, suggesting their capability to neutralize free radicals and mitigate oxidative stress-related diseases. Hemolysis percentages were less than 2%, per the ASTM F756-00 standard, indicating non-hemolytic behavior. Low cytotoxicity was observed against fibroblast and MCF-7 cell lines. They do not exhibit antibacterial activity against Escherichia coli and Staphylococcus aureus. These findings suggest that the synthesized Cu2+‒complexes hold considerable promise for applications in drug delivery and cancer treatment. This research contributes to the advancement of supramolecular chemistry and the development of multifunctional materials for diverse scientific and medical applications.
Collapse
Affiliation(s)
- Hamed Ghanbari
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, 67144-14971, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Kiumars Bahrami
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, 67144-14971, Iran.
- Nanoscience and Nanotechnology Research Center (NNRC), Razi University, Kermanshah, 67144-14971, Iran.
| | - Saeide Keshavarzi
- Department of Chemistry, Faculty of Sciences and Nano and Biotechnology, Persian Gulf University, Bushehr, 75169, Iran
| | - Khosro Mohammadi
- Department of Chemistry, Faculty of Sciences and Nano and Biotechnology, Persian Gulf University, Bushehr, 75169, Iran.
| | - Payam Hayati
- Department of Chemistry, Faculty of Sciences and Nano and Biotechnology, Persian Gulf University, Bushehr, 75169, Iran.
- Organic and Nano Group, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846‑13114, Iran.
| | - Roberto Centore
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126, Naples, Italy
| | - Emmanuele Parisi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126, Naples, Italy
| |
Collapse
|
4
|
Tang C, Rao H, Li S, She P, Qin JS. A Review of Metal-Organic Frameworks Derived Hollow-Structured Photocatalysts: Synthesis and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405533. [PMID: 39212632 DOI: 10.1002/smll.202405533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Photocatalysis is a most important approach to addressing global energy shortages and environmental issues due to its environmentally friendly and sustainable properties. The key to realizing efficient photocatalysis relies on developing appropriate catalysts with high efficiency and chemical stability. Among various photocatalysts, Metal-organic frameworks (MOFs)-derived hollow-structured materials have drawn increased attention in photocatalysis based on advantages like more active sites, strong light absorption, efficient transfer of pho-induced charges, excellent stability, high electrical conductivity, and better biocompatibility. Specifically, MOFs-derived hollow-structured materials are widely utilized in photocatalytic CO2 reduction (CO2RR), hydrogen evolution (HER), nitrogen fixation (NRR), degradation, and other reactions. This review starts with the development story of MOFs, the commonly adopted synthesis strategies of MOFs-derived hollow materials, and the latest research progress in various photocatalytic applications are also introduced in detail. Ultimately, the challenges of MOFs-derived hollow-structured materials in practical photocatalytic applications are also prospected. This review holds great potential for developing more applicable and efficient MOFs-derived hollow-structured photocatalysts.
Collapse
Affiliation(s)
- Chenxi Tang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Heng Rao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Shuming Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ping She
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jun-Sheng Qin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
5
|
Liang RR, Yang Y, Han Z, Bakhmutov VI, Rushlow J, Fu Y, Wang KY, Zhou HC. Zirconium-Based Metal-Organic Frameworks with Free Hydroxy Groups for Enhanced Perfluorooctanoic Acid Uptake in Water. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407194. [PMID: 38896032 DOI: 10.1002/adma.202407194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Perfluorooctanoic acid (PFOA) is a highly recalcitrant organic pollutant, and its bioaccumulation severely endangers human health. While various methods are developed for PFOA removal, the targeted design of adsorbents with high efficiency and reusability remains largely unexplored. Here the rational design and synthesis of two novel zirconium-based metal‒organic frameworks (MOFs) bearing free ortho-hydroxy sites, namely noninterpenetrated PCN-1001 and twofold interpenetrated PCN-1002, are presented. Single crystal analysis of the pure ligand reveals that intramolecular hydrogen bonding plays a pivotal role in directing the formation of MOFs with free hydroxy groups. Furthermore, the transformation from PCN-1001 to PCN-1002 is realized. Compared to PCN-1001, PCN-1002 displays higher chemical stability due to interpenetration, thereby demonstrating an exceptional PFOA adsorption capacity of up to 632 mg g-1 (1.53 mmol g-1), which is comparable to the reported record values. Moreover, PCN-1002 shows rapid kinetics, high selectivity, and long-life cycles in PFOA removal tests. Solid-state nuclear magnetic resonance results and density functional theory calculations reveal that multiple hydrogen bonds between the free ortho-hydroxy sites and PFOA, along with Lewis acid-base interaction, work collaboratively to enhance PFOA adsorption.
Collapse
Affiliation(s)
- Rong-Ran Liang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Yihao Yang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Zongsu Han
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | | | - Joshua Rushlow
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Kun-Yu Wang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
6
|
Verma G, Kumar S, Slaughter ER, Vardhan H, Alshahrani TM, Niu Z, Gao WY, Wojtas L, Chen YS, Ma S. Bifunctional Metal-Organic Nanoballs Featuring Lewis Acidic and Basic Sites as a New Platform for One-Pot Tandem Catalysis. Chempluschem 2024; 89:e202400169. [PMID: 38578649 DOI: 10.1002/cplu.202400169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/06/2024]
Abstract
The design and synthesis of polyhedra using coordination-driven self-assembly has been an intriguing research area for synthetic chemists. Metal-organic polyhedra are a class of intricate molecular architectures that have garnered significant attention in the literature due to their diverse structures and potential applications. Hereby, we report Cu-MOP, a bifunctional metal-organic cuboctahedra built using 2,6-dimethylpyridine-3,5-dicarboxylic acid and copper acetate at room temperature. The presence of both Lewis basic pyridine groups and Lewis acidic copper sites imparts catalytic activity to Cu-MOP for the tandem one-pot deacetalization-Knoevenagel/Henry reactions. The effect of solvent system and time duration on the yields of the reactions was studied, and the results illustrate the promising potential of these metal-organic cuboctahedra, also known as nanoballs for applications in catalysis.
Collapse
Affiliation(s)
- Gaurav Verma
- Department of Chemistry, University of North Texas, 1508 W Mulberry St., Denton, Texas, 76201, USA
| | - Sanjay Kumar
- Department of Chemistry, Multani Mal Modi College, Modi College, Lower Mall, Patiala, Punjab, 147001, India
| | - Elliott R Slaughter
- Texas Academy of Mathematics and Sciences, University of North Texas, 1508 W Mulberry St., Denton, Texas, 76201, USA
| | - Harsh Vardhan
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St., Houston, Texas, 77005-1827, USA
| | - Thamraa M Alshahrani
- Department of Physics, College of Science, Princess Nourahbint Abdulrahman University, Riyadh, 11564, SaudiArabia
| | - Zheng Niu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Wen-Yang Gao
- Chemistry & Biochemistry Department, Ohio University, Athens, Ohio, 45701, USA
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, Florida, 33620, USA
| | - Yu-Sheng Chen
- ChemMatCARS, Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Avenue, Argonne, Illinois, 60439, USA
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry St., Denton, Texas, 76201, USA
| |
Collapse
|
7
|
Hulushe ST, Watkins GM, Khanye SD. A cobalt(II) coordination polymer-derived catalyst engineered via temperature-induced semi-reversible single-crystal-to-single-crystal (SCSC) dehydration for efficient liquid-phase epoxidation of olefins. Dalton Trans 2024; 53:11326-11343. [PMID: 38899354 DOI: 10.1039/d4dt00739e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Single-crystal-to-single-crystal (SCSC) transformations provide more avenues for phase transitions, which have piqued great interest in crystal engineering. In this work, a 3D Co(II)-based coordination polymer (CP), {Co2(OH2)8(btec)}·4H2O (1), (where (btec)4- = 1,2,4,5-benzenetetracarboxylate) undergoes SCSC transition upon heating at 180 °C to afford an anhydrous phase [Co2(btec)] (1'). Room-temperature water-vapour induced semi-reversible SCSC transformation of 1' involves condensation of two water molecules coordinating to the metal cluster, yielding a new framework [Co2(OH2)2(btec)] (2). These SCSC transitions were accomplished through a sequential bond breaking and new bond formation process which was accompanied by colour changes from orange (1) → violet (1') → pink (2). All materials were structurally elucidated by single-crystal X-ray diffraction (SCXRD) and further established by various analytical techniques. According to SCXRD data, all the frameworks possess octahedral geometries around the cobalt(II) sphere. SCXRD studies further revealed that 1 is a polymeric architecture with a binodal 4-c sql topology while 1' and 2 possess (3,6)-c kgd and (4,6)-c scu 3D nets, respectively. By virtue of multitopicity exhibited by the tetracarboxylate, the coordination number of the linker around the Co(II) sphere increased from four (in 1) to eight (in 1') and then decreased to six (in 2). Most interestingly, permanent porosity could be observed for the dihydrate 2, originated from potential void space as substantiated by dinitrogen (N2) sorption isotherm. These porous frameworks were active catalysts for the aerobic epoxidation of the model substrate cyclohexene using molecular oxygen (O2) as the final oxidant in the presence of the sacrificial i-butyraldehyde (IBA) reductant. For using the dihydrous phase 2, cyclohexene and various other olefins were catalytically oxidised to their corresponding epoxides with up to 38.5% conversion and 99.0% selectivity. The catalyst 2 can be expediently recycled in four runs without significant loss of activity. This research demonstrates that a little innovation in the active-site-engineered organic-inorganic hybrid materials can significantly enhance the catalytic performance and selectivity of coordination polymer-derived heterogeneous catalysts.
