1
|
Wasik D, Vicent-Luna JM, Rezaie S, Luna-Triguero A, Vlugt TJH, Calero S. The Impact of Metal Centers in the M-MOF-74 Series on Formic Acid Production. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45006-45019. [PMID: 39141894 PMCID: PMC11367578 DOI: 10.1021/acsami.4c10678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
The confinement effect of porous materials on the thermodynamical equilibrium of the CO2 hydrogenation reaction presents a cost-effective alternative to transition metal catalysts. In metal-organic frameworks, the type of metal center has a greater impact on the enhancement of formic acid production than the scale of confinement resulting from the pore size. The M-MOF-74 series enables a comprehensive study of how different metal centers affect HCOOH production, minimizing the effect of pore size. In this work, molecular simulations were used to analyze the adsorption of HCOOH and the CO2 hydrogenation reaction in M-MOF-74, where M = Ni, Cu, Co, Fe, Mn, Zn. We combine classical simulations and density functional theory calculations to gain insights into the mechanisms that govern the low coverage adsorption of HCOOH in the surrounding of the metal centers of M-MOF-74. The impact of metal centers on the HCOOH yield was assessed by Monte Carlo simulations in the grand-canonical ensemble, using gas-phase compositions of CO2, H2, and HCOOH at chemical equilibrium at 298.15-800 K, 1-60 bar. The performance of M-MOF-74 in HCOOH production follows the same order as the uptake and the heat of HCOOH adsorption: Ni > Co > Fe > Mn > Zn > Cu. Ni-MOF-74 increases the mole fraction of HCOOH by ca. 105 times compared to the gas phase at 298.15 K, 60 bar. Ni-MOF-74 has the potential to be more economically attractive for CO2 conversion than transition metal catalysts, achieving HCOOH production at concentrations comparable to the highest formate levels reported for transition metal catalysts and offering a more valuable molecular form of the product.
Collapse
Affiliation(s)
- Dominika
O. Wasik
- Materials
Simulation and Modelling, Department of Applied Physics and Science
Education, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
- Eindhoven
Institute for Renewable Energy Systems, Eindhoven University of Technology,
PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - José Manuel Vicent-Luna
- Materials
Simulation and Modelling, Department of Applied Physics and Science
Education, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| | - Shima Rezaie
- Energy
Technology, Department of Mechanical Engineering, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| | - Azahara Luna-Triguero
- Eindhoven
Institute for Renewable Energy Systems, Eindhoven University of Technology,
PO Box 513, 5600 MB Eindhoven, The Netherlands
- Energy
Technology, Department of Mechanical Engineering, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| | - Thijs J. H. Vlugt
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Sofía Calero
- Materials
Simulation and Modelling, Department of Applied Physics and Science
Education, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
- Eindhoven
Institute for Renewable Energy Systems, Eindhoven University of Technology,
PO Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
2
|
Raju D, Ramdin M, Vlugt TJH. Thermophysical Properties and Phase Behavior of CO 2 with Impurities: Insight from Molecular Simulations. JOURNAL OF CHEMICAL AND ENGINEERING DATA 2024; 69:2735-2755. [PMID: 39139986 PMCID: PMC11318637 DOI: 10.1021/acs.jced.4c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024]
Abstract
Experimentally determining thermophysical properties for various compositions commonly found in CO2 transportation systems is extremely challenging. To overcome this challenge, we performed Monte Carlo (MC) and Molecular Dynamics (MD) simulations of CO2 rich mixtures to compute thermophysical properties such as densities, thermal expansion coefficients, isothermal compressibilities, heat capacities, Joule-Thomson coefficients, speed of sound, and viscosities at temperatures of (235-313) K and pressures of (20-200) bar. We computed thermophysical properties of pure CO2 and CO2 rich mixtures with N2, Ar, H2, and CH4 as impurities of (1-10) mol % and showed good agreement with available Equations of State (EoS). We showed that impurities decrease the values of thermal expansion coefficients, isothermal compressibilities, heat capacities, and Joule-Thomson coefficients in the gas phase, while these values increase in the liquid and supercritical phases. In contrast, impurities increase the value of speed of sound in the gas phase and decrease it in the liquid and supercritical phases. We present an extensive data set of thermophysical properties for CO2 rich mixtures with various impurities, which will help to design the safe and efficient operation of CO2 transportation systems.
Collapse
Affiliation(s)
- D. Raju
- Engineering Thermodynamics, Process & Energy Department, Faculty of
Mechanical Engineering, Delft University of Technology,
Leeghwaterstraat 39, Delft 2628CB, The Netherlands
| | - M. Ramdin
- Engineering Thermodynamics, Process & Energy Department, Faculty of
Mechanical Engineering, Delft University of Technology,
Leeghwaterstraat 39, Delft 2628CB, The Netherlands
| | - T. J. H. Vlugt
- Engineering Thermodynamics, Process & Energy Department, Faculty of
Mechanical Engineering, Delft University of Technology,
Leeghwaterstraat 39, Delft 2628CB, The Netherlands
| |
Collapse
|
3
|
Habibi P, Dey P, Vlugt TJH, Moultos OA. Effect of dissolved KOH and NaCl on the solubility of water in hydrogen: A Monte Carlo simulation study. J Chem Phys 2024; 161:054304. [PMID: 39087538 DOI: 10.1063/5.0221004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Vapor-Liquid Equilibria (VLE) of hydrogen (H2) and aqueous electrolyte (KOH and NaCl) solutions are central to numerous industrial applications such as alkaline electrolysis and underground hydrogen storage. Continuous fractional component Monte Carlo simulations are performed to compute the VLE of H2 and aqueous electrolyte solutions at 298-423 K, 10-400 bar, 0-8 mol KOH/kg water, and 0-6 mol NaCl/kg water. The densities and activities of water in aqueous KOH and NaCl solutions are accurately modeled (within 2% deviation from experiments) using the non-polarizable Madrid-2019 Na+/Cl- ion force fields for NaCl and the Madrid-Transport K+ and Delft Force Field of OH- for KOH, combined with the TIP4P/2005 water force field. A free energy correction (independent of pressure, salt type, and salt molality) is applied to the computed infinite dilution excess chemical potentials of H2 and water, resulting in accurate predictions (within 5% of experiments) for the solubilities of H2 in water and the saturated vapor pressures of water for a temperature range of 298-363 K. The compositions of water and H2 are computed using an iterative scheme from the liquid phase excess chemical potentials and densities, in which the gas phase fugacities are computed using the GERG-2008 equation of state. For the first time, the VLE of H2 and aqueous KOH/NaCl systems are accurately captured with respect to experiments (i.e., for both the liquid and gas phase compositions) without compromising the liquid phase properties or performing any refitting of force fields.
Collapse
Affiliation(s)
- Parsa Habibi
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
- Department of Materials Science and Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Poulumi Dey
- Department of Materials Science and Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Thijs J H Vlugt
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Othonas A Moultos
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| |
Collapse
|
4
|
Kim J, Rotenberg B. Donnan equilibrium in charged slit-pores from a hybrid nonequilibrium molecular dynamics/Monte Carlo method with ions and solvent exchange. J Chem Phys 2024; 161:054107. [PMID: 39087531 DOI: 10.1063/5.0220913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/14/2024] [Indexed: 08/02/2024] Open
Abstract
Ion partitioning between different compartments (e.g., a porous material and a bulk solution reservoir), known as Donnan equilibrium, plays a fundamental role in various contexts such as energy, environment, or water treatment. The linearized Poisson-Boltzmann (PB) equation, capturing the thermal motion of the ions with mean-field electrostatic interactions, is practically useful to understand and predict ion partitioning, despite its limited applicability to conditions of low salt concentrations and surface charge densities. Here, we investigate the Donnan equilibrium of coarse-grained dilute electrolytes confined in charged slit-pores in equilibrium with a reservoir of ions and solvent. We introduce and use an extension to confined systems of a recently developed hybrid nonequilibrium molecular dynamics/grand canonical Monte Carlo simulation method ("H4D"), which enhances the efficiency of solvent and ion-pair exchange via a fourth spatial dimension. We show that the validity range of linearized PB theory to predict the Donnan equilibrium of dilute electrolytes can be extended to highly charged pores by simply considering renormalized surface charge densities. We compare with simulations of implicit solvent models of electrolytes and show that in the low salt concentrations and thin electric double layer limit considered here, an explicit solvent has a limited effect on the Donnan equilibrium and that the main limitations of the analytical predictions are not due to the breakdown of the mean-field description but rather to the charge renormalization approximation, because it only focuses on the behavior far from the surfaces.
Collapse
Affiliation(s)
- Jeongmin Kim
- Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju 58330, Republic of Korea
| | - Benjamin Rotenberg
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
| |
Collapse
|
5
|
Curtis G, Ramkrishna D, Narsimhan V. Efficient generation of barrier crossing trajectories using approximate Brownian bridges. Phys Rev E 2024; 110:024131. [PMID: 39295004 DOI: 10.1103/physreve.110.024131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/31/2024] [Indexed: 09/21/2024]
Abstract
We examine continuous random walks that are conditioned to reach one region before another. These conditioned processes are used to generate stochastic trajectories for barrier crossing events, which are generally rare and difficult to sample. The processes are generated using a Brownian bridge technique, resulting in near perfect sampling efficiency without accruing error in the conditional statistics of the process. The construction requires the hitting probability or committer function, which is a solution to the backward Fokker-Planck equation, a partial-differential equation that can be difficult to solve through general means. Therefore, we derive a one-dimensional approximation through asymptotic methods for barrier crossing trajectories. We show that this approximation has a simple analytical representation and approaches the true solution as the barrier height increases. Brownian bridge trajectories generated with this approximate solution are then shown to result in accurate conditional statistics when used in conjunction with importance sampling, even in the case when potential energy barriers are not large. We show this idea's effectiveness by simulating rare events in a stochastic chemical reaction network (Schögl reaction) with multiple steady states. This methodology shows great promise for future implementation to simulate rare barrier crossing events for a wide variety of physical processes.
Collapse
|
6
|
Drisko CR, Gezelter JD. A Reverse Nonequilibrium Molecular Dynamics Algorithm for Coupled Mass and Heat Transport in Mixtures. J Chem Theory Comput 2024; 20:4986-4997. [PMID: 38833377 DOI: 10.1021/acs.jctc.4c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
We present a new method for introducing stable nonequilibrium concentration gradients in molecular dynamics simulations of mixtures. This method extends earlier reverse nonequilibrium molecular dynamics (RNEMD) methods, which use kinetic energy scaling moves to create temperature or velocity gradients. In the new scaled particle flux (SPF-RNEMD) algorithm, energies and forces are computed simultaneously for a molecule existing in two nonadjacent regions of a simulation box, and the system evolves under a linear combination of these interactions. A continuously increasing particle scaling variable is responsible for the migration of the molecule between the regions as the simulation progresses, allowing for simulations under an applied particle flux. To test the method, we investigate diffusivity in mixtures of identical but distinguishable particles and in a simple mixture of multiple Lennard-Jones particles. The resulting concentration gradients provide Fick diffusion constants for mixtures. We also discuss using the new method to obtain coupled transport properties using simultaneous particle and thermal fluxes to compute the temperature dependence of the diffusion coefficient and activation energies for diffusion from a single simulation. Lastly, we demonstrate the use of this new method in interfacial systems by computing the diffusive permeability of a molecular fluid moving through a nanoporous graphene membrane.
