1
|
Liao K, Li W, Huang Z, Lin S, Fu L, Liu W, Fang H, Deng H. Comprehensive evaluation of the distribution, transport and ecological risk of heavy metals in intra-urban river sediments using high-resolution techniques. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124808. [PMID: 39182813 DOI: 10.1016/j.envpol.2024.124808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/26/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Determining the distribution trends, transport mechanisms, and ecological risks of heavy metals (HMs) in urban river sediments is essential for the government to conduct appropriate remediation work. In this study, we collected sediment cores from the Yayao Waterway in Foshan City, China. The vertical distribution profiles of dissolved and labile Fe, Mn, Cd, Zn, Cu, Cr, Ni, Pb, As, and Co in the sediments were obtained using the thin-film diffusive gradient (DGT) and high-resolution peeper (HR-Peeper) techniques. In addition, the transport rates, contamination levels, and ecological concerns of the HMs were evaluated using the European Community Bureau of Reference (BCR) sequential extraction technique, the DGT-induced sediment fluxes (DIFS) model, and multiple contamination evaluation metrics. The results showed that most of the DGT-labile HMs were associated with Fe/Mn (hydrogen) oxides, and in particular, Zn, Ni, and Cr showed a significant negative correlation with Fe/Mn (p < 0.001). Additionally, Cd had the highest bioavailability (89.17%), and its net diffusive flux at the sediment-water interface (SWI) was positive, which indicated a high release risk from the sediment. However, the R-value of Cd based on the DGT-induced sediment fluxes (DIFS) operation was extremely low, suggesting that although Cd had the biggest supply pool of releases, its release rate was slow. The majority of sampling sites had significantly higher total HM contents in the surface sediments than the background values. The HM contamination in the sediments originated from human activities, primarily from industrial enterprises and with a large contribution from both agricultural and domestic sources. The most polluted HM with the highest ecological danger was Cd, followed by Cu, Zn, Ni, and As when the results of the four pollution evaluation indicators were combined. Consequently, the risk of contamination by HMs in inner-city river sediments should receive more attention.
Collapse
Affiliation(s)
- Kang Liao
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou, 510006, China
| | - Weijie Li
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou, 510006, China; The Key Laboratory of Water and Air Pollution Control of Guangdong Province, State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510535, China.
| | - Zhiwei Huang
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510535, China
| | - Shu Lin
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510535, China
| | - Lingfang Fu
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510535, China
| | - Wei Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou, 510006, China
| | - Huaiyang Fang
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510535, China
| | - Hong Deng
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Yang D, Fang W, Zhang H, Gu X, Chen H, Sun H, Luo J. Migration and availability of Ni and Cd in industrial soils under different leaching conditions: Insights from DGT and DIFS models. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135863. [PMID: 39348755 DOI: 10.1016/j.jhazmat.2024.135863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/20/2024] [Accepted: 09/15/2024] [Indexed: 10/02/2024]
Abstract
Rainfall runoff can mobilize heavy metals in industrial soils, posing environmental risks. The mobility and distribution of heavy metals in different industrial soil layers are often overlooked. This study employed dynamic leaching experiments in layered soil columns with DGT (the diffusive gradients in thin films) measurements and DIFS (DGT-induced fluxes in soils and sediments) model to describe the migration, availability, and resupply ability of metals at different depths in surface and deep soil columns of industrial soils. Results showed significantly higher available concentrations (CDGT and CSoln) of Ni and Cd in surface soils compared to deep soils, likely due to the differences in soil physiochemical properties (contamination, pH, and soil texture). Continuous leaching promoted the migration of available Ni and Cd in surface soils. Maximum values of RNi (0.79-0.91) and RCd (0.75-0.80) were observed in the top layer (0-4 cm) of the surface soil, consistent with the trends of RFe. Combined DGT and DIFS model analysis implied higher potential availability and resupply of Ni and Cd in surface soil columns. These findings highlight the importance of considering dynamic leaching effects on heavy metal transport, availability, and release in industrial soils.
Collapse
Affiliation(s)
- Danxing Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Wen Fang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Haiyi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Haitao Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China.
| |
Collapse
|
3
|
Shi YXX, Xu HR, Shen J, Guo LY, Yan J, Jiang J, Hong ZN, Xu RK. A new simple index for characterizing the labile heavy metal concentration in soil by diffusive gradients in thin films technique. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124061. [PMID: 38679131 DOI: 10.1016/j.envpol.2024.124061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/31/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Diffusive gradients in thin films technique (DGT) is recognized as a more reliable method for determining labile heavy metal (HM) concentration in soil than traditional destructive methods. However, the current DGT measurement index, CDGT, theoretically underestimates the true labile concentration (Clabile) of HMs in soil and lacks direct comparability with the conventional soil HM content indices due to unit differences. Here, we proposed CDGT-W, a new simple index which is defined as the HM accumulation in the binding layer, normalized to the weight of soil (optimized water content = 100% of the maximum water holding capacity) filled in the open cavity-type DGT device over a specified deployment time (optimized time = 24 h). The procedure for measuring CDGT-W is analogous to that of CDGT but includes precise determination of water content (water/dry soil) and the mass of soil filled in the cavity. We conducted measurements of Cu, Pb, Cr(Ⅵ) and As(V) as CDGT-W, CDGT, solution concentration (Csoln), and CaCl2 extractable concentration (CCaCl2) on three soils with a diverse range of HM concentrations. CDGT-W showed significant linear correlations with all other tested indexes. The ratios of CDGT-W to CCaCl2 varied between 0.30 and 0.98 for all HM-soil combinations with only one exception, a range much greater than CDGT/Csoln (typically <0.1) but lower than 1. This suggested that CDGT-W may more accurately reflect Clabile than CDGT (theoretically underestimates Cliable) and CCaCl2(likely overestimates Cliable). Additionally, CDGT-W measurements for these four HMs exhibited a broad measure concentration range and a low detection limit (mg/kg level). Consequently, CDGT-W may offer a more reliable alternative to CDGT for characterizing Clabile in unsaturated soils.
