1
|
Luo M, Vandeputte DJ, Lievens S, Li G, Su Y, Huysmans M, Elskens M, Baeyens W, Gao Y. Understanding the availability of metals in agricultural soils and the impact of manure application. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138386. [PMID: 40273852 DOI: 10.1016/j.jhazmat.2025.138386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/19/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
Metal concentrations and distributions in a Belgian agricultural soil and the impact of manure application were studied. Most metal contaminants, except Pb and Co, reached their highest levels in winter (between 1.7 and 5.3 times higher than in other seasons) due to manure application. The vertical metal profiles in the soil also varied seasonally because of agricultural activities and plant growth. Meanwhile, sequential extraction on the soil solid phase pointed out that on an annual basis, Cd, Co, and Mn were primarily present in the exchangeable fraction at 42, 34 and 41 % respectively (also Ni was quite present in the exchangeable fraction at 20 %), that Pb was in the reducible fraction at 52 %, while Cr and Fe were more enriched in the residual fraction at 66 and 64 %, respectively. In addition, metal interactions between soil porewater and solid phase were investigated by using the passive sampling technique of Diffusive Gradients in Thin-films (DGT) and the one-dimensional DGT-induced flux in sediments (1D-DIFS) model. These results suggest a high release rate of Cd, Co, Mn and Ni from the soil solid phase to the pore water, and a low release rate of Cr, Cu, Fe and Pb. Therefore, the first group of metals poses a much greater risk for plant uptake and intoxication than the second group of metals.
Collapse
Affiliation(s)
- Mingyue Luo
- Archaeology, Environmental Changes and Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels 1050, Belgium; School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Delphine Jenny Vandeputte
- Archaeology, Environmental Changes and Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels 1050, Belgium
| | - Sybrien Lievens
- Archaeology, Environmental Changes and Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels 1050, Belgium
| | - Guanlei Li
- Archaeology, Environmental Changes and Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels 1050, Belgium
| | - Yiqi Su
- Archaeology, Environmental Changes and Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels 1050, Belgium
| | - Marijke Huysmans
- Department of Water and Climate (HYDR), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels 1050, Belgium
| | - Marc Elskens
- Archaeology, Environmental Changes and Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels 1050, Belgium
| | - Willy Baeyens
- Archaeology, Environmental Changes and Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels 1050, Belgium
| | - Yue Gao
- Archaeology, Environmental Changes and Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels 1050, Belgium.
| |
Collapse
|
2
|
Li S, Zhou J, Mu T, Wu T, Li Z, Ke X, Wu L, Luo Y, Bu Y. Combining multi-surface and biotoxicity models to predict cadmium bioavailability and accumulation in a soil collembolan. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 296:118163. [PMID: 40220357 DOI: 10.1016/j.ecoenv.2025.118163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/19/2025] [Accepted: 04/06/2025] [Indexed: 04/14/2025]
Abstract
The link between internal metal concentrations in soil animals and external metal concentrations is a critical issue in soil ecotoxicity tests and involves metal transfer from solid-liquid interfaces to target soil animals. Soil cadmium (Cd) pollution is a major concern, the bioavailability of Cd to the model soil collembolan Folsomia candida was therefore determined in naturally Cd-contaminated soils by chemical extraction methods and mechanism-based multi-surface models (MSMs). Three combined models were also developed by combining MSMs with a free ion activity model (MSMs-FIAM), a modified biotic ligand model (MSMs-rBLM), and a Gouy-Chapman-Stern model (MSMs-GCSM) to predict Cd bioaccumulation in F. candida in a mechanistic way. MSMs gave better prediction results for Cd bioavailability to F. candida (determination coefficient, R2 = 0.667) than other chemical extraction methods (0.01 M CaCl2, 0.43 M HNO3, soil solution, DGT, and soil total Cd). MSMs calculated dissolved Cd is an effective indicator of bioavailable Cd to F. candida and allowed prediction under a wide range of soil properties. The combined model MSMs-rBLM more successfully predicted Cd bioaccumulation in F. candida (R2 = 0.793, root-mean-square error (RMSE) = 0.172, mean absolute percentage error (MAPE) = 15.4 %) than other combined models and linked the soil-liquid interfaces to the surface of the target soil animal. MSMs-rBLM model may be a new tool for the prediction of Cd ecological risks and bioaccumulation in soils.
Collapse
Affiliation(s)
- Simin Li
- Research Center of Solid Waste Pollution and Prevention, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China; Key Laboratory Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Jiawen Zhou
- Key Laboratory Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Tingting Mu
- Research Center of Solid Waste Pollution and Prevention, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Tuozheng Wu
- Research Center of Solid Waste Pollution and Prevention, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Zhu Li
- Key Laboratory Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China.
| | - Xin Ke
- Key Laboratory Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Longhua Wu
- Key Laboratory Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Yongming Luo
- Key Laboratory Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Yuanqing Bu
- Research Center of Solid Waste Pollution and Prevention, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
3
|
Ridošková A, Pelfrêne A, Pelcová P, Waterlot C, Holasová D, Morávek M. Enhancing the prediction of arsenic bioavailability in soils with the diffusive gradient in thin film technique. CHEMOSPHERE 2025; 371:144015. [PMID: 39733953 DOI: 10.1016/j.chemosphere.2024.144015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 12/31/2024]
Abstract
The diffusive gradient in thin films technique (DGT), with a resin gel based on Lewatit® FO 36 was used for the first time to predict arsenic (As) bioavailability in soils collected in different environmental contexts. The predicted bioavailability, determined by fluxes to DGT, was compared with the bioavailability and bioaccumulation in the plants (Calendula officinalis), where a strong correlation was observed (r = 0.8857 (CE/Croots) and r = 0.9208 (CE/Cshoots); p < 0.05; n > 40). Arsenic, predominantly accumulated in the roots of plants from all soil samples, reached concentrations up to 507.8 mg kg-1. To better understand the As distribution within the various soil-bearing phases, sequential extraction procedures were performed and revealed low mobility and availability of As, particularly in A and R soil samples, where As pollution is primarily caused by anthropogenic activities such as mining and industrial activities. The obtained results show that Calendula officinalis plants can be grown on soils contaminated by arsenic, while the low translocation factors indicate that accumulate arsenic predominantly in the root system.
Collapse
Affiliation(s)
- Andrea Ridošková
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, CZ-61300, Czech Republic.
| | - Aurélie Pelfrêne
- Univ. Lille, Institut Mines-Télécom, Univ. Artois, Junia, ULR 4515-LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000, Lille, France
| | - Pavlína Pelcová
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, CZ-61300, Czech Republic
| | - Christophe Waterlot
- Univ. Lille, Institut Mines-Télécom, Univ. Artois, Junia, ULR 4515-LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000, Lille, France
| | - Denisa Holasová
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, CZ-61300, Czech Republic
| | - Michal Morávek
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, CZ-61300, Czech Republic
| |
Collapse
|
4
|
Zhang C, Guan DX, Williams PN, Lin GB, Chen XL, Ma LQ. DGT and kinetic analyses differentiate Se and Cd bioavailability in naturally enriched paddy soils. CHEMOSPHERE 2024; 368:143791. [PMID: 39577802 DOI: 10.1016/j.chemosphere.2024.143791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 11/24/2024]
Abstract
Naturally selenium (Se)-rich soils often contain elevated cadmium (Cd) levels, complicating safe production of Se-enriched rice. This study employed diffusive gradients in thin-films (DGT) and DGT-induced fluxes in soils (DIFS) model to determine Se and Cd bioavailability in paddy soils. We investigated desorption kinetics and accumulation patterns in rice using paired rhizosphere and grain samples from 65 field sites in Guangxi, China, encompassing Se-enriched karst and non-karst soils. Despite greater total Se and Cd contents in karst soils, their elevated pH, along with greater soil organic matter and total Fe, Mn, and Ca contents, constrained Se and Cd bioavailability, resulting in similar accumulation levels in rice grains from both soil categories. DIFS-derived kinetic data revealed that Se was replenished 75.4 times faster than Cd, but Cd had an 83.2 times larger labile pool, leading to a stronger overall Cd resupply capacity. DGT-based labile Se:Cd molar ratios showed that rice Cd content declined sharply as the ratio increased from 0.7 to 4.0, stabilizing at its lowest level when exceeding 20. Moreover, DGT measurements demonstrated stronger correlations with grain Se and Cd concentrations compared to traditional methods. Our findings highlight the effectiveness of DGT and kinetic analyses in determining Se and Cd bioavailability in high-background paddy soils, offering insights for balancing Se fortification and Cd risk mitigation in rice production.
Collapse
Affiliation(s)
- Chao Zhang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Paul N Williams
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, BT9 5DL, United Kingdom
| | - Guo-Bing Lin
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Lei Chen
- Engineering Technology Innovation Center for Ecological Evaluation and Restoration of Farmland of Plain District in Ministry of Natural Resources, Zhejiang Institute of Geosciences, Hangzhou, 311203, China
| | - Lena Q Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
5
|
Eon P, Ouerdane L, Goupil A, Vidal A, Cornu JY. Copper dynamics in vineyard topsoils as affected by the supply of aerated compost tea: insights from a batch experiment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124382. [PMID: 38897280 DOI: 10.1016/j.envpol.2024.124382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Aerated compost teas (ACTs) are rich in soluble humic substances (SHS) that have high affinity for metals, notably Cu. Using a batch experiment, we measured the extent to which two ACTs altered Cu dynamics in vineyard topsoils one day and 21 days after their addition. Soils were extracted with 0.01 M KCl, and total Cu concentration, free Cu ion fraction and size distribution of Cu ligands were measured in the extraction solution to assess the impact of ACT on the mobility of Cu. Diffusive gradient in thin film (DGT) measurements were carried out to assess the effect of ACT on Cu bioavailability, and the dissociation rate of Cu-SHS complexes was measured. The results revealed that ACT increased the mobility of Cu from a factor 1.2 to 5.8 depending on the soil, the ACT and the incubation time. Cu mobilization was associated with an increase in absorbance at 254 nm and a decrease in the free Cu ion fraction in the KCl extract. Associated with the strong agreement between the size distribution of SHS and that of Cu ligands in the KCl extract of soils treated with ACT, these results showed that Cu was mobilized through complexation by the SHS present in ACTs. A fraction of the SHS supplied with ACTs sorbed onto the soil constituents, notably in calcareous soils where this fraction reached 86% for ACT B. Between 15% and 50% of the SHS remaining in solution degraded between day one and day 21 under the presumed action of microflora. This explains why the Cu mobilization efficiency of ACTs was on average lower in calcareous soils than in non-calcareous soils, and decreased with time. Lastly, ACT increased the bioavailability of Cu in soils from a factor 1.3 to 4.2, due to the relatively high dissociation rate of Cu-SHS complexes.
Collapse
Affiliation(s)
- Pierre Eon
- ISPA, Bordeaux Sciences Agro, INRAE, 33140 Villenave d'Ornon, France.
| | - Laurent Ouerdane
- Université de Pau et des Pays de l'Adour, e2s UPPA, CNRS, IPREM-UMR 5254, Hélioparc, Pau, France
| | - Alex Goupil
- Université de Pau et des Pays de l'Adour, e2s UPPA, CNRS, IPREM-UMR 5254, Hélioparc, Pau, France
| | - Agathe Vidal
- ISPA, Bordeaux Sciences Agro, INRAE, 33140 Villenave d'Ornon, France
| | - Jean-Yves Cornu
- ISPA, Bordeaux Sciences Agro, INRAE, 33140 Villenave d'Ornon, France
| |
Collapse
|
6
|
Shi YXX, Xu HR, Shen J, Guo LY, Yan J, Jiang J, Hong ZN, Xu RK. A new simple index for characterizing the labile heavy metal concentration in soil by diffusive gradients in thin films technique. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124061. [PMID: 38679131 DOI: 10.1016/j.envpol.2024.124061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/31/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Diffusive gradients in thin films technique (DGT) is recognized as a more reliable method for determining labile heavy metal (HM) concentration in soil than traditional destructive methods. However, the current DGT measurement index, CDGT, theoretically underestimates the true labile concentration (Clabile) of HMs in soil and lacks direct comparability with the conventional soil HM content indices due to unit differences. Here, we proposed CDGT-W, a new simple index which is defined as the HM accumulation in the binding layer, normalized to the weight of soil (optimized water content = 100% of the maximum water holding capacity) filled in the open cavity-type DGT device over a specified deployment time (optimized time = 24 h). The procedure for measuring CDGT-W is analogous to that of CDGT but includes precise determination of water content (water/dry soil) and the mass of soil filled in the cavity. We conducted measurements of Cu, Pb, Cr(Ⅵ) and As(V) as CDGT-W, CDGT, solution concentration (Csoln), and CaCl2 extractable concentration (CCaCl2) on three soils with a diverse range of HM concentrations. CDGT-W showed significant linear correlations with all other tested indexes. The ratios of CDGT-W to CCaCl2 varied between 0.30 and 0.98 for all HM-soil combinations with only one exception, a range much greater than CDGT/Csoln (typically <0.1) but lower than 1. This suggested that CDGT-W may more accurately reflect Clabile than CDGT (theoretically underestimates Cliable) and CCaCl2(likely overestimates Cliable). Additionally, CDGT-W measurements for these four HMs exhibited a broad measure concentration range and a low detection limit (mg/kg level). Consequently, CDGT-W may offer a more reliable alternative to CDGT for characterizing Clabile in unsaturated soils.