Collapse
Affiliation(s)
- Cody R Drisko
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - J Daniel Gezelter
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
7
|
Hulikal Chakrapani T, Hajibeygi H, Moultos OA, Vlugt TJH. Mutual Diffusivities of Mixtures of Carbon Dioxide and Hydrogen and Their Solubilities in Brine: Insight from Molecular Simulations. Ind Eng Chem Res 2024; 63:10456-10481. [PMID: 38882502 PMCID: PMC11177264 DOI: 10.1021/acs.iecr.4c01078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024]
Abstract
H2-CO2 mixtures find wide-ranging applications, including their growing significance as synthetic fuels in the transportation industry, relevance in capture technologies for carbon capture and storage, occurrence in subsurface storage of hydrogen, and hydrogenation of carbon dioxide to form hydrocarbons and alcohols. Here, we focus on the thermodynamic properties of H2-CO2 mixtures pertinent to underground hydrogen storage in depleted gas reservoirs. Molecular dynamics simulations are used to compute mutual (Fick) diffusivities for a wide range of pressures (5 to 50 MPa), temperatures (323.15 to 423.15 K), and mixture compositions (hydrogen mole fraction from 0 to 1). At 5 MPa, the computed mutual diffusivities agree within 5% with the kinetic theory of Chapman and Enskog at 423.15 K, albeit exhibiting deviations of up to 25% between 323.15 and 373.15 K. Even at 50 MPa, kinetic theory predictions match computed diffusivities within 15% for mixtures comprising over 80% H2 due to the ideal-gas-like behavior. In mixtures with higher concentrations of CO2, the Moggridge correlation emerges as a dependable substitute for the kinetic theory. Specifically, when the CO2 content reaches 50%, the Moggridge correlation achieves predictions within 10% of the computed Fick diffusivities. Phase equilibria of ternary mixtures involving CO2-H2-NaCl were explored using Gibbs Ensemble (GE) simulations with the Continuous Fractional Component Monte Carlo (CFCMC) technique. The computed solubilities of CO2 and H2 in NaCl brine increased with the fugacity of the respective component but decreased with NaCl concentration (salting out effect). While the solubility of CO2 in NaCl brine decreased in the ternary system compared to the binary CO2-NaCl brine system, the solubility of H2 in NaCl brine increased less in the ternary system compared to the binary H2-NaCl brine system. The cooperative effect of H2-CO2 enhances the H2 solubility while suppressing the CO2 solubility. The water content in the gas phase was found to be intermediate between H2-NaCl brine and CO2-NaCl brine systems. Our findings have implications for hydrogen storage and chemical technologies dealing with CO2-H2 mixtures, particularly where experimental data are lacking, emphasizing the need for reliable thermodynamic data on H2-CO2 mixtures.
Collapse
Affiliation(s)
- Thejas Hulikal Chakrapani
- Reservoir Engineering, Geoscience and Engineering Department, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft 2628 CN, The Netherlands
| | - Hadi Hajibeygi
- Reservoir Engineering, Geoscience and Engineering Department, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft 2628 CN, The Netherlands
| | - Othonas A Moultos
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical Engineering, Delft University of Technology, Delft 2628 CB, The Netherlands
| | - Thijs J H Vlugt
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical Engineering, Delft University of Technology, Delft 2628 CB, The Netherlands
| |
Collapse
|
8
|
Habibi P, Polat HM, Blazquez S, Vega C, Dey P, Vlugt TJH, Moultos OA. Accurate Free Energies of Aqueous Electrolyte Solutions from Molecular Simulations with Non-polarizable Force Fields. J Phys Chem Lett 2024; 15:4477-4485. [PMID: 38634502 PMCID: PMC11057036 DOI: 10.1021/acs.jpclett.4c00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
Non-polarizable force fields fail to accurately predict free energies of aqueous electrolytes without compromising the predictive ability for densities and transport properties. A new approach is presented in which (1) TIP4P/2005 water and scaled charge force fields are used to describe the interactions in the liquid phase and (2) an additional Effective Charge Surface (ECS) is used to compute free energies at zero additional computational expense. The ECS is obtained using a single temperature-independent charge scaling parameter per species. Thereby, the chemical potential of water and the free energies of hydration of various aqueous salts (e.g., NaCl and LiCl) are accurately described (deviations less than 5% from experiments), in sharp contrast to calculations where the ECS is omitted (deviations larger than 20%). This approach enables accurate predictions of free energies of aqueous electrolyte solutions using non-polarizable force fields, without compromising liquid-phase properties.
Collapse
Affiliation(s)
- Parsa Habibi
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical
Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, Netherlands
- Department
of Materials Science and Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, Netherlands
| | - H. Mert Polat
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical
Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, Netherlands
| | - Samuel Blazquez
- Departamento
de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Carlos Vega
- Departamento
de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Poulumi Dey
- Department
of Materials Science and Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, Netherlands
| | - Thijs J. H. Vlugt
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical
Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, Netherlands
| | - Othonas A. Moultos
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical
Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, Netherlands
| |
Collapse
|
9
|
Roudsari G, Lbadaoui-Darvas M, Welti A, Nenes A, Laaksonen A. The molecular scale mechanism of deposition ice nucleation on silver iodide. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2024; 4:243-251. [PMID: 38371604 PMCID: PMC10867811 DOI: 10.1039/d3ea00140g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/02/2023] [Indexed: 02/20/2024]
Abstract
Heterogeneous ice nucleation is a ubiquitous process in the natural and built environment. Deposition ice nucleation, i.e. heterogeneous ice nucleation that - according to the traditional view - occurs in a subsaturated water vapor environment and in the absence of supercooled water on the solid, ice-forming surface, is among the most important ice formation processes in high-altitude cirrus and mixed-phase clouds. Despite its importance, very little is known about the mechanism of deposition ice nucleation at the microscopic level. This study puts forward an adsorption-based mechanism for deposition ice nucleation through results from a combination of atomistic simulations, experiments and theoretical modelling. One of the most potent laboratory surrogates of ice nucleating particles, silver iodide, is used as a substrate for the simulations. We find that water initially adsorbs in clusters which merge and grow over time to form layers of supercooled water. Ice nucleation on silver iodide requires at minimum the adsorption of 4 molecular layers of water. Guided by the simulations we propose the following fundamental freezing steps: (1) Water molecules adsorb on the surface, forming nanodroplets. (2) The supercooled water nanodroplets merge into a continuous multilayer when they grow to about 3 molecular layers thick. (3) The layer continues to grow until the critical thickness for freezing is reached. (4) The critical ice cluster continues to grow.
Collapse
Affiliation(s)
| | - Mária Lbadaoui-Darvas
- Laboratory of Atmospheric Processes and their Impacts, ENAC, Ecole Polytechnique Fédérale de Lausanne Lausanne Switzerland
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT) 26504 Patras Greece
| | - André Welti
- Finnish Meteorological Institute FI-00101 Helsinki Finland
| | - Athanasios Nenes
- Laboratory of Atmospheric Processes and their Impacts, ENAC, Ecole Polytechnique Fédérale de Lausanne Lausanne Switzerland
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT) 26504 Patras Greece
| | - Ari Laaksonen
- Finnish Meteorological Institute FI-00101 Helsinki Finland
- Department of Applied Physics, University of Eastern Finland Kuopio 70211 Finland
| |
Collapse
|
10
|
van Rooijen WA, Habibi P, Xu K, Dey P, Vlugt TJH, Hajibeygi H, Moultos OA. Interfacial Tensions, Solubilities, and Transport Properties of the H 2/H 2O/NaCl System: A Molecular Simulation Study. JOURNAL OF CHEMICAL AND ENGINEERING DATA 2024; 69:307-319. [PMID: 38352074 PMCID: PMC10859954 DOI: 10.1021/acs.jced.2c00707] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/23/2022] [Indexed: 02/16/2024]
Abstract
Data for several key thermodynamic and transport properties needed for technologies using hydrogen (H2), such as underground H2 storage and H2O electrolysis are scarce or completely missing. Force field-based Molecular Dynamics (MD) and Continuous Fractional Component Monte Carlo (CFCMC) simulations are carried out in this work to cover this gap. Extensive new data sets are provided for (a) interfacial tensions of H2 gas in contact with aqueous NaCl solutions for temperatures of (298 to 523) K, pressures of (1 to 600) bar, and molalities of (0 to 6) mol NaCl/kg H2O, (b) self-diffusivities of infinitely diluted H2 in aqueous NaCl solutions for temperatures of (298 to 723) K, pressures of (1 to 1000) bar, and molalities of (0 to 6) mol NaCl/kg H2O, and (c) solubilities of H2 in aqueous NaCl solutions for temperatures of (298 to 363) K, pressures of (1 to 1000) bar, and molalities of (0 to 6) mol NaCl/kg H2O. The force fields used are the TIP4P/2005 for H2O, the Madrid-2019 and the Madrid-Transport for NaCl, and the Vrabec and Marx for H2. Excellent agreement between the simulation results and available experimental data is found with average deviations lower than 10%.
Collapse
Affiliation(s)
- W. A. van Rooijen
- Reservoir
Engineering, Geoscience and Engineering Department, Faculty of Civil
Engineering and Geosciences, Delft University
of Technology, Stevinweg 1, 2628CN, Delft, The Netherlands
| | - P. Habibi
- Engineering
Thermodynamics, Process and Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB, Delft, The Netherlands
- Department
of Materials Science and Engineering, Faculty of Mechanical, Maritime
and Materials Engineering, Delft University
of Technology, Mekelweg
2, 2628CD, Delft, The Netherlands
| | - K. Xu
- Department
of Materials Science and Engineering, Faculty of Mechanical, Maritime
and Materials Engineering, Delft University
of Technology, Mekelweg
2, 2628CD, Delft, The Netherlands
| | - P. Dey
- Department
of Materials Science and Engineering, Faculty of Mechanical, Maritime
and Materials Engineering, Delft University
of Technology, Mekelweg
2, 2628CD, Delft, The Netherlands
| | - T. J. H. Vlugt
- Engineering
Thermodynamics, Process and Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB, Delft, The Netherlands
| | - H. Hajibeygi
- Reservoir
Engineering, Geoscience and Engineering Department, Faculty of Civil
Engineering and Geosciences, Delft University
of Technology, Stevinweg 1, 2628CN, Delft, The Netherlands
| | - O. A. Moultos
- Engineering
Thermodynamics, Process and Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB, Delft, The Netherlands
| |
Collapse
|
11
|
Hulikal Chakrapani T, Hajibeygi H, Moultos OA, Vlugt TJH. Calculating Thermodynamic Factors for Diffusion Using the Continuous Fractional Component Monte Carlo Method. J Chem Theory Comput 2024; 20:333-347. [PMID: 38113860 PMCID: PMC10782482 DOI: 10.1021/acs.jctc.3c01144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
Thermodynamic factors for diffusion connect the Fick and Maxwell-Stefan diffusion coefficients used to quantify mass transfer. Activity coefficient models or equations of state can be fitted to experimental or simulation data, from which thermodynamic factors can be obtained by differentiation. The accuracy of thermodynamic factors determined using indirect routes is dictated by the specific choice of an activity coefficient model or an equation of state. The Permuted Widom's Test Particle Insertion (PWTPI) method developed by Balaji et al. enables direct determination of thermodynamic factors in binary and multicomponent systems. For highly dense systems, for example, typical liquids, it is well known that molecular test insertion methods fail. In this article, we use the Continuous Fractional Component Monte Carlo (CFCMC) method to directly calculate thermodynamic factors by adopting the PWTPI method. The CFCMC method uses fractional molecules whose interactions with their surrounding molecules are modulated by a coupling parameter. Even in highly dense systems, the CFCMC method efficiently handles molecule insertions and removals, overcoming the limitations of the PWTPI method. We show excellent agreement between the results of the PWTPI and CFCMC methods for the calculation of thermodynamic factors in binary systems of Lennard-Jones molecules and ternary systems of Weeks-Chandler-Andersen molecules. The CFCMC method applied to calculate the thermodynamic factors of realistic molecular systems consisting of binary mixtures of carbon dioxide and hydrogen agrees well with the NIST REFPROP database. Our study highlights the effectiveness of the CFCMC method in determining thermodynamic factors for diffusion, even in densely packed systems, using relatively small numbers of molecules.