Collapse
Affiliation(s)
- Siya T Hulushe
- Department of Chemistry, Rhodes University, Makhanda 6139, South Africa.
| | - Gareth M Watkins
- Department of Chemistry, Rhodes University, Makhanda 6139, South Africa.
| | - Setshaba D Khanye
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, Makhanda 6139, South Africa
| |
Collapse
|
8
|
Saha S, Akhtar S, Pramanik S, Bala S, Mondal R. Utilization of a trinuclear Cu-pyrazolate inorganic motif to build multifunctional MOFs. Dalton Trans 2024; 53:11021-11037. [PMID: 38881376 DOI: 10.1039/d4dt00986j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The current work aims to generate multifunctional MOFs by incorporating a well-known inorganic motif, a trinuclear Cu-pyrazolate [Cu3(μ3-OH)(μ-Pyz)3] (T-CuP) unit, as a node of the network. Accordingly, we report herein the synthesis and properties of five new compounds using five V-shaped dicarboxylic acids as auxiliary ligands. The structural features are consistent with the theme of grafting T-CuP units as nodal points of architectures whose chassis are primarily made of bent acids. V-shaped acids also induce a helical nature inside resulting frameworks. Beside their structural and physical features, T-CuP unit-based MOFs also vindicate our thematic approach of the trinuclear Cu-pyrazolate unit imparting specific physicochemical properties, such as magnetic, electrical, and catalytic properties, to resultant MOFs. The MOFs show excellent catalytic properties in reducing 4-nitrophenol, which could be attributed to the porous nature of the network along with the presence of metal centres with unsaturated coordination within the T-CuP unit. Furthermore, efficient photocatalytic degradation of harmful organic dyes confirms their importance for environmental remediation. The presence of a T-CuP unit and various functional groups also make some of the MOFs suitable candidates for electrical applications, which is indeed manifested in encouraging proton conductivity. Finally, the potential of current MOFs, fitted with a magnetically important trinuclear Cu-pyrazolate motif, as magnetic materials has also been thoroughly investigated.
Collapse
Affiliation(s)
- Sayan Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | - Sohel Akhtar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | - Subhendu Pramanik
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | - Sukhen Bala
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | - Raju Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| |
Collapse
|
9
|
Gupta P, Akhtar N, Begum W, Rana B, Kalita R, Chauhan M, Thadhani C, Manna K. Metal-Organic Framework-Supported Mono Bipyridyl-Iron Hydroxyl Catalyst for Selective Benzene Hydroxylation into Phenol. Inorg Chem 2024; 63:11907-11916. [PMID: 38850244 DOI: 10.1021/acs.inorgchem.4c01825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2024]
Abstract
Direct hydroxylation of benzene to phenol is more appealing in the industry for the economic and environmentally friendly phenol synthesis than the conventional cumene process. We have developed a UiO-metal-organic framework (MOF)-supported mono bipyridyl-Iron(II) hydroxyl catalyst [bpy-UiO-Fe(OH)2] for the selective benzene hydroxylation into phenol using H2O2 as the oxidant. The heterogeneous bpy-UiO-Fe(OH)2 catalyst showed high activity and remarkable phenol selectivity of 99%, giving the phenol mass-specific activity up to 1261 mmolPhOHgFe-1 h-1 at 60 °C. Bpy-UiO-Fe(OH)2 is significantly more active and selective than its homogeneous counterpart, bipyridine-Fe(OH)2. This enhanced catalytic activity of bpy-UiO-Fe(OH)2 over its homogeneous control is attributed to the active site isolation of the bpy-Fe(OH)2 moiety by the solid MOF that prevents intermolecular decomposition. Moreover, the exceptional selectivity of bpy-UiO-Fe(OH)2 in benzene to phenol conversion is originated via shape-selective catalysis, where the confined reaction space within the porous UiO-MOF prevents the formation of larger overoxidized products such as hydroquinone or benzoquinone, leading to the formation of only smaller-sized phenol after monohydroxylation of benzene. Spectroscopic and controlled experiments and theoretical calculations elucidated the reaction pathway, in which the in situ generated •OH radical mediated by bpy-UiO-FeII(OH)2 is the key species for benzene hydroxylation. This work underscores the significance of MOF-supported earth-abundant metal catalysts for sustainable production of fine chemicals.
Collapse
Affiliation(s)
- Poorvi Gupta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Naved Akhtar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Wahida Begum
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Bharti Rana
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Rahul Kalita
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Manav Chauhan
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Chhaya Thadhani
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Kuntal Manna
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
10
|
Razeghi MH, Gholipour O, Sardroodi JJ, Keshipour S, Hassanzadeh A. Magnetic cobalt metal organic framework for photocatalytic water splitting hydrogen evolution. DISCOVER NANO 2024; 19:82. [PMID: 38714578 PMCID: PMC11076441 DOI: 10.1186/s11671-024-04019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/22/2024] [Indexed: 05/10/2024]
Abstract
Using water as a renewable and safe energy source for hydrogen generation has reduced the need to use toxic fossil fuels. Photocatalytic approaches provide a worthy solution to avoid the high expenditure on complicated electrochemical pathways to promote Hydrogen Evolution Reactions. However, several types of photocatalysts including noble metal-based catalysts have already been in use for this purpose, which are generally considered high-cost as well. The present study aims to use the benefits of metal-organic frameworks (MOFs) with semiconductor-like characteristics, highly porous structures and high design flexibility. These properties of MOFs allow more efficient and effective mass transport as well as exposure to light.in this paper, using MOF technology and benefiting from the characteristics of Fe3O4 nanoparticles as catalyst support for more efficient separation of catalyst, we have synthesized a novel composite. Our proposed photocatalyst demonstrates efficient harvest of light in all wavelengths from UV to visible to generate electron/hole pairs suitable for water splitting with a turnover frequency of 0.222 h-1 at ambient conditions without requiring any additives.
Collapse
Affiliation(s)
| | - Ozra Gholipour
- Department of Nanotechnology, Faculty of Chemistry, Urmia University, Urmia, Iran.
| | - Jaber J Sardroodi
- Department of Chemistry, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | - Sajjad Keshipour
- Department of Nanotechnology, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Ali Hassanzadeh
- Department of Physical Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| |
Collapse
|
11
|
Kumari S, Yadav A, Kumari A, Mahapatra S, Kumar D, Sharma J, Yadav P, Ghosh D, Chakraborty A, Kanoo P. Quest for a Desolvated Structure Unveils Breathing Phenomena in a MOF Leading to Greener Catalysis in a Solventless Setup: Insights from Combined Experimental and Computational Studies. Inorg Chem 2024; 63:7146-7160. [PMID: 38592926 DOI: 10.1021/acs.inorgchem.3c04062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The crystal structure of the metal-organic framework (MOF), {Mn2(1,4-bdc)2(DMF)2}n (1) (1,4-bdcH2, 1,4-benzenedicarboxylic acid; DMF, N,N-dimethylformamide), is known for a long time; however, its desolvated structure, {Mn2(1,4-bdc)2}n (1'), is not yet known. The first-principles-based computational simulation was used to unveil the structure of 1' that shows the expansion in the framework, leading to pore opening after the removal of coordinated DMF molecules. We have used 1' that contains open metal sites (OMSs) in the structure in cyanosilylation and CO2 cycloaddition reactions and recorded complete conversions in a solventless setup. The pore opening in 1' allows the facile diffusion of small aldehyde molecules into the channels, leading to complete conversion. The reactions with larger aldehydes, 2-naphthaldehyde and 9-anthracenecarboxaldehyde, also show 99.9% conversions, which are the highest reported until date in solventless conditions. The in silico simulations illustrate that larger aldehydes interact with Mn(II) OMSs on the surfaces, enabling a closer interaction and facilitating complete conversions. The catalyst shows high recyclability, exhibiting 99.9% conversions in the successive reaction cycles with negligible change in the structure. Our investigations illustrate that the catalyst 1' is economical, efficient, and robust and allows reactions in a solventless greener setup, and therefore the catalysis with 1' can be regarded as "green catalysis".