Collapse
Affiliation(s)
- Yang-Xiao-Xiao Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hai-Rong Xu
- Co-Innovation Center for the Sustainable Forestry in Southern China/College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Jia Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China
| | - Lin-Yu Guo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China
| | - Jun Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China
| | - Zhi-Neng Hong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China.
| | - Ren-Kou Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Senila M, Kovacs E. Use of diffusive gradients in thin-film technique to predict the mobility and transfer of nutrients and toxic elements from agricultural soil to crops-an overview of recent studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34817-34838. [PMID: 38739340 PMCID: PMC11136807 DOI: 10.1007/s11356-024-33602-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
The purpose of this review was to survey the recent applications of the diffusive gradients in thin films (DGT) technique in the assessment of mobility and bioavailability of nutrients and potentially toxic elements (PTEs) in agricultural soil. Many studies compared the capabilities of the DGT technique with those of classical soil chemical extractants used in single or sequential procedures to predict nutrients and PTE bioavailability to crops. In most of the published works, the DGT technique was reported to be superior to the conventional chemical extraction and fractionation methods in obtaining significant correlations with the metals and metalloids accumulated in crops. In the domain of nutrient bioavailability assessment, DGT-based studies focused mainly on phosphorous and selenium labile fraction measurement, but potassium, manganese, and nitrogen were also studied using the DGT tool. Different DGT configurations are reported, using binding and diffusive layers specific for certain analytes (Hg, P, and Se) or gels with wider applicability, such as Chelex-based binding gels for metal cations and ferrihydrite-based hydrogels for oxyanions. Overall, the literature demonstrates that the DGT technique is relevant for the evaluation of metal and nutrient bioavailability to crops, due to its capacity to mimic the plant root uptake process, which justifies future improvement efforts.
Collapse
Affiliation(s)
- Marin Senila
- INCDO INOE 2000, Research Institute for Analytical Instrumentation, Donath 67, 400293, Cluj-Napoca, Romania.
| | - Eniko Kovacs
- INCDO INOE 2000, Research Institute for Analytical Instrumentation, Donath 67, 400293, Cluj-Napoca, Romania
| |
Collapse
|
8
|
Zhang C, Guan DX, Jiang YF, Menezes-Blackburn D, Yu T, Yang Z, Ma LQ. Insight into the availability and desorption kinetics of Se and Cd in naturally-rich soils using diffusive gradients in thin-films technique. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133330. [PMID: 38147757 DOI: 10.1016/j.jhazmat.2023.133330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
Cadmium (Cd) contamination of selenium (Se)-rich soils may jeopardize the nutritional benefits of Se-biofortified crops. This study employed diffusive gradients in thin-films (DGT) technique and DIFS (DGT-induced fluxes in soils) model to understand the interdependency and driving factors of Se and Cd distribution and desorption kinetics across 50 soils from south China with naturally elevated levels. DGT-labile Se was the highest (up to 2.66 μg L-1) in non-carbonate/shale-derived soils, while Cd was maximal (5.53 μg L-1) in carbonate-based soils, reflecting soil background concentrations and soil characteristics. Over one-third of the soils showed labile Se:Cd molar ratio below 0.7, suggesting Cd phytotoxicity risks. The DIFS-derived response times (Tc) and desorption rate constants (k-1) suggested that Se was resupplied to the soil solution faster than Cd in soils with higher pH and SOM level, but Se resupply was still restricted due to the rapid depletion of its labile pool. As the first study of Se and Cd release kinetics in soils, our results reveal dependence on soil parent materials, with low labile Se:Cd soils presenting greater Cd hazards. By elucidating Se and Cd lability and interactions in soils, our findings help to inform management strategies to balance reduced Cd risk with adequate Se availability.
Collapse
Affiliation(s)
- Chao Zhang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yi-Fan Jiang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Daniel Menezes-Blackburn
- Department of Soils, Water and Agricultural Engineering, CAMS, Sultan Qaboos University, PO Box 34, Al-khod 123, Sultanate of Oman
| | - Tao Yu
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Zhongfang Yang
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Lena Q Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Gu X, Han X, Xing P, Xu D, Wan S, Wu QL, Wu F. Diffusion kinetic processes and release risks of trace metals in plateau lacustrine sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133341. [PMID: 38150756 DOI: 10.1016/j.jhazmat.2023.133341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
The ecological risk posed by trace metals in the plateau lacustrine sediments of China has attracted worldwide attentions. A better understanding of the kinetic diffusion processes and bioavailability of these metals in plateau lakes is needed. Using the diffusive gradient in thin films (DGT) and Rhizon, concentrations of Mn, Mo, Ni, Cr, and Co in the sediments, labile fractions, and interstitial water of Lake Fuxian were comprehensively analyzed. According to the DGT-induced fluxes in sediments (DIFS) model, fully sustained and unsustained resupplies are possible ways in which metals are released from solids to the solution. Moreover, the resupply characteristics of metals varied at different depths in the sediments and at different sites in the lake. Based on the DIFS model, the effective concentrations (CE) of the trace metals were calculated and all except Cr showed good linear relationships with the DGT-labile concentrations, indicating that the CE values were valuable for predicting metal bioavailability. According to the CE values, the metal contamination released from the sediments was relatively low based on the Monte Carlo simulation. This study provides a comprehensive solution for studying the environmental behavior and potential ecological risks of toxic metals in sedimentary environment.
Collapse
Affiliation(s)
- Xiang Gu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaotong Han
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Life Sciences, Hebei University, Baoding 071002, China
| | - Peng Xing
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Di Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shiqiang Wan
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; The Fuxianhu Station of Deep Lake Research, Chinese Academy of Sciences, Chengjiang 652500, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
10
|
Huang Z, Liu X, Wen J, Fang H, Lin S, Li W, Wang J, Zeng F, Du H, Shi L. Characteristics and fractionations of sediment oxygen demand in a complex tidal river network area. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120352. [PMID: 38367503 DOI: 10.1016/j.jenvman.2024.120352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/12/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Tidal river networks are affected by the tide and influenced by complex factors related to sediment oxygen demand (SOD). In this study, we used chemical inhibition to measure the oxygen consumption of different types of SOD to explore the specific oxygen consumption mechanism of sediments. Then, we evaluated the diffusion fluxes of the sediment-water interface and factors affecting SOD using diffusive gradients in thin films. Total SOD in the tidal river network area of the Pearl River basin was ∼0.5928 g/m2/day, which was 8.47% higher than that in the non-tidal river network area but lower than that in black and odorous water reported previously. In the tidal river network area, biological SOD was 15.6% higher in summer than in winter, and the difference in total SOD was greatly influenced by human activity. We observed a significant effect of sediment on SOD in winter, whereas there were no significant correlations between sediment and SOD in summer. Different particle-size distributions lead to different organic matter contents, resulting in different biological SOD ratios between seasons. Our study found that seasonal tidal changes can affect ion exchange at the sediment water interface, leading to changes in SOD.These findings will be of great significance for the study of phenomena associated with low dissolved oxygen in tidal river networks and provide directions for future sediment pollution control.
Collapse
Affiliation(s)
- Zhiwei Huang
- South China Institute of Environmental Science, China.
| | - Xiaochen Liu
- South China Institute of Environmental Science, Jinan university, China.
| | - Jing Wen
- South China Institute of Environmental Science, China.
| | - Huaiyang Fang
- South China Institute of Environmental Science, China.
| | - Shu Lin
- South China Institute of Environmental Science, China.
| | - Weijie Li
- South China Institute of Environmental Science, China.
| | - Jie Wang
- South China Institute of Environmental Science, China.
| | - Fantang Zeng
- South China Institute of Environmental Science, China.
| | - Hongwei Du
- South China Institute of Environmental Science, China.
| | | |
Collapse
|
11
|
Zhang J, Yang L, Liu Y, Xing M, Wu Y, Bing H. Pollution and mobility of heavy metals in the soils of a typical agricultural zone in eastern China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:91. [PMID: 38367072 DOI: 10.1007/s10653-024-01887-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/24/2024] [Indexed: 02/19/2024]
Abstract
The pollution of heavy metals (HMs) in agricultural soils profoundly threatens national food safety, and the mobility and environmental behaviors of HMs are closely implicated in crop safety. Here, we assessed the pollution level and mobility of ten HMs and explored their environmental behaviors in the soils of three different land uses from a main crop production zone in eastern China. The concentrations of HMs in the soils were higher in the farmland than the woodland and wasteland, and Cd showed a relatively higher pollution and ecological risk levels compared to other metals. Cadmium was dominated by the reducible (41%) and exchangeable (23%) fractions, and the rest of HMs were mainly in the residual fraction (> 60%). The significant correlation between the exchangeable and DGT-labile Cd indicates relatively higher mobility of Cd in the soils. Soil pH, organic matters and mineral elements had significant correlation with the exchangeable and reducible fractions of most of the HMs (e.g., Cd, Co, Mn, Ni, Pb and V; p < 0.05), indicating their good predictors of the HMs mobility. However, this was not the case for the DGT-labile fraction, which suggests a marked difference in the controlling mechanisms of the mobility versus potential bioavailability of HMs in the soils. The results of this study indicate that both the chemically extracted fractions and the bioavailable fractions of HMs need be considered when effectively assessing the safety of agricultural soils.
Collapse
Affiliation(s)
- Jie Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610299, China
| | - Liyuan Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Ye Liu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610299, China
| | - Menghan Xing
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Yanhong Wu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610299, China
| | - Haijian Bing
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610299, China.
| |
Collapse
|
12
|
Liu H, Chi L, Shen J, Arandiyan H, Wang Y, Wang X. Principles, applications, and limitations of diffusive gradients in thin films induced fluxed in soils and sediments. CHEMOSPHERE 2024; 350:141061. [PMID: 38159729 DOI: 10.1016/j.chemosphere.2023.141061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
The diffusive gradients in thin films (DGT) technique serves as a passive sampling method, inducing analyte transport and concentration. Its application is widespread in assessing labile components of metals, organic matter, and nutrients across various environmental media such as water, sediments, and saturated soils. The DGT devices effectively reduce the porewater concentration through irreversible binding of solutes, consequently promoting the release of labile species from the soil/sediment solid phase. However, the precise quantification of simultaneous adsorption and desorption of labile species using DGT devices alone remains a challenge. To address this challenge, the DGT-Induced Fluxes in Soils and Sediments (DIFS) model was developed. This model simulates analyte kinetics in solid phases, solutions, and binding resins by incorporating factors such as soil properties, resupply parameters, and kinetic principles. While the DIFS model has been iteratively improved to increase its accuracy in portraying kinetic behavior in soil/sediment, researchers' incomplete comprehension of it still results in unrealistic fitting outcomes and an oversight of the profound implications posed by kinetic parameters during implementation. This review provides a comprehensive overview of the optimization and utilization of DIFS models, encompassing fundamental concepts behind DGT devices and DIFS models, the kinetic interpretation of DIFS parameters, and instances where the model has been applied to study soils and sediments. It also highlights preexisting limitations of the DIFS model and offers suggestions for more precise modeling in real-world environments.
Collapse
Affiliation(s)
- Huaji Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali, 671000, China
| | - Lina Chi
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali, 671000, China
| | - Jian Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali, 671000, China
| | - Hamidreza Arandiyan
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia; Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Yuan Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Xinze Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali, 671000, China; Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali, 67100, China.
| |
Collapse
|
13
|
Du Y, Tian Z, Zhao Y, Wang X, Ma Z, Yu C. Exploring the accumulation capacity of dominant plants based on soil heavy metals forms and assessing heavy metals contamination characteristics near gold tailings ponds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119838. [PMID: 38145590 DOI: 10.1016/j.jenvman.2023.119838] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/27/2023]
Abstract
Heavy metal contamination of soil commonly accompanies problems around gold mine tailings ponds. Fully investigating the distribution characteristics of heavy metals and the survival strategies of dominant plants in contaminated soils is crucial for effective pollution management and remediation. This study aims to investigate the contamination characteristics, sources of heavy metals (As, Cd, Pb, Hg, Cu, Zn, Cr, and Ni) in soils around gold mine tailings ponds areas (JHH and WZ) and to clarify the form distribution of heavy metals (As, Cd, Pb, Hg) in contaminated plots as well as their accumulation and translocation in native dominant plants. The results of the study showed that the concentrations of As, Pb, Cd, Cu, and Zn in soil exceeded the national limits at parts of the sampling sites in both study areas. The Nemerow pollution index showed that both study areas reached extreme high pollution levels. Spatial analysis showed that the main areas of contamination were concentrated around metallurgical plants and tailings ponds, with Cd exhibiting the most extensive area of contamination. In the JHH, As (74%), Cd (66%), Pb (77%), Zn (47%) were mainly from tailings releases, and Cu (52%) and Hg (51%) were mainly from gold ore smelting. In the WZ, As (42%), Cd (41%), Pb (73%), Cu (47%), and Zn (41%) were mainly from tailings releases. As, Cd, Pb, and Hg were mostly present in the residue state, and the proportion of water-soluble, ion-exchangeable, and carbonate-bound forms of Cd (19.93%) was significantly higher than that of other heavy metals. Artemisia L. and Amaranthus L. are the primary dominating plants, which exhibited superior accumulation of Cd compared to As, Pb, and Hg, and Artemisia L. demonstrated a robust translocation capacity for As, Pb, and Hg. Compared to the concentrations of other forms of soil heavy metals, the heavy metal content in Artemisia L correlates significantly better with the total soil heavy metal concentration. These results offer additional systematic data support and a deeper theoretical foundation to bolster pollution-control and ecological remediation efforts in mining areas.