Collapse
Affiliation(s)
- Thejas Hulikal Chakrapani
- Reservoir
Engineering, Geoscience and Engineering Department, Faculty of Civil
Engineering and Geosciences, Delft University
of Technology, 2628 CN Delft, The
Netherlands
| | - Hadi Hajibeygi
- Reservoir
Engineering, Geoscience and Engineering Department, Faculty of Civil
Engineering and Geosciences, Delft University
of Technology, 2628 CN Delft, The
Netherlands
| | - Othonas A. Moultos
- Engineering
Thermodynamics, Process and Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, 2628 CB Delft, The
Netherlands
| | - Thijs J. H. Vlugt
- Engineering
Thermodynamics, Process and Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, 2628 CB Delft, The
Netherlands
| |
Collapse
|
12
|
Gulcay-Ozcan E, Iacomi P, Brântuas PF, Rioland G, Maurin G, Devautour-Vinot S. Metal-Organic Frameworks for Phthalate Capture. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48216-48224. [PMID: 37793090 DOI: 10.1021/acsami.3c10481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Indoor air contamination by phthalate ester (PAE) derivatives has become a significant concern since traces of PAEs can cause endocrine disruption, among other health issues. PAE abatement from the environment is thus mandatory to further ensure a good quality of indoor air. Herein, we explored the physisorption-based capture of volatile PAEs by metal-organic frameworks (MOFs). A high-throughput computational screening approach was first applied on databases compiling more than 20,000 MOF structures in order to identify the best MOFs for adsorbing traces of dimethyl phthalate (DMP), considered as a representative molecule of the family of PAE contaminants. Among the 20 top candidates, MOF-74(Ni), which combines substantial DMP uptake at the 10 ppm concentration level (∼0.20 g g-1) with high adsorption enthalpy at infinite dilution (-ΔHads(DMP),0 = 109.9 kJ mol-1), was revealed as an excellent porous material to capture airborne DMP. This prediction was validated by further experiments: gravimetric sorption isotherms were carried out on MOF-74(Ni), replacing DMP by dimethyl maleate (DMM), a molecule with a higher vapor pressure and indeed easier to manipulate compared to DMP while mimicking the adsorption behavior of DMP by MOFs, as evidenced by Monte Carlo calculations. Notably, saturation of DMM by MOF-74(Ni) (∼0.35 g g-1 at 343 K) occurs at very low equivalent concentration of the sorbate, i.e., 15 ppm, while half of the DMM molecules remain trapped in the MOF pores, even by heating the system up to 473 K under vacuum. This computational-experimental study reveals for the first time the potential of MOFs for the capture of phthalate ester contaminants as vapors of key importance to address indoor air quality issues.
Collapse
Affiliation(s)
- Ezgi Gulcay-Ozcan
- Institut Charles Gerhardt Montpellier, Univ. Montpellier, CNRS, ENSCM, Montpellier F-34293, France
- Centre National d'Etudes Spatiales, DTN/QE/LE, 18 Avenue Edouard Belin, Toulouse 31401 Cedex 09, France
- Department of Chemical Engineering, Yeditepe University, Istanbul 34755, Turkey
| | - Paul Iacomi
- Institut Charles Gerhardt Montpellier, Univ. Montpellier, CNRS, ENSCM, Montpellier F-34293, France
- Surface Measurement Systems, Unit 5, Wharfside, Rosemont Road, London HA0 4PE, U.K
| | - Pedro F Brântuas
- Institut Charles Gerhardt Montpellier, Univ. Montpellier, CNRS, ENSCM, Montpellier F-34293, France
| | - Guillaume Rioland
- Centre National d'Etudes Spatiales, DTN/QE/LE, 18 Avenue Edouard Belin, Toulouse 31401 Cedex 09, France
| | - Guillaume Maurin
- Institut Charles Gerhardt Montpellier, Univ. Montpellier, CNRS, ENSCM, Montpellier F-34293, France
| | - Sabine Devautour-Vinot
- Institut Charles Gerhardt Montpellier, Univ. Montpellier, CNRS, ENSCM, Montpellier F-34293, France
| |
Collapse
|
13
|
Kim J, Belloni L, Rotenberg B. Grand-canonical molecular dynamics simulations powered by a hybrid 4D nonequilibrium MD/MC method: Implementation in LAMMPS and applications to electrolyte solutions. J Chem Phys 2023; 159:144802. [PMID: 37819001 DOI: 10.1063/5.0168878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
Molecular simulations in an open environment, involving ion exchange, are necessary to study various systems, from biosystems to confined electrolytes. However, grand-canonical simulations are often computationally demanding in condensed phases. A promising method [L. Belloni, J. Chem. Phys. 151, 021101 (2019)], one of the hybrid nonequilibrium molecular dynamics/Monte Carlo algorithms, was recently developed, which enables efficient computation of fluctuating number or charge density in dense fluids or ionic solutions. This method facilitates the exchange through an auxiliary dimension, orthogonal to all physical dimensions, by reducing initial steric and electrostatic clashes in three-dimensional systems. Here, we report the implementation of the method in LAMMPS with a Python interface, allowing facile access to grand-canonical molecular dynamics simulations with massively parallelized computation. We validate our implementation with two electrolytes, including a model Lennard-Jones electrolyte similar to a restricted primitive model and aqueous solutions. We find that electrostatic interactions play a crucial role in the overall efficiency due to their long-range nature, particularly for water or ion-pair exchange in aqueous solutions. With properly screened electrostatic interactions and bias-based methods, our approach enhances the efficiency of salt-pair exchange in Lennard-Jones electrolytes by approximately four orders of magnitude, compared to conventional grand-canonical Monte Carlo. Furthermore, the acceptance rate of NaCl-pair exchange in aqueous solutions at moderate concentrations reaches about 3% at the maximum efficiency.
Collapse
Affiliation(s)
- Jeongmin Kim
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Luc Belloni
- LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Benjamin Rotenberg
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Réseau sur le Stockage Électrochimique de Énergie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
| |
Collapse
|
14
|
Shi K, Li Z, Anstine DM, Tang D, Colina CM, Sholl DS, Siepmann JI, Snurr RQ. Two-Dimensional Energy Histograms as Features for Machine Learning to Predict Adsorption in Diverse Nanoporous Materials. J Chem Theory Comput 2023; 19:4568-4583. [PMID: 36735251 DOI: 10.1021/acs.jctc.2c00798] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A major obstacle for machine learning (ML) in chemical science is the lack of physically informed feature representations that provide both accurate prediction and easy interpretability of the ML model. In this work, we describe adsorption systems using novel two-dimensional energy histogram (2D-EH) features, which are obtained from the probe-adsorbent energies and energy gradients at grid points located throughout the adsorbent. The 2D-EH features encode both energetic and structural information of the material and lead to highly accurate ML models (coefficient of determination R2 ∼ 0.94-0.99) for predicting single-component adsorption capacity in metal-organic frameworks (MOFs). We consider the adsorption of spherical molecules (Kr and Xe), linear alkanes with a wide range of aspect ratios (ethane, propane, n-butane, and n-hexane), and a branched alkane (2,2-dimethylbutane) over a wide range of temperatures and pressures. The interpretable 2D-EH features enable the ML model to learn the basic physics of adsorption in pores from the training data. We show that these MOF-data-trained ML models are transferrable to different families of amorphous nanoporous materials. We also identify several adsorption systems where capillary condensation occurs, and ML predictions are more challenging. Nevertheless, our 2D-EH features still outperform structural features including those derived from persistent homology. The novel 2D-EH features may help accelerate the discovery and design of advanced nanoporous materials using ML for gas storage and separation in the future.
Collapse
Affiliation(s)
- Kaihang Shi
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois60208, United States
| | - Zhao Li
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois60208, United States
| | - Dylan M Anstine
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida32611, United States
- George and Josephine Butler Polymer Research Laboratory, University of Florida, Gainesville, Florida32611, United States
| | - Dai Tang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Coray M Colina
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida32611, United States
- George and Josephine Butler Polymer Research Laboratory, University of Florida, Gainesville, Florida32611, United States
- Department of Chemistry, University of Florida, Gainesville, Florida32611, United States
| | - David S Sholl
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
- Transformational Decarbonization Initiative, Oak Ridge National Laboratory, Oak Ridge, Tennessee37830, United States
| | - J Ilja Siepmann
- Department of Chemistry and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota55455, United States
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota55455, United States
| | - Randall Q Snurr
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois60208, United States
| |
Collapse
|
15
|
Emelianova A, Reed A, Basharova EA, Kolesnikov AL, Gor GY. Closer Look at Adsorption of Sarin and Simulants on Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18559-18567. [PMID: 36976256 DOI: 10.1021/acsami.3c02713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The development of effective protection against exposure to chemical warfare agents (CWAs), such as sarin, relies on studies of its adsorption on the capturing materials and seeking candidates capable of adsorbing large amounts of sarin gas. Many metal-organic frameworks (MOFs) are promising materials for the effective capture and degradation of sarin and simulant substances. Among the simulants capable of mimicking thermodynamic properties of the agent, not all of them have been investigated on the ability to act similarly in the adsorption process, in particular, whether the agent and a simulant have similar mechanisms of binding to the MOF surface. Molecular simulation studies not only provide a safe way to investigate the aforementioned processes but can also help reveal the mechanisms of interactions between the adsorbents and the adsorbing compounds at the molecular level. We performed Monte Carlo simulations of the adsorption of sarin and three simulants, dimethyl methylphosphonate (DMMP), diisopropyl methylphosphonate (DIMP), and diisopropyl fluorophosphate (DIFP), on selected MOFs that have previously shown strong capabilities to adsorb sarin. On the basis of the calculated adsorption isotherms, enthalpy of adsorption, and radial distribution functions, we revealed common mechanisms among the particularly efficient adsorbents as well as the ability of simulants to mimic them. The findings can help in selecting a suitable simulant compound to study CWA adsorption on MOFs and guide further synthesis of efficient MOFs for the capture of organophosphorus compounds.
Collapse
Affiliation(s)
- Alina Emelianova
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, United States
| | - Allen Reed
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, United States
| | | | - Andrei L Kolesnikov
- Institut für Nichtklassische Chemie e.V., Permoserstraße 15, 04318 Leipzig, Germany
| | - Gennady Y Gor
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, United States
| |
Collapse
|
16
|
Melling O, Samways ML, Ge Y, Mobley DL, Essex JW. Enhanced Grand Canonical Sampling of Occluded Water Sites Using Nonequilibrium Candidate Monte Carlo. J Chem Theory Comput 2023; 19:1050-1062. [PMID: 36692215 PMCID: PMC9933432 DOI: 10.1021/acs.jctc.2c00823] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 01/25/2023]
Abstract
Water molecules play a key role in many biomolecular systems, particularly when bound at protein-ligand interfaces. However, molecular simulation studies on such systems are hampered by the relatively long time scales over which water exchange between a protein and solvent takes place. Grand canonical Monte Carlo (GCMC) is a simulation technique that avoids this issue by attempting the insertion and deletion of water molecules within a given structure. The approach is constrained by low acceptance probabilities for insertions in congested systems, however. To address this issue, here, we combine GCMC with nonequilibium candidate Monte Carlo (NCMC) to yield a method that we refer to as grand canonical nonequilibrium candidate Monte Carlo (GCNCMC), in which the water insertions and deletions are carried out in a gradual, nonequilibrium fashion. We validate this new approach by comparing GCNCMC and GCMC simulations of bulk water and three protein binding sites. We find that not only is the efficiency of the water sampling improved by GCNCMC but that it also results in increased sampling of ligand conformations in a protein binding site, revealing new water-mediated ligand-binding geometries that are not observed using alternative enhanced sampling techniques.