Collapse
Affiliation(s)
- Yang-Xiao-Xiao Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hai-Rong Xu
- Co-Innovation Center for the Sustainable Forestry in Southern China/College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Jia Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China
| | - Lin-Yu Guo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China
| | - Jun Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China
| | - Zhi-Neng Hong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China.
| | - Ren-Kou Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Li Y, Rong Q, Han C, Li H, Luo J, Yan L, Wang D, Jones KC, Zhang H. Development and validation of an in situ high-resolution technique for measuring antibiotics in sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133551. [PMID: 38301441 DOI: 10.1016/j.jhazmat.2024.133551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
Important biogeochemical processes occur in sediments at fine scales. Sampling techniques capable of yielding information with high resolution are therefore needed to investigate chemical distributions and fluxes and to elucidate key processes affecting chemical fates. In this study, a high-resolution diffusive gradients in thin-films (DGT) technique was systematically developed and tested in a controlled sediment system to measure organic contaminants, antibiotics, for the first time. The DGT probe was used to resolve compound distributions at the mm scale. It also reflected the fluxes from the sediment pore-water and remobilization from the solid phase, providing more dynamic information. Through the fine scale detection, a reduction of re-supply was observed over time, which was concentration and location dependent. Compared to the Rhizon sampling method, antibiotic concentrations obtained by DGT probes were less than the pore-water concentrations, as DGT measures the labile fraction of the compounds. The DGT probe was also tested on an intact sediment core sampled from a lake in China and used to measure the distribution of labile antibiotics with depth in the core at the mm scale. ENVIRONMENTAL IMPLICATION: The abuse of antibiotics and widespread of their residues influences the ecosystem, induces the generation of super-bacteria, and finally poses threat to human health. Sediments adsorbs pollutants from the aquatic environment, while may also release them back to the environment. We systematically developed DGT probe approach for measuring antibiotics in sediment in situ in high resolving power, it provides information at fine scale to help us investigate biogeochemical processes take place in sediment and sediment-water interface.
Collapse
Affiliation(s)
- Yanying Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning 116023, PR China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Qiuyu Rong
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Chao Han
- Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, PR China
| | - Hanbing Li
- Department of Environmental Science, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Liying Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Degao Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning 116023, PR China
| | - Kevin C Jones
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China; Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| |
Collapse
|
5
|
Zhang C, Guan DX, Jiang YF, Menezes-Blackburn D, Yu T, Yang Z, Ma LQ. Insight into the availability and desorption kinetics of Se and Cd in naturally-rich soils using diffusive gradients in thin-films technique. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133330. [PMID: 38147757 DOI: 10.1016/j.jhazmat.2023.133330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
Cadmium (Cd) contamination of selenium (Se)-rich soils may jeopardize the nutritional benefits of Se-biofortified crops. This study employed diffusive gradients in thin-films (DGT) technique and DIFS (DGT-induced fluxes in soils) model to understand the interdependency and driving factors of Se and Cd distribution and desorption kinetics across 50 soils from south China with naturally elevated levels. DGT-labile Se was the highest (up to 2.66 μg L-1) in non-carbonate/shale-derived soils, while Cd was maximal (5.53 μg L-1) in carbonate-based soils, reflecting soil background concentrations and soil characteristics. Over one-third of the soils showed labile Se:Cd molar ratio below 0.7, suggesting Cd phytotoxicity risks. The DIFS-derived response times (Tc) and desorption rate constants (k-1) suggested that Se was resupplied to the soil solution faster than Cd in soils with higher pH and SOM level, but Se resupply was still restricted due to the rapid depletion of its labile pool. As the first study of Se and Cd release kinetics in soils, our results reveal dependence on soil parent materials, with low labile Se:Cd soils presenting greater Cd hazards. By elucidating Se and Cd lability and interactions in soils, our findings help to inform management strategies to balance reduced Cd risk with adequate Se availability.