Collapse
Affiliation(s)
- Yanbin Du
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Zhijun Tian
- Beijing Institute of Mineral Geology, Beijing, 101500, China
| | - Yunfeng Zhao
- Beijing Institute of Mineral Geology, Beijing, 101500, China
| | - Xinrong Wang
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Zizhen Ma
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Caihong Yu
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China.
| |
Collapse
|
14
|
Cai Y, Wang H, Zhang T, Zhou Y, Dong A, Huang R, Zeng Q, Yuan H. Seasonal variation regulate the endogenous phosphorus release in sediments of Shijiuhu Lake via water-level fluctuation. ENVIRONMENTAL RESEARCH 2023; 238:117247. [PMID: 37769833 DOI: 10.1016/j.envres.2023.117247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/03/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
Freshwater lakes undergo substantial alterations of the phosphorus (P) cycle in the water-sediment ecosystem due to thermal change. The impact process of seasonal fluctuation on P cycling in sediments has been scarcely investigated. P forms in sediments from a freshwater lake in China were analyzed using sequential extraction technique. The vertical distribution of soluble reactive P (SRP), Fe2+, and S2- in the interstitial water was measured using diffusion gradient technique (DGT). Fick's Law and DIFS model were used to obtain the diffusion fluxes of SRP and the kinetic parameters in the water-sediment system. The results showed that total P (TP) concentrations in the solid sediments varied from 207.5, 266.6 and 130.3 mg/kg to 614.7, 1053.1, and 687.6 mg/kg in winter, spring, and summer, respectively. The concentrations of individual P forms in spring were higher than those in other seasons, with Fe-bound P (Fe-P) concentration being the highest across all seasons. Notably, significant variations of SRP concentrations were found in the interstitial water between sedimentary depths of approximately 2 cm and 6 cm, particularly in the summer. Furthermore, higher diffusion fluxes of SRP through the interface were found in summer. A stable anaerobic environment failed to develop in spring with high water level, preventing the desorption of solid Fe-P and diffusion of Fe2+ into the water due to the afflux and deposition of P-containing particulate into deeper sediment layers along with organic material. Under extreme high-temperature in summer, decreased rainfall and rising temperatures boosted the activity of aquatic organisms in the water, thereby reducing P fixation by sediments and leading to P release. This process increased the risk of P excess and potential eutrophication in the water. Generally, clarifying the resupplying processes of endogenous P in sediment systems experiencing seasonal variations is critical for eutrophication management of lakes.
Collapse
Affiliation(s)
- Yiwei Cai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Haixiang Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Tianxin Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yanwen Zhou
- Nanjing Research Institute of Ecological and Environmental Sciences, Nanjing, 210013, China
| | - Azhong Dong
- Jiangsu Institute of Water Resources and Hydropower Research, Nanjing, 210017, China
| | - Rui Huang
- Jiangsu Institute of Water Resources and Hydropower Research, Nanjing, 210017, China
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Hezhong Yuan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| |
Collapse
|
15
|
Qiu L, Lok KS, Lu Q, Zhong H, Guo X, Shim H. Zinc and copper supplements enhance trichloroethylene removal by Pseudomonas plecoglossicida in water. ENVIRONMENTAL TECHNOLOGY 2023; 44:3698-3709. [PMID: 35451932 DOI: 10.1080/09593330.2022.2069518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The effects of two microelements, zinc and copper, on the aerobic co-metabolic removal of trichloroethylene (10 mg/L) by the isolate Pseudomonas plecoglossicida were investigated. The strain was previously isolated from a petroleum-contaminated site using toluene (150 mg/L) as substrate. Different concentrations (1, 10 and 100 mg/L) of microelements provided with SO42- and Cl- were tested. The results showed the supplement of Zn2+ and Cu2+ at the low concentration (1 mg/L) significantly enhanced cell growth. The removal efficiencies for toluene and trichloroethylene were also enhanced at the low concentration (1 mg/L) of Zn2+ and Cu2+. Compared to the control without zinc supplement, higher concentrations of zinc (10 and 100 mg/L) enhanced the removal efficiencies for both toluene and trichloroethylene in the first three days but showed some inhibitory effect afterward. However, the higher concentrations of Cu2+ (10 and 100 mg/L) always showed inhibitory to the toluene removal while showing inhibitory to the TCE removal after three days. For both Zn2+ and Cu2+, the anions SO42- and Cl- did not show significant difference in their effects on the toluene removal. A possible mechanism for Zn2+ and Cu2+ to enhance the removal of toluene and trichloroethylene would be their involvement in toluene oxygenase-based transformation processes. In addition, high concentrations of Zn2+ and Cu2+ ions could be removed from the liquid by the cells accordingly. The results imply a potential of supplementing low concentrations of zinc and copper to enhance bioremediation of the sites co-contaminated with toluene and trichloroethylene.
Collapse
Affiliation(s)
- Lan Qiu
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, People's Republic of China
| | - Keng Seng Lok
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, People's Republic of China
| | - Qihong Lu
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, People's Republic of China
| | - Hua Zhong
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, People's Republic of China
| | - Xiaoyuan Guo
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, People's Republic of China
| | - Hojae Shim
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, People's Republic of China
| |
Collapse
|
16
|
Eon P, Robert T, Goutouly JP, Aurelle V, Cornu JY. Cover crop response to increased concentrations of copper in vineyard soils: Implications for copper phytoextraction. CHEMOSPHERE 2023; 329:138604. [PMID: 37028730 DOI: 10.1016/j.chemosphere.2023.138604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
The use of cover crops (CCs) in viticulture is threatened by the contamination of vineyard soils by copper (Cu). This study investigated the response of CCs to increased concentrations of Cu in soil as a way to assess their sensitivity to Cu and their Cu phytoextraction ability. Our first experiment used microplots to compare the effect of increasing soil Cu content from 90 to 204 mg kg-1 on the growth, Cu accumulation level, and elemental profile of six CC species (Brassicaceae, Fabaceae and Poaceae) commonly sown in vineyard inter-row. The second experiment quantified the amount of Cu exported by a mixture of CCs in vineyards with contrasted soil characteristics. Experiment 1 showed that increasing the soil Cu content from 90 to 204 mg kg-1 was detrimental to the growth of Brassicaceae and faba bean. The elemental composition of plant tissues was specific to each CC and almost no change in composition resulted from the increase in soil Cu content. Crimson clover was the most promising CC for Cu phytoextraction as it produced the most aboveground biomass, and, along with faba bean, accumulated the highest concentration of Cu in its shoots. Experiment 2 showed that the amount of Cu extracted by CCs depended on the availability of Cu in the topsoil and CC growth in the vineyard, and ranged from 25 to 166 g per hectare. Taken together, these results emphasize the fact that the use of CCs in vineyards may be jeopardised by the contamination of soils by Cu, and that the amount of Cu exported by CCs is not sufficiently high to offset the amount of Cu supplied by Cu-based fungicides. Recommendations are provided for maximizing the environmental benefits provided by CCs in Cu-contaminated vineyard soils.
Collapse
Affiliation(s)
- Pierre Eon
- ISPA, Bordeaux Sciences Agro, INRAE, 33140, Villenave d'Ornon, France.
| | - Thierry Robert
- ISPA, Bordeaux Sciences Agro, INRAE, 33140, Villenave d'Ornon, France
| | - Jean-Pascal Goutouly
- UEVB, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France; EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France
| | - Violette Aurelle
- Chambre d'Agriculture de Gironde, Vinopôle Bordeaux Aquitaine, 33295, Blanquefort Cedex, France
| | - Jean-Yves Cornu
- ISPA, Bordeaux Sciences Agro, INRAE, 33140, Villenave d'Ornon, France
| |
Collapse
|
17
|
Liang Y, Wang R, Sheng GD, Pan L, Lian E, Su N, Tang X, Yang S, Yin D. Geochemical controls on the distribution and bioavailability of heavy metals in sediments from Yangtze River to the East China Sea: Assessed by sequential extraction versus diffusive gradients in thin-films (DGT) technique. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131253. [PMID: 36966626 DOI: 10.1016/j.jhazmat.2023.131253] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/19/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
This study conducted a comprehensive investigation on the distribution and bioavailability of heavy metals (Cr, Co, Ni, Cu, Zn, Cd and Pb) in sediments along two typical transects from Yangtze River to the East China Sea continental shelf that spanning large physicochemical gradients. Heavy metals were mainly associated with the fine-grained sediments (enriched with organic matter), exhibiting decreasing trends from nearshore to offshore sites. The turbidity maximum zone showed the highest metal concentrations, which evaluated as polluted for some tested metals (especially Cd) using the geo-accumulation index. Based on the modified BCR procedure, the non-residual fractions of Cu, Zn and Pb were higher within the turbidity maximum zone, and significantly negatively correlated with bottom water salinity. The DGT-labile metals all positively correlated with the acid-soluble metal fraction (especially for Cd, Zn and Cr), and negatively correlated with salinity (except Co). Therefore, our results suggest salinity as the key factor controlling metal bioavailability, which could further modulate metal diffusive fluxes at the sediment-water interface. Considering that DGT probes could readily capture the bioavailable metal fractions, and reflect the impacts of salinity, we suggest DGT technique can be used as a robust predictor for metal bioavailability and mobility in estuary sediments.
Collapse
Affiliation(s)
- Yuhao Liang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Rui Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - G Daniel Sheng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Linhong Pan
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ergang Lian
- State Key Laboratory of Marine Geology, School of Ocean and Earth Science, Tongji University, Shanghai 200092, PR China
| | - Ni Su
- State Key Laboratory of Marine Geology, School of Ocean and Earth Science, Tongji University, Shanghai 200092, PR China
| | - Xiliang Tang
- China Three Gorges Corporation, Wuhan 430014, PR China
| | - Shouye Yang
- State Key Laboratory of Marine Geology, School of Ocean and Earth Science, Tongji University, Shanghai 200092, PR China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
18
|
Medas D, Meneghini C, Pusceddu C, Carlomagno I, Aquilanti G, Dore E, Murgia V, Podda F, Rimondi V, Vacca S, Wanty RB, De Giudici G. Plant-minerals-water interactions: An investigation on Juncus acutus exposed to different Zn sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161931. [PMID: 36736402 DOI: 10.1016/j.scitotenv.2023.161931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Juncus acutus has been proposed as a suitable species for the design of phytoremediation plans. This research aimed to investigate the role played by rhizosphere minerals and water composition on Zn transformations and dynamics in the rhizosphere-plant system of J. acutus exposed to different Zn sources. Rhizobox experiments were conducted using three different growing substrates (Zn from 137 to 20,400 mg/kg), and two irrigation lines (Zn 0.05 and 180 mg/l). The plant growth was affected by the substrate type, whereas the Zn content in the water did not significantly influence the plant height for a specific substrate. J. acutus accumulated Zn mainly in roots (up to 10,000 mg/kg dw); the metal supply by the water led to variable increases in the total Zn concentration in the vegetal organs, and different Zn distributions both controlled by the rhizosphere mineral composition. Different Zn complexation mechanisms were observed, mainly driven by cysteine and citrate compounds, whose amount increased linearly with Zn content in water, but differently for each of the investigated systems. Our study contributes to gain a more complete picture of the Zn pathway in the rhizosphere-plant system of J. acutus. We demonstrated that this vegetal species is not only capable of developing site-specific tolerance mechanisms, but it is also capable to differently modulate Zn transformation when Zn is additionally supplied by watering. These findings are necessary for predicting the fate of Zn during phytoremediation of sites characterized by specific mineralogical properties and subject to water chemical variations.
Collapse
Affiliation(s)
- Daniela Medas
- Department of Chemical and Geological Science, University of Cagliari, Cagliari, Italy.
| | - Carlo Meneghini
- Department of Sciences, University of Roma Tre, Rome, Italy.
| | - Claudia Pusceddu
- Department of Chemical and Geological Science, University of Cagliari, Cagliari, Italy
| | | | | | - Elisabetta Dore
- Department of Chemical and Geological Science, University of Cagliari, Cagliari, Italy.
| | | | - Francesca Podda
- Department of Chemical and Geological Science, University of Cagliari, Cagliari, Italy.
| | - Valentina Rimondi
- Department of Earth Sciences, University of Florence, Florence, Italy; CNR-Institute of Geosciences and Earth Resources, Florence, Italy.
| | - Salvatore Vacca
- Department of Chemical and Geological Science, University of Cagliari, Cagliari, Italy.
| | - Richard B Wanty
- Colorado School of Mines, Department of Geology and Geological Engineering, Golden, CO 80401, USA.
| | - Giovanni De Giudici
- Department of Chemical and Geological Science, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
19
|
Liu ZY, Yang R, Xiang XY, Niu LL, Yin DX. Enhancement of phytoextraction efficiency coupling Pteris vittata with low-dose biochar in arsenic-contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1810-1818. [PMID: 37066697 DOI: 10.1080/15226514.2023.2199876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Phytoremediation of arsenic (As) by Pteris vittata (P. vittata) is a cost-effective and environmentally friendly method for restoring As-contaminated sites. However, the phytoextraction efficiency is low in some cases, such as clay soil, thus biochar was applied to enhance the efficiency of As extraction. The paper investigated the effect of biochar on soil characteristic, As mobility, and As uptake in P. vittata with a 90-day greenhouse experiment. Biochar derived from rice straw was added at rates of 0.5, 1.5, and 4% (w/w). The results showed that, under biochar amendment, soil pH raised from 5.24 to 6.03 and 4.91 to 5.85, soil dissolved organic carbon (DOC) increased 11.1-46.1% and 2.8-11.2%, respectively, in rhizosphere and bulk soils. Biochar also increased soil catalase (CAT) activity significantly, especially for the rhizosphere soil. Besides, biochar increased the labile As in the soils and transfer coefficient from roots to aboveground, thereby enhancing As accumulation by P. vittata tissues. The accumulation of As in fronds of P. vittata was up to 350 mg kg-1 in 1.5% biochar, which was more than twice the control and far beyond other biochar treatments. The results indicate that biochar addition is favorable to improve phytoremediation of P. vittata in As-contaminated soil and 1.5% (w/w) biochar may be a reasonable application ratio, thus providing an effective solution to enhance the efficiency of As phytoextraction.