Collapse
Affiliation(s)
- Oliver
J. Melling
- School
of Chemistry, University of Southampton, SouthamptonSO17 1BJ, U.K.
| | - Marley L. Samways
- School
of Chemistry, University of Southampton, SouthamptonSO17 1BJ, U.K.
| | - Yunhui Ge
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California92697, United States
| | - David L. Mobley
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California92697, United States
- Department
of Chemistry, University of California, Irvine, California92697, United States
| | - Jonathan W. Essex
- School
of Chemistry, University of Southampton, SouthamptonSO17 1BJ, U.K.
| |
Collapse
|
17
|
Izarra AD, Coudert FX, Fuchs AH, Boutin A. Alchemical Osmostat for Monte Carlo Simulation: Sampling Aqueous Electrolyte Solution in Open Systems. J Phys Chem B 2023; 127:766-776. [PMID: 36634303 DOI: 10.1021/acs.jpcb.2c07902] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Molecular simulations involving electrolytes are usually performed at a fixed amount of salt ions in the simulation box, reproducing macroscopic concentration. Although this statement is valid in the bulk, the concentration of an electrolyte confined in nanoporous materials such as MOFs or zeolites is greatly affected and remains a priori unknown. The nanoporous material in equilibrium with the bulk electrolyte exchange water and ions at a given chemical potential Δμ in the semi-grand-canonical ensemble, that must be calibrated in order to determine the concentration in the nanoporous material. In this work, we propose an algorithm based on nonequilibrium candidate Monte Carlo (NCMC) moves to ultimately perform MC simulations in contact with a saline reservoir. First, we adapt the Widom insertion technique to calibrate the chemical potential by alchemically transmuting water molecules into ions by using NCMC moves. The chemical potential defines a Monte Carlo osmostat in the semi-grand-constant volume and temperature ensemble (Δμ, N, V, T) to be added in a Monte Carlo simulation where the number of ions fluctuates. In order to validate the method, we adapted the NCMC move to determine the free energy of water solvation and subsequently explore thermodynamics of electrolyte solvation at infinite dilution in water. Finally, we implemented the osmostat in MC simulations initialized with bulk water that are driven toward electrolyte solutions of similar concentration as the saline reservoir. Our results demonstrate that alchemical osmostat for MC simulation is a promising tool for use to sample electrolyte insertion in nanoporous materials.
Collapse
Affiliation(s)
- Ambroise de Izarra
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.,Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, Paris75005, France
| | - François-Xavier Coudert
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, Paris75005, France
| | - Alain H Fuchs
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, Paris75005, France
| | - Anne Boutin
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| |
Collapse
|
18
|
Wasik D, Polat HM, Ramdin M, Moultos OA, Calero S, Vlugt TJH. Solubility of CO 2 in Aqueous Formic Acid Solutions and the Effect of NaCl Addition: A Molecular Simulation Study. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:19424-19434. [PMID: 36424997 PMCID: PMC9677493 DOI: 10.1021/acs.jpcc.2c05476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/15/2022] [Indexed: 06/16/2023]
Abstract
There is a growing interest in the development of routes to produce formic acid from CO2, such as the electrochemical reduction of CO2 to formic acid. The solubility of CO2 in the electrolyte influences the production rate of formic acid. Here, the dependence of the CO2 solubility in aqueous HCOOH solutions with electrolytes on the composition and the NaCl concentration was studied by Continuous Fractional Component Monte Carlo simulations at 298.15 K and 1 bar. The chemical potentials of CO2, H2O, and HCOOH were obtained directly from single simulations, enabling the calculation of Henry coefficients and subsequently considering salting in or salting out effects. As the force fields for HCOOH and H2O may not be compatible due to the presence of strong hydrogen bonds, the Gibbs-Duhem integration test was used to test this compatibility. The combination of the OPLS/AA force field with a new set of parameters, in combination with the SPC/E force field for water, was selected. It was found that the solubility of CO2 decreases with increasing NaCl concentration in the solution and increases with the increase of HCOOH concentration. This continues up to a certain concentration of HCOOH in the solution, after which the CO2 solubility is high and the NaCl concentration has no significant effect.
Collapse
Affiliation(s)
- Dominika
O. Wasik
- Materials
Simulation and Modelling, Department of Applied Physics, Eindhoven University of Technology, Eindhoven5600MB, The Netherlands
- Eindhoven
Institute for Renewable Energy Systems, Eindhoven University of Technology,
P.O. Box 513, Eindhoven5600 MB, The Netherlands
| | - H. Mert Polat
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, Delft2628CB, The Netherlands
- CCUS
and Acid Gas Entity, Liquefied Natural Gas Department, Exploration
Production, TotalEnergies S.E., Paris92078, France
- CTP—Centre
of Thermodynamics of Processes, Mines ParisTech, PSL University, 35 rue
Saint Honoré, Fontainebleau77305, France
| | - Mahinder Ramdin
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, Delft2628CB, The Netherlands
| | - Othonas A. Moultos
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, Delft2628CB, The Netherlands
| | - Sofia Calero
- Materials
Simulation and Modelling, Department of Applied Physics, Eindhoven University of Technology, Eindhoven5600MB, The Netherlands
- Eindhoven
Institute for Renewable Energy Systems, Eindhoven University of Technology,
P.O. Box 513, Eindhoven5600 MB, The Netherlands
| | - Thijs J. H. Vlugt
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, Delft2628CB, The Netherlands
| |
Collapse
|
19
|
Habibi P, Rahbari A, Blazquez S, Vega C, Dey P, Vlugt TJH, Moultos OA. A New Force Field for OH - for Computing Thermodynamic and Transport Properties of H 2 and O 2 in Aqueous NaOH and KOH Solutions. J Phys Chem B 2022; 126:9376-9387. [PMID: 36325986 PMCID: PMC9677430 DOI: 10.1021/acs.jpcb.2c06381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/20/2022] [Indexed: 11/05/2022]
Abstract
The thermophysical properties of aqueous electrolyte solutions are of interest for applications such as water electrolyzers and fuel cells. Molecular dynamics (MD) and continuous fractional component Monte Carlo (CFCMC) simulations are used to calculate densities, transport properties (i.e., self-diffusivities and dynamic viscosities), and solubilities of H2 and O2 in aqueous sodium and potassium hydroxide (NaOH and KOH) solutions for a wide electrolyte concentration range (0-8 mol/kg). Simulations are carried out for a temperature and pressure range of 298-353 K and 1-100 bar, respectively. The TIP4P/2005 water model is used in combination with a newly parametrized OH- force field for NaOH and KOH. The computed dynamic viscosities at 298 K for NaOH and KOH solutions are within 5% from the reported experimental data up to an electrolyte concentration of 6 mol/kg. For most of the thermodynamic conditions (especially at high concentrations, pressures, and temperatures) experimental data are largely lacking. We present an extensive collection of new data and engineering equations for H2 and O2 self-diffusivities and solubilities in NaOH and KOH solutions, which can be used for process design and optimization of efficient alkaline electrolyzers and fuel cells.
Collapse
Affiliation(s)
- Parsa Habibi
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628 CBDelft, The Netherlands
- Department
of Materials Science and Engineering, Faculty of Mechanical, Maritime
and Materials Engineering, Delft University
of Technology, Mekelweg
2, 2628 CDDelft, The Netherlands
| | - Ahmadreza Rahbari
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628 CBDelft, The Netherlands
| | - Samuel Blazquez
- Depto.
Química Física, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040Madrid, Spain
| | - Carlos Vega
- Depto.
Química Física, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040Madrid, Spain
| | - Poulumi Dey
- Department
of Materials Science and Engineering, Faculty of Mechanical, Maritime
and Materials Engineering, Delft University
of Technology, Mekelweg
2, 2628 CDDelft, The Netherlands
| | - Thijs J. H. Vlugt
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628 CBDelft, The Netherlands
| | - Othonas A. Moultos
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628 CBDelft, The Netherlands
| |
Collapse
|
20
|
A data-driven and topological mapping approach for the a priori prediction of stable molecular crystalline hydrates. Proc Natl Acad Sci U S A 2022; 119:e2204414119. [PMID: 36252020 DOI: 10.1073/pnas.2204414119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Predictions of the structures of stoichiometric, fractional, or nonstoichiometric hydrates of organic molecular crystals are immensely challenging due to the extensive search space of different water contents, host molecular placements throughout the crystal, and internal molecular conformations. However, the dry frameworks of these hydrates, especially for nonstoichiometric or isostructural dehydrates, can often be predicted from a standard anhydrous crystal structure prediction (CSP) protocol. Inspired by developments in the field of drug binding, we introduce an efficient data-driven and topologically aware approach for predicting organic molecular crystal hydrate structures through a mapping of water positions within the crystal structure. The method does not require a priori specification of water content and can, therefore, predict stoichiometric, fractional, and nonstoichiometric hydrate structures. This approach, which we term a mapping approach for crystal hydrates (MACH), establishes a set of rules for systematic determination of favorable positions for water insertion within predicted or experimental crystal structures based on considerations of the chemical features of local environments and void regions. The proposed approach is tested on hydrates of three pharmaceutically relevant compounds that exhibit diverse crystal packing motifs and void environments characteristic of hydrate structures. Overall, we show that our mapping approach introduces an advance in the efficient performance of hydrate CSP through generation of stable hydrate stoichiometries at low cost and should be considered an integral component for CSP workflows.
Collapse
|
21
|
Kobayashi K, Firoozabadi A. Effect of Branching on Mutual Solubility of Alkane-CO 2 Systems by Molecular Simulations. J Phys Chem B 2022; 126:8300-8308. [PMID: 36197719 DOI: 10.1021/acs.jpcb.2c05774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mutual solubilities of hydrocarbon-CO2 systems are important in a broad range of applications. Experimental data and theoretical understanding of phase behavior of large hydrocarbon molecules and CO2 are limited. This is especially true in relation to the molecular structure of hydrocarbons when the carbon number exceeds 12. In this work, the continuous fractional component Gibbs ensemble Monte Carlo simulations are used to investigate mutual solubility of different alkane and CO2 systems and the molecular structure. We investigate the mutual solubility of n-decane, n-hexadecane, n-eicosane, and the corresponding structural isomers in the CO2-rich and hydrocarbon-rich phase. The focus will be solubility of the heavy normal alkanes and their structural isomers in CO2. The simulation results are verified by comparing the experimental data when measurements are available. The simulation of phase behavior of the n-decane-CO2 system agrees with the experiments. We also present simulation results of n-hexadecane-CO2 and n-eicosane-CO2 systems away from the critical region partly due to the finite size effect. We establish that solubility of the hydrocarbons in CO2 is improved by change of the molecular structure in heavier alkanes. The enhanced solubility is limited in decane isomers, but the isomers of hexadecane and eicosane show 2- to 3-time solubility enhancement. The molecular dynamics simulations suggest that the improvement is from a higher coordination number of CO2 for methyl (CH3) rather than for methylene (CH2) groups. This study sets the stage for molecular engineering and synthesis of hydrocarbons that are soluble in CO2 not only by considering functionality but also by changing the molecular structure. The solubility enhancement is the first step in viscosification of CO2 which broadens the use of CO2.
Collapse
Affiliation(s)
- Kazuya Kobayashi
- INPEX Corporation, Akasaka Biz Tower 5-3-1 Akasaka, Minato-ku, Tokyo107-6332, Japan.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas77005, United States
| | - Abbas Firoozabadi
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas77005, United States
| |
Collapse
|
22
|
Vlugt TJH. Partial molar properties from single molecular dynamics simulations. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2126509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Thijs J. H. Vlugt
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft, The Netherlands
| |
Collapse
|
23
|
Ricci E, Minelli M, De Angelis MG. Modelling Sorption and Transport of Gases in Polymeric Membranes across Different Scales: A Review. MEMBRANES 2022; 12:857. [PMID: 36135877 PMCID: PMC9502097 DOI: 10.3390/membranes12090857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 06/02/2023]
Abstract
Professor Giulio C. Sarti has provided outstanding contributions to the modelling of fluid sorption and transport in polymeric materials, with a special eye on industrial applications such as membrane separation, due to his Chemical Engineering background. He was the co-creator of innovative theories such as the Non-Equilibrium Theory for Glassy Polymers (NET-GP), a flexible tool to estimate the solubility of pure and mixed fluids in a wide range of polymers, and of the Standard Transport Model (STM) for estimating membrane permeability and selectivity. In this review, inspired by his rigorous and original approach to representing membrane fundamentals, we provide an overview of the most significant and up-to-date modeling tools available to estimate the main properties governing polymeric membranes in fluid separation, namely solubility and diffusivity. The paper is not meant to be comprehensive, but it focuses on those contributions that are most relevant or that show the potential to be relevant in the future. We do not restrict our view to the field of macroscopic modelling, which was the main playground of professor Sarti, but also devote our attention to Molecular and Multiscale Hierarchical Modeling. This work proposes a critical evaluation of the different approaches considered, along with their limitations and potentiality.