Collapse
Affiliation(s)
- Sarita Kumari
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123031, India
| | - Anand Yadav
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123031, India
| | - Ankita Kumari
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, Delhi 110067, India
| | - Somanath Mahapatra
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123031, India
| | - Devender Kumar
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123031, India
| | - Jyoti Sharma
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123031, India
| | - Preety Yadav
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123031, India
| | - Dibyajyoti Ghosh
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, Delhi 110067, India
- Department of Materials Science and Engineering (DMSE), Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, Delhi 110067, India
| | - Anindita Chakraborty
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123031, India
| | - Prakash Kanoo
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123031, India
- Special Centre for Nano Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, Delhi 110067, India
| |
Collapse
|
12
|
Hong YL, Zuo SW, Du HY, Shi ZQ, Hu H, Li G. Four Lanthanide(III) Metal-Organic Frameworks Fabricated by Bithiophene Dicarboxylate for High Inherent Proton Conduction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13745-13755. [PMID: 38446712 DOI: 10.1021/acsami.3c18999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Currently, it is still a challenge to directly achieve highly stable metal-organic frameworks (MOFs) with superior proton conductivity solely through the exquisite design of ligands and the attentive selection of metal nodes. Inspired by this, we are intrigued by a multifunctional dicarboxylate ligand including dithiophene groups, 3,4-dimethylthieno[2,3-b]thiophene-2,5-dicarboxylic acid (H2DTD), and lanthanide ions with distinct coordination topologies. Successfully, four isostructural three-dimensional lanthanide(III)-based MOFs, [Ln2(DTD)3(DEF)4]·DEF·6H2O [LnIII = TbIII (Tb-MOF), EuIII (Eu-MOF), SmIII (Sm-MOF), and DyIII (Dy-MOF)], were solvothermally prepared, in which the effective proton transport will be provided by the coordinated or free solvent molecules, the crystalline water molecules, and the framework components, as well as a large number of highly electronegative S and O atoms. As expected, the four Ln-MOFs demonstrated the highest proton conductivities (σ) being 0.54 × 10-3, 3.75 × 10-3, 1.28 × 10-3, and 1.92 × 10-3 S·cm-1 for the four MOFs, respectively, at 100 °C/98% relative humidity (RH). Excitingly, Dy-MOF demonstrated an extraordinary ultrahigh σ of 1 × 10-3 S·cm-1 at 30 °C/98% RH. Additionally, the plausible proton transport mechanisms were emphasized.
Collapse
Affiliation(s)
- Yu-Ling Hong
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Shuai-Wu Zuo
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Hao-Yu Du
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Zhi-Qiang Shi
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, P. R. China
| | - Hailiang Hu
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, P. R. China
| | - Gang Li
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
13
|
Rajendran HK, Deen MA, Ray JP, Singh A, Narayanasamy S. Harnessing the Chemical Functionality of Metal-Organic Frameworks Toward Removal of Aqueous Pollutants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:3963-3983. [PMID: 38319923 DOI: 10.1021/acs.langmuir.3c02668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Wastewater treatment has been bestowed with a plethora of materials; among them, metal-organic frameworks (MOFs) are one such kind with exceptional properties. Besides their application in gas adsorption and storage, they are applied in many fields. In orientation toward wastewater treatment, MOFs have been and are being successfully employed to capture a variety of aqueous pollutants, including both organic and inorganic ones. This review sheds light on the postsynthetic modifications (PSMs) performed over MOFs to adsorb and degrade recalcitrant. Modifications performed on the metal nodes and the linkers have been explained with reference to some widely used chemical modifications like alkylation, amination, thiol addition, tandem modifications, and coordinate modifications. The boost in pollutant removal efficacy, reaction rate, adsorption capacity, and selectivity for the modified MOFs is highlighted. The rationale and the robustness of micromotor MOFs, i.e., MOFs with motor activity, and their potential application in the capture of toxic pollutants are also presented for readers. This review also discusses the challenges and future recommendations to be considered in performing PSM over a MOF concerning wastewater treatment.
Collapse
Affiliation(s)
- Harish Kumar Rajendran
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Mohammed Askkar Deen
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Jyoti Prakash Ray
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Anushka Singh
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Selvaraju Narayanasamy
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
14
|
Koonani S, Ghiasvand A. A highly porous fiber coating based on a Zn-MOF/COF hybrid material for solid-phase microextraction of PAHs in soil. Talanta 2024; 267:125236. [PMID: 37757692 DOI: 10.1016/j.talanta.2023.125236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
This study involved the development of a novel adsorbent by combining a Zn-based MOF with a melamine-based COF, resulting in the formation of a hybrid material known as Zn-MOF/COF. The adsorbent was characterized using FT-IR, SEM, XRD, EDX, and BET analysis techniques. The resulting Zn-MOF/COF sorbent was employed to prepare solid-phase microextraction (SPME) fibers for the extraction and enrichment of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil samples, after coupling with GC-FID. A Box-Behnken design (BBD) was used to optimize key variables of SPME conditions. Under optimal conditions of 85 °C for 30 min extraction with 23 μL g-1 sample's moisture level, linear responses of six PAHs were ranging from 1 to 20000 ng g⁻1 with determination coefficients greater than 0.99. Limits of detection (LODs) were over the ranges of 0.1-1 ng g-1. The RSDs for intra-fiber and inter-fiber analyses were obtained 2.2-6.6% and 5.2-11.6%, respectively. Relative recoveries values for real soil samples were found to be 91.1-110.2%. The results showed lower cost and higher extraction efficiency for the Zn-MOF/COF fiber, compared with commercial and homemade adsorbents.
Collapse
Affiliation(s)
- Samira Koonani
- Department of Analytical Chemistry, Faculty of Chemistry, Lorestan University, Khoramabad, Iran.
| | - Alireza Ghiasvand
- Department of Analytical Chemistry, Faculty of Chemistry, Lorestan University, Khoramabad, Iran.
| |
Collapse
|
15
|
Chauhan M, Antil N, Rana B, Akhtar N, Thadhani C, Begum W, Manna K. Isoreticular Metal-Organic Frameworks Confined Mononuclear Ru-Hydrides Enable Highly Efficient Shape-Selective Hydrogenolysis of Polyolefins. JACS AU 2023; 3:3473-3484. [PMID: 38155638 PMCID: PMC10751774 DOI: 10.1021/jacsau.3c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 12/30/2023]
Abstract
Upcycling nonbiodegradable plastics such as polyolefins is paramount due to their ever-increasing demand and landfills after usage. Catalytic hydrogenolysis is highly appealing to convert polyolefins into targeted value-added products under mild reaction conditions compared with other methods, such as high-temperature incineration and pyrolysis. We have developed three isoreticular zirconium UiO-metal-organic frameworks (UiO-MOFs) node-supported ruthenium dihydrides (UiO-RuH2), which are efficient heterogeneous catalysts for hydrogenolysis of polyethylene at 200 °C, affording liquid hydrocarbons with a narrow distribution and excellent selectivity via shape-selective catalysis. UiO-66-RuH2 catalyzed hydrogenolysis of single-use low-density polyethylene (LDPE) produced a C12 centered narrow bell-shaped distribution of C8-C16 alkanes in >80% yield and 90% selectivity in the liquid phase. By tuning the pore sizes of the isoreticular UiO-RuH2 MOF catalysts, the distribution of the products could be systematically altered, affording different fuel-grade liquid hydrocarbons from LDPE in high yields. Our spectroscopic and theoretical studies and control experiments reveal that UiO-RuH2 catalysts enable highly efficient upcycling of plastic wastes under mild conditions owing to their unique combination of coordinatively unsaturated single-site Ru-active sites, uniform and tunable pores, well-defined porous structure, and superior stability. The kinetics and theoretical calculations also identify the C-C bond scission involving β-alkyl transfer as the turnover-limiting step.
Collapse
Affiliation(s)
- Manav Chauhan
- Department of Chemistry, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neha Antil
- Department of Chemistry, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Bharti Rana
- Department of Chemistry, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Naved Akhtar
- Department of Chemistry, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Chhaya Thadhani
- Department of Chemistry, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Wahida Begum
- Department of Chemistry, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Kuntal Manna
- Department of Chemistry, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
16
|
Semivrazhskaya OO, Salionov D, Clark AH, Casati NPM, Nachtegaal M, Ranocchiari M, Bjelić S, Verel R, van Bokhoven JA, Sushkevich VL. Deciphering the Mechanism of Crystallization of UiO-66 Metal-Organic Framework. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2305771. [PMID: 37635107 DOI: 10.1002/smll.202305771] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Indexed: 08/29/2023]
Abstract
Zirconium-containing metal-organic framework (MOF) with UiO-66 topology is an extremely versatile material, which finds applications beyond gas separation and catalysis. However, after more than 10 years after the first reports introducing this MOF, understanding of the molecular-level mechanism of its nucleation and growth is still lacking. By means of in situ time-resolved high-resolution mass spectrometry, Zr K-edge X-ray absorption spectroscopy, magic-angle spinning nuclear magnetic resonance spectroscopy, and X-ray diffraction it is showed that the nucleation of UiO-66 occurs via a solution-mediated hydrolysis of zirconium chloroterephthalates, whose formation appears to be autocatalytic. Zirconium-oxo nodes form directly and rapidly during the synthesis, the formation of pre-formed clusters and stable non-stoichiometric intermediates are not observed. The nuclei of UiO-66 possess identical to the crystals local environment, however, they lack long-range order, which is gained during the crystallization. Crystal growth is the rate-determining step, while fast nucleation controls the formation of the small crystals of UiO-66 with a narrow size distribution of about 200 nanometers.
Collapse
Affiliation(s)
- Olesya O Semivrazhskaya
- Laboratory for Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland
| | - Daniil Salionov
- Bioenergy and Catalysis Laboratory, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Adam H Clark
- Operando Spectroscopy Group, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Nicola P M Casati
- Laboratory for Synchrotron Radiation-Condensed Matter, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Maarten Nachtegaal
- Operando Spectroscopy Group, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Marco Ranocchiari
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Saša Bjelić
- Bioenergy and Catalysis Laboratory, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - René Verel
- Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Jeroen A van Bokhoven
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
- Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Vitaly L Sushkevich
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| |
Collapse
|
17
|
Farkas S, Gazdag F, Detrich M, Mészáros M, Holló G, Schuszter G, Lagzi I. Formation of Precipitation Ellipsoidal Disks and Spheres in the Wake of a Planar Diffusion Front. J Phys Chem Lett 2023; 14:10382-10387. [PMID: 37955575 PMCID: PMC10683069 DOI: 10.1021/acs.jpclett.3c02295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/11/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Pattern formation is one of the examples of self-organization. In the generation of patterns, the coupling between the mass transport of the chemical species and their chemical reactions plays an important role. Periodic precipitation (Liesegang phenomenon) is a type of pattern formation in which layered precipitation structures form in the wake of the diffusion front. Here, we show a new type of precipitation pattern formation in zeolitic imidazolate framework-67 in a solid hydrogel column in a test tube manifested in the generation of precipitation ellipsoidal disks and spheres in the wake of the planar diffusion front of the outer electrolyte (2-methylimidazole). To increase the probability of the emergence of ellipsoidal disks and spheres, the surfaces of the borosilicate test tubes were chemically treated and functionalized. To support the experimental findings, we developed a reaction-diffusion model that qualitatively describes the formation of precipitate ellipsoidal disks and spheres in a test tube.