Collapse
Affiliation(s)
- Zhou-Yu Liu
- School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Rui Yang
- School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Xue-Ying Xiang
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Li-Lu Niu
- School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Dai-Xia Yin
- School of Resources and Environment, Anhui Agricultural University, Hefei, China
| |
Collapse
|
20
|
Ding Y, Jiang X, Chen Z, Ma S, Xiang Z, Ruan X, Li Y. Insights into As accumulation in soil-groundwater-wheat-hair system of suburban farmland: Distribution, transfer and potential health risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160752. [PMID: 36513228 DOI: 10.1016/j.scitotenv.2022.160752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/08/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Health risks caused by arsenic (As) contamination in soils and its migration in environmental media have attracted much attention. In this study, suburban farmland of KF city in the ecotone of the Yellow River and Huaihe River Basin was taken as the research area. A series of samples including topsoils (246), profile soils (280), matched wheat grains (22 groups), groundwater (26) and human hair (355) were collected. As distribution and transfer in soil-groundwater-wheat-hair (SGWH) system in typical sites were explored, and comprehensive health risk of As in SGWH system was assessed based on US EPA model and local exposure parameters. The results showed that spatial distribution of total As presented a significant high value area, and higher As contents (in the range of 0.45-29.86 mg kg-1) and bioavailability was mainly in topsoils, which indicated that anthropogenic sources have led to As enrichment in studied area. Also, it was found that the As contents in 95 % of wheat grain samples were higher than that in the control soils, and 9 % groundwater samples were above national Class I standards. Especially, average As content in hair in typical sites was obviously influenced by that in soil, wheat and groundwater. Moreover, As migration curve along soil → wheat (groundwater) → hair appeared an irregular 'V' shape, and transfer coefficients of Tf water/soil (10-5), Tf wheat/soil (10-3), Tf hair/soil (10-2), Tf hair/wheat (101) and Tf hair/water (104) presented an obvious increasing trend of magnitude, implying that human body has a higher As enrichment risk. Furthermore, comprehensive health risks for children and adults in typical sites were significant, while wheat is the main risk medium. In general, arsenic accumulation in human hair is good consistent with EPA health risk model, and their combination can better evaluate environmental exposure risk of As.
Collapse
Affiliation(s)
- Yongfeng Ding
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China.
| | - Xingyuan Jiang
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China.
| | - Zhifan Chen
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China; Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Kaifeng 475004, China.
| | - Shiyuan Ma
- Jiyuan Ecological Environment Bureau, Jiyuan 450007, China
| | - Zhetao Xiang
- Zhengzhou Ecological Environment Bureau, Zhengzhou 450007, China
| | - Xinling Ruan
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Yipeng Li
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| |
Collapse
|
21
|
Wu S, Li H, Zhang D, Zhang H. Simultaneous determination of heavy metal concentrations and toxicities by diffusive gradient in thin films containing Acinetobacter whole-cell bioreporters (Bio-DGT). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121050. [PMID: 36632971 DOI: 10.1016/j.envpol.2023.121050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Heavy metal contaminations may cause severe toxic impacts to ecological systems and human health. Measurements of metals' bioavailable concentrations and toxicities simultaneously and in-situ in environments can advance the understanding of their hazardous effects. The diffusive gradients in thin-films (DGT) is an in-situ technique can measure metal speciation and labile concentrations, but cannot yet provide the direct toxicity information. The whole-cell bioreporter Acinetobacter baylyi ADPWH_recA was successfully incorporated into the DGT device to develop a novel technique, Bio-DGT, for assessing the toxicity of metals at the same time of measuring their labile concentrations. The bioassay used in Bio-DGT can sense the mixture toxicity from multiple contaminants and the DGT can assist in identifying which toxicants may be causing the toxicity. Cadmium was used as the model metal to test the performance of Bio-DGT in waters and soils. The masses of Cd accumulated in Bio-DGT increased linearly and theoretically with time for 7 days deployment, indicating little influences from bioreporter cells on DGT performance. A positive relationship between bioluminescent signals towards Cd demonstrated the sensitive and active bioreporters' response. The sensitive of Bio-DGT, indicated by Cd concentrations causing the response, is 0.01 mg/L. The stable response from Bio-DGT under various conditions (pH 4-8, ionic strengths 0.01-0.5 M) and 30 days storage time suggest the applicability of the technique in real environments. The deployment of Bio-DGT in contaminated soils demonstrated that Cd toxicity was regulated by labile concentration, showing its potential application for the risk assessment of heavy metal contaminations, and its further feasibility in using Bio-DGT for measuring integration of multiple contaminants' effects and simultaneously determine the main toxicity driver(s).
Collapse
Affiliation(s)
- Shuang Wu
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Hanbing Li
- Department of Environmental Science, Faculty of Environment and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
| |
Collapse
|
22
|
Wang Z, Er Q, Zhang C, Liu J, Liang X, Zhao Y. A new DGT technique based on nano-sized Mg 2Al layered double hydroxides with DTPA for sampling of eight anionic and cationic metals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37679-37690. [PMID: 36572777 DOI: 10.1007/s11356-022-24905-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/17/2022] [Indexed: 06/18/2023]
Abstract
In this work, a new resin gel incorporated with layered double hydroxide nanoparticles modified with diethylenetriaminepentaacetic acid is developed for application in diffusive gradients in thin-film devices (abbreviated as LDHs DGT) to monitor eight anions and cations (such as Fe, Mn, Co, Ni, Cu, Cd, Pb, and As) in natural waters and soils. The accumulated anions and cations were quantitatively recovered by one-step elution using 0.5 mol·L-1 HNO3 with an optimized elution time of 30 min. The performance of the LDHs DGT was independent of solution pH (5-8) and ionic strengths (5-100 mmol·L-1). The capacities of the LDHs DGT for Mn(II), Fe(II), Co(II), Ni(II), Cu(II), As(V), Cd(II), and Pb(II) individually are determined to be 202.9, 363.6, 246.9, 88.8, 99.5, 75.3, 159.8, and 671.7 μg·cm-2. During the field deployments in a nature river, LDHs DGT measured concentrations of cations and anions were almost like those measured by the traditional sampling method (except Fe(II), Cd(II), and Co(II)). In addition, bioavailable Cd measured by LDHs DGT correlated well with Cd in rice grains (R2 = 0.55), indicating that LDHs DGT is a reliable tool for assessing the risk of Cd.
Collapse
Affiliation(s)
- Zhen Wang
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Tianjin, 300191, China
- Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Tianjin, 300191, China
| | - Qian Er
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Tianjin, 300191, China
- Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Tianjin, 300191, China
| | - Chuangchuang Zhang
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Tianjin, 300191, China
- Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Tianjin, 300191, China
| | - Jiang Liu
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Tianjin, 300191, China
- Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Tianjin, 300191, China
| | - Xuefeng Liang
- Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Tianjin, 300191, China
| | - Yujie Zhao
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Tianjin, 300191, China.
- Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Tianjin, 300191, China.
| |
Collapse
|
23
|
Chen R, Mu X, Liu J, Cheng N, Shi R, Hu M, Chen Z, Wang H. Predictive and estimation model of Cd, Ni, and Zn bioaccumulations in maize based on diffusive gradients in thin films. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160523. [PMID: 36446665 DOI: 10.1016/j.scitotenv.2022.160523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
Consumption of maize contaminated with heavy metals such as cadmium, nickel, and zinc threaten human health. For situ measuring the bioavailability of heavy metals, the diffusive gradients in thin films (DGT) is superior to other traditional methods. It is also important to find a method for predicting heavy metal enrichment in maize based on the DGT method. In this study, field surveys were conducted in the main maize producing areas of Tianjin, China. Heavy metal concentrations in maize grains were predicted by coupling DGT with traditional extraction methods. The results show that coupling DGT with soil solution can significantly improve prediction accuracy (Cd-R2 = 0.908, Ni-R2 = 0.903, and Zn-R2 = 0.904). This indicated that DGT and soil solution were feasible predictors of heavy metal concentration in maize. The DGT induced fluxes in soil/sediment (DIFS) model was used to simulate the uptake process of heavy metals by DGT, and better reveal the desorption processes of heavy metals in soils. DIFS-based desorption processes were employed to characterize the resupply ability of heavy metals in soils. The coupling of DGT and DIFS parameters provided the best prediction accuracy in this study (Cd-R2 = 0.920, Ni-R2 = 0.928, and Zn-R2 = 0.908). Predictions are slightly weaker for Zn than for Cd and Ni (Cd-P < 0.01, Ni-P < 0.01, and Zn-P < 0.05). The reason is that the average resupply type of Cd and Ni in soil is partially sustained while Zn is resupplied via diffusion only. The desorption rate k-1 can excellently improve the prediction accuracy of DGT, which avoids the disadvantage that soil solution does not consider desorption. The coupling of DGT and DIFS parameters provides an accurate and reliable method for predicting heavy metal enrichment in maize.
Collapse
Affiliation(s)
- Rui Chen
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China; Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, Beijing, China.
| | - Xiulin Mu
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China; Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, Beijing, China
| | - Jiaxing Liu
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China; Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, Beijing, China
| | - Nuo Cheng
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Rongguang Shi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Miaomiao Hu
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China; Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, Beijing, China
| | - Zhuoran Chen
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China; Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, Beijing, China
| | - Hao Wang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China; Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, Beijing, China
| |
Collapse
|
24
|
Lahive E, Matzke M, Svendsen C, Spurgeon DJ, Pouran H, Zhang H, Lawlor A, Glória Pereira M, Lofts S. Soil properties influence the toxicity and availability of Zn from ZnO nanoparticles to earthworms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120907. [PMID: 36586557 DOI: 10.1016/j.envpol.2022.120907] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
To develop models that support site-specific risk assessment for nanoparticles (NPs), a better understanding of how NP transformation processes, bioavailability and toxicity are influenced by soil properties is needed. In this study, the influence of differing soil properties on the bioavailability and toxicity of zinc oxide (ZnO) NPs and ionic Zn to the earthworm Eisenia fetida was investigated. Earthworms were exposed to ZnO_NPs and ionic Zn, between 100 and 4400 mg Zn/kg, in four different natural soils (organic matter content: 1.8-16.7%, soil pH: 5.4-8.3, representing sandy loam to calcareous soils). Survival and reproduction were assessed after 28 and 56 days, respectively. Zn concentrations in soil pore waters were measured while labile concentrations of Zn were measured using an in-situ dynamic speciation technique (diffusive gradient in thin films, DGT). Earthworm Zn tissue concentrations were also measured. Soil properties influenced earthworm reproduction between soil controls, with highest reproductive output in soils with pH values of 6-7. Toxicity was also influenced by soil properties, with EC50s based on total Zn in soil ranging from 694 to >2200 mg Zn/kg for ZnO_NP and 277-734 mg Zn/kg for ionic Zn. Soil pore water and DGT measurements showed good agreement in the relative amount of Zn extracted across the four soils. Earthworms exposed to ZnO_NPs survived higher Zn concentrations in the soils and had higher tissue concentrations compared with ionic Zn exposures, particularly in the high organic content calcareous soil. These higher tissue concentrations in ZnO_NP exposed earthworm could have consequences for the persistence and trophic mobility of Zn in terrestrial systems and need to be further investigated to elucidate if there any longer-term risks associated with sustained input of ZnO_NP to soil.
Collapse
Affiliation(s)
- E Lahive
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, OX10 8BB, United Kingdom.
| | - M Matzke
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, OX10 8BB, United Kingdom
| | - C Svendsen
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, OX10 8BB, United Kingdom
| | - D J Spurgeon
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, OX10 8BB, United Kingdom
| | - H Pouran
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, United Kingdom
| | - H Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - A Lawlor
- UK Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP, United Kingdom
| | - M Glória Pereira
- UK Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP, United Kingdom
| | - S Lofts
- UK Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP, United Kingdom
| |
Collapse
|
25
|
Gao L, Sun K, Xu D, Zhang K, Gao B. Equilibrium partitioning behaviors and remobilization of trace metals in the sediment profiles in the tributaries of the Three Gorges Reservoir, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157882. [PMID: 35944632 DOI: 10.1016/j.scitotenv.2022.157882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Geochemical behaviors of trace metals in the sediment profiles are crucial for predicting the associated environmental risks in aquatic ecosystems. However, the comprehensive transport of trace metals under both equilibrium and dynamic conditions is still unclear under the changing hydrological regime. Here, the equilibrium partitioning behaviors and remobilization of five trace metals (Ni, Cu, Zn, As, and Pb) in sedimentary profiles within the tributaries of the Three Gorges Reservoir were explored by the partitioning coefficient (Kd), diffusive gradients in thin films (DGT), and DGT induced flux in sediments (DIFS) model. According to the Kd values, As posed the highest migration ability among the trace metals in the sediment profiles under equilibrium circumstances. Similarly, the dynamic processes of trace metals simulated by the DIFS model also suggested that As displayed the highest desorption rate despite having the lowest labile pool size. Moreover, all trace metals were classified as the "partially sustained" case, while the supply abilities of As and other trace metals were limited by the diffusion and the desorption kinetics, respectively. In addition, DGT-labile trace metals showed a diffusion trend from the sediment to the water column (except for Zn) at the sediment-water interface, indicating potential risks to water quality. Specifically, the equilibrium partitioning behaviors revealed the potential labile pool of trace metals in the solid phase, and the dynamic resupply process between the solid phase and porewater remained undetermined. In comparison, although DGT simulated the kinetic process of trace metals in the sediments, the labile pool of the trace metals could not be obtained. This study provided a holistic insight into the complementary trace metal behaviors under both equilibrium and dynamic conditions in the sediment and was beneficial to the water quality protection and internal pollution remediation in the aquatic environment.
Collapse
Affiliation(s)
- Li Gao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Ke Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Dongyu Xu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Keli Zhang
- Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Bo Gao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China.
| |
Collapse
|
26
|
Li Y, Yan L, Rong Q, Luo J, Zhang H, Jones KC. Assessing the Impact of Atrazine on the Availability of Arsenic in Soils Using DGT Technique. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:616-622. [PMID: 35218373 DOI: 10.1007/s00128-022-03482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Arsenic (As) has been observed to co-exist with atrazine (ATR) in soils worldwide. ATR, as an organic chemical, may affect the availability of As and further influence its uptake by organisms. Here we used a novel passive sampling technique, DGT (diffusive gradients in thin-films), to compare with other two conventional sampling approaches (soil solution extraction and 'Olsen As' measurement) to investigate the influence of ATR addition (normal recommended level and contaminated level) on the availability of As in soils, to further interpret the potential risk of As in soil environment. The effect of adding ATR on the behaviour of As in soils was limited. When the concentration of ATR was much higher, the availability of As in soils was supressed, the labile pool size was also affected, but the R value did not change much. The properties of the soils also played an important role by affecting the states of the compounds.