Collapse
Affiliation(s)
- Eleonora Ricci
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy
| | - Matteo Minelli
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy
| | - Maria Grazia De Angelis
- Institute for Materials and Processes, School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, UK
| |
Collapse
|
24
|
Ramos PM, Herranz M, Martínez-Fernández D, Foteinopoulou K, Laso M, Karayiannis NC. Crystallization of Flexible Chains of Tangent Hard Spheres under Full Confinement. J Phys Chem B 2022; 126:5931-5947. [PMID: 35904560 DOI: 10.1021/acs.jpcb.2c03424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We present results from extensive Monte Carlo simulations on the crystallization of athermal polymers under full confinement. Polymers are represented as freely jointed chains of tangent hard spheres of uniform size. Confinement is applied through the presence of flat, parallel, and impenetrable walls in all dimensions. We analyze crystallization as the summation of two contributions: one that occurs in the bulk volume of the system (bulk crystallization), and one on the wall surfaces (surface crystallization). Depending on volume fraction initially amorphous (disordered) hard-sphere chain packings transit to the stable crystal phase. The established ordered morphologies consist primarily of hexagonal close-packed (HCP) crystals in the bulk volume and of triangular (TRI) crystals on the surface. As in the case of athermal packings in the bulk (without confinement), a structural competition is observed between the 5-fold local symmetry and the formation of close-packed crystallites. Effectively, the full confinement inside a cube favors the growth of the HCP crystal, as the FCC one is quite incompatible with the imposed spatial constraints. Consequently, we observe the formation of noncompact ordered motifs which grow from the surface to the inner volume of the simulation cell. We further compare the 2D and 3D crystals formed by monomeric hard spheres under the same simulation conditions. Significant differences are observed at low densities that tend to diminish as concentration increases.
Collapse
Affiliation(s)
- Pablo Miguel Ramos
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Miguel Herranz
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Daniel Martínez-Fernández
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Katerina Foteinopoulou
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Manuel Laso
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Nikos Ch Karayiannis
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
25
|
Jeanmairet G, Rotenberg B, Salanne M. Microscopic Simulations of Electrochemical Double-Layer Capacitors. Chem Rev 2022; 122:10860-10898. [PMID: 35389636 PMCID: PMC9227719 DOI: 10.1021/acs.chemrev.1c00925] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 12/19/2022]
Abstract
Electrochemical double-layer capacitors (EDLCs) are devices allowing the storage or production of electricity. They function through the adsorption of ions from an electrolyte on high-surface-area electrodes and are characterized by short charging/discharging times and long cycle-life compared to batteries. Microscopic simulations are now widely used to characterize the structural, dynamical, and adsorption properties of these devices, complementing electrochemical experiments and in situ spectroscopic analyses. In this review, we discuss the main families of simulation methods that have been developed and their application to the main family of EDLCs, which include nanoporous carbon electrodes. We focus on the adsorption of organic ions for electricity storage applications as well as aqueous systems in the context of blue energy harvesting and desalination. We finally provide perspectives for further improvement of the predictive power of simulations, in particular for future devices with complex electrode compositions.
Collapse
Affiliation(s)
- Guillaume Jeanmairet
- Sorbonne
Université, CNRS, Physico-chimie
des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Réseau
sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS
3459, 80039 Amiens, France
| | - Benjamin Rotenberg
- Sorbonne
Université, CNRS, Physico-chimie
des Electrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Réseau
sur le Stockage Électrochimique de l’Énergie
(RS2E), FR CNRS 3459, 80039 Amiens, France
| | - Mathieu Salanne
- Réseau
sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS
3459, 80039 Amiens, France
- Sorbonne
Université, CNRS, Physico-chimie
des Electrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Institut
Universitaire de France (IUF), 75231 Paris Cedex 05, France
| |
Collapse
|
26
|
Vo P, Forsman J, Woodward CE. Boundary-Monte Carlo Method for Neutral and Charged Confined Fluids. J Chem Theory Comput 2022; 18:3766-3780. [PMID: 35575645 DOI: 10.1021/acs.jctc.1c01146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we describe a new Monte Carlo (MC) simulation method to investigate highly coupled fluids in confined geometries at a constant chemical potential. This method is based on so-called multi-scale Hamiltonian methods, wherein the chemical potential is determined using a more amenable Hamiltonian for a fluid in an "outer" region, which facilitates standard methods, such as grand canonical MC simulations or Widom's particle insertion method. The (inner region) fluid of interest is placed in diffusive contact with the simpler outer fluid via a boundary zone wherein the Hamiltonian is transformed. The current method utilizes an ideal fluid for the outer regions, which allows for implicit rather than explicit simulations. Only the boundary and inner region need explicit consideration; hence, the nomenclature used is boundary-Monte Carlo. We illustrate the utility of the method for simple neutral and charged fluids in cylindrical and planar pores. In the latter case, we use a dense room-temperature ionic liquid model and illustrate how the boundary zone establishes a proper Donnan equilibrium between inner and outer fluids in the presence of charged planar electrodes. Thus, the method allows direct calculation of properties such as the differential capacitance, without the need for additional difficult calculations of the requisite Donnan potential.
Collapse
Affiliation(s)
- Phuong Vo
- School of Science, University of New South Wales, Canberra, Canberra ACT 2600, Australia
| | - Jan Forsman
- Department of Theoretical Chemistry, Chemical Centre, Lund University, Lund S-22100, Sweden
| | - Clifford E Woodward
- School of Science, University of New South Wales, Canberra, Canberra ACT 2600, Australia
| |
Collapse
|
27
|
Wang S, Venkatesh A, Ramkrishna D, Narsimhan V. Brownian bridges for stochastic chemical processes-An approximation method based on the asymptotic behavior of the backward Fokker-Planck equation. J Chem Phys 2022; 156:184108. [PMID: 35568530 DOI: 10.1063/5.0080540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A Brownian bridge is a continuous random walk conditioned to end in a given region by adding an effective drift to guide paths toward the desired region of phase space. This idea has many applications in chemical science where one wants to control the endpoint of a stochastic process-e.g., polymer physics, chemical reaction pathways, heat/mass transfer, and Brownian dynamics simulations. Despite its broad applicability, the biggest limitation of the Brownian bridge technique is that it is often difficult to determine the effective drift as it comes from a solution of a Backward Fokker-Planck (BFP) equation that is infeasible to compute for complex or high-dimensional systems. This paper introduces a fast approximation method to generate a Brownian bridge process without solving the BFP equation explicitly. Specifically, this paper uses the asymptotic properties of the BFP equation to generate an approximate drift and determine ways to correct (i.e., re-weight) any errors incurred from this approximation. Because such a procedure avoids the solution of the BFP equation, we show that it drastically accelerates the generation of conditioned random walks. We also show that this approach offers reasonable improvement compared to other sampling approaches using simple bias potentials.
Collapse
Affiliation(s)
- Shiyan Wang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Anirudh Venkatesh
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Doraiswami Ramkrishna
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Vivek Narsimhan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
28
|
Dawass N, Langeveld J, Ramdin M, Pérez-Gallent E, Villanueva AA, Giling EJM, Langerak J, van den Broeke LJP, Vlugt TJH, Moultos OA. Solubilities and Transport Properties of CO 2, Oxalic Acid, and Formic Acid in Mixed Solvents Composed of Deep Eutectic Solvents, Methanol, and Propylene Carbonate. J Phys Chem B 2022; 126:3572-3584. [PMID: 35507866 PMCID: PMC9125562 DOI: 10.1021/acs.jpcb.2c01425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Recently, deep eutectic
solvents (DES) have been considered as
possible electrolytes for the electrochemical reduction of CO2 to value-added products such as formic and oxalic acids.
The applicability of pure DES as electrolytes is hindered by high
viscosities. Mixtures of DES with organic solvents can be a promising
way of designing superior electrolytes by exploiting the advantages
of each solvent type. In this study, densities, viscosities, diffusivities,
and ionic conductivities of mixed solvents comprising DES (i.e., reline
and ethaline), methanol, and propylene carbonate were computed using
molecular simulations. To provide a quantitative assessment of the
affinity and mass transport of CO2 and oxalic and formic
acids in the mixed solvents, the solubilities and self-diffusivities
of these solutes were also computed. Our results show that the addition
of DES to the organic solvents enhances the solubilities of oxalic
and formic acids, while the solubility of CO2 in the ethaline-containing
mixtures are in the same order of magnitude with the respective pure
organic components. A monotonic increase in the densities and viscosities
of the mixed solvents is observed as the mole fraction of DES in the
mixture increases, with the exception of the density of ethaline-propylene
carbonate which shows the opposite behavior due to the high viscosity
of the pure organic component. The self-diffusivities of all species
in the mixtures significantly decrease as the mole fraction of DES
approaches unity. Similarly, the self-diffusivities of the dissolved
CO2 and the oxalic and formic acids also decrease by at
least 1 order of magnitude as the composition of the mixture shifts
from the pure organic component to pure DES. The computed ionic conductivities
of all mixed solvents show a maximum value for mole fractions of DES
in the range from 0.2 to 0.6 and decrease as more DES is added to
the mixtures. Since for most mixtures studied here no prior experimental
measurements exist, our findings can serve as a first data set based
on which further investigation of DES-containing electrolyte solutions
can be performed for the electrochemical reduction of CO2 to useful chemicals.
Collapse
Affiliation(s)
- Noura Dawass
- Chemical Engineering Program, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| | - Jilles Langeveld
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Mahinder Ramdin
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Elena Pérez-Gallent
- Department of Sustainable Process and Energy Systems, TNO, Delft, Zuid-Holland 2628CA, The Netherlands
| | - Angel A Villanueva
- Department of Sustainable Process and Energy Systems, TNO, Delft, Zuid-Holland 2628CA, The Netherlands
| | - Erwin J M Giling
- Department of Sustainable Process and Energy Systems, TNO, Delft, Zuid-Holland 2628CA, The Netherlands
| | - Jort Langerak
- Research and Development Department, DMT Environmental Technology, Yndustrywei 3, 8501SN Joure, The Netherlands
| | - Leo J P van den Broeke
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Thijs J H Vlugt
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Othonas A Moultos
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| |
Collapse
|
29
|
Hewitt D, Pope T, Sarwar M, Turrina A, Slater B. Machine learning accelerated high-throughput screening of zeolites for the selective adsorption of xylene isomers. Chem Sci 2022; 13:13178-13186. [DOI: 10.1039/d2sc03351h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/07/2022] [Indexed: 11/21/2022] Open
Abstract
A combination of machine learning and high throughput simulation has identified several potential zeolite structures that appear to outperform the leading commercially used material and explained the key factors for high selectivity.