Collapse
Affiliation(s)
- Szabolcs Farkas
- Department
of Physics, Budapest University of Technology
and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Ferenc Gazdag
- Department
of Physics, Budapest University of Technology
and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- Mihály
Fazekas High School, Horváth Mihály tér 8, H-1082 Budapest, Hungary
| | - Márton Detrich
- Department
of Physics, Budapest University of Technology
and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- Mihály
Fazekas High School, Horváth Mihály tér 8, H-1082 Budapest, Hungary
| | - Márton Mészáros
- Department
of Physics, Budapest University of Technology
and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Gábor Holló
- Department
of Fundamental Microbiology, University
of Lausanne, CH-1015 Lausanne, Switzerland
| | - Gábor Schuszter
- Department
of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary
| | - István Lagzi
- Department
of Physics, Budapest University of Technology
and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- ELKH-BME
Condensed Matter Research Group, Budapest
University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| |
Collapse
|
18
|
Cao X, Zhang L, Guo C, Wang M, Guo J, Wang J. Construction of Zn xCd yS with a 3D Hierarchical Structure for Enhanced Photocatalytic Hydrogen Production from Water Splitting. Inorg Chem 2023; 62:18990-18998. [PMID: 37934135 DOI: 10.1021/acs.inorgchem.3c02638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The ZnxCdyS has been proven to have unique photoelectric properties, but its synthesis method and photocatalytic water cracking performance need to be further improved. In this paper, Cd-MOF@ZIF-8 with a MOF-on-MOF (MOF = metal-organic framework) structure was prepared by a simple ion adsorption method. Then, a CdS/ZnxCdyS heterojunction with a 3D hierarchical structure was formed by solvothermal sulfidation. The prepared catalysts with different Zn/Cd ratios show an improved hydrogen production performance for photocatalytic water splitting, and the hydrogen evolution rate of Zn1Cd1S can reach up to 29.2 mmol·g-1·h-1. The excellent photocatalytic activity not only benefits from ZnxCdyS strong light conversion ability but also is closely related to the hierarchical structure and large specific surface area. A type II heterojunction also plays an important role in the spatial separation of photogenerated carriers. This paper provides a simple and feasible idea for the synthesis of a photocatalyst with a large specific surface area using a MOF-on-MOF synthesis strategy.
Collapse
Affiliation(s)
- Xianglei Cao
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang 830046, People's Republic of China
| | - Liugen Zhang
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang 830046, People's Republic of China
| | - Changyan Guo
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang 830046, People's Republic of China
- Xinjiang Energy Company, Ltd., Urumqi, Xinjiang 830018, People's Republic of China
| | - Meng Wang
- Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, Urumqi, Xinjiang 830002, People's Republic of China
| | - Jia Guo
- Xinjiang Energy Company, Ltd., Urumqi, Xinjiang 830018, People's Republic of China
| | - Jide Wang
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang 830046, People's Republic of China
| |
Collapse
|
19
|
Cheng J, Ran S, Li T, Yan M, Wu J, Boles S, Liu B, Raza H, Ullah S, Zhang W, Chen G, Zheng G. Achieving Superior Tensile Performance in Individual Metal-Organic Framework Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210829. [PMID: 37257887 DOI: 10.1002/adma.202210829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/26/2023] [Indexed: 06/02/2023]
Abstract
Rapid advances in the engineering application prospects of metal-organic framework (MOF) materials necessitate an urgent in-depth understanding of their mechanical properties. This work demonstrates unprecedented recoverable elastic deformation of Ni-tetraphenylporphyrins (Ni-TCPP) MOF nanobelts with a tensile strain as high as 14%, and a projected yield strength-to-Young's modulus ratio exceeding the theoretical limit (≈10%) for crystalline materials. Based on first-principles simulations, the observed behavior of MOF crystal can be attributed to the mechanical deformation induced conformation transition and the formation of helical configuration of dislocations under high stresses, arising from their organic ligand building blocks in the crystal structures. The investigations of the mechanical properties along with electromechanical properties demonstrate that MOF materials have exciting application potential for biomechanics integrated systems, flexible electronics, and nanoelectromechanical devices.
Collapse
Affiliation(s)
- Junye Cheng
- Department of Materials Science, Shenzhen MSU-BIT University, Shenzhen, Guangdong Province, 517182, P. R. China
| | - Sijia Ran
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Tian Li
- Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Ming Yan
- Department of Materials Science and Engineering, and Shenzhen Key Laboratory for Additive Manufacturing of High-performance Materials, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jing Wu
- Cryo-EM Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Steven Boles
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Hassan Raza
- Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Sana Ullah
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Wenjun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Guohua Chen
- Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Guangping Zheng
- Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
20
|
Wu Y, Yang Y, Ke Z. Metal-Organic Frameworks/Graphdiyne/Copper Foam Composite Membranes for Catalytic Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40933-40941. [PMID: 37584716 DOI: 10.1021/acsami.3c07473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Graphdiyne (GDY) with a three-dimensional network structure was synthesized on a copper foam (CF) via an in situ Glaser-Hay coupling reaction. A metal-organic framework/GDY composite membrane was designed and synthesized for the first time. CF serves as a template and catalyst for the directed polymerization of GDY membranes. The catalytic activities of HKUST-1/GDY/CF membrane in wet peroxide oxidation of phenol, oxidation of benzyl alcohol, and ring opening of epoxide were studied. The composite membrane has the advantages of appropriateness for continuous operation, simple use process, easy recycling, high catalytic efficiency, etc. It was found that the incorporation of GDY can facilitate electron transfer and effectively improve the catalytic activity of HKUST-1 in membrane catalysis.
Collapse
Affiliation(s)
- Yanjie Wu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China
| | - Yucheng Yang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, China
| | - Zhihai Ke
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China
| |
Collapse
|
21
|
Sheng K, Tian M, Zhu J, Zhang Y, Van der Bruggen B. When Coordination Polymers Meet Wood: From Molecular Design toward Sustainable Solar Desalination. ACS NANO 2023; 17:15482-15491. [PMID: 37535405 DOI: 10.1021/acsnano.3c01421] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Solar-driven interfacial evaporation harnessing solar energy on a water surface provides a sustainable and economic means to efficiently capture freshwater from nontraditional water sources. Endowed with a hierarchical porous structure and mechanical stability, wood-based evaporators represent a renewable alternative to petroleum-based materials. Nonetheless, incidental inferiorities of a low evaporation rate and weak interfacial strength are challenging to overcome. Herein, we propose the usage of chemically stable coordination polymers (Ni-dithiooxamidato, Ni-DTA) as hydrophilic photothermal nanomaterials for the molecular design of robust wood-based evaporators with improved performance. In situ synthesis of Ni-DTA onto the channel wall of balsawood provides sufficient photothermal domains that localize the converted energy for facilitated interfacial evaporation. A rational control of methanol/dimethylformamide ratios enables the coexistence of 1D-nanofibers and 0D-nanoparticles, endowing Balsa-NiDTA with a high evaporation rate of 2.75 kg m-2 h-1 and an energy efficiency of 82% under one-sun illumination. Experimental and simulation results reveal that Ni-DTA polymers with strong hydration ability decrease the equivalent evaporation enthalpy induced by decreased H-bonding density of water molecules near the evaporation interface. The Balsa-NiDTA evaporator showed a high chemical stability, mainly due to the robust Ni-S/Ni-N bonds and the superior cellulose affinity of Ni-DTA. Furthermore, the Balsa-NiDTA evaporator shows an excellent antibacterial activity and low oil-fouling propensity. This work presents a facile and mild strategy to design chemically stable wood-based evaporators, contributing to highly efficient and sustainable solar desalination under harsh conditions.
Collapse
Affiliation(s)
- Kai Sheng
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Miaomiao Tian
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Junyong Zhu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| |
Collapse
|
22
|
Ferraz-Caetano J, Teixeira F, Cordeiro MNDS. Systematic Development of Vanadium Catalysts for Sustainable Epoxidation of Small Alkenes and Allylic Alcohols. Int J Mol Sci 2023; 24:12299. [PMID: 37569673 PMCID: PMC10418365 DOI: 10.3390/ijms241512299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
The catalytic epoxidation of small alkenes and allylic alcohols includes a wide range of valuable chemical applications, with many works describing vanadium complexes as suitable catalysts towards sustainable process chemistry. But, given the complexity of these mechanisms, it is not always easy to sort out efficient examples for streamlining sustainable processes and tuning product optimization. In this review, we provide an update on major works of tunable vanadium-catalyzed epoxidations, with a focus on sustainable optimization routes. After presenting the current mechanistic view on vanadium catalysts for small alkenes and allylic alcohols' epoxidation, we argue the key challenges in green process development by highlighting the value of updated kinetic and mechanistic studies, along with essential computational studies.