Collapse
Affiliation(s)
- Yanying Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China.
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
| | - Liying Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Qiuyu Rong
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Kevin C Jones
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| |
Collapse
|
27
|
Gao B, Gao L, Xu D. New insight for the diffusion-resupply kinetics of Cr(VI) in contaminated soil using DGT/DIFS. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113946. [PMID: 35999772 DOI: 10.1016/j.ecoenv.2022.113946] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Chromium (Cr) is a widespread pollutant with high toxicity and mobility. However, the diffusion-resupply kinetics of Cr(VI) between the solid phase and solution in the soils remain unclear. Here, we quantified the contributions of the soil solution and solid phase to the diffusion-resupply process of Cr(VI) in the contaminated soils using the diffusive gradients in thin-films (DGT) and DGT-induced fluxes in soils model. Based on the solution extraction result, Cr(VI) was the main available Cr species in the contaminated soils. Comparing the two diffusion-resupply stages of the kinetic process, the potential hazards due to the resupply from the solid phase can reach 10.71-50.66 %, although the soil solution accounted for the largest proportion of the effective concentration of Cr(VI) (49.34-89.29 %), which was ignored in the traditional equilibrium method. The kinetic parameters can be used to interpret the dynamic process. The resupply ability of the solid phase was closely related to the response time (Tc). The longer Tc was consistent with the low desorption constant, indicating a kinetic limitation. The magnitude of the resupply from the solid phase was related to labile pool size of Cr(VI) and soil organic carbon content. This study established a new quantification method for assessing diffusion-resupply kinetics of Cr(VI) in the soil, indicating the underestimation of Cr(VI) risk based on the use of traditional equilibrium methods. Our data provided a scientific basis for ecological risk assessment, pollution prevention, surface- and groundwater control, and environmental governance in areas with Cr contaminated soil.
Collapse
Affiliation(s)
- Bo Gao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China.
| | - Li Gao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Dongyu Xu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| |
Collapse
|
28
|
Ji X, Challis JK, Cantin J, Cardenas Perez AS, Gong Y, Giesy JP, Brinkmann M. Desorption kinetics of antipsychotic drugs from sandy sediments by diffusive gradients in thin-films technique. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155104. [PMID: 35398429 DOI: 10.1016/j.scitotenv.2022.155104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/29/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Dynamic processes of organic contaminants in sediments can have important toxicological implications in aquatic systems. The current study used diffusive gradients in thin-films (DGT) devices in sandy sediments spiked with nine antipsychotics and in field sandy sediments. Samplers were deployed for 1 to 30 days to determine the flux of these compounds to DGT devices and the exchange rates between the porewater and sediment solid phase. The results showed a continuous removal of antipsychotics to a binding gel and induced a mobile flux from the DGT device to the adjacent sediment solution. A dynamic model, DGT-induced fluxes in soils and sediments, was used to derive rate constants of resupply of antipsychotics from solid phase to aqueous phase (response time, Tc) and distribution coefficients for labile antipsychotics. The largest labile pool was found for lamotrigine and carbamazepine in spiked sediments. Carbamazepine, clozapine, citalopram, and lamotrigine were resupplied rapidly by sediments with Tc (25-30 min). Tc values of bupropion and amitriptyline were the longest (≈5 h), which exhibited slow desorption rates in sediments. In field sediments, high resupply was found for carbamazepine and lamotrigine, which did not show higher labile pool. The Tc values were obviously higher in the filed sediments (52-171 h). Although the adsorption process is dominant for most studied antipsychotics in both spiked sediments and field sediments, the kinetic resupply of antipsychotic compounds may not be accurately estimated by laboratory-controlled incubation experiments. More studies are needed to explore the mechanisms of desorption kinetics by using in situ DGT technique in the field.
Collapse
Affiliation(s)
- Xiaowen Ji
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada
| | | | - Jenna Cantin
- Toxicology Centre, University of Saskatchewan, Saskatoon, Canada
| | - Ana S Cardenas Perez
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada
| | - Yufeng Gong
- Toxicology Centre, University of Saskatchewan, Saskatoon, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, USA
| | - Markus Brinkmann
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, Canada; Centre for Hydrology, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
29
|
Liu W, Lu G, Wang WX. In situ high-resolution two-dimensional profiles of redox sensitive metal mobility in sediment-water interface and porewater from estuarine sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153034. [PMID: 35065125 DOI: 10.1016/j.scitotenv.2022.153034] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/07/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Metals in contaminated sediments may present high environmental risks and ecological threats to benthic organisms. Redox sensitive elements with different oxidation states show variations in solubility as a function of redox status of the sediment water environment. The novel high-resolution ZrO-Chelex-AgI diffusive gradients in thin film (HR-ZCA DGT) technique provided sensitive in situ mapping of metals in the estuarine sediments. The present study investigated the sub-millimeter two-dimensional distributions of DGT-labile S(-II), P(V), and six redox sensitive metals (Fe, Mn, V, Cu, Ni, and Zn) across sediment-water interface (SWI) severely influenced by anthropogenic activity. We for the first time used the V-turning value (the V/Fe ratios at ~0.03) to accurately identify the actual SWI. The diffusion boundary layer (DBL) thickness of Ni, Cu and Zn was consistent with those identified by the dissolved oxygen microelectrode method, and was 3-6 mm above the SWI. No significant release of dissolved Fe and P from sediments into the overlying water was found by diffusion process. The estimated fluxes (Fdif) of Ni, Cu, and Zn at DBL were 4.0-176, -1.1-235, and 5.0-108 μg m-2 d-1, respectively, and were significantly higher in sediments near the industrial effluent dumping sites than those in sediments impacted by domestic wastewater releases. Metal diffusion flux was mainly controlled by the particulate matter on the surface sediment and organic degradation. Traditional diffusion flux may have underestimated the flux of metals from the surface sediments. The discharge of hypoxic tributary was an important source of metal pollution in the contaminated estuarine sediments.
Collapse
Affiliation(s)
- Wei Liu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Research Center for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 51807, China
| | - Guangyuan Lu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Research Center for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 51807, China
| | - Wen-Xiong Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Research Center for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 51807, China; School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
30
|
Qin C, Xu X, Peck E. Metal Removal by a Free Surface Constructed Wetland and Prediction of Metal Bioavailability and Toxicity with Diffusive Gradients in Thin Films (DGT) and Biotic Ligand Model (BLM). ENVIRONMENTAL MANAGEMENT 2022; 69:994-1004. [PMID: 34811569 DOI: 10.1007/s00267-021-01567-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
The H-02 constructed wetland is a free water surface wetland to remove copper (Cu) and zinc (Zn) from the industrial wastewater. In this study, we evaluated the performance of the wetland from 2018 to 2019 and coupled the diffusive gradients in thin films (DGTs) and biotic ligand model (BLM) to explore metal speciation and bioavailability in wetland waters. Surface water samples were collected and piston DGTs were deployed in different sites of the wetland. The H-02 wetland functioned well during the sampling period with high removal efficiencies (Cu: 73.8 ± 1.2% and Zn: 75.2 ± 16.0%). In our study, with the assumption that the combination of BLM predicted inorganic metals species, BLM Cu(II) and BLM Zn(II), were the bioavailable and toxic species, DGT-Cu did not correlate to BLM Cu(II) (P = 0.47), but DGT-Zn positively correlated to BLM Zn(II) (R2 = 0.35, P < 0.001). Compared to the modeling results of BLM, DGT-indicated labile and/or bioavailable Cu included not only free Cu ions and inorganic Cu complexes but also a high percentage of Cu-labile organic matter complexes. DGT-indicated Zn included free Zn ion, inorganic Zn, and only a low percentage of Zn-labile organic matter complexes. Our findings illustrated the appropriate use of passive sampling techniques and geological modeling when biomonitoring could be substituted. The close monitoring of metal concentrations, speciation, and bioavailability helps us understand metal biogeochemistry and metal removal processes and ensure the long-term sustainability of the constructed wetland.
Collapse
Affiliation(s)
- Chongyang Qin
- Savannah River Ecology Laboratory, University of Georgia. PO Drawer E, Aiken, SC, 29802, USA.
| | - Xiaoyu Xu
- Savannah River Ecology Laboratory, University of Georgia. PO Drawer E, Aiken, SC, 29802, USA
| | - Erin Peck
- Savannah River Ecology Laboratory, University of Georgia. PO Drawer E, Aiken, SC, 29802, USA
| |
Collapse
|
31
|
Yu H, Ma T, Du Y, Shen S, Han Z. Distribution, bioavailability, and human health risk assessment of arsenic in groundwater-soil-rice system in the Jianghan Plain, Central China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16193-16202. [PMID: 34643868 DOI: 10.1007/s11356-021-16497-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Many studies have reported high arsenic concentrations in the groundwater and soil of the Jianghan Plain (JHP), an important rice production base in China. However, no comprehensive study on the occurrence and risk of As in groundwater-soil-rice systems in this region has been conducted. In this study, As concentrations in groundwater, soil, rice straw, and rice grain samples were analyzed. Arsenic concentrations were found to range from BDL to 42.88 μg/L (median 0.34 μg/L) in phreatic water, BDL to 41.77 μg/L (median 8.64 μg/L) in soil pore water, 10.20 to 21.90 mg/kg (mean 16.52 mg/kg) in soil, 0.204 to 2.860 mg/kg (mean 0.847 mg/kg) in rice straw, and 0.131 to 0.951 mg/kg (mean 0.449 mg/kg) in rice grain. Arsenic uptake by rice from soils was evaluated according to bioavailable As defined by chemical extraction and diffusive gradients in thin films. The results indicated that owing to the low content of highly mobile As fractions, the less mobile As fraction (mainly bound with amorphous Fe/Al (hydr)oxides) also contributed to bioavailable As, suggesting that amorphous Fe/Al bound As should be considered in analyzing bioavailable As. In terms of the geoaccumulation index and the Chinese paddy soil standard (GB15618-2018) limit (25 mg/kg), As pollution in water and soils in the study area is at a low level and can be considered relatively safe. However, the target hazard quotients and cancer risk assessment indicated that As pollution is at a dangerous level with potential human health risk. According to the bioconcentration factor, the bioavailability of soil is higher in JHP compared with other rice-growing areas owing to the unique hydrogeological conditions and irrigation using groundwater with high As content. Rice planting areas in JHP should be set as far away from large rivers as possible, and groundwater with high As concentrations must be pre-treated prior to irrigation.
Collapse
Affiliation(s)
- Haotian Yu
- School of Environmental Studies, China University of Geosciences, Lumo Road 388, Wuhan, 430074, People's Republic of China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Teng Ma
- School of Environmental Studies, China University of Geosciences, Lumo Road 388, Wuhan, 430074, People's Republic of China.
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, People's Republic of China.
| | - Yao Du
- School of Environmental Studies, China University of Geosciences, Lumo Road 388, Wuhan, 430074, People's Republic of China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Shuai Shen
- School of Environmental Studies, China University of Geosciences, Lumo Road 388, Wuhan, 430074, People's Republic of China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Zhihui Han
- School of Environmental Studies, China University of Geosciences, Lumo Road 388, Wuhan, 430074, People's Republic of China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, People's Republic of China
| |
Collapse
|
32
|
Pelcová P, Kopp R, Ridošková A, Grmela J, Štěrbová D. Evaluation of mercury bioavailability and phytoaccumulation by means of a DGT technique and of submerged aquatic plants in an aquatic ecosystem situated in the vicinity of a cinnabar mine. CHEMOSPHERE 2022; 288:132545. [PMID: 34648791 DOI: 10.1016/j.chemosphere.2021.132545] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/23/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
The ability of submerged aquatic plants (Elodea canadensis, Myriophyllum spicatum, Ceratophyllum demersum) and a natant plant (Eichhornia crassipes) to bioaccumulate mercury was evaluated in a laboratory experiment as well as in a real aquatic ecosystem situated in the vicinity of a cinnabar mine. Moreover, the ability of the diffusive gradients in the thin films technique (DGT) to predict mercury bioavailability for selected aquatic plants was tested. The submerged plants had sufficient bioaccumulation capacity for long-term phytoaccumulation of mercury in a real aquatic ecosystem. The determined bioaccumulation factor was greater than 1000. On average, the submerged plant leaves accumulated 13 times more mercury than the leaves of the natant aquatic plants. Chlorides at concentrations up to 200 mg/L had no statistically significant effect on mercury accumulation, nevertheless, the presence of humic acid in the water environment resulted in its significant (p < 0.002) decrease. A strong positive correlation (r > 0.66) was determined between mercury concentration in the input parts (leaves and/or roots) of the aquatic plants and the flow of mercury into DGT units.