Collapse
Affiliation(s)
- Chao Zhang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yi-Fan Jiang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Daniel Menezes-Blackburn
- Department of Soils, Water and Agricultural Engineering, CAMS, Sultan Qaboos University, PO Box 34, Al-khod 123, Sultanate of Oman
| | - Tao Yu
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Zhongfang Yang
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Lena Q Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Gu X, Han X, Xing P, Xu D, Wan S, Wu QL, Wu F. Diffusion kinetic processes and release risks of trace metals in plateau lacustrine sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133341. [PMID: 38150756 DOI: 10.1016/j.jhazmat.2023.133341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
The ecological risk posed by trace metals in the plateau lacustrine sediments of China has attracted worldwide attentions. A better understanding of the kinetic diffusion processes and bioavailability of these metals in plateau lakes is needed. Using the diffusive gradient in thin films (DGT) and Rhizon, concentrations of Mn, Mo, Ni, Cr, and Co in the sediments, labile fractions, and interstitial water of Lake Fuxian were comprehensively analyzed. According to the DGT-induced fluxes in sediments (DIFS) model, fully sustained and unsustained resupplies are possible ways in which metals are released from solids to the solution. Moreover, the resupply characteristics of metals varied at different depths in the sediments and at different sites in the lake. Based on the DIFS model, the effective concentrations (CE) of the trace metals were calculated and all except Cr showed good linear relationships with the DGT-labile concentrations, indicating that the CE values were valuable for predicting metal bioavailability. According to the CE values, the metal contamination released from the sediments was relatively low based on the Monte Carlo simulation. This study provides a comprehensive solution for studying the environmental behavior and potential ecological risks of toxic metals in sedimentary environment.
Collapse
Affiliation(s)
- Xiang Gu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaotong Han
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Life Sciences, Hebei University, Baoding 071002, China
| | - Peng Xing
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Di Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shiqiang Wan
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; The Fuxianhu Station of Deep Lake Research, Chinese Academy of Sciences, Chengjiang 652500, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
7
|
Wang S, Ding S, Zhao H, Chen M, Yang D, Li C. Seasonal variations in spatial distribution, mobilization kinetic and toxicity risk of arsenic in sediments of Lake Taihu, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132852. [PMID: 37890386 DOI: 10.1016/j.jhazmat.2023.132852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/07/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023]
Abstract
This study investigated seasonal variations in spatial distribution, mobilization kinetic and toxicity risk of arsenic (As) in sediments of three representative ecological lakes in Lake Taihu. Results suggested that the bioavailability and mobility of As in sediments depended on the lake ecological types and seasonal changes. At the algal-type zones and macrophyte-type zones, elevated As concentrations were observed in April and July, while these occurred at the transition areas in July and October. The diffusion flux of soluble As ranged from 0.03 to 3.03 ng/cm2/d, indicating sediments acted as a source of As. Reductive dissolution of As-bearing iron/manganese-oxides was the key driver of sediment As remobilization. However, labile S(-II) caused by the degradations of algae and macrophytes buffered sediment As release at the algal-type and macrophyte-type zones. Furthermore, the resupply ratio was less than 1 at three ecological lakes, indicating the resupply As capacity of sediment solid phase was partially sustained case. The risk quotient values were higher than 1 at the algal-type zones and transition areas in July, thereby, the adverse effects of As should not be ignored. This suggested that it is urgently need to be specifically monitored and managed for As contamination in sediments across multi-ecological lakes.
Collapse
Affiliation(s)
- Shuhang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shiming Ding
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hanbin Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Musong Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dianhai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Cai Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
8
|
Liu H, Chi L, Shen J, Arandiyan H, Wang Y, Wang X. Principles, applications, and limitations of diffusive gradients in thin films induced fluxed in soils and sediments. CHEMOSPHERE 2024; 350:141061. [PMID: 38159729 DOI: 10.1016/j.chemosphere.2023.141061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
The diffusive gradients in thin films (DGT) technique serves as a passive sampling method, inducing analyte transport and concentration. Its application is widespread in assessing labile components of metals, organic matter, and nutrients across various environmental media such as water, sediments, and saturated soils. The DGT devices effectively reduce the porewater concentration through irreversible binding of solutes, consequently promoting the release of labile species from the soil/sediment solid phase. However, the precise quantification of simultaneous adsorption and desorption of labile species using DGT devices alone remains a challenge. To address this challenge, the DGT-Induced Fluxes in Soils and Sediments (DIFS) model was developed. This model simulates analyte kinetics in solid phases, solutions, and binding resins by incorporating factors such as soil properties, resupply parameters, and kinetic principles. While the DIFS model has been iteratively improved to increase its accuracy in portraying kinetic behavior in soil/sediment, researchers' incomplete comprehension of it still results in unrealistic fitting outcomes and an oversight of the profound implications posed by kinetic parameters during implementation. This review provides a comprehensive overview of the optimization and utilization of DIFS models, encompassing fundamental concepts behind DGT devices and DIFS models, the kinetic interpretation of DIFS parameters, and instances where the model has been applied to study soils and sediments. It also highlights preexisting limitations of the DIFS model and offers suggestions for more precise modeling in real-world environments.