Collapse
Affiliation(s)
- José Ferraz-Caetano
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, S/N, 4169-007 Porto, Portugal;
| | - Filipe Teixeira
- CQUM, Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
| | - Maria Natália Dias Soeiro Cordeiro
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, S/N, 4169-007 Porto, Portugal;
| |
Collapse
|
23
|
Ahmad BIZ, Keasler KT, Stacy EE, Meng S, Hicks TJ, Milner PJ. MOFganic Chemistry: Challenges and Opportunities for Metal-Organic Frameworks in Synthetic Organic Chemistry. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:4883-4896. [PMID: 38222037 PMCID: PMC10785605 DOI: 10.1021/acs.chemmater.3c00741] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Metal-organic frameworks (MOFs) are porous, crystalline solids constructed from organic linkers and inorganic nodes that have been widely studied for applications in gas storage, chemical separations, and drug delivery. Owing to their highly modular structures and tunable pore environments, we propose that MOFs have significant untapped potential as catalysts and reagents relevant to the synthesis of next-generation therapeutics. Herein, we outline the properties of MOFs that make them promising for applications in synthetic organic chemistry, including new reactivity and selectivity, enhanced robustness, and user-friendly preparation. In addition, we outline the challenges facing the field and propose new directions to maximize the utility of MOFs for drug synthesis. This perspective aims to bring together the organic and MOF communities to develop new heterogeneous platforms capable of achieving synthetic transformations that cannot be replicated by homogeneous systems.
Collapse
Affiliation(s)
- Bayu I. Z. Ahmad
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Kaitlyn T. Keasler
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Emily E. Stacy
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Sijing Meng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Thomas J. Hicks
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Phillip J. Milner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| |
Collapse
|
24
|
Milakin K, Gupta S, Kobera L, Mahun A, Konefał M, Kočková O, Taboubi O, Morávková Z, Chin JM, Allahyarli K, Bober P. Effect of a Zr-Based Metal-Organic Framework Structure on the Properties of Its Composite with Polyaniline. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23813-23823. [PMID: 37141587 PMCID: PMC10197080 DOI: 10.1021/acsami.3c03870] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
Composites of polyaniline (PANI) and Zr-based metal-organic frameworks (MOFs), UiO-66 and UiO-66-NH2, were synthesized by the oxidative polymerization of aniline in the presence of MOF templates with the MOF content in the resulting materials (78.2 and 86.7 wt %, respectively) close to the theoretical value (91.5 wt %). Scanning electron microscopy and transmission electron microscopy showed that the morphology of the composites was set by the morphology of the MOFs, whose structure was mostly preserved after the synthesis, based on the X-ray diffraction data. Vibrational and NMR spectroscopies pointed out that MOFs participate in the protonation of PANI and conducting polymer chains were grafted to amino groups of UiO-66-NH2. Unlike PANI-UiO-66, cyclic voltammograms of PANI-UiO-66-NH2 showed a well-resolved redox peak at around ≈0 V, pointing at the pseudocapacitive behavior. The gravimetric capacitance of PANI-UiO-66-NH2, normalized per mass of the active material, was also found to be higher compared to that of pristine PANI (79.8 and 50.5 F g-1, respectively, at 5 mV s-1). The introduction of MOFs into the composites with PANI significantly improved the cycling stability of the materials over 1000 cycles compared to the pristine conducting polymer, with the residual gravimetric capacitance being ≥100 and 77%, respectively. Thus, the electrochemical performance of the prepared PANI-MOF composites makes them attractive materials for application in energy storage.
Collapse
Affiliation(s)
- Konstantin
A. Milakin
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, 162 00 Prague, Czech Republic
| | - Sonal Gupta
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, 162 00 Prague, Czech Republic
| | - Libor Kobera
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, 162 00 Prague, Czech Republic
| | - Andrii Mahun
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, 162 00 Prague, Czech Republic
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 128 40 Prague, Czech
Republic
| | - Magdalena Konefał
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, 162 00 Prague, Czech Republic
| | - Olga Kočková
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, 162 00 Prague, Czech Republic
| | - Oumayma Taboubi
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, 162 00 Prague, Czech Republic
| | - Zuzana Morávková
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, 162 00 Prague, Czech Republic
| | - Jia Min Chin
- Institute
of Inorganic Chemistry-Functional Materials, University of Vienna, A-1090 Vienna, Austria
| | - Kamal Allahyarli
- Institute
of Inorganic Chemistry-Functional Materials, University of Vienna, A-1090 Vienna, Austria
| | - Patrycja Bober
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, 162 00 Prague, Czech Republic
| |
Collapse
|
25
|
Suremann NF, McCarthy BD, Gschwind W, Kumar A, Johnson BA, Hammarström L, Ott S. Molecular Catalysis of Energy Relevance in Metal-Organic Frameworks: From Higher Coordination Sphere to System Effects. Chem Rev 2023; 123:6545-6611. [PMID: 37184577 DOI: 10.1021/acs.chemrev.2c00587] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The modularity and synthetic flexibility of metal-organic frameworks (MOFs) have provoked analogies with enzymes, and even the term MOFzymes has been coined. In this review, we focus on molecular catalysis of energy relevance in MOFs, more specifically water oxidation, oxygen and carbon dioxide reduction, as well as hydrogen evolution in context of the MOF-enzyme analogy. Similar to enzymes, catalyst encapsulation in MOFs leads to structural stabilization under turnover conditions, while catalyst motifs that are synthetically out of reach in a homogeneous solution phase may be attainable as secondary building units in MOFs. Exploring the unique synthetic possibilities in MOFs, specific groups in the second and third coordination sphere around the catalytic active site have been incorporated to facilitate catalysis. A key difference between enzymes and MOFs is the fact that active site concentrations in the latter are often considerably higher, leading to charge and mass transport limitations in MOFs that are more severe than those in enzymes. High catalyst concentrations also put a limit on the distance between catalysts, and thus the available space for higher coordination sphere engineering. As transport is important for MOF-borne catalysis, a system perspective is chosen to highlight concepts that address the issue. A detailed section on transport and light-driven reactivity sets the stage for a concise review of the currently available literature on utilizing principles from Nature and system design for the preparation of catalytic MOF-based materials.
Collapse
Affiliation(s)
- Nina F Suremann
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Brian D McCarthy
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Wanja Gschwind
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Amol Kumar
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Ben A Johnson
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
- Technical University Munich (TUM), Campus Straubing for Biotechnology and Sustainability, Uferstraße 53, 94315 Straubing, Germany
| | - Leif Hammarström
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Sascha Ott
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| |
Collapse
|
26
|
Nilwanna K, Sittiwong J, Boekfa B, Treesukol P, Boonya-udtayan S, Probst M, Maihom T, Limtrakul J. Aluminum‐based metal‐organic framework support metal(II)-hydride as catalyst for the hydrogenation of carbon dioxide to formic acid: A computational study. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
27
|
Andrade LS, Lima HH, Silva CT, Amorim WL, Poço JG, López-Castillo A, Kirillova MV, Carvalho WA, Kirillov AM, Mandelli D. Metal–organic frameworks as catalysts and biocatalysts for methane oxidation: The current state of the art. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
28
|
Figueroa-Quintero L, Villalgordo-Hernández D, Delgado-Marín JJ, Narciso J, Velisoju VK, Castaño P, Gascón J, Ramos-Fernández EV. Post-Synthetic Surface Modification of Metal-Organic Frameworks and Their Potential Applications. SMALL METHODS 2023; 7:e2201413. [PMID: 36789569 DOI: 10.1002/smtd.202201413] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Metal-organic frameworks (MOFs) are porous hybrid materials with countless potential applications. Most of these rely on their porous structure, tunable composition, and the possibility of incorporating and expanding their functions. Although functionalization of the inner surface of MOF crystals has received considerable attention in recent years, methods to functionalize selectively the outer crystal surface of MOFs are developed to a lesser extent, despite their importance. This article summarizes different types of post-synthetic modifications and possible applications of modified materials such as: catalysis, adsorption, drug delivery, mixed matrix membranes, and stabilization of porous liquids.
Collapse
Affiliation(s)
- Leidy Figueroa-Quintero
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales de Alicante Universidad de Alicante, E-03080, Alicante, Spain
| | - David Villalgordo-Hernández
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales de Alicante Universidad de Alicante, E-03080, Alicante, Spain
| | - José J Delgado-Marín
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales de Alicante Universidad de Alicante, E-03080, Alicante, Spain
| | - Javier Narciso
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales de Alicante Universidad de Alicante, E-03080, Alicante, Spain
| | - Vijay Kumar Velisoju
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Pedro Castaño
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Jorge Gascón
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Enrique V Ramos-Fernández
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales de Alicante Universidad de Alicante, E-03080, Alicante, Spain
| |
Collapse
|
29
|
Obeso JL, López-Olvera A, Flores CV, Peralta RA, Ibarra IA, Leyva C. Gas-phase organometallic catalysis in MFM-300(Sc) provided by switchable dynamic metal sites. Chem Commun (Camb) 2023; 59:3273-3276. [PMID: 36825543 DOI: 10.1039/d2cc06935k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
MFM-300(Sc) was explored as a catalyst for the gas-phase hydrogenation of acetone. The catalysis results support the presence of non-permanent open Sc(III) sites within the structure due to the requirement of Lewis acid sites for the reaction to proceed. The open Sc(III) sites are generated in situ due to the presence of hemilabile Sc-O bonds. MFM-300(Sc) showed high mechanical and chemical stability, and the crystalline structure was maintained after the catalytic reaction. The catalytic activity of the material was quantified by performing a gas-phase reaction using a continuous flow reactor. The acetone conversion in MFM-300(Sc) was estimated to be 27.7% with no loss of activity after catalytic cycles.