Collapse
Affiliation(s)
- Pavlína Pelcová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300, Brno, Czech Republic.
| | - Radovan Kopp
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Mendel University in Brno, Zemedelska 1, CZ-61300, Brno, Czech Republic
| | - Andrea Ridošková
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300, Brno, Czech Republic; CEITEC MENDELU, Mendel University in Brno, Zemedelska 1, CZ-61300, Brno, Czech Republic
| | - Jan Grmela
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Mendel University in Brno, Zemedelska 1, CZ-61300, Brno, Czech Republic
| | - Dagmar Štěrbová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300, Brno, Czech Republic
| |
Collapse
|
33
|
Viana JLM, Souza AFD, Hernández AH, Elias LP, Eismann CE, Rezende-Filho AT, Barbiero L, Menegario AA, Fostier AH. In situ arsenic speciation at the soil/water interface of saline-alkaline lakes of the Pantanal, Brazil: A DGT-based approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150113. [PMID: 34520925 DOI: 10.1016/j.scitotenv.2021.150113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) is a naturally occurring element in the Earth's crust, exhibiting toxicity towards a wide range of living organisms. Its properties and environmental dynamics are strongly regulated by its speciation, and the species As(III) and As(V) are the most commonly found in environmental systems. Recently, high concentrations of As were found in saline-alkaline lakes of the Pantanal (Brazil), which is the largest wetland area in the world. Therefore, we evaluated As contamination and its redox speciation (As(III) and As(V)) at the soil/water interface of biogeochemically distinct saline-alkaline lakes of Pantanal wetlands (Brazil). Both conventional sampling and in situ diffusive gradients in thin films (DGT) technique were employed. Zirconium oxide and 3-mercaptopropyl were used as ligand phases in DGT to selectively bind As species. High concentrations of total dissolved As in a shallow water table were found (<2337.5 μg L-1), whereas levels in soils were up to 2.4 μg g-1. Distinct scenarios were observed when comparing speciation analysis through spot sampling and DGT. Considering spot sampling, As(V) was the main species detected, whereas As(III) was only detected in only a few samples (<4.2 μg L-1). Conversely, results obtained by DGT showed that labile As(III) dominated arsenic speciation at the soil/water interface with levels up to 203.0 μg L-1. Coupling DGT data and DGT induced fluxes in sediments and soils model allowed obtaining kinetic data, showing that the soil barely participated in the arsenic dynamics on the shore of the lakes, and that this participation depends on the evapoconcentration process occurring in the region. Therefore, soil acts like a nonreactive matrix depending on the natural concentration process. In addition, our results reinforced the different geochemical characteristics of the studied saline-alkaline lakes and highlights the importance of robust passive sampling techniques in the context of metal/metalloid speciation in environmental analysis.
Collapse
Affiliation(s)
| | - Adriana Felix de Souza
- Institute of Chemistry, University of Campinas, UNICAMP, 6154, 13083-970 Campinas, SP, Brazil
| | | | - Lucas Pellegrini Elias
- São Paulo State University (UNESP), Environmental Studies Center, Av. 24-A, 1515, 13506-900 Rio Claro, SP, Brazil
| | - Carlos Eduardo Eismann
- São Paulo State University (UNESP), Environmental Studies Center, Av. 24-A, 1515, 13506-900 Rio Claro, SP, Brazil
| | | | - Laurent Barbiero
- Université P. Sabatier, IRD, CNRS, OMP, Géoscience Environnement Toulouse (GET), 14 Avenue Edouard Belin, F31400 Toulouse, France
| | - Amauri Antonio Menegario
- São Paulo State University (UNESP), Environmental Studies Center, Av. 24-A, 1515, 13506-900 Rio Claro, SP, Brazil
| | - Anne Hélène Fostier
- Institute of Chemistry, University of Campinas, UNICAMP, 6154, 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
34
|
Le Bars M, Legros S, Levard C, Chevassus-Rosset C, Montes M, Tella M, Borschneck D, Guihou A, Angeletti B, Doelsch E. Contrasted fate of zinc sulfide nanoparticles in soil revealed by a combination of X-ray absorption spectroscopy, diffusive gradient in thin films and isotope tracing. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118414. [PMID: 34728325 DOI: 10.1016/j.envpol.2021.118414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Incidental zinc sulfide nanoparticles (nano-ZnS) are spread on soils through organic waste (OW) recycling. Here we performed soil incubations with synthetic nano-ZnS (3 nm crystallite size), representative of the form found in OW. We used an original set of techniques to reveal the fate of nano-ZnS in two soils with different properties. 68Zn tracing and nano-DGT were combined during soil incubation to discriminate the available natural Zn from the soil, and the available Zn from the dissolved nano-68ZnS. This combination was crucial to highlight the dissolution of nano-68ZnS as of the third day of incubation. Based on the extended X-ray absorption fine structure, we revealed faster dissolution of nano-ZnS in clayey soil (82% within 1 month) than in sandy soil (2% within 1 month). However, the nano-DGT results showed limited availability of Zn released by nano-ZnS dissolution after 1 month in the clayey soil compared with the sandy soil. These results highlighted: (i) the key role of soil properties for nano-ZnS fate, and (ii) fast dissolution of nano-ZnS in clayey soil. Finally, the higher availability of Zn in the sandy soil despite the lower nano-ZnS dissolution rate is counterintuitive. This study demonstrated that, in addition to nanoparticle dissolution, it is also essential to take the availability of released ions into account when studying the fate of nanoparticles in soil.
Collapse
Affiliation(s)
- Maureen Le Bars
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France; UPR Recyclage et Risque, CIRAD, F-34398, Montpellier, France; Recyclage et Risque, Univ Montpellier, CIRAD, Montpellier, France.
| | - Samuel Legros
- Recyclage et Risque, Univ Montpellier, CIRAD, Montpellier, France; UPR Recyclage et Risque, CIRAD, 18524, Dakar, Senegal
| | - Clément Levard
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Claire Chevassus-Rosset
- UPR Recyclage et Risque, CIRAD, F-34398, Montpellier, France; Recyclage et Risque, Univ Montpellier, CIRAD, Montpellier, France
| | - Mélanie Montes
- UPR Recyclage et Risque, CIRAD, F-34398, Montpellier, France; Recyclage et Risque, Univ Montpellier, CIRAD, Montpellier, France
| | - Marie Tella
- CIRAD, US Analyses, F-34398, Montpellier, France; Analyses, Univ Montpellier, CIRAD, Montpellier, France
| | - Daniel Borschneck
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Abel Guihou
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Bernard Angeletti
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Emmanuel Doelsch
- UPR Recyclage et Risque, CIRAD, F-34398, Montpellier, France; Recyclage et Risque, Univ Montpellier, CIRAD, Montpellier, France
| |
Collapse
|
35
|
Ji X, Challis JK, Brinkmann M. A critical review of diffusive gradients in thin films technique for measuring organic pollutants: Potential limitations, application to solid phases, and combination with bioassays. CHEMOSPHERE 2022; 287:132352. [PMID: 34826958 DOI: 10.1016/j.chemosphere.2021.132352] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Diffusive gradient in thin films (DGT) for organics has received considerable attention for studying the chemical dynamics of various organic pollutants in the environment. This review investigates current limitations of DGT for organics and identifies several research gaps for future studies. The application of a protective outer filter membrane has been recommended for most DGT applications, however, important questions regarding longer lag times due to significant interaction or adsorption of specific groups of compounds on the outer membrane remain. A modified DGT configuration has been developed that uses the diffusive gel as the outer membrane without the use of an extra filter membrane, however use of this configuration, while largely successful, remains limited. Biofouling has been a concern when using DGT for metals; however, effect on the performance of DGT for organics needs to be systemically studied. Storage stability of compounds on intact DGT samplers has been assessed in select studies and that data is synthesized here. DGT has been used to describe the kinetic desorption of antibiotics from soils and biosolids based on the soil/biosolid physical-chemical characteristics, yet applications remain limited and requires further research before wide-scale adoption is recommended. Finally, DGT for organics has been rarely, albeit successfully, combined with bioassays as well as in vivo bioaccumulation studies in zebrafish. Studies using DGT combined with bioassays to predict the adverse effects of environmental mixtures on aquatic or terrestrial biota are discussed here and should be considered for future research.
Collapse
Affiliation(s)
- Xiaowen Ji
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada
| | | | - Markus Brinkmann
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, Canada; Centre for Hydrology, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
36
|
Mohseni A, Heidari S, Raei B, Moftakharzadeh SA, Bidast S. Determination of Poultry Manure and Plant Residues Effects on Zn Bioavailable Fraction in Contaminated Soil via DGT Technique. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 82:72-81. [PMID: 34750655 DOI: 10.1007/s00244-021-00901-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
A greenhouse experiment aimed to assess the effects of poultry manure, sorghum, and clover residues (0 and 15 g kg-1) on the zinc (Zn) bioavailable fraction in contaminated calcareous soil using two chemical assays, including diffusion gradient in thin-films (DGT) and diethylene triamine pentaacetic acid-triethanolamine (DTPA-TEA), and a bioassay with corn (Zea mase L.). The results showed that poultry manure, clover, and sorghum residues application increased dissolved organic carbon (DOC) by 53.6 and 36.1, and 9.2%, respectively, and decreased soil pH by 0.42, 0.26, and 0.06 units, respectively compared to unamended soil. These changes resulted in increases of Zn effective concentration (CE) and DTPA-Zn, and plant Zn concentration as observed by the increase in exchangeable form of Zn. In the sorghum residues-amended soils, CE-Zn decreased by 29.5% compared to other treatments. The best correlations between corn metal concentrations and soil metal bioavailability were obtained for CE-Zn using the DGT technique, which also provided the best Zn bioavailability estimate. It is concluded that sorghum residues could be used to reduce the phytotoxicity risk of Zn in calcareous contaminated soil, and the DTPA method is the less robust indicator of Zn bioavailability than the DGT technique.
Collapse
Affiliation(s)
- Amir Mohseni
- Department of Soil Science, University of Tabriz, 29 Bahman Blvd, 5166616471, Tabriz, Iran.
| | - Saber Heidari
- Faculty Members of Soil and Water Research Department, South Kerman Agricultural and Natural Resources Research and Education Center, AREEO, Jiroft, Iran
| | - Bijan Raei
- Department of Soil Science, University of Tabriz, 29 Bahman Blvd, 5166616471, Tabriz, Iran
| | | | - Solmaz Bidast
- Department of Soil Science, University of Zanjan, Zanjan, Iran
| |
Collapse
|
37
|
Dietrich CC, Tandy S, Murawska-Wlodarczyk K, Banaś A, Korzeniak U, Seget B, Babst-Kostecka A. Phytoextraction efficiency of Arabidopsis halleri is driven by the plant and not by soil metal concentration. CHEMOSPHERE 2021; 285:131437. [PMID: 34265706 PMCID: PMC8551008 DOI: 10.1016/j.chemosphere.2021.131437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/19/2021] [Accepted: 07/02/2021] [Indexed: 05/14/2023]
Abstract
The hyperaccumulation trait allows some plant species to allocate remarkable amounts of trace metal elements (TME) to their foliage without suffering from toxicity. Utilizing hyperaccumulating plants to remediate TME contaminated sites could provide a sustainable alternative to industrial approaches. A major hurdle that currently hampers this approach is the complexity of the plant-soil relationship. To better anticipate the outcome of future phytoremediation efforts, we evaluated the potential for soil metal-bioavailability to predict TME accumulation in two non-metallicolous and two metallicolous populations of the Zn/Cd hyperaccumulator Arabidopsis halleri. We also examined the relationship between a population's habitat and its phytoextraction efficiency. Total Zn and Cd concentrations were quantified in soil and plant material, and bioavailable fractions in soil were quantified via Diffusive Gradients in Thin-films (DGT). We found that shoot TME accumulation varied independent from both total and bioavailable soil TME concentrations in metallicolous individuals. In fact, hyperaccumulation patterns appear more plant- and less soil-driven: one non-metallicolous population proved to be as efficient in accumulating Zn on non-polluted soil as the metallicolous populations in their highly contaminated environment. Our findings demonstrate that in-situ information on plant phytoextraction efficiency is indispensable to optimize site-specific phytoremediation measures. If successful, hyperaccumulating plant biomass may provide valuable source material for application in the emerging field of green chemistry.
Collapse
Affiliation(s)
- Charlotte C Dietrich
- W. Szafer Institute of Botany Polish Academy of Sciences, Department of Ecology, Lubicz 46, PL-31512, Krakow, Poland
| | - Susan Tandy
- Soil Protection, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH), 8092, Zurich, Switzerland; Rothamsted Research, North Wyke, Okehampton, Devon, EX20 2SB, United Kingdom
| | | | - Angelika Banaś
- W. Szafer Institute of Botany Polish Academy of Sciences, Department of Ecology, Lubicz 46, PL-31512, Krakow, Poland
| | - Urszula Korzeniak
- W. Szafer Institute of Botany Polish Academy of Sciences, Department of Ecology, Lubicz 46, PL-31512, Krakow, Poland
| | - Barbara Seget
- W. Szafer Institute of Botany Polish Academy of Sciences, Department of Ecology, Lubicz 46, PL-31512, Krakow, Poland
| | - Alicja Babst-Kostecka
- Department of Environmental Science, The University of Arizona, Tucson, AZ, 85721, USA; WSL Swiss Federal Research Institute, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland.
| |
Collapse
|
38
|
Knox AS, Paller MH, Seaman JC, Mayer J, Nicholson C. Removal, distribution and retention of metals in a constructed wetland over 20 years. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:149062. [PMID: 34328902 DOI: 10.1016/j.scitotenv.2021.149062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
The A-01 wetland treatment system (WTS) was designed to remove metals (primarily copper) from the effluent at the A-01 National Pollution Discharge Elimination System (NPDES) outfall at the Savannah River Site, Aiken, SC. This research investigated metal removal, distribution and retention in the A-01 WTS over a period of 20 years. The findings are important for ensuring continued metal sequestration in the A-01 WTSs over time, providing management guidance for constructed wetlands, and investigating changes in metal remediation effectiveness as a wetland ages. During 20 years of operation, systematic water and sediment sampling validated the wetlands' performance. After passage through the treatment cells, Cu concentrations were well below permit limits during all years of operation, often falling below 10 μg L-1. Cu removal has been consistent over time, averaging about 80% despite large changes in influent Cu concentrations. Most divalent metals were rapidly removed from the water and held in the sediments shortly after the water entered the treatment wetland. Average removal of Pb from water by the wetland system was 67 and 74% in 2004 and 2020, respectively. Comparable values for Zn were 52 and 65%, respectively. Generally, the highest concentrations of Cu, Pb, and Zn were found in the sediment from the first cell in each pair of cells suggesting that most of the Cu, Pb, and Zn in the A-01 effluent was bound to the sediment quickly. Diffusive gradients in thin films (DGT) measurements of Cu and Zn in the sediments were much lower than bulk sediment concentrations. These results suggest that most of the Cu and Zn in the A-01 WTS sediments was not bioavailable, hence not toxic to aquatic organisms, as a likely consequence of adsorption to sediment particles and complexation with organic and inorganic substances.