Collapse
Affiliation(s)
- Huaji Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali, 671000, China
| | - Lina Chi
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali, 671000, China
| | - Jian Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali, 671000, China
| | - Hamidreza Arandiyan
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia; Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Yuan Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Xinze Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali, 671000, China; Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali, 67100, China.
| |
Collapse
|
9
|
Long Z, Zhu H, Bing H, Ma Z, Yu D, Zhang W, Wu Y. Bio-accessibility and mobilization dynamics of soil vanadium during a 48-year vegetation restoration in a vanadium titano-magnetite tailings reservoir. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167507. [PMID: 37788780 DOI: 10.1016/j.scitotenv.2023.167507] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
Bio-accessibility of vanadium (V) in soils determines the effectiveness of vegetation restoration in the vanadium titano-magnetite tailings reservoirs because of persistent V toxicity, yet the variations in the bio-accessibility and mobilization of V in the soils with vegetation restoration remain elusive. Here, the bio-accessibility and mobilization of V in the soil-water interface were investigated along a 48-year vegetation restoration chronosequence in the Majiatian tailings reservoir using the diffusive gradients in thin films technique (DGT) and DGT-induced flux model. We found a low concentration of DGT-extracted V along the vegetation restoration chronosequence and the V fraction was dominated by the residual form, indicating a low V bio-accessibility in the soils. The bio-accessibility of V increased along the chronosequence because of the increased V resupply from solid phase, especially from the organic V fraction and the clay bound V. Low supply coefficient (R = 0.25) revealed a limited release of V from solid phase to soil solution. The kinetic resupply processes of V and its key regulating parameters were stage-specific during the vegetation restoration. The pool size of labile V in the soils determined the rapid V supply at the early and late stages, while the low desorption rate of V from the solid to liquid phase regulated the slow supply regime at the middle stage. The results of the present study highlight the importance of the long-term monitoring of soil V mobilization in the tailings reservoir because of the increased bio-accessibility and the dynamic supply of V during the vegetation restoration.
Collapse
Affiliation(s)
- Zhijie Long
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610066, China
| | - He Zhu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
| | - Haijian Bing
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China.
| | - Zhongjian Ma
- Panzhihua Iron and Steel Group Co., Ltd., Panzhihua 617000, China
| | - Daming Yu
- Panzhihua Iron and Steel Group Co., Ltd., Panzhihua 617000, China
| | - Wenwen Zhang
- Nanjing Junlinghb Co., Ltd., Nanjing 211500, China
| | - Yanhong Wu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China.
| |
Collapse
|
10
|
Huang YR, Liu SS, Zi JX, Cheng SM, Li J, Ying GG, Chen CE. In Situ Insight into the Availability and Desorption Kinetics of Per- and Polyfluoroalkyl Substances in Soils with Diffusive Gradients in Thin Films. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7809-7817. [PMID: 37155686 DOI: 10.1021/acs.est.2c09348] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The physicochemical exchange dynamics between the solid and solution phases of per- and polyfluoroalkyl substances (PFAS) in soils needs to be better understood. This study employed an in situ tool, diffusive gradients in thin films (DGT), to understand the distribution and exchange kinetics of five typical PFAS in four soils. Results show a nonlinear relationship between the PFAS masses in DGT and time, implying that PFAS were partially supplied by the solid phase in all of the soils. A dynamic model DGT-induced fluxes in soils/sediments (DIFS) was used to interpret the results and derive the distribution coefficients for the labile fraction (Kdl), response time (tc), and adsorption/desorption rates (k1 and k-1). The larger labile pool size (indicated by Kdl) for the longer chain PFAS implies their higher potential availability. The shorter chain PFAS tend to have a larger tc and relatively smaller k-1, implying that the release of these PFAS in soils might be kinetically limited but not for more hydrophobic compounds, such as perfluorooctanesulfonic acid (PFOS), although soil properties might play an important role. Kdl ultimately controls the PFAS availability in soils, while the PFAS release from soils might be kinetically constrained (which may also hold for biota uptake), particularly for more hydrophilic PFAS.
Collapse
Affiliation(s)
- Yue-Rui Huang
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Si-Si Liu
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Jin-Xin Zi
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Sheng-Ming Cheng
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, People's Republic of China
| | - Guang-Guo Ying
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Chang-Er Chen
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
11
|
Zheng S, Sheng F, Gu C, Li Y, Fang Z, Luo J. DGT method for the in situ measurement of triazines and the desorption kinetics of atrazine in soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51061-51074. [PMID: 36807020 DOI: 10.1007/s11356-023-25985-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/13/2023] [Indexed: 04/16/2023]
Abstract
Triazines are frequently detected in nature water and agricultural soils worldwide. They are considered harmful to plants, animals, and the human health. In this study, diffusive gradients in thin films (DGT) method was developed for the assessment of several triazines. DGT device was used for the in situ measurement of atrazine in a pesticide factory and obtained reliable data. The atrazine concentrations measured by DGT, and solvent extraction method was in a constant ratio. The DIFS model was coupled with DGT technique to study the desorption kinetics of atrazine in four kinds of different soils. The yellow-brown soil was more inclined to adsorb atrazine than other three soils. 2_D DIFS model was used to obtain the partition coefficient for labile atrazine (Kdl), the values of the response time (Tc), and desorption/adsorption rates (k1 and k-1). The yellow-brown soil has a larger labile pool size, and a faster resupply speed of atrazine. The 1_D DIFS model was used to simulate the profiles of atrazine concentrations in soil solution and solid phase. The results show that the desorption of atrazine in soil was limited by kinetic limitation at short time, and was limited by the solid phase reservoir at long time.
Collapse
Affiliation(s)
- Siheng Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Feng Sheng
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, People's Republic of China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Yanying Li
- College of Environmental Science and Engineering, Dalian Maritime University, No 1 Linghai Road, Dalian, Liaoning, 116026, People's Republic of China
| | - Zhou Fang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, People's Republic of China.