Collapse
Affiliation(s)
- Juan L Obeso
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, LNAgua, Legaria 694, Col. Irrigación, Miguel Hidalgo, 11500, CDMX, Mexico. .,Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Alfredo López-Olvera
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Catalina V Flores
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, LNAgua, Legaria 694, Col. Irrigación, Miguel Hidalgo, 11500, CDMX, Mexico.
| | - Ricardo A Peralta
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana Unidad Iztapalapa (UAM-I), 09340, Mexico.
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Carolina Leyva
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, LNAgua, Legaria 694, Col. Irrigación, Miguel Hidalgo, 11500, CDMX, Mexico.
| |
Collapse
|
30
|
Saeed M, Firdous A, Zaman MS, Izhar F, Riaz M, Haider S, Majeed M, Tariq S. MOFs
for desulfurization of fuel oil: Recent advances and future insights. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202200546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Affiliation(s)
- Muhammad Saeed
- School of Chemistry University of the Punjab Lahore Pakistan
| | - Aswa Firdous
- Department of Chemistry Quaid‐i‐Azam University Islamabad Pakistan
| | - Muhammad Saleh Zaman
- Department of Chemistry and Chemical Engineering Lahore University of Management Sciences (LUMS) Lahore Pakistan
| | - Fatima Izhar
- School of Chemistry University of the Punjab Lahore Pakistan
| | - Mubeshar Riaz
- School of Chemistry University of the Punjab Lahore Pakistan
| | - Sabah Haider
- School of Chemistry University of the Punjab Lahore Pakistan
| | - Muzamil Majeed
- School of Chemistry University of the Punjab Lahore Pakistan
| | - Shahzaib Tariq
- Department of Chemistry and Chemical Engineering Lahore University of Management Sciences (LUMS) Lahore Pakistan
| |
Collapse
|
31
|
Adegoke KA, Maxakato NW. Electrocatalytic CO2 conversion on metal-organic frameworks derivative electrocatalysts. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2023.102412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
32
|
Afaq S, Akram MU, Malik WMA, Ismail M, Ghafoor A, Ibrahim M, Nisa MU, Ashiq MN, Verpoort F, Chughtai AH. Amide Functionalized Mesoporous MOF LOCOM-1 as a Stable Highly Active Basic Catalyst for Knoevenagel Condensation Reaction. ACS OMEGA 2023; 8:6638-6649. [PMID: 36844569 PMCID: PMC9948166 DOI: 10.1021/acsomega.2c07137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Acyl-amide is extensively used as functional group and is a superior contender for the design of MOFs with the guest accessible functional organic sites. A novel acyl-amide-containing tetracarboxylate ligand, bis(3,5-dicarboxy-pheny1)terephthalamide, has been successfully synthesized. The H4L linker has some fascinating attributes as follows: (i) four carboxylate moieties as the coordination sites confirm affluent coordination approaches to figure a diversity of structure; (ii) two acyl-amide groups as the guest interaction sites can engender guest molecules integrated into the MOF networks through H-bonding interfaces and have a possibility to act as functional organic sites for the condensation reaction. A mesoporous MOF ([Cu2(L)(H2O)3]·4DMF·6H2O) has been prepared in order to produce the amide FOS within the MOF, which will work as guest accessible sites. The prepared MOF was characterized by CHN analysis, PXRD, FTIR spectroscopy, and SEM analysis. The MOF showed superior catalytic activity for Knoevenagel condensation. The catalytic system endures a broad variety of the functional groups and presents high to modest yields of aldehydes containing electron withdrawing groups (4-chloro, 4-fluoro, 4-nitro), offering a yield > 98 in less reaction time as compared to aldehydes with electron donationg groups (4-methyl). The amide decorated MOF (LOCOM-1-) as a heterogeneous catalyst can be simply recovered by centrifugation and recycled again without a flagrant loss of its catalytic efficiency.
Collapse
Affiliation(s)
- Sheereen Afaq
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
| | - Muhammad Usman Akram
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
| | - Wasif Mahmood Ahmed Malik
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
- Department
of Chemistry, Emerson University Multan, Multan 60000, Pakistan
| | - Muhammad Ismail
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
| | - Abdul Ghafoor
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
| | - Muhammad Ibrahim
- Department
of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Mehr un Nisa
- Department
of Chemistry, University of Lahore, Lahore 54590, Pakistan
| | - Muhammad Naeem Ashiq
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
| | - Francis Verpoort
- Laboratory
of Organometallics, Catalysis and Ordered Materials, State Key Laboratory
of Advanced Technology for the Materials Synthesis and Processing,
Center for the Chemical and Material Engineering, Wuhan University of Technology, Wuhan 430070, China
| | | |
Collapse
|
33
|
Lu X, Song C, Qi X, Li D, Lin L. Confinement Effects in Well-Defined Metal-Organic Frameworks (MOFs) for Selective CO 2 Hydrogenation: A Review. Int J Mol Sci 2023; 24:ijms24044228. [PMID: 36835639 PMCID: PMC9959283 DOI: 10.3390/ijms24044228] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 02/23/2023] Open
Abstract
Decarbonization has become an urgent affair to restrain global warming. CO2 hydrogenation coupled with H2 derived from water electrolysis is considered a promising route to mitigate the negative impact of carbon emission and also promote the application of hydrogen. It is of great significance to develop catalysts with excellent performance and large-scale implementation. In the past decades, metal-organic frameworks (MOFs) have been widely involved in the rational design of catalysts for CO2 hydrogenation due to their high surface areas, tunable porosities, well-ordered pore structures, and diversities in metals and functional groups. Confinement effects in MOFs or MOF-derived materials have been reported to promote the stability of CO2 hydrogenation catalysts, such as molecular complexes of immobilization effect, active sites in size effect, stabilization in the encapsulation effect, and electron transfer and interfacial catalysis in the synergistic effect. This review attempts to summarize the progress of MOF-based CO2 hydrogenation catalysts up to now, and demonstrate the synthetic strategies, unique features, and enhancement mechanisms compared with traditionally supported catalysts. Great emphasis will be placed on various confinement effects in CO2 hydrogenation. The challenges and opportunities in precise design, synthesis, and applications of MOF-confined catalysis for CO2 hydrogenation are also summarized.
Collapse
Affiliation(s)
- Xiaofei Lu
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Chuqiao Song
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xingyu Qi
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Duanxing Li
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Lili Lin
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Correspondence:
| |
Collapse
|
34
|
Jose R, Pal S, Rajaraman G. A Theoretical Perspective to Decipher the Origin of High Hydrogen Storage Capacity in Mn(II) Metal-Organic Framework. Chemphyschem 2023; 24:e202200257. [PMID: 36330697 DOI: 10.1002/cphc.202200257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 11/03/2022] [Indexed: 11/06/2022]
Abstract
Herein, we report a detailed periodic DFT investigation of Mn(II)-based [(Mn4 Cl)3 (BTT)8 ]3- (BTT3- =1,3,5-benzenetristetrazolate) metal-organic framework (MOF) to explore various hydrogen binding pockets, nature of MOF…H2 interactions, magnetic coupling and, H2 uptake capacity. Earlier experiments found an uptake capacity of 6.9 wt % of H2, with the heat of adsorption estimated to be ∼10 kJ/mol, which is one among the highest for any MOFs reported. Our calculations unveil different binding sites with computed binding energy varying from -6 to -15 kJ/mol. The binding of H2 at the Mn2+ site is found to be the strongest (site I), with H2 found to bind Mn2+ ion in a η2 fashion with a distance of 2.27 Å and binding energy of -15.4 kJ/mol. The bonding analysis performed using NBO and AIM reveal a strong donation of σ (H2 ) to the dz 2 orbital of the Mn2+ ion responsible for such large binding energy. The other binding pockets, such as -Cl (site II) and BTT ligands (site III and IV) were found to be weaker, with the binding energy decreasing in the order I>II>III>IV. The average binding energy computed for these four sites put together is 9.6 kJ/mol, which is in excellent agreement with the experimental value of ∼10 kJ/mol. We have expanded our calculations to compute binding energy for multiple sites simultaneously, and in this model, the binding energy per site was found to decrease as we increased the number of H2 molecules suggesting electronic and steric factors controlling the overall uptake capacity. The calculated adsorption isotherm using the GCMC method reproduces the experimental observations. Further, the magnetic coupling computed for the unbound MOF reveals moderate ferromagnetic and strong antiferromagnetic coupling within the tetrameric {Mn4 } unit leading to a three-up-one-down spin configuration as the ground state. These were then coupled ferromagnetically to other tetrameric units in the MOF network. The magnetic coupling was found to alter only marginally upon gas binding, suggesting that both exchange interaction and the spin-states are unlikely to play a role in the H2 uptake. This is contrary to the O2 uptake studied lately, where strong dependence on exchange-coupling/spin state was witnessed, suggesting exchange-coupling/magnetic field dependent binding as a viable route for gas separation.