Collapse
Affiliation(s)
- Anna Sophia Knox
- Savannah River National Laboratory, Aiken, SC 29808, United States.
| | - Michael H Paller
- Savannah River National Laboratory, Aiken, SC 29808, United States.
| | - John C Seaman
- Savannah River Ecology Laboratory, Aiken, SC 29808, United States
| | - John Mayer
- Savannah River National Laboratory, Aiken, SC 29808, United States
| | - Cher Nicholson
- Savannah River Ecology Laboratory, Aiken, SC 29808, United States
| |
Collapse
|
39
|
Strawn DG, Hettiarachchi GM. Fifty years of articles in JEQ on trace elements in the environment and future outlook. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:1266-1281. [PMID: 34661908 DOI: 10.1002/jeq2.20296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Fifty years ago, the Journal of Environmental Quality (JEQ) was launched to provide an outlet for publication of research on the impacts of agriculture on the environment, and vice versa. A core concept of JEQ is advancement of environmental science, with emphasis on understanding factors that affect the fate, risks, and quality of soil, water, and atmospheric systems, and how these system processes affect plants, microbes, and animals. Trace elements are a focus area of JEQ because when present at higher than natural concentrations, they may pose risks to environmental quality and ecosystem health, depending on their bioavailability. Trace element biogeochemical cycling is affected by anthropogenic influences on land, air, and water, including land management practices such as agriculture and mining. The Journal of Environmental Quality has published a prolific catalog of scientific research publications on trace elements and their risks to humans, soil health, water quality, and the environment. In this review, research on trace elements and their impacts on environmental quality is presented, with a special focus on work published in JEQ.
Collapse
Affiliation(s)
- Daniel G Strawn
- Dep. of Soil and Water Systems, Univ. of Idaho, Moscow, ID, 83844, USA
| | | |
Collapse
|
40
|
Gemeiner H, Menegário AA, Williams PN, Matavelli Rosa AE, Santos CA, Pedrobom JH, Elias LP, Chang HK. Lability and bioavailability of Co, Fe, Pb, U and Zn in a uranium mining restoration site using DGT and phytoscreening. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:57149-57165. [PMID: 34085201 DOI: 10.1007/s11356-021-14605-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Mine restoration is a long and ongoing process, requiring careful management, which must be informed by site-specific, geochemical risk assessment. Paired topsoil and tree core samples from 4 sites within the uranium mining complex of INB Caldas in Minas Gerais (Brazil) were collected. Soil samples were analysed for their total content of Co, Fe, Pb, U and Zn by XRF, and subsequently, the potential environmental bioavailability of these metals were investigated by DGT and pore water analysis. In addition, results were compared with metal concentrations obtained by Tree Coring from the forest vegetation. In all sampling areas, mean total concentrations of U (Ctot. = 100.5 ± 66.5 to 129.6 ± 57.1 mg kg-1), Pb (Ctot. = 30.8 ± 12.7 to 90.8 ± 90.8 mg kg-1), Zn (Ctot. = 91.5 ± 24.7 to 99.6 ± 10.3 mg kg-1) and Co (Ctot. = 73.8 ± 25.5 to 119.7 ± 26.4 mg kg-1) in soils exceeded respective quality reference values. Study results suggest that AMD caused the increase of labile concentrations of Zn in affected soils. The high lability of the elements Pb (R = 62 ± 34 to 81 ± 29%), U (R = 57 ± 20 to 77 ± 28%) and Zn (R = 21 ± 25 to 34 ± 31%) in soils together with high bioconcentration factors found in wood samples for Pb (BCF = 0.0004 ± 0.0003 to 0.0026 ± 0.0033) and Zn (BCF = 0.012 ± 0.013 to 0.025 ± 0.021) indicated a high toxic potential of these elements to the biota in the soils of the study site. The combination of pore water and DGT analysis with Tree Coring showed to be a useful approach to specify the risk of metal polluted soils. However, the comparison of the results from DGT and Tree Coring could not predict the uptake of metals into the xylems of the sampled tree individuals.
Collapse
Affiliation(s)
- Hendryk Gemeiner
- Environmental Studies Center (CEA), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP, 13506-900, Brazil
| | - Amauri Antonio Menegário
- Environmental Studies Center (CEA), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP, 13506-900, Brazil.
| | - Paul N Williams
- Institute for Global Security, School of Biological Sciences, Queen's University Belfast, BT9 5DL, Belfast, UK
| | - Amália E Matavelli Rosa
- Indústrias Nucleares do Brasil S.A. - INB Rodovia Poços de Caldas - Andradas, km 20,6 (BR 146, km 540), Caldas, MG, 37780-000, Brazil
| | - Cristiane A Santos
- Environmental Studies Center (CEA), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP, 13506-900, Brazil
- Department of Geology and Basin Studies Laboratory (LEBAC), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP, 13506-900, Brazil
| | - Jorge Henrique Pedrobom
- Environmental Studies Center (CEA), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP, 13506-900, Brazil
| | - Lucas Pellegrini Elias
- Environmental Studies Center (CEA), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP, 13506-900, Brazil
| | - Hung Kiang Chang
- Environmental Studies Center (CEA), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP, 13506-900, Brazil
- Department of Geology and Basin Studies Laboratory (LEBAC), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP, 13506-900, Brazil
| |
Collapse
|
41
|
Pelcová P, Ridošková A, Hrachovinová J, Grmela J. Evaluation of mercury bioavailability to vegetables in the vicinity of cinnabar mine. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117092. [PMID: 33892369 DOI: 10.1016/j.envpol.2021.117092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 03/09/2021] [Accepted: 04/04/2021] [Indexed: 05/27/2023]
Abstract
Knowledge of the concentration of the bioavailable forms of mercury in the soil is necessary, especially, if these soils contain above-limit total mercury concentrations. The bioavailability of mercury in soil samples collected from the vicinity of abandoned cinnabar mines was evaluated using diffusive gradients in the thin films technique (DGT) and mercury phytoaccumulation by vegetables (lettuce, spinach, radish, beetroot, carrot, and green peas). Mercury was accumulated primarily in roots of vegetables. The phytoaccumulation of mercury into edible plant parts was site-specific as well as vegetable species-specific. The mercury concentration in edible parts decreased in the order: spinach leaf ≥ lettuce leaf ≥ carrot storage root ≥ beetroot storage root > radish storage root > pea legume. The translocation index as well as the target hazard quotient indicate the possible usability of soils from the vicinity of abandoned cinnabar mines for planting pod vegetables (peas). A strong positive correlation (r = 0.75 to 0.92, n > 30, p < 0.05) was observed between mercury concentration in secondary roots, the storage roots, leaves of vegetables and the flux of mercury from soil to the DGT units, and the effective concentration of mercury in soil solutions.
Collapse
Affiliation(s)
- Pavlína Pelcová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300, Brno, Czech Republic.
| | - Andrea Ridošková
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300, Brno, Czech Republic; CEITEC MENDELU, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Jana Hrachovinová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300, Brno, Czech Republic
| | - Jan Grmela
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Mendel University in Brno, Zemedelska 1, CZ-61300, Brno, Czech Republic
| |
Collapse
|
42
|
Tibbett M, Green I, Rate A, De Oliveira VH, Whitaker J. The transfer of trace metals in the soil-plant-arthropod system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146260. [PMID: 33744587 DOI: 10.1016/j.scitotenv.2021.146260] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Essential and non-essential trace metals are capable of causing toxicity to organisms above a threshold concentration. Extensive research has assessed the behaviour of trace metals in biological and ecological systems, but has typically focused on single organisms within a trophic level and not on multi-trophic transfer through terrestrial food chains. This reinforces the notion of metal toxicity as a closed system, failing to consider one trophic level as a pollution source to another; therefore, obscuring the full extent of ecosystem effects. Given the relatively few studies on trophic transfer of metals, this review has taken a compartment-based approach, where transfer of metals through trophic pathways is considered as a series of linked compartments (soil-plant-arthropod herbivore-arthropod predator). In particular, we consider the mechanisms by which trace metals are taken up by organisms, the forms and transformations that can occur within the organism and the consequences for trace metal availability to the next trophic level. The review focuses on four of the most prevalent metal cations in soil which are labile in terrestrial food chains: Cd, Cu, Zn and Ni. Current knowledge of the processes and mechanisms by which these metals are transformed and moved within and between trophic levels in the soil-plant-arthropod system are evaluated. We demonstrate that the key factors controlling the transfer of trace metals through the soil-plant-arthropod system are the form and location in which the metal occurs in the lower trophic level and the physiological mechanisms of each organism in regulating uptake, transformation, detoxification and transfer. The magnitude of transfer varies considerably depending on the trace metal concerned, as does its toxicity, and we conclude that biomagnification is not a general property of plant-arthropod and arthropod-arthropod systems. To deliver a more holistic assessment of ecosystem toxicity, integrated studies across ecosystem compartments are needed to identify critical pathways that can result in secondary toxicity across terrestrial food-chains.
Collapse
Affiliation(s)
- Mark Tibbett
- Department of Sustainable Land Management & Soil Research Centre, School of Agriculture Policy and Development, University of Reading, Whiteknights, RG6 6AR, UK.
| | - Iain Green
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset BH12 5BB, UK
| | - Andrew Rate
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - Vinícius H De Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Sao Paulo 13083-970, Brazil
| | - Jeanette Whitaker
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Lancaster LA1 4AP, UK
| |
Collapse
|
43
|
Chen R, Gao T, Cheng N, Ding G, Wang Q, Shi R, Hu G, Cai X. Application of DGT/DIFS to assess bioavailable Cd to maize and its release in agricultural soils. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:124837. [PMID: 33450634 DOI: 10.1016/j.jhazmat.2020.124837] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/23/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Tianjin, as an important maize production region in China, has a long history of sewage irrigation resulting in the soil cadmium (Cd) contamination. In this study, single extractions of CaCl2 and HNO3, BCR sequential extraction and the diffusive gradients in thin films technique (DGT) were used to measure the bioavailable Cd content in soils. The Cd content in soil samples all exceeded the background values, with 14.3% and 33.3% of sites in the Baodi District (BDD) and Jinghai District (JHD) exceeding the risk control values, respectively. The average content of Cd in maize samples is lower than the pollution control values, which may be related to the higher pH (8.53) and organic matter (OM) content (15.01 g kg-1) in soils. Bioavailable Cd measured by DGT correlated well with Cd in maize grains (R2 =0.92). The DGT and DIFS model predicted the metals release from the agricultural lands, the total concentration of Cd in soil was relatively low, but the labile Cd in the soils has adequate metal release capability. This study shows that DGT is efficient in predicting Cd accumulation in grains from contaminated soils.
Collapse
Affiliation(s)
- Rui Chen
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Tao Gao
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Nuo Cheng
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Guoyu Ding
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Qi Wang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Rongguang Shi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science,Yunnan University, Kunming 650504, China
| | - Xuying Cai
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
44
|
Chen R, Wang Q, Ren F, Ding G, Shi R, Cheng J, Cai X, Cheng N, Liu J, Li L. Determination of Labile Cadmium in Soils Using a New Sodium Alginate-Polyglutamic Acid-Diffusive Gradient in Thin Films. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1559-1569. [PMID: 33651400 DOI: 10.1002/etc.5021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/14/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Sodium alginate-polyglutamic acid was used to develop a new diffusive gradient in thin films (SA-PGA-DGT) device, which was proven to be suitable for the investigation of labile Cd in soil. The adsorption capacity of Cd was calculated to be approximately 16.8 μg/cm2 , which was hardly affected by factors including pH (5-9), ionic strength (0.1-100 mM), and the presence of other metals (Pb, Cu, Ni, and Cr). The SA-PGA gel has dense and uneven pores with large specific surface area, which ensures the adsorption of Cd by functional groups of the gel. A kinetics study indicated that the adsorption rate of Cd by the binding gel can be described as a pseudo-second-order reaction. Deployment of the SA-PGA-DGT in the soils of Tang Gu (located in Binhai New District, Tianjin, China) showed a strong positive linear correlation between Cd measured by the device and exchangeable Cd measured by the Tessier method (R = 0.73, p < 0.01). Cadmium determined by the SA-PGA-DGT device was less affected by soil properties. This new SA-PGA-DGT has obvious advantages over other methods in respect of the labile Cd analysis in soil. The innovative novel device expands the variety of existing DGT technologies and can be utilized to monitor the level of labile Cd in soil effectively. Environ Toxicol Chem 2021;40:1559-1569. © 2021 SETAC.