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, People's Republic of China
| |
Collapse
|
12
|
Chen R, Mu X, Liu J, Cheng N, Shi R, Hu M, Chen Z, Wang H. Predictive and estimation model of Cd, Ni, and Zn bioaccumulations in maize based on diffusive gradients in thin films. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160523. [PMID: 36446665 DOI: 10.1016/j.scitotenv.2022.160523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
Consumption of maize contaminated with heavy metals such as cadmium, nickel, and zinc threaten human health. For situ measuring the bioavailability of heavy metals, the diffusive gradients in thin films (DGT) is superior to other traditional methods. It is also important to find a method for predicting heavy metal enrichment in maize based on the DGT method. In this study, field surveys were conducted in the main maize producing areas of Tianjin, China. Heavy metal concentrations in maize grains were predicted by coupling DGT with traditional extraction methods. The results show that coupling DGT with soil solution can significantly improve prediction accuracy (Cd-R2 = 0.908, Ni-R2 = 0.903, and Zn-R2 = 0.904). This indicated that DGT and soil solution were feasible predictors of heavy metal concentration in maize. The DGT induced fluxes in soil/sediment (DIFS) model was used to simulate the uptake process of heavy metals by DGT, and better reveal the desorption processes of heavy metals in soils. DIFS-based desorption processes were employed to characterize the resupply ability of heavy metals in soils. The coupling of DGT and DIFS parameters provided the best prediction accuracy in this study (Cd-R2 = 0.920, Ni-R2 = 0.928, and Zn-R2 = 0.908). Predictions are slightly weaker for Zn than for Cd and Ni (Cd-P < 0.01, Ni-P < 0.01, and Zn-P < 0.05). The reason is that the average resupply type of Cd and Ni in soil is partially sustained while Zn is resupplied via diffusion only. The desorption rate k-1 can excellently improve the prediction accuracy of DGT, which avoids the disadvantage that soil solution does not consider desorption. The coupling of DGT and DIFS parameters provides an accurate and reliable method for predicting heavy metal enrichment in maize.
Collapse
Affiliation(s)
- Rui Chen
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China; Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, Beijing, China.
| | - Xiulin Mu
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China; Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, Beijing, China
| | - Jiaxing Liu
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China; Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, Beijing, China
| | - Nuo Cheng
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Rongguang Shi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Miaomiao Hu
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China; Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, Beijing, China
| | - Zhuoran Chen
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China; Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, Beijing, China
| | - Hao Wang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China; Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, Beijing, China
| |
Collapse
|
13
|
Liu Q, Jia Z, Liu G, Li S, Hu J. Assessment of heavy metals remobilization and release risks at the sediment-water interface in estuarine environment. MARINE POLLUTION BULLETIN 2023; 187:114517. [PMID: 36580839 DOI: 10.1016/j.marpolbul.2022.114517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
The influence of overlying hydrodynamics on the exchange behaviour and fluxes of heavy metals at the sediment-water interface (SWI) is poorly understood. In the study, metals exchange behaviour and exchange rate at the SWI under resuspended and undisturbed scenario were investigated The results showed that dissolved Cr, Cu, Zn, and Pb concentrations increased rapidly to attain maximum values between 0.3 and 0.5 N·m-2 after the sediment resuspended. Following the quick release, metals concentrations gradually decreased and remained at relatively low levels, especially for Cu and Zn. Meanwhile, Cu, Zn, and Pb had higher potential remobilization potential in the undisturbed case. Calculating with the hydrodynamics in the Modaomen, the metals efflux under the resuspension scenario could reach 0.55 to 4130.83 mg·m-2·yr-1, which were 1-3 orders of magnitudes higher than the undisturbed case. Whether or not resuspension events occurred, estuarine sediments were source of heavy metals, especially in the weakly mixed zone.
Collapse
Affiliation(s)
- Qiuxin Liu
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, Guangzhou 510611, China
| | - Zhenzhen Jia
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Guangzhou Liu
- Hubei Provincial Academy of Eco-environmental Science (Provincial Ecological Environment Engineering Assessment Center), Wuhan 430072, China
| | - Shiyu Li
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - Jiatang Hu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
| |
Collapse
|
14
|
Gao L, Sun K, Xu D, Zhang K, Gao B. Equilibrium partitioning behaviors and remobilization of trace metals in the sediment profiles in the tributaries of the Three Gorges Reservoir, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157882. [PMID: 35944632 DOI: 10.1016/j.scitotenv.2022.157882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Geochemical behaviors of trace metals in the sediment profiles are crucial for predicting the associated environmental risks in aquatic ecosystems. However, the comprehensive transport of trace metals under both equilibrium and dynamic conditions is still unclear under the changing hydrological regime. Here, the equilibrium partitioning behaviors and remobilization of five trace metals (Ni, Cu, Zn, As, and Pb) in sedimentary profiles within the tributaries of the Three Gorges Reservoir were explored by the partitioning coefficient (Kd), diffusive gradients in thin films (DGT), and DGT induced flux in sediments (DIFS) model. According to the Kd values, As posed the highest migration ability among the trace metals in the sediment profiles under equilibrium circumstances. Similarly, the dynamic processes of trace metals simulated by the DIFS model also suggested that As displayed the highest desorption rate despite having the lowest labile pool size. Moreover, all trace metals were classified as the "partially sustained" case, while the supply abilities of As and other trace metals were limited by the diffusion and the desorption kinetics, respectively. In addition, DGT-labile trace metals showed a diffusion trend from the sediment to the water column (except for Zn) at the sediment-water interface, indicating potential risks to water quality. Specifically, the equilibrium partitioning behaviors revealed the potential labile pool of trace metals in the solid phase, and the dynamic resupply process between the solid phase and porewater remained undetermined. In comparison, although DGT simulated the kinetic process of trace metals in the sediments, the labile pool of the trace metals could not be obtained. This study provided a holistic insight into the complementary trace metal behaviors under both equilibrium and dynamic conditions in the sediment and was beneficial to the water quality protection and internal pollution remediation in the aquatic environment.