Collapse
Affiliation(s)
- Daniel Hewitt
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1E 6BT, UK
| | - Tom Pope
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1E 6BT, UK
| | - Misbah Sarwar
- Johnson Matthey Technology Centre, Sonning Common, Reading, RG4 9NH, UK
| | - Alessandro Turrina
- Johnson Matthey Technology Centre, Chilton, P.O. Box 1, Belasis Avenue, Billingham, TS23 1LB, UK
| | - Ben Slater
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1E 6BT, UK
| |
Collapse
|
30
|
Heijmans K, Tranca IC, Chang MW, Vlugt TJH, Gaastra-Nedea SV, Smeulders DMJ. Reactive Grand-Canonical Monte Carlo Simulations for Modeling Hydration of MgCl 2. ACS OMEGA 2021; 6:32475-32484. [PMID: 34901597 PMCID: PMC8655925 DOI: 10.1021/acsomega.1c03909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/15/2021] [Indexed: 06/14/2023]
Abstract
Thermochemical heat-storage applications, based on the reversible endo-/exothermic hydration reaction of salts, are intensively investigated to search for compact heat-storage devices. To achieve a truly valuable storage system, progressively complex salts are investigated. For these salts, the equilibrium temperature and pressure conditions are not always easy to predict. However, these conditions are crucial for the design of thermochemical heat-storage systems. A biased grand-canonical Monte Carlo (GCMC) tool is developed, enabling the study of equilibrium conditions at the molecular level. The GCMC algorithm is combined with reactive force field molecular dynamics (ReaxFF), which allows bond formation within the simulation. The Weeks-Chandler-Andersen (WCA) potential is used to scan multiple trial positions for the GCMC algorithm at a small cost. The most promising trial positions can be selected for recomputation with the more expensive ReaxFF. The developed WCA-ReaxFF-GCMC tool was used to study the hydration of MgCl2·nH2O. The simulation results show a good agreement with experimental and thermodynamic equilibriums for multiple hydration levels. The hydration shows that water, present at the surface of crystalline salt, deforms the surface layers and promotes further hydration of these deformed layers. Additionally, the WCA-ReaxFF-GCMC algorithm can be used to study other, non-TCM-related, reactive sorption processes.
Collapse
Affiliation(s)
- Koen Heijmans
- Department
of Mechanical Engineering, Eindhoven University
of Technology, Groene Loper 15, 5600 MB Eindhoven, The Netherlands
| | - Ionut C. Tranca
- Department
of Mechanical Engineering, Eindhoven University
of Technology, Groene Loper 15, 5600 MB Eindhoven, The Netherlands
| | - Ming-Wen Chang
- Independent
researcher, 5616 LZ Eindhoven, The Netherlands
| | - Thijs J. H. Vlugt
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat
39, 2628CB Delft, The Netherlands
| | - Silvia V. Gaastra-Nedea
- Department
of Mechanical Engineering, Eindhoven University
of Technology, Groene Loper 15, 5600 MB Eindhoven, The Netherlands
- Eindhoven
Institute of Renewable Energy Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - David M. J. Smeulders
- Department
of Mechanical Engineering, Eindhoven University
of Technology, Groene Loper 15, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
31
|
Herranz M, Martínez-Fernández D, Ramos PM, Foteinopoulou K, Karayiannis NC, Laso M. Simu-D: A Simulator-Descriptor Suite for Polymer-Based Systems under Extreme Conditions. Int J Mol Sci 2021; 22:12464. [PMID: 34830346 PMCID: PMC8621175 DOI: 10.3390/ijms222212464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/03/2021] [Accepted: 11/12/2021] [Indexed: 11/21/2022] Open
Abstract
We present Simu-D, a software suite for the simulation and successive identification of local structures of atomistic systems, based on polymers, under extreme conditions, in the bulk, on surfaces, and at interfaces. The protocol is built around various types of Monte Carlo algorithms, which include localized, chain-connectivity-altering, identity-exchange, and cluster-based moves. The approach focuses on alleviating one of the main disadvantages of Monte Carlo algorithms, which is the general applicability under a wide range of conditions. Present applications include polymer-based nanocomposites with nanofillers in the form of cylinders and spheres of varied concentration and size, extremely confined and maximally packed assemblies in two and three dimensions, and terminally grafted macromolecules. The main simulator is accompanied by a descriptor that identifies the similarity of computer-generated configurations with respect to reference crystals in two or three dimensions. The Simu-D simulator-descriptor can be an especially useful tool in the modeling studies of the entropy- and energy-driven phase transition, adsorption, and self-organization of polymer-based systems under a variety of conditions.
Collapse
Affiliation(s)
| | | | | | | | - Nikos Ch. Karayiannis
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain; (M.H.); (D.M.-F.); (P.M.R.); (K.F.)
| | - Manuel Laso
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain; (M.H.); (D.M.-F.); (P.M.R.); (K.F.)
| |
Collapse
|
32
|
Shi W, Tiwari SP, Thompson RL, Culp JT, Hong L, Hopkinson DP, Smith K, Resnik K, Steckel JA, Siefert NS. Computational Screening of Physical Solvents for CO 2 Pre-combustion Capture. J Phys Chem B 2021; 125:13467-13481. [PMID: 34734716 DOI: 10.1021/acs.jpcb.1c07268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A computational scheme was used to screen physical solvents for CO2 pre-combustion capture by integrating the commercial NIST database, an in-house computational database, chem-informatics, and molecular modeling. A commercially available screened hydrophobic solvent, diethyl sebacate, was identified from the screening with favorable physical properties and promising absorption performance. The promising performance to use diethyl sebacate in CO2 pre-combustion capture has also been confirmed from experiments. Water loading in diethyl sebacate is very low, and therefore, water is kept with H2 in the gas stream. The favorable CO2 interaction with diethyl sebacate and the intermediate solvent free volume fraction leads to both high CO2 solubility and high CO2/H2 solubility selectivity in diethyl sebacate. An in-house NETL computational database was built to characterize CO2, H2, N2, and H2O interactions with 202 different chemical functional groups. It was found that 13% of the functional groups belong to the strong interaction category with the CO2 interaction energy between -15 and -21 kJ/mol; 62% of the functional groups interact intermediately with CO2 (-8 to -15 kJ/mol). The remaining 25% of functional groups interact weakly with CO2 (below -8 kJ/mol). In addition, calculations show that CO2 interactions with the functional groups are stronger than N2 and H2 interactions but are weaker than H2O interactions. The CO2 and H2O interactions with the same functional groups exhibit a very strong linear positive correlation coefficient of 0.92. The relationship between CO2 and H2 gas solubilities and solvent fractional free volume (FFV) has been systematically studied for seven solvents at 298.2 K. A skewed bell-shaped relation was obtained between CO2 solubility and solvent FFV. When an organic compound has a density approximately 10% lower than its density at 298.2 K and 1 bar, it exhibits the highest CO2 loading at that specific solvent density and FFV. Note that the solvent densities were varied using simulations, which are difficult to be obtained from the experiment. In contrast, H2 solubility results exhibit an almost perfect positive linear correlation with the solvent FFV. The theoretical maximum and minimum physical CO2 solubilities in any organic compound at 298.2 K were estimated to be 11 and 0.4 mol/MPa L, respectively. An examination of 182 experimental CO2 physical solubility data and 29 simulated CO2 physical solubilities shows that all the CO2 physical solubility data are within the maximum and minimum with only a few exceptions. Finally, simulations suggest that in order to develop physical solvents with both high CO2 solubility and high CO2/H2 solubility selectivity, the solvents should contain functional groups which are available to interact strongly with CO2 while minimizing FFV.
Collapse
Affiliation(s)
- Wei Shi
- National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, Pennsylvania 15236-0940, United States.,NETL Support Contractor, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, Pennsylvania 15236-0940, United States
| | - Surya P Tiwari
- National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, Pennsylvania 15236-0940, United States.,NETL Support Contractor, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, Pennsylvania 15236-0940, United States
| | - Robert L Thompson
- National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, Pennsylvania 15236-0940, United States.,NETL Support Contractor, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, Pennsylvania 15236-0940, United States
| | - Jeffrey T Culp
- National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, Pennsylvania 15236-0940, United States.,NETL Support Contractor, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, Pennsylvania 15236-0940, United States
| | - Lei Hong
- National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, Pennsylvania 15236-0940, United States.,NETL Support Contractor, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, Pennsylvania 15236-0940, United States
| | - David P Hopkinson
- National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, Pennsylvania 15236-0940, United States
| | - Kathryn Smith
- National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, Pennsylvania 15236-0940, United States.,Carbon Capture Scientific, 4000 Brownsville Road, South Park, Pennsylvania 15129, United States
| | - Kevin Resnik
- National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, Pennsylvania 15236-0940, United States.,NETL Support Contractor, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, Pennsylvania 15236-0940, United States
| | - Janice A Steckel
- National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, Pennsylvania 15236-0940, United States
| | - Nicholas S Siefert
- National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, Pennsylvania 15236-0940, United States
| |
Collapse
|
33
|
Salehi HS, Polat HM, de Meyer F, Houriez C, Coquelet C, Vlugt TJH, Moultos OA. Vapor pressures and vapor phase compositions of choline chloride urea and choline chloride ethylene glycol deep eutectic solvents from molecular simulation. J Chem Phys 2021; 155:114504. [PMID: 34551525 DOI: 10.1063/5.0062408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Despite the widespread acknowledgment that deep eutectic solvents (DESs) have negligible vapor pressures, very few studies in which the vapor pressures of these solvents are measured or computed are available. Similarly, the vapor phase composition is known for only a few DESs. In this study, for the first time, the vapor pressures and vapor phase compositions of choline chloride urea (ChClU) and choline chloride ethylene glycol (ChClEg) DESs are computed using Monte Carlo simulations. The partial pressures of the DES components were obtained from liquid and vapor phase excess Gibbs energies, computed using thermodynamic integration. The enthalpies of vaporization were computed from the obtained vapor pressures, and the results were in reasonable agreement with the few available experimental data in the literature. It was found that the vapor phases of both DESs were dominated by the most volatile component (hydrogen bond donor, HBD, i.e., urea or ethylene glycol), i.e., 100% HBD in ChClEg and 88%-93% HBD in ChClU. Higher vapor pressures were observed for ChClEg compared to ChClU due to the higher volatility of ethylene glycol compared to urea. The influence of the liquid composition of the DESs on the computed properties was studied by considering different mole fractions (i.e., 0.6, 0.67, and 0.75) of the HBD. Except for the partial pressure of ethylene glycol in ChClEg, all the computed partial pressures and enthalpies of vaporization showed insensitivity toward the liquid composition. The activity coefficient of ethylene glycol in ChClEg was computed at different liquid phase mole fractions, showing negative deviations from Raoult's law.
Collapse
Affiliation(s)
- Hirad S Salehi
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - H Mert Polat
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Frédérick de Meyer
- CCUS and Acid Gas Entity, Liquefied Natural Gas Department, Exploration Production, Total Energies S.E., 92078 Paris, France
| | - Céline Houriez
- CTP - Centre of Thermodynamics of Processes, Mines ParisTech, PSL University, 35 rue Saint Honoré, 77305 Fontainebleau, France
| | - Christophe Coquelet
- CTP - Centre of Thermodynamics of Processes, Mines ParisTech, PSL University, 35 rue Saint Honoré, 77305 Fontainebleau, France
| | - Thijs J H Vlugt
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Othonas A Moultos
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| |
Collapse
|
34
|
Polat HM, Salehi HS, Hens R, Wasik DO, Rahbari A, de Meyer F, Houriez C, Coquelet C, Calero S, Dubbeldam D, Moultos OA, Vlugt TJH. New Features of the Open Source Monte Carlo Software Brick-CFCMC: Thermodynamic Integration and Hybrid Trial Moves. J Chem Inf Model 2021; 61:3752-3757. [PMID: 34383501 PMCID: PMC8385706 DOI: 10.1021/acs.jcim.1c00652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
We present several
new major features added to the Monte Carlo
(MC) simulation code Brick-CFCMC for phase- and reaction equilibria
calculations (https://gitlab.com/ETh_TU_Delft/Brick-CFCMC). The first one
is thermodynamic integration for the computation of excess chemical
potentials (μex). For this purpose, we implemented
the computation of the ensemble average of the derivative of the potential
energy with respect to the scaling factor for intermolecular interactions
(). Efficient bookkeeping is implemented
so that the quantity is updated after every MC trial
move with
negligible computational cost. We demonstrate the accuracy and reliability
of the calculation of μex for sodium chloride in
water. Second, we implemented hybrid MC/MD translation and rotation
trial moves to increase the efficiency of sampling of the configuration
space. In these trial moves, short Molecular Dynamics (MD) trajectories
are performed to collectively displace or rotate all molecules in
the system. These trajectories are accepted or rejected based on the
total energy drift. The efficiency of these trial moves can be tuned
by changing the time step and the trajectory length. The new trial
moves are demonstrated using MC simulations of a viscous fluid (deep
eutectic solvent).