Collapse
Affiliation(s)
- Rui Chen
- Beijing Jiaotong University, Beijing, China
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing, China
| | - Qi Wang
- Beijing Jiaotong University, Beijing, China
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing, China
| | - Fumin Ren
- Beijing Jiaotong University, Beijing, China
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing, China
| | - Guoyu Ding
- Beijing Jiaotong University, Beijing, China
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing, China
| | - Rongguang Shi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Jing Cheng
- Beijing Jiaotong University, Beijing, China
| | - Xuying Cai
- Beijing Jiaotong University, Beijing, China
| | - Nuo Cheng
- Beijing Jiaotong University, Beijing, China
| | | | - Lanxin Li
- Beijing Jiaotong University, Beijing, China
| |
Collapse
|
45
|
Meng M, Yang L, Wei B, Cao Z, Yu J, Liao X. Plastic shed production systems: The migration of heavy metals from soil to vegetables and human health risk assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112106. [PMID: 33756293 DOI: 10.1016/j.ecoenv.2021.112106] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Plastic shed production system (PSPS) provide abundant vegetable products for human consumption. Comprehensive and accurate heavy metal (HM) risk assessment of soil and vegetable under plastic sheds is crucial for human health. Pollution assessment, bioavailability and mobility evaluation and health risk assessment of Cd, Cr, Cu, Zn Ni, Pb, and As were performed in a presentative Plastic shed production system. The concentrations of the Cd, Cu and Zn exceeded their background value. Positive Igeo values suggested that soil under plastic sheds was widely contaminated with Cd. The bioavailability of heavy metals in soils was evaluated using DTPA extraction and DGT methods. The results of both methods demonstrated that Cd, Cu, and Zn have high bioavailability, especially Cd. Analogically, the results of mobility assignment based on DIFS showed that Cd has a high migration risk due to the large available pool. Based on specific cultivation and management patterns of plastic shed production system, pH reduction and salt and nutrient accumulation may increase the heavy metals migration risk in soil under plastic sheds, while a high organic matter content may reduce the heavy metals migration risk. The average concentrations of Cd, Cr, Cu, Zn, Ni, Pb, and As in vegetables were 0.023, 0.226, 0.654, 2.984, 0.329, 0.041, and 0.010 mg/kg, respectively. All samples were well below the threshold. The order of target hazard quotient of different heavy metals caused by vegetable consumption was Cd > Cr > As > Cu, Ni, Pb, Zn, and the average total hazard index value was below 1, which demonstrated that risk of vegetable consumption in the study area. However, due to its high concentration and transfer coefficient in spinach, Cd might pose a health risk to humans, which requires special attention. In this study, Cd caused a significant issue than other HMs, whether pollution level, health risk and migration risk. DGT and DIFS can be used as an effective evaluation tool in the research of controlling heavy metals migration in soil-crop systems.
Collapse
Affiliation(s)
- Min Meng
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Beijing 100101, China
| | - Linsheng Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Binggan Wei
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhiqiang Cao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiangping Yu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoyong Liao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Beijing 100101, China.
| |
Collapse
|
46
|
Ji X, Abakumov E, Chigray S, Saparova S, Polyakov V, Wang W, Wu D, Li C, Huang Y, Xie X. Response of carbon and microbial properties to risk elements pollution in arctic soils. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124430. [PMID: 33176958 DOI: 10.1016/j.jhazmat.2020.124430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
A 180-day incubation study was conducted to evaluate the effects of risk elements (REs) on organic carbon use and microbial activities in organic soils in the Arctic during the summer snowmelt period. Soils were artificially spiked with Cd, Pb, Cr, Ni, Cu, As, and a combination of these REs according to the levels measured in Arctic soils from REs-polluted industrial sites. During the incubation period, microbial activities and microbial biomass carbon (MBC) formation were inhibited, and microbial quotient (qCO2) values were relatively high in the spiked soils indicating that more energy was used by microbes for maintenance under REs stress. Meanwhile, microbial metabolism was significantly restrained. Microbial Specific phospholipid fatty acids (PLFAs) were reduced in RE spiked soils relative to the control, especially in the As- and multi-RE-spiked soils. The abundance of both fungi and bacteria was reduced in response to RE amendments by 14-24% and 1-55%, respectively. PLFA biomarkers indicated a shift in soil microbial community structure and activities influenced by REs, consequently having a negative effect on soil organic carbon degradation. This study addresses the knowledge gap regarding the alternation of biochemical reactions in Arctic soils under anthropogenic REs with relevant contamination levels.
Collapse
Affiliation(s)
- Xiaowen Ji
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang 330031, PR China; Department of Applied Ecology, Saint Petersburg State University, Saint Petersburg 199178, Russian Federation; School of Environment and Sustainability, University of Saskatchewan, Saskatoon SK, S7N 5B3, Canada
| | - Evgeny Abakumov
- Department of Applied Ecology, Saint Petersburg State University, Saint Petersburg 199178, Russian Federation
| | - Svetlana Chigray
- Department of Applied Ecology, Saint Petersburg State University, Saint Petersburg 199178, Russian Federation
| | - Sheker Saparova
- Department of Applied Ecology, Saint Petersburg State University, Saint Petersburg 199178, Russian Federation
| | - Vyacheslav Polyakov
- Department of Applied Ecology, Saint Petersburg State University, Saint Petersburg 199178, Russian Federation; Arctic and Antarctic Research Institute, Saint Petersburg, 199397, Russian Federation; Department of Soil Science and Agrochemistry, Saint-Petersburg State Agrarian University, Pushkin, Saint Petersburg 19660, Russian Federation
| | - Wenjuan Wang
- Department of Applied Ecology, Saint Petersburg State University, Saint Petersburg 199178, Russian Federation
| | - Daishe Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Chunlan Li
- Institute for Global Innovation and Development, East China Normal University, Shanghai 200062, PR China; School of Urban and Regional Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yu Huang
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210098, PR China
| | - Xianchuan Xie
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang 330031, PR China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
47
|
Luo H, Du P, Shi J, Yang B, Liang T, Wang P, Chen J, Zhang Y, He Y, Jia X, Duan G, Li F. DGT methodology is more sensitive than conventional extraction strategies in assessing amendment-induced soil cadmium availability to rice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143949. [PMID: 33340737 DOI: 10.1016/j.scitotenv.2020.143949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Using diffusive gradients in thin films (DGT) is a recently developed alternative method of rapidly evaluating the bioavailability of metals in soil. However, the method has found only limited application in systematic assessment of the bioavailability of cadmium (Cd) in red limestone paddy soils treated with different soil amendments. Of the four methods compared for estimating Cd content of rice grains from plants grown in such soils of central China treated with eleven different soil amendments in pot culture, Cd content of DGT-labile soil was significantly correlated to Cd concentrations in brown rice (R = 0.447, p < 0.01). The other three methods involved CaCl2, diethylenetriaminepentaacetic acid (DTPA), or NH4NO3. Some other properties of soil, such as pH, redox potential, content of dissolved organic matter, and cation exchange capacity were also determined. A simple algorithm developed to evaluate the sensitivity of the four methods also confirmed DGT as the most efficient method to predict the bioavailability of Cd in red limestone paddy soils.
Collapse
Affiliation(s)
- Huilong Luo
- College of Water Science, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ping Du
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| | - Jing Shi
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China; College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Bin Yang
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Tian Liang
- College of Water Science, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Panpan Wang
- College of Water Science, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Juan Chen
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Yunhui Zhang
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Ying He
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Xiuwen Jia
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Guilan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Fasheng Li
- College of Water Science, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
48
|
Gerdelidani AF, Towfighi H, Shahbazi K, Lamb DT, Choppala G, Abbasi S, Bari ASMF, Naidu R, Rahman MM. Arsenic geochemistry and mineralogy as a function of particle-size in naturally arsenic-enriched soils. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123931. [PMID: 33264981 DOI: 10.1016/j.jhazmat.2020.123931] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/18/2020] [Accepted: 08/31/2020] [Indexed: 06/12/2023]
Abstract
Naturally arsenic (As) enriched agricultural soils represent a significant global human health risk. In this study, As fractionation and mineralogy were investigated in naturally As-enriched agricultural soils and their corresponding sand, silt and clay fractions. Median As increased generally in the order (mg/kg)∶ silt (280) < bulk (314) < sand (323)<clay (484). Sequential extraction showed that amorphous and well-crystalline Fe- and Al-oxide bound and residual As forms accounted 27-42% of total As. Well-crystalline Fe- and Al-oxide bound As was highest (40-42%) in silt and clay fractions, while residual As was generally greatest (41-55%) in bulk and sand fractions. The sand, silt and bulk soils released a consistently higher percentage of non-specifically sorbed As than the clay, but clay released more specifically-sorbed As. Arsenate (As(V)) was the dominant species in soil solutions, although arsenite (As(III)) was significant in a few samples. XRD analysis showed the presence of arsenolite (As2IIIO3) in soils and fractions. SEM/EDS observations revealed that scorodite (FeAsVO4·2H2O) and amorphous Fe-oxides were the main As-bearing minerals in soils and fractions, which were consistent with the geochemical analysis. Outcomes from this research highlight the significant environmental risks of naturally As-enriched soils.
Collapse
Affiliation(s)
- Arzhang Fathi Gerdelidani
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran; Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Hasan Towfighi
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Karim Shahbazi
- Soil and Water Research Institute, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran
| | - Dane T Lamb
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, New South Wales 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), ATC Building, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Girish Choppala
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Sepide Abbasi
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - A S M Fazle Bari
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, New South Wales 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), ATC Building, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, New South Wales 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), ATC Building, The University of Newcastle, Callaghan, New South Wales 2308, Australia.
| |
Collapse
|
49
|
Wang X, Brunetti G, Tian W, Owens G, Qu Y, Jin C, Lombi E. Effect of soil amendments on molybdenum availability in mine affected agricultural soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116132. [PMID: 33272794 DOI: 10.1016/j.envpol.2020.116132] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Molybdenum (Mo) contamination of agricultural soils around Mo-mining areas is of emerging environmental concern. This study evaluated potential practical techniques for chemical immobilization of three Mo contaminated agricultural soils via application of up to six amendments from four different types of materials including biosolids, biochar supported nanoscale zero-valent iron (BC-nZVI), drinking water treatment residues (WTR) and ferrous minerals (magnetite and ferrihydrite). The efficacy of the different amendments on soil Mo bioaccessibility and bioavailability was evaluated by monitoring Mo uptake in both monocotyledon (ryegrass) and dicotyledon (alfalfa) plants, soil extractable Mo, and Mo bioavailability as measured by Diffusive Gradient in Thin Films (DGT®). All amendments exhibited no immobilization effect and increased Mo extractability in the severely contaminated soil (264 mg Mo kg-1). In contrast, in lightly and moderately contaminated soils (22 and 98 mg Mo kg-1), biosolids, WTR and magnetite all reduced soil extractable Mo and decreased Mo uptake in both alfalfa and ryegrass shoots relative to controls (CK). Moreover, DGT showed that during incubation experiments while biosolids amendments increased Mo bioavailability from 115 to 378% compared to the CK treatments, all other amendments decreased Mo bioavailability insignificantly.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Luoyang Institute of Science and Technology, Luoyang, 471023, PR China; Henan Provincial Engineering Technology Center of Remediation and Prevention for Heavy Metal Pollution in Soil, Luoyang, 471023, PR China; Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Gianluca Brunetti
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia.
| | - Wenjie Tian
- Luoyang Institute of Science and Technology, Luoyang, 471023, PR China; Henan Provincial Engineering Technology Center of Remediation and Prevention for Heavy Metal Pollution in Soil, Luoyang, 471023, PR China
| | - Gary Owens
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Yang Qu
- Luoyang Institute of Science and Technology, Luoyang, 471023, PR China; Henan Provincial Engineering Technology Center of Remediation and Prevention for Heavy Metal Pollution in Soil, Luoyang, 471023, PR China
| | - Chaoxi Jin
- Luoyang Eco-Environmental Monitoring Center, Henan Province, Luoyang, 471021, PR China
| | - Enzo Lombi
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| |
Collapse
|
50
|
De Silva S, Ball AS, Indrapala DV, Reichman SM. Review of the interactions between vehicular emitted potentially toxic elements, roadside soils, and associated biota. CHEMOSPHERE 2021; 263:128135. [PMID: 33297123 DOI: 10.1016/j.chemosphere.2020.128135] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 06/12/2023]
Abstract
Given the large size of the world road network, the land area affected by vehicular emissions is extensive. This review provides the first global picture of the relationships between vehicular emitted potentially toxic elements, roadside soils, and risks to associated biota. The following potentially toxic elements that accumulate in roadside soils have been examined in this review: As, Co, Cr, Cu, Mn, Mo, Ni, Pb, Pd, Pt, Rh, Se, Sb, Sn, Sr, Ti and Zn. The meta-analysis undertaken demonstrated an increase in concentrations of Cd, Pb, Zn, Pt, Pd and Rh in roadside soils compared to the mean global crustal concentrations. Positive correlations between potentially toxic element concentrations in roadside soil, plants, microbes, and animals were observed. Roadside studies have found increased potentially toxic element concentrations in plants and animals with increasing proximity to roads. The mean concentrations of Pb in roadside plants and vertebrates were at values above the World Health Organisation guidelines. Research has shown a range of impacts of potentially toxic elements in roadside soils on microbial activity including decreased litter decomposition, nitrogen fixation, nutrient cycling and enzyme synthesis. However, aside from the impact on microbial communities, there has been little research investigating the impacts of roadside soil elements on the associated biota. Thus, there is a need for research that investigates the toxicity of elements in roadside soils to plants and animals and to investigate the transfer of roadside elements through the food chain, and thus, risks posed to human health and the environment.
Collapse
Affiliation(s)
- Shamali De Silva
- School of Engineering, RMIT University, Melbourne, 3001, Australia; Centre for Environmental Sustainability and Remediation (EnSuRe), RMIT University, Melbourne, 3001, Australia.
| | - Andrew S Ball
- Centre for Environmental Sustainability and Remediation (EnSuRe), RMIT University, Melbourne, 3001, Australia; School of Science, RMIT University, Melbourne, 3001, Australia
| | - Demidu V Indrapala
- School of Engineering, RMIT University, Melbourne, 3001, Australia; School of Science, RMIT University, Melbourne, 3001, Australia
| | - Suzie M Reichman
- School of Engineering, RMIT University, Melbourne, 3001, Australia; Centre for Environmental Sustainability and Remediation (EnSuRe), RMIT University, Melbourne, 3001, Australia; Centre for Anthropogenic Pollution Impact and Management (CAPIM) School of Biosciences, University of Melbourne, Carlton, 3010, Australia
| |
Collapse
|