Collapse
Affiliation(s)
- Li Gao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Ke Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Dongyu Xu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Keli Zhang
- Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Bo Gao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China.
| |
Collapse
|
15
|
Li Y, Yan L, Rong Q, Luo J, Zhang H, Jones KC. Assessing the Impact of Atrazine on the Availability of Arsenic in Soils Using DGT Technique. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:616-622. [PMID: 35218373 DOI: 10.1007/s00128-022-03482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Arsenic (As) has been observed to co-exist with atrazine (ATR) in soils worldwide. ATR, as an organic chemical, may affect the availability of As and further influence its uptake by organisms. Here we used a novel passive sampling technique, DGT (diffusive gradients in thin-films), to compare with other two conventional sampling approaches (soil solution extraction and 'Olsen As' measurement) to investigate the influence of ATR addition (normal recommended level and contaminated level) on the availability of As in soils, to further interpret the potential risk of As in soil environment. The effect of adding ATR on the behaviour of As in soils was limited. When the concentration of ATR was much higher, the availability of As in soils was supressed, the labile pool size was also affected, but the R value did not change much. The properties of the soils also played an important role by affecting the states of the compounds.
Collapse
Affiliation(s)
- Yanying Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China.
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
| | - Liying Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Qiuyu Rong
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Kevin C Jones
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| |
Collapse
|
16
|
Gao B, Gao L, Xu D. New insight for the diffusion-resupply kinetics of Cr(VI) in contaminated soil using DGT/DIFS. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113946. [PMID: 35999772 DOI: 10.1016/j.ecoenv.2022.113946] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Chromium (Cr) is a widespread pollutant with high toxicity and mobility. However, the diffusion-resupply kinetics of Cr(VI) between the solid phase and solution in the soils remain unclear. Here, we quantified the contributions of the soil solution and solid phase to the diffusion-resupply process of Cr(VI) in the contaminated soils using the diffusive gradients in thin-films (DGT) and DGT-induced fluxes in soils model. Based on the solution extraction result, Cr(VI) was the main available Cr species in the contaminated soils. Comparing the two diffusion-resupply stages of the kinetic process, the potential hazards due to the resupply from the solid phase can reach 10.71-50.66 %, although the soil solution accounted for the largest proportion of the effective concentration of Cr(VI) (49.34-89.29 %), which was ignored in the traditional equilibrium method. The kinetic parameters can be used to interpret the dynamic process. The resupply ability of the solid phase was closely related to the response time (Tc). The longer Tc was consistent with the low desorption constant, indicating a kinetic limitation. The magnitude of the resupply from the solid phase was related to labile pool size of Cr(VI) and soil organic carbon content. This study established a new quantification method for assessing diffusion-resupply kinetics of Cr(VI) in the soil, indicating the underestimation of Cr(VI) risk based on the use of traditional equilibrium methods. Our data provided a scientific basis for ecological risk assessment, pollution prevention, surface- and groundwater control, and environmental governance in areas with Cr contaminated soil.
Collapse
Affiliation(s)
- Bo Gao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China.
| | - Li Gao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Dongyu Xu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| |
Collapse
|
17
|
Wang S, Li R, Lin X, Lv Y, Ye Q, Shi Z. Kinetic modeling of As release from contaminated soils: Consideration of particle size and co-contamination of Cu. CHEMOSPHERE 2022; 301:134675. [PMID: 35461894 DOI: 10.1016/j.chemosphere.2022.134675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Prediction on the release kinetics of metalloids from soils is challenging due to the physio-chemical heterogeneity of soil and the varying binding abilities of metalloid contaminants on soil. In this study, the kinetics of As(V), together with Cu(II), release from two typical field contaminated soils were investigated by the stirred-flow experiments. We formulated the quantitative models to describe the release kinetics of As(V) from the contaminated soils with consideration of varying soil particle size and presence of Cu(II). The results showed that the release kinetics of As(V) and Cu(II) from different particle size fractions and at different reaction pH was well described by the model. The models also indicated that the bidentate binding sites on goethite were the major contributor for As(V) release, while soil organic matter (SOM) mainly controlled the Cu(II) release. Finer particle size fractions had more significant contributions to As(V) and Cu(II) release due to higher concentrations of reactive metal(loid)s and more reactive adsorbents. Moreover, the models also showed applicability for predicting metal(loid) release from the bulk soils by considering the contribution of each soil particle size fraction, and the kinetic behaviors of two individual contaminants, As(V) and Cu(II), can be modeled independently. Our results provided a modeling framework to predict the release kinetics of metal(loid)s from soils co-contaminated with different cation and anion pollutants with consideration on the effects of physical and chemical heterogeneity of soils.