Collapse
Affiliation(s)
- H Mert Polat
- CCUS and Acid Gas Entity, Liquefied Natural Gas Department, Exploration Production, TotalEnergies S.E., 92078 Paris, France.,Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, Delft 2628CB, The Netherlands.,CTP - Centre of Thermodynamics of Processes, Mines ParisTech, PSL University, 35 rue Saint Honoré, 77305 Fontainebleau, France
| | - Hirad S Salehi
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, Delft 2628CB, The Netherlands
| | - Remco Hens
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, Delft 2628CB, The Netherlands
| | - Dominika O Wasik
- Materials Simulation and Modelling, Department of Applied Physics, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| | - Ahmadreza Rahbari
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, Delft 2628CB, The Netherlands
| | - Frédérick de Meyer
- CCUS and Acid Gas Entity, Liquefied Natural Gas Department, Exploration Production, TotalEnergies S.E., 92078 Paris, France.,CTP - Centre of Thermodynamics of Processes, Mines ParisTech, PSL University, 35 rue Saint Honoré, 77305 Fontainebleau, France
| | - Céline Houriez
- CTP - Centre of Thermodynamics of Processes, Mines ParisTech, PSL University, 35 rue Saint Honoré, 77305 Fontainebleau, France
| | - Christophe Coquelet
- CTP - Centre of Thermodynamics of Processes, Mines ParisTech, PSL University, 35 rue Saint Honoré, 77305 Fontainebleau, France
| | - Sofia Calero
- Materials Simulation and Modelling, Department of Applied Physics, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands.,Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Ctra. Utrera Km. 1, Seville ES-41013, Spain
| | - David Dubbeldam
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098XH Amsterdam, The Netherlands
| | - Othonas A Moultos
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, Delft 2628CB, The Netherlands
| | - Thijs J H Vlugt
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, Delft 2628CB, The Netherlands
| |
Collapse
|
35
|
Desgranges C, Delhommelle J. Entropy scaling close to criticality: From simple to metallic systems. Phys Rev E 2021; 103:052102. [PMID: 34134262 DOI: 10.1103/physreve.103.052102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 04/09/2021] [Indexed: 11/07/2022]
Abstract
Entropy has recently drawn considerable interest both as a marker to detect the onset of phase transitions and as a reaction coordinate, or collective variable, to span phase transition pathways. We focus here on the behavior of entropy along the vapor-liquid phase coexistence and identify how the difference in entropy between the two coexisting phases vary in ideal and metallic systems along the coexistence curve. Using flat-histogram simulations, we determine the thermodynamic conditions of coexistence, critical parameters, including the critical entropy, and entropies along the binodal. We then apply our analysis to a series of systems that increasingly depart from ideality and adopt a metal-like character, through the gradual onset of the Friedel oscillation in an effective pair potential, and for a series of transition metals modeled with a many-body embedded-atoms force field. Projections of the phase boundary on the entropy-pressure and entropy-temperature planes exhibit two qualitatively different behaviors. While all systems modeled with an effective pair potential lead to an ideal-like behavior, the onset of many-body effects results in a departure from ideality and a markedly greater exponent for the variation of the entropy of vaporization with temperature away from the critical temperature.
Collapse
Affiliation(s)
- Caroline Desgranges
- Department of Chemistry, New York University, New York, New York 10003, USA and Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, USA
| | - Jerome Delhommelle
- Department of Chemistry, New York University, New York, New York 10003, USA and Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, USA
| |
Collapse
|
36
|
Sherck N, Shen K, Nguyen M, Yoo B, Köhler S, Speros JC, Delaney KT, Shell MS, Fredrickson GH. Molecularly Informed Field Theories from Bottom-up Coarse-Graining. ACS Macro Lett 2021; 10:576-583. [PMID: 35570772 DOI: 10.1021/acsmacrolett.1c00013] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polymer formulations possessing mesostructures or phase coexistence are challenging to simulate using atomistic particle-explicit approaches due to the disparate time and length scales, while the predictive capability of field-based simulations is hampered by the need to specify interactions at a coarser scale (e.g., χ-parameters). To overcome the weaknesses of both, we introduce a bottom-up coarse-graining methodology that leverages all-atom molecular dynamics to molecularly inform coarser field-theoretic models. Specifically, we use relative-entropy coarse-graining to parametrize particle models that are directly and analytically transformable into statistical field theories. We demonstrate the predictive capability of this approach by reproducing experimental aqueous poly(ethylene oxide) (PEO) cloud-point curves with no parameters fit to experimental data. This synergistic approach to multiscale polymer simulations opens the door to de novo exploration of phase behavior across a wide variety of polymer solutions and melt formulations.
Collapse
Affiliation(s)
- Nicholas Sherck
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Kevin Shen
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - My Nguyen
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Brian Yoo
- BASF Corporation, Tarrytown, New York 10591, United States
| | | | - Joshua C. Speros
- California Research Alliance (CARA) by BASF, Berkeley, California 94720, United States
| | - Kris T. Delaney
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - M. Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Glenn H. Fredrickson
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Department of Materials, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
37
|
Rahbari A, Garcia-Navarro JC, Ramdin M, van den Broeke LJP, Moultos OA, Dubbeldam D, Vlugt TJH. Effect of Water Content on Thermodynamic Properties of Compressed Hydrogen. JOURNAL OF CHEMICAL AND ENGINEERING DATA 2021; 66:2071-2087. [PMID: 34054140 PMCID: PMC8154567 DOI: 10.1021/acs.jced.1c00020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Force field-based molecular simulations were used to calculate thermal expansivities, heat capacities, and Joule-Thomson coefficients of binary (standard) hydrogen-water mixtures for temperatures between 366.15 and 423.15 K and pressures between 50 and 1000 bar. The mole fraction of water in saturated hydrogen-water mixtures in the gas phase ranges from 0.004 to 0.138. The same properties were calculated for pure hydrogen at 323.15 K and pressures between 100 and 1000 bar. Simulations were performed using the TIP3P and a modified TIP4P force field for water and the Marx, Vrabec, Cracknell, Buch, and Hirschfelder force fields for hydrogen. The vapor-liquid equilibria of hydrogen-water mixtures were calculated along the melting line of ice Ih, corresponding to temperatures between 264.21 and 272.4 K, using the TIP3P force field for water and the Marx force field for hydrogen. In this temperature range, the solubilities and the chemical potentials of hydrogen and water were obtained. Based on the computed solubility data of hydrogen in water, the freezing-point depression of water was computed ranging from 264.21 to 272.4 K. The modified TIP4P and Marx force fields were used to improve the solubility calculations of hydrogen-water mixtures reported in our previous study [Rahbari A.;J. Chem. Eng. Data2019, 64, 4103-4115] for temperatures between 323 and 423 K and pressures ranging from 100 to 1000 bar. The chemical potentials of ice Ih were calculated as a function of pressure between 100 and 1000 bar, along the melting line for temperatures between 264.21 and 272.4 K, using the IAPWS equation of state for ice Ih. We show that at low pressures, the presence of water has a large effect on the thermodynamic properties of compressed hydrogen. Our conclusions may have consequences for the energetics of a hydrogen refueling station using electrochemical hydrogen compressors.
Collapse
Affiliation(s)
- Ahmadreza Rahbari
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | | | - Mahinder Ramdin
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Leo J. P. van den Broeke
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Othonas A. Moultos
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - David Dubbeldam
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Thijs J. H. Vlugt
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| |
Collapse
|
38
|
Caro-Ortiz S, Zuidema E, Rigutto M, Dubbeldam D, Vlugt TJH. Competitive Adsorption of Xylenes at Chemical Equilibrium in Zeolites. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:4155-4174. [PMID: 33841605 PMCID: PMC8025683 DOI: 10.1021/acs.jpcc.0c09411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/28/2021] [Indexed: 06/12/2023]
Abstract
The separation of xylenes is one of the most important processes in the petrochemical industry. In this article, the competitive adsorption from a fluid-phase mixture of xylenes in zeolites is studied. Adsorption from both vapor and liquid phases is considered. Computations of adsorption of pure xylenes and a mixture of xylenes at chemical equilibrium in several zeolite types at 250 °C are performed by Monte Carlo simulations. It is observed that shape and size selectivity entropic effects are predominant for small one-dimensional systems. Entropic effects due to the efficient arrangement of xylenes become relevant for large one-dimensional systems. For zeolites with two intersecting channels, the selectivity is determined by a competition between enthalpic and entropic effects. Such effects are related to the orientation of the methyl groups of the xylenes. m-Xylene is preferentially adsorbed if xylenes fit tightly in the intersection of the channels. If the intersection is much larger than the adsorbed molecules, p-xylene is preferentially adsorbed. This study provides insight into how the zeolite topology can influence the competitive adsorption and selectivity of xylenes at reaction conditions. Different selectivities are observed when a vapor phase is adsorbed compared to the adsorption from a liquid phase. These insight have a direct impact on the design criteria for future applications of zeolites in the industry. MRE-type and AFI-type zeolites exclusively adsorb p-xylene and o-xylene from the mixture of xylenes in the liquid phase, respectively. These zeolite types show potential to be used as high-performing molecular sieves for xylene separation and catalysis.
Collapse
Affiliation(s)
- Sebastián Caro-Ortiz
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Erik Zuidema
- Shell
Global Solutions International B.V., PO Box 38000, 1030 BN Amsterdam, The Netherlands
| | - Marcello Rigutto
- Shell
Global Solutions International B.V., PO Box 38000, 1030 BN Amsterdam, The Netherlands
| | - David Dubbeldam
- Van’t
Hoff Institute of Molecular Sciences, University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Thijs J. H. Vlugt
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| |
Collapse
|
39
|
Bråten V, Wilhelmsen Ø, Schnell SK. Chemical Potential Differences in the Macroscopic Limit from Fluctuations in Small Systems. J Chem Inf Model 2021; 61:840-855. [PMID: 33566592 PMCID: PMC8023585 DOI: 10.1021/acs.jcim.0c01367] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a new method for computing chemical potential differences of macroscopic systems by sampling fluctuations in small systems. The small system method, presented by Schnell et al. [Schnell et al., J. Phys. Chem. B, 2011, 115, 10911], is used to create small embedded systems from molecular dynamics simulations, in which fluctuations of the number of particles are sampled. The sampled fluctuations represent the Boltzmann distributed probability of the number of particles. The overlapping region of two such distributions, sampled from two different systems, is used to compute their chemical potential difference. Since the thermodynamics of small systems is known to deviate from the classical thermodynamic description, the particle distributions will deviate from the macroscopic behavior as well. We show how this can be utilized to calculate the size dependence of chemical potential differences and eventually extract the chemical potential difference in the thermodynamic limit. The macroscopic chemical potential difference is determined with a relative error of 3% in systems containing particles that interact through the truncated and shifted Lennard-Jones potential. In addition to computing chemical potential differences in the macroscopic limit directly from molecular dynamics simulation, the new method provides insights into the size dependency that is introduced to intensive properties in small systems.
Collapse
Affiliation(s)
- Vilde Bråten
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, NTNU, Trondheim NO-7491, Norway
| | - Øivind Wilhelmsen
- SINTEF Energy Research, Trondheim NO-7465, Norway.,Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - Sondre Kvalvåg Schnell
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, NTNU, Trondheim N-7491, Norway
| |
Collapse
|
40
|
Dawass N, Wanderley RR, Ramdin M, Moultos OA, Knuutila HK, Vlugt TJH. Solubility of Carbon Dioxide, Hydrogen Sulfide, Methane, and Nitrogen in Monoethylene Glycol; Experiments and Molecular Simulation. JOURNAL OF CHEMICAL AND ENGINEERING DATA 2021; 66:524-534. [PMID: 33487733 PMCID: PMC7818648 DOI: 10.1021/acs.jced.0c00771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Knowledge on the solubility of gases, especially carbon dioxide (CO2), in monoethylene glycol (MEG) is relevant for a number of industrial applications such as separation processes and gas hydrate prevention. In this study, the solubility of CO2 in MEG was measured experimentally at temperatures of 333.15, 353.15, and 373.15 K. Experimental data were used to validate Monte Carlo (MC) simulations. Continuous fractional component MC simulations in the osmotic ensemble were performed to compute the solubility of CO2 in MEG at the same temperatures and at pressures up to 10 bar. MC simulations were also used to study the solubility of methane (CH4), hydrogen sulfide (H2S), and nitrogen (N2) in MEG at 373.15 K. Solubilities from experiments and simulations are in good agreement at low pressures, but deviations were observed at high pressures. Henry coefficients were also computed using MC simulations and compared to experimental values. The order of solubilities of the gases in MEG at 373.15 K was computed as H2S > CO2 > CH4 > N2. Force field modifications may be required to improve the prediction of solubilities of gases in MEG at high pressures and low temperatures.
Collapse
Affiliation(s)
- Noura Dawass
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Ricardo R. Wanderley
- Department
of Chemical Engineering, Norwegian University
of Science and Technology, 7034 Trondheim, Norway
| | - Mahinder Ramdin
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Othonas A. Moultos
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Hanna K. Knuutila
- Department
of Chemical Engineering, Norwegian University
of Science and Technology, 7034 Trondheim, Norway
| | - Thijs J. H. Vlugt
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| |
Collapse
|
41
|
Desgranges C, Delhommelle J. Entropy in Molecular Fluids: Interplay between Interaction Complexity and Criticality. J Phys Chem B 2020; 124:11463-11471. [PMID: 33267580 DOI: 10.1021/acs.jpcb.0c08014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using flat-histogram simulations, we calculate the entropy of molecular fluids along the vapor-liquid phase boundary. Our simulation approach is based on the evaluation of the canonical and grand-canonical partition functions, which, in turn, provide access to entropy through the statistical mechanics formalism. The results allow us to determine the critical entropy of molecular fluids and to uncover that the transition occurs symmetrically from an entropic standpoint. This can best be seen through the patterns exhibited by the thermodynamic variables temperature and pressure when plotted against the entropy of the coexisting phases. This behavior is found to hold for apolar, quadrupolar, and dipolar fluids. Finally, we identify functional forms that characterize the relation between thermodynamic variables and entropy along the coexistence curve up to the critical point.
Collapse
Affiliation(s)
- Caroline Desgranges
- Department of Chemistry, New York University, New York, New York 10003, United States.,Department of Chemistry & Molecular Simulation of NonEquilibrium Processes (MSNEP), University of North Dakota, Suite 2300, Tech Accelerator, Grand Forks, North Dakota 58202, United States
| | - Jerome Delhommelle
- Department of Chemistry, New York University, New York, New York 10003, United States.,Department of Chemistry & Molecular Simulation of NonEquilibrium Processes (MSNEP), University of North Dakota, Suite 2300, Tech Accelerator, Grand Forks, North Dakota 58202, United States
| |
Collapse
|
42
|
Rahbari A, Hens R, Ramdin M, Moultos OA, Dubbeldam D, Vlugt TJH. Recent advances in the continuous fractional component Monte Carlo methodology. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1828585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- A. Rahbari
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands
| | - R. Hens
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands
| | - M. Ramdin
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands
| | - O. A. Moultos
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands
| | - D. Dubbeldam
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - T. J. H. Vlugt
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
43
|
Anstine DM, Colina CM. Sorption‐induced
polymer rearrangement: approaches from molecular modeling. POLYM INT 2020. [DOI: 10.1002/pi.6124] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Dylan M Anstine
- Department of Materials Science and Engineering University of Florida Gainesville FL USA
- George & Josephine Butler Polymer Research Laboratory University of Florida Gainesville FL USA
| | - Coray M Colina
- Department of Materials Science and Engineering University of Florida Gainesville FL USA
- George & Josephine Butler Polymer Research Laboratory University of Florida Gainesville FL USA
- Department of Chemistry University of Florida Gainesville FL USA
| |
Collapse
|
44
|
Salehi HS, Hens R, Moultos OA, Vlugt TJ. Computation of gas solubilities in choline chloride urea and choline chloride ethylene glycol deep eutectic solvents using Monte Carlo simulations. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113729] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Samways ML, Bruce Macdonald HE, Essex JW. grand: A Python Module for Grand Canonical Water Sampling in OpenMM. J Chem Inf Model 2020; 60:4436-4441. [DOI: 10.1021/acs.jcim.0c00648] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Marley L. Samways
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Hannah E. Bruce Macdonald
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Jonathan W. Essex
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
46
|
Lu S, Xu Y, Zhang X, Zeng Y. High-Throughput Screening of Computation-Ready Experimental-MOFs for Adsorptive Desulfurization. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shengjie Lu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yueyang Xu
- Guodian Science and Technology Research Institute, Nanjing 210031, China
| | - Xiaobin Zhang
- College of Information Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yongping Zeng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
47
|
Hens R, Rahbari A, Caro-Ortiz S, Dawass N, Erdős M, Poursaeidesfahani A, Salehi HS, Celebi AT, Ramdin M, Moultos OA, Dubbeldam D, Vlugt TJH. Brick-CFCMC: Open Source Software for Monte Carlo Simulations of Phase and Reaction Equilibria Using the Continuous Fractional Component Method. J Chem Inf Model 2020; 60:2678-2682. [PMID: 32275829 PMCID: PMC7312392 DOI: 10.1021/acs.jcim.0c00334] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Indexed: 12/02/2022]
Abstract
We present a new molecular simulation code, Brick-CFCMC, for performing Monte Carlo simulations using state-of-the-art simulation techniques. The Continuous Fractional Component (CFC) method is implemented for simulations in the NVT/NPT ensembles, the Gibbs Ensemble, the Grand-Canonical Ensemble, and the Reaction Ensemble. Molecule transfers are facilitated by the use of fractional molecules which significantly improve the efficiency of the simulations. With the CFC method, one can obtain phase equilibria and properties such as chemical potentials and partial molar enthalpies/volumes directly from a single simulation. It is possible to combine trial moves from different ensembles. This enables simulations of phase equilibria in a system where also a chemical reaction takes place. We demonstrate the applicability of our software by investigating the esterification of methanol with acetic acid in a two-phase system.
Collapse
Affiliation(s)
- Remco Hens
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Ahmadreza Rahbari
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Sebastián Caro-Ortiz
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Noura Dawass
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Máté Erdős
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Ali Poursaeidesfahani
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Hirad S. Salehi
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Alper T. Celebi
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Mahinder Ramdin
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Othonas A. Moultos
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - David Dubbeldam
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Thijs J. H. Vlugt
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| |
Collapse
|
48
|
Abedin R, Shen Y, Flake JC, Hung FR. Deep Eutectic Solvents Mixed with Fluorinated Refrigerants for Absorption Refrigeration: A Molecular Simulation Study. J Phys Chem B 2020; 124:4536-4550. [PMID: 32379975 DOI: 10.1021/acs.jpcb.0c01860] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Molecular simulations were performed to evaluate mixtures of fluorinated refrigerants with deep eutectic solvents (DESs), for potential use in single-effect absorption refrigeration cycles that use low quality waste heat sources at temperatures of ∼80 °C. The refrigerants considered were the hydrofluorocarbon R245fa and the hydrofluoroolefins R1234zeE and HFO1336mzzE, whereas the DESs evaluated were 1:2 molar mixtures of choline chloride with either ethylene glycol (ethaline) or levulinic acid (levuline) as hydrogen bond donors (HBDs). Assuming the same cycle operating conditions, the waste heat cycle efficiency η was computed for all working fluid mixtures from molecular simulation results of the mixture densities and Henry's law constants of the refrigerants in the DESs, coupled with phase equilibrium calculations and the enthalpies of the pure refrigerants. The largest efficiency was obtained for the mixture R245fa-ethaline (η = 6.82), followed by R245fa-levuline (η = 4.64) and HFO1336mzzE-levuline (η = 2.10). These modest efficiency values could be further increased by tailoring the cycle operating conditions to each particular refrigerant-DES system, as well as optimizing our choice of working fluid mixtures, neither of which we attempted in this study. Strong interactions were observed between the chlorine anions and some of the hydrogen atoms of the refrigerants, but in general the cation-refrigerant and HBD-refrigerant interactions are weaker compared to the refrigerant-refrigerant interactions. Refrigerant molecules have the largest diffusivities and make the cations, anions and HBD to move faster compared to systems of DESs without refrigerant; in general, species in refrigerant-ethaline mixtures have larger diffusivities compared to those for refrigerant-levuline mixtures. We also computed waste heat cycle efficiencies for the same R134a-DES mixtures studied in our previous work, finding significant differences between the efficiencies determined from molecular simulation data and those determined before using the COSMO-RS approach using two standard parametrizations. This observation suggests that further work is needed to improve the accuracy of the COSMO-RS predictions for these systems.
Collapse
Affiliation(s)
- Rubaiyet Abedin
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Yan Shen
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - John C Flake
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Francisco R Hung
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
49
|
Anstine DM, Demidov AG, Mendez NF, Morgan WJ, Colina CM. Screening PIM-1 performance as a membrane for binary mixture separation of gaseous organic compounds. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117798] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Rahbari A, Hens R, Moultos OA, Dubbeldam D, Vlugt TJH. Multiple Free Energy Calculations from Single State Point Continuous Fractional Component Monte Carlo Simulation Using Umbrella Sampling. J Chem Theory Comput 2020; 16:1757-1767. [PMID: 31999461 PMCID: PMC7066647 DOI: 10.1021/acs.jctc.9b01097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
We introduce an alternative method
to perform free energy calculations
for mixtures at multiple temperatures and pressures from a single
simulation, by combining umbrella sampling and the continuous fractional
component Monte Carlo method. One can perform a simulation of a mixture
at a certain pressure and temperature and accurately compute the chemical
potential at other pressures and temperatures close to the simulation
conditions. This method has the following advantages: (1) Accurate
estimates of the chemical potential as a function of pressure and
temperature are obtained from a single state simulation without additional
postprocessing. This can potentially reduce the number of simulations
of a system for free energy calculations for a specific temperature
and/or pressure range. (2) Partial molar volumes and enthalpies are
obtained directly from the estimated chemical potentials. We tested
our method for a Lennard-Jones system, aqueous mixtures of methanol
at T = 298 K and P = 1 bar, and
a mixture of ammonia, nitrogen, and hydrogen at T = 573 K and P = 800 bar. For pure methanol (N = 410 molecules), we observed that the estimated chemical
potentials from umbrella sampling are in excellent agreement with
the reference values obtained from independent simulations, for ΔT = ±15 K and ΔP = 100 bar (with
respect to the simulated system). For larger systems, this range becomes
smaller because the relative fluctuations of energy and volume become
smaller. Without sufficient overlap, the performance of the method
will become poor especially for nonlinear variations of the chemical
potential.
Collapse
Affiliation(s)
- Ahmadreza Rahbari
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Remco Hens
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Othonas A Moultos
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - David Dubbeldam
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Thijs J H Vlugt
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| |
Collapse
|