Collapse
Affiliation(s)
- Reshma Jose
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Sourav Pal
- Department of Chemistry, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, 741246, India.,Department of Chemistry, Ashoka University, Sonipat, Haryana, 131029, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
35
|
Das M, Jaswal V, Bhambri H, Das P, Maity S, Ghosh P, Mandal SK, Sarkar M. Two pillared-layer metal-organic frameworks based on the pinwheel trinuclear carboxylate-clusters of Zn(II) and Co(II): synthesis, crystal structures, magnetic study, and Lewis acid catalysis. Dalton Trans 2023; 52:1449-1460. [PMID: 36644963 DOI: 10.1039/d2dt04106e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Using a dicarboxylic acid, [1,1'-biphenyl]-4,4'-dicarboxylic acid (H2L1) and an exobidentate ligand, (1E,1'E)-N,N'-(1,4-phenylene)bis(1-(pyridin-4-yl)methanimine) (L2), two 3D interpenetrated networks, {[Zn3(L1)3(L2)]·9H2O}n (Zn-MOF) and {[Co3(L1)3(L2)(DMF)]·0.5DMF}n (Co-MOF), have been prepared in good yields. The crystal structure analysis of Zn-MOF and Co-MOF revealed that both have a 3D pillared-layer structure based on pinwheel trinuclear metal-carboxylate clusters as secondary building units (SBUs). Furthermore, the structures also exhibited three-fold interpenetration. Although the overall networks in Zn-MOF and Co-MOF showed significant resemblances, there are marked differences in their crystal structures, which are associated with the coordination environment of the metal centre and the binding modes of the carboxylates. Gas adsorption studies (N2 at 77 K and 1 bar) indicated that Co-MOF is more porous than Zn-MOF. Magnetic measurements on Co-MOF indicate a significant antiferromagnetic interaction (45 K to 303 K) between trimeric Co(II) S = 3/2 spins through syn-syn carboxylato bridges. Both MOFs were studied for the Lewis acid catalyzed Knoevenagel condensation reactions between benzaldehydes and malononitrile with an active methylene group, where Zn-MOF was found to be a better catalyst than Co-MOF. This was supported by the Monte Carlo simulations indicating the better substrate binding ability of Zn-MOF than Co-MOF.
Collapse
Affiliation(s)
- Moyna Das
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India.
| | - Vishakha Jaswal
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India.
| | - Himanshi Bhambri
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S.A.S. Nagar, Punjab 140 306, India.
| | - Prasenjit Das
- Technische Universität Berlin, Department of Chemistry/Functional Materials, Hardenbergstr. 40, 10623 Berlin, Germany.
| | - Suvendu Maity
- Department of Chemistry, Ramakrishna Mission Residential College, Narendrapur, Kolkata-700103, India.
| | - Prasanta Ghosh
- Department of Chemistry, Ramakrishna Mission Residential College, Narendrapur, Kolkata-700103, India.
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S.A.S. Nagar, Punjab 140 306, India.
| | - Madhushree Sarkar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
36
|
Delgado-Marín JJ, Rendón-Patiño A, Velisoju VK, Kumar GS, Zambrano N, Rueping M, Gascón J, Castaño P, Narciso J, Ramos-Fernandez EV. Leaching in Specific Facets of ZIF-67 and ZIF-L Zeolitic Imidazolate Frameworks During the CO 2 Cycloaddition with Epichlorohydrin. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:692-699. [PMID: 37520114 PMCID: PMC10373435 DOI: 10.1021/acs.chemmater.2c03374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/21/2022] [Indexed: 08/01/2023]
Abstract
Zeolitic imidazolate frameworks (ZIFs) have been profusely used as catalysts for inserting CO2 into organic epoxides (i.e., epichlorohydrin) through cycloaddition. Here, we demonstrate that these materials suffer from irreversible degradation by leaching. To prove this, we performed the reactions and analyzed the final reaction mixtures by elemental analysis and the resulting materials by different microscopies. We found that the difference in catalytic activity between three ZIF-67 and one ZIF-L catalysts was related to the rate at which the materials degraded. Particularly, the {100} facet leaches faster than the others, regardless of the material used. The catalytic activity strongly depended on the amount of leached elements in the liquid phase since these species are extremely active. Our work points to the instability of these materials under relevant reaction conditions and the necessity of additional treatments to improve their stability.
Collapse
Affiliation(s)
- Jose J. Delgado-Marín
- Instituto
de Materiales and Departamento de Química Inorgánica,
Facultad de Ciencias, Universidad de Alicante, Apdo. 99, Alicante 03080, Spain
| | - Alejandra Rendón-Patiño
- KAUST
Catalysis Center, Advanced Catalytic Materials, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Vijay Kumar Velisoju
- KAUST
Catalysis Center, Advanced Catalytic Materials, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Gadde Sathish Kumar
- KAUST
Catalysis Center, Advanced Catalytic Materials, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Naydu Zambrano
- KAUST
Catalysis Center, Advanced Catalytic Materials, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Magnus Rueping
- KAUST
Catalysis Center, Advanced Catalytic Materials, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Jorge Gascón
- KAUST
Catalysis Center, Advanced Catalytic Materials, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Pedro Castaño
- KAUST
Catalysis Center, Advanced Catalytic Materials, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Javier Narciso
- Instituto
de Materiales and Departamento de Química Inorgánica,
Facultad de Ciencias, Universidad de Alicante, Apdo. 99, Alicante 03080, Spain
| | - Enrique V. Ramos-Fernandez
- Instituto
de Materiales and Departamento de Química Inorgánica,
Facultad de Ciencias, Universidad de Alicante, Apdo. 99, Alicante 03080, Spain
| |
Collapse
|
37
|
Navalón S, Dhakshinamoorthy A, Álvaro M, Ferrer B, García H. Metal-Organic Frameworks as Photocatalysts for Solar-Driven Overall Water Splitting. Chem Rev 2022; 123:445-490. [PMID: 36503233 PMCID: PMC9837824 DOI: 10.1021/acs.chemrev.2c00460] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal-organic frameworks (MOFs) have been frequently used as photocatalysts for the hydrogen evolution reaction (HER) using sacrificial agents with UV-vis or visible light irradiation. The aim of the present review is to summarize the use of MOFs as solar-driven photocatalysts targeting to overcome the current efficiency limitations in overall water splitting (OWS). Initially, the fundamentals of the photocatalytic OWS under solar irradiation are presented. Then, the different strategies that can be implemented on MOFs to adapt them for solar photocatalysis for OWS are discussed in detail. Later, the most active MOFs reported until now for the solar-driven HER and/or oxygen evolution reaction (OER) are critically commented. These studies are taken as precedents for the discussion of the existing studies on the use of MOFs as photocatalysts for the OWS under visible or sunlight irradiation. The requirements to be met to use MOFs at large scale for the solar-driven OWS are also discussed. The last section of this review provides a summary of the current state of the field and comments on future prospects that could bring MOFs closer to commercial application.
Collapse
Affiliation(s)
- Sergio Navalón
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain,S.N.: email,
| | - Amarajothi Dhakshinamoorthy
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain,School
of Chemistry, Madurai Kamaraj University, Palkalai Nagar, Madurai625021, Tamil
NaduIndia,A.D.: email,
| | - Mercedes Álvaro
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain
| | - Belén Ferrer
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain
| | - Hermenegildo García
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain,Instituto
Universitario de Tecnología Química, CSIC-UPV, Universitat Politècnica de València, Avenida de los Naranjos, Valencia46022, Spain,H.G.:
email,
| |
Collapse
|
38
|
Gupta S. Recent reports on vanadium based coordination polymers and MOFs. REV INORG CHEM 2022. [DOI: 10.1515/revic-2022-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Coordination polymers (CP) and metal-organic frameworks (MOF) have become a topic of immense interest in this century primarily because of the structural diversity that they offer. This structural diversity results in their multifaceted utility in various fields of science and technology such as catalysis, medicine, gas storage or separation, conductivity and magnetism. Their utility inspires a large variety of scientists to engage with them in their scientific pursuit thus creating a buzz around them in the scientific community. Metals capable of forming CPs and MOFs are primarily transition metals. Among them vanadium-based CPs and MOFs demand detailed discussion because of the unique nature of vanadium which makes it stable in many oxidation states and coordination number. Vanadium’s versatility imparts additional structural marvel and usefulness to these CPs and MOFs.
Collapse
Affiliation(s)
- Samik Gupta
- Department of Chemistry , Sambhu Nath College , Labpur , Birbhum , West Bengal , 731303 , India
| |
Collapse
|
39
|
|
40
|
Antil N, Chauhan M, Akhtar N, Newar R, Begum W, Malik J, Manna K. Metal–Organic Framework-Encaged Monomeric Cobalt(III) Hydroperoxides Enable Chemoselective Methane Oxidation to Methanol. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Neha Antil
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Manav Chauhan
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Naved Akhtar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Rajashree Newar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Wahida Begum
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Jaideep Malik
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Kuntal Manna
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
41
|
Gong CH, Sun ZB, Cao M, Luo XM, Wu J, Wang QY, Zang SQ, Mak TCW. Phosphate anion-induced silver-chalcogenide cluster-based metal organic frameworks as dual-functional catalysts for detoxifying chemical warfare agent simulants. Chem Commun (Camb) 2022; 58:9806-9809. [PMID: 35971910 DOI: 10.1039/d2cc03120e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two porphyrinic silver-chalcogenide cluster-based MOFs were achieved using a phosphate anionic template strategy, and the highly photoactive organic building modules combined with Lewis acidic silver clusters allow both SCC-MOFs to be used as versatile catalysts for the simultaneous degradation of sulfur mustard and nerve agent simulants.