Collapse
Affiliation(s)
- Shaohui Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Rong Li
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Xiaofeng Lin
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Yijin Lv
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Qianting Ye
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Zhenqing Shi
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| |
Collapse
|
18
|
Liu W, Hu T, Mao Y, Shi M, Cheng C, Zhang J, Qi S, Chen W, Xing X. The mechanistic investigation of geochemical fractionation, bioavailability and release kinetic of heavy metals in contaminated soil of a typical copper-smelter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119391. [PMID: 35513199 DOI: 10.1016/j.envpol.2022.119391] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Identifying the bioavailability and release-desorption mechanism of heavy metals (HMs) in soil is critical to understand the release risk of HMs. Simultaneously, the mechanistic investigation of affecting the bioavailability of HMs in soil is necessary, such as the grain-size distribution and soil mineralogy. Herein, the bioavailability of HMs (Cu, Cd, Ni, Pb, and Zn) in different area soils near a typical copper-smelter was evaluated by the sequential extraction technique (BCR), diffusive gradients in thin-films (DGT), and DGT-induced fluxes in sediments (DIFS) model. Results showed that the HMs proportion of the residual fraction in all soils was the highest. The average bioavailability concentration (CDGT) of Cu and Cd in industrial soil was the highest, with 45.12 μg· L-1 and 9.06 μg· L-1. The result of DIFS model revealed that the decreased order of the mean value of desorption rate constant (K-1) was Cd > Zn > Ni > Cu > Pb, 5.91 × 10-5, 4.96 × 10-5, 2.89 × 10-5, 9.64 × 10-6, and 8.69 × 10-6, respectively. According to the spatial distribution of release potential (R-value), the release potential of labile-Cu in agricultural soil was the highest, which was mainly attributed to fertilizer application in farmland. Simultaneously, the reduced hydroxyl was also related to the agricultural activities, resulting in the weakened adsorption capacity of HMs by soil. Redundancy analysis (RDA) results showed that the bioavailability of Cd, Ni, and Zn was mainly driven by soil pH, while the bioavailability of Cu and Pb was primarily driven by dissolved organic carbon (DOC). Meanwhile, carbonate minerals had a positive correlation with the bioavailability of Cd, Ni, and Zn, which could promote the release of HMs in mining soil as chemical weathering progresses. In conclusion, this study provides a structured method which can be used as a standard approach for similar scenarios to determine the geochemical fractionation, bioavailability, and release kinetics of heavy metals in soils.
Collapse
Affiliation(s)
- Weijie Liu
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Tianpeng Hu
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Yao Mao
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Mingming Shi
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Cheng Cheng
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Jiaquan Zhang
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Wei Chen
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Xinli Xing
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China.
| |
Collapse
|
19
|
Wagner S, Santner J, Irrgeher J, Puschenreiter M, Happel S, Prohaska T. Selective Diffusive Gradients in Thin Films (DGT) for the Simultaneous Assessment of Labile Sr and Pb Concentrations and Isotope Ratios in Soils. Anal Chem 2022; 94:6338-6346. [PMID: 35427118 PMCID: PMC9047413 DOI: 10.1021/acs.analchem.2c00546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stefan Wagner
- Department General, Analytical and Physical Chemistry, Chair of General and Analytical Chemistry, Montanuniversität Leoben, Franz-Josef-Strasse 18, 8700 Leoben, Austria
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Jakob Santner
- Department General, Analytical and Physical Chemistry, Chair of General and Analytical Chemistry, Montanuniversität Leoben, Franz-Josef-Strasse 18, 8700 Leoben, Austria
- Department of Crop Sciences, Institute of Agronomy, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Johanna Irrgeher
- Department General, Analytical and Physical Chemistry, Chair of General and Analytical Chemistry, Montanuniversität Leoben, Franz-Josef-Strasse 18, 8700 Leoben, Austria
| | - Markus Puschenreiter
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Steffen Happel
- TrisKem International, 3 Rue des Champs Géons, ZAC de l’Eperon, 35170 Bruz, France
| | - Thomas Prohaska
- Department General, Analytical and Physical Chemistry, Chair of General and Analytical Chemistry, Montanuniversität Leoben, Franz-Josef-Strasse 18, 8700 Leoben, Austria
| |
Collapse
|
20
|
Ren S, Wang Y, Sun D, Bekele TG, Dong F, Zhao H, Tan F. Simultaneous evaluation of kinetic release of labile arsenic and phosphorus in agricultural soils using cerium oxide-based DGT. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151039. [PMID: 34673063 DOI: 10.1016/j.scitotenv.2021.151039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
The adsorption/desorption of arsenic (As) in agricultural soils is of utmost importance for the evaluation of its kinetic release and potential of entering the food chain by uptake of crops. However, the mobility of As in soils is closely related to the migration behavior of soil phosphorus (P) due to their chemical similarity. Here, the distribution and desorption kinetics of As and P in four different types of farmland soils were simultaneously estimated by cerium oxide-based diffusive gradients in thin films technique (CeO2-DGT) coupled with dynamic model of DGT induced fluxes in soils (DIFS). CeO2-DGT was deployed in the soils over 400 h to investigate the interactions between As and P for their migration behaviors. The accumulated masses of As in the DGT devices showed reverse orders with those of P among the four soils, indicating their competitive adsorption on soil solids. The distribution coefficients (Kdl) for the labile As and P derived from the DIFS model were mutually exclusive. Clay in the soil reduced the pool size of the labile As by increasing the irreversible adsorption of As on soil particles. The adsorption rate constants of As were much smaller than P but their desorption rate constants were comparable. Among the four soils, the soil with the highest soil labile As/P molar ratio measured by DGT showed the largest potential of As phytotoxicity. Both As and P could reach the equilibrium of resupply within 0.7- 18 min under DGT depletion, and significant negative correlation was observed between the desorption rate (kb) of As and clay content in the soils.
Collapse
Affiliation(s)
- Suyu Ren
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yi Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Daming Sun
- Dalian Hydrological Bureau of Liaoning Province, Dalian 116023, China
| | - Tadiyose Girma Bekele
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Fan Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Feng Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
21
|
Zhao X, Li Z, Tang W, Gu X. Competitive kinetics of Ni(II)/Co(II) and Cr(VI)/P(V) adsorption and desorption on goethite: A unified thermodynamically based model. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127028. [PMID: 34523500 DOI: 10.1016/j.jhazmat.2021.127028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/13/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Predicting the dynamic behavior of coexisting ions on mineral interface is essential to understanding their lability in soil matrix, but a mechanical kinetic model for predicting competitive adsorption is lacking. In this study, the thermodynamic and kinetic adsorption behaviors of Ni(II), Co(II), Cr(VI), and P(V) on goethite under various condition were investigated by batch and stirred-flow experiments, respectively. The equilibrium model CD-MUSIC was developed to describe their equilibrium behavior, followed by the development of a multi-rate kinetic model constrained by the equilibrium model to describe their kinetic behavior. Ni(II) and Co(II) exhibit similar adsorption affinities, while the adsorption of P(V) was stronger and faster than that of Cr(VI). The two surface species of Cr(VI) and P(V) differed in dynamic features, a finding confirmed by in-situ ATR-FTIR spectroscopy. The kinetic model was successfully used to predict the binary competitive adsorption of Ni(II)-Co(II) and Cr(VI)-P(V), and especially the overshooting of Cr(VI) induced by P(V). Our results showed that an integrated thermodynamic-kinetic model obtained from a single-ion experiment can be extended to describe complex multi-ion interactions, indicating the robustness and scalability of the model's parameters. This approach can be used to construct more comprehensive equilibrium and dynamic models of the actual soil environment.
Collapse
Affiliation(s)
- Xiaopeng Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Xianlin Ave. 163, Nanjing 210023, PR China.
| | - Zipeng Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Xianlin Ave. 163, Nanjing 210023, PR China.
| | - Weijie Tang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Xianlin Ave. 163, Nanjing 210023, PR China.
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Xianlin Ave. 163, Nanjing 210023, PR China.
| |
Collapse
|
22
|
Zhu Y, Xu G, Wang X, Ji X, Jia X, Sun L, Gu X, Xie X. Passive sampling of chlorophenols in water and soils using diffusive gradients in thin films based on β-cyclodextrin polymers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150739. [PMID: 34619202 DOI: 10.1016/j.scitotenv.2021.150739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Chlorophenols (CPs) have been listed as priority control pollutants because of their high toxicity and wide range. An In-situ monitoring technique using diffusive gradients in thin films based on porous β-cyclodextrin polymers as binding materials (CDP-DGT), was established to monitor four typical CPs, namely, 4-Chlorophenol (4-CP), 2,4-Dichlorophenol (2,4-DCP), 2,4,5-Trichlorophenol (2,4,5-TCP), 2,4,6-Trichlorophenol (2,4,6-TCP) in water and soils. The performance of CDP-DGT are stable under the conditions of pH 3.5-9.3, ionic strength 0.001-0.500 mol L-1 and dissolved organic matter concentration 0-20 mol L-1. The adsorption capacities of CDP-DGT for 4-CP, 2,4-DCP, 2,4,5-TCP, 2,4,6-TCP were 57.80 μg cm-2, 98.82 μg cm-2, 95.69 μg cm-2 and 98.91 μg cm-2, respectively. The time-average weighted concentrations of four CPs determined by CDP-DGT at Sanjiangkou wharf (Yangtze river, China) were consistent with the results of grab sampling, indicating the feasibility of CDP-DGT application in actual water. In addition, the distribution of CPs in the red soil of Kunming and paddy soil of Yixing were also studied by CDP-DGT, and the desorption kinetics in the two soils were analyzed with the DIFS model. The higher the soil organic matter content is, the more CPs are distributed in the soil solid phase. CPs in both soils can be partially resupplied to soil solution from the soil solid phase and the higher the partition coefficient for labile CPs is, the stronger the supplement capacity is.
Collapse
Affiliation(s)
- Yuanting Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Guizhou Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xueyao