Collapse
Affiliation(s)
- Chun-Hua Gong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhi-Bing Sun
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Man Cao
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xi-Ming Luo
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Jie Wu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Qian-You Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Thomas C W Mak
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China. .,Department of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
42
|
Lee M, Kim J, Jang M, Park C, Lee JH, Lee T. Introduction of Nanomaterials to Biosensors for Exosome Detection: Case Study for Cancer Analysis. BIOSENSORS 2022; 12:648. [PMID: 36005042 PMCID: PMC9405681 DOI: 10.3390/bios12080648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/04/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022]
Abstract
Exosomes have been gaining attention for early cancer diagnosis owing to their biological functions in cells. Several studies have reported the relevance of exosomes in various diseases, including pancreatic cancer, retroperitoneal fibrosis, obesity, neurodegenerative diseases, and atherosclerosis. Particularly, exosomes are regarded as biomarkers for cancer diagnosis and can be detected in biofluids, such as saliva, urine, peritoneal fluid, and blood. Thus, exosomes are advantageous for cancer liquid biopsies as they overcome the current limitations of cancer tissue biopsies. Several studies have reported methods for exosome isolation, and analysis for cancer diagnosis. However, further clinical trials are still required to determine accurate exosome concentration quantification methods. Recently, various biosensors have been developed to detect exosomal biomarkers, including tumor-derived exosomes, nucleic acids, and proteins. Among these, the exact quantification of tumor-derived exosomes is a serious obstacle to the clinical use of liquid biopsies. Precise detection of exosome concentration is difficult because it requires clinical sample pretreatment. To solve this problem, the use of the nanobiohybrid material-based biosensor provides improved sensitivity and selectivity. The present review will discuss recent progress in exosome biosensors consisting of nanomaterials and biomaterial hybrids for electrochemical, electrical, and optical-based biosensors.
Collapse
Affiliation(s)
- Myoungro Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea
| | - Jinmyeong Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea
| | - Moonbong Jang
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea
| | - Jin-Ho Lee
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Korea
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea
| |
Collapse
|
43
|
Rassu P, Ma X, Wang B. Engineering of catalytically active sites in photoactive metal–organic frameworks. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
44
|
Brown CM, Lundberg DJ, Lamb JR, Kevlishvili I, Kleinschmidt D, Alfaraj YS, Kulik HJ, Ottaviani MF, Oldenhuis NJ, Johnson JA. Endohedrally Functionalized Metal-Organic Cage-Cross-Linked Polymer Gels as Modular Heterogeneous Catalysts. J Am Chem Soc 2022; 144:13276-13284. [PMID: 35819842 DOI: 10.1021/jacs.2c04289] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The immobilization of homogeneous catalysts onto supports to improve recyclability while maintaining catalytic efficiency is often a trial-and-error process limited by poor control of the local catalyst environment and few strategies to append catalysts to support materials. Here, we introduce a modular heterogenous catalysis platform that addresses these challenges. Our approach leverages the well-defined interiors of self-assembled Pd12L24 metal-organic cages/polyhedra (MOCs): simple mixing of a catalyst-ligand of choice with a polymeric ligand, spacer ligands, and a Pd salt induces self-assembly of Pd12L24-cross-linked polymer gels featuring endohedrally catalyst-functionalized junctions. Semi-empirical calculations show that catalyst incorporation into the MOC junctions of these materials has minimal affect on the MOC geometry, giving rise to well-defined nanoconfined catalyst domains as confirmed experimentally using several techniques. Given the unique network topology of these freestanding gels, they are mechanically robust regardless of their endohedral catalyst composition, allowing them to be physically manipulated and transferred from one reaction to another to achieve multiple rounds of catalysis. Moreover, by decoupling the catalyst environment (interior of MOC junctions) from the physical properties of the support (the polymer matrix), this strategy enables catalysis in environments where homogeneous catalyst analogues are not viable, as demonstrated for the Au(I)-catalyzed cyclization of 4-pentynoic acid in aqueous media.
Collapse
Affiliation(s)
- Christopher M Brown
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - David J Lundberg
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jessica R Lamb
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ilia Kevlishvili
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Denise Kleinschmidt
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yasmeen S Alfaraj
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | | | - Nathan J Oldenhuis
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
45
|
Cheng L, Wu RJ, Li YM, Ren H, Ji CY, Li WJ. Single-chain polymer nanoparticles-encapsulated chiral bifunctional metal-organic frameworks for asymmetric sequential reactions. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Salionov D, Semivrazhskaya OO, Casati NPM, Ranocchiari M, Bjelić S, Verel R, van Bokhoven JA, Sushkevich VL. Unraveling the molecular mechanism of MIL-53(Al) crystallization. Nat Commun 2022; 13:3762. [PMID: 35768412 PMCID: PMC9243051 DOI: 10.1038/s41467-022-31294-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022] Open
Abstract
The vast structural and chemical diversity of metal-organic frameworks (MOFs) provides the exciting possibility of material's design with tailored properties for gas separation, storage and catalysis. However, after more than twenty years after first reports introducing MOFs, the discovery and control of their synthesis remains extremely challenging due to the lack of understanding of mechanisms of their nucleation and growth. Progress in deciphering crystallization pathways depends on the possibility to follow conversion of initial reagents to products at the molecular level, which is a particular challenge under solvothermal conditions. The present work introduces a detailed molecular-level mechanism of the formation of MIL-53(Al), unraveled by combining in situ time-resolved high-resolution mass-spectrometry, magic angle spinning nuclear magnetic resonance spectroscopy and X-ray diffraction. In contrast to the general belief, the crystallization of MIL-53 occurs via a solid-solid transformation mechanism, associated with the spontaneous release of monomeric aluminum. The role of DMF hydrolysis products, formate and dimethylamine, is established. Our study emphasizes the complexity of MOF crystallization chemistry, which requires case-by-case investigation using a combination of advanced in situ methods for following the induction period, the nucleation and growth across the time domain.
Collapse
Affiliation(s)
- Daniil Salionov
- Bioenergy and Catalysis Laboratory, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Olesya O Semivrazhskaya
- Laboratory for Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Nicola P M Casati
- Laboratory for Synchrotron Radiation - Condensed Matter, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Marco Ranocchiari
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Saša Bjelić
- Bioenergy and Catalysis Laboratory, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - René Verel
- Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Jeroen A van Bokhoven
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland.
- Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland.
| | - Vitaly L Sushkevich
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland.
| |
Collapse
|
47
|
Khan IS, Garzon Tovar L, Mateo D, Gascon J. Metal‐Organic‐Frameworks and their derived materials in Photo‐Thermal Catalysis. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Il Son Khan
- KAUST: King Abdullah University of Science and Technology KCC SAUDI ARABIA
| | - Luis Garzon Tovar
- KAUST: King Abdullah University of Science and Technology KCC SAUDI ARABIA
| | - Diego Mateo
- KAUST: King Abdullah University of Science and Technology KCC SAUDI ARABIA
| | - Jorge Gascon
- King Abdullah University of Science and Technology Kaust Catalysis Center Bldg.3, Level 4, Room 4235 23955-6900 Thuwal SAUDI ARABIA
| |
Collapse
|
48
|
Krishnaveni V, DMello ME, Basavaiah K, Samsonu D, Rambhia DA, Kalidindi SB. Hybridization of Palladium Nanoparticles with Aromatic‐rich SU‐101 Metal‐Organic Framework for Effective Transfer Hydrogenation. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | | | | | - Suresh Babu Kalidindi
- Andhra University Department of Inorganic and Analytical Chemistry 530003 VISAKHAPATNAM INDIA
| |
Collapse
|
49
|
Tuttle RR, Finke RG, Reynolds MM. Cu II Lewis Acid, Proton-Coupled Electron Transfer Mechanism for Cu-Metal–Organic Framework-Catalyzed NO Release from S-Nitrosoglutathione. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robert R. Tuttle
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Richard G. Finke
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Melissa M. Reynolds
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
- Department of Chemical & Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
50
|
Agafonov MA, Alexandrov EV, Artyukhova NA, Bekmukhamedov GE, Blatov VA, Butova VV, Gayfulin YM, Garibyan AA, Gafurov ZN, Gorbunova YG, Gordeeva LG, Gruzdev MS, Gusev AN, Denisov GL, Dybtsev DN, Enakieva YY, Kagilev AA, Kantyukov AO, Kiskin MA, Kovalenko KA, Kolker AM, Kolokolov DI, Litvinova YM, Lysova AA, Maksimchuk NV, Mironov YV, Nelyubina YV, Novikov VV, Ovcharenko VI, Piskunov AV, Polyukhov DM, Polyakov VA, Ponomareva VG, Poryvaev AS, Romanenko GV, Soldatov AV, Solovyeva MV, Stepanov AG, Terekhova IV, Trofimova OY, Fedin VP, Fedin MV, Kholdeeva OA, Tsivadze AY, Chervonova UV, Cherevko AI, Shul′gin VF, Shutova ES, Yakhvarov DG. METAL-ORGANIC FRAMEWORKS IN RUSSIA: FROM THE SYNTHESIS AND STRUCTURE TO FUNCTIONAL PROPERTIES AND MATERIALS. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622050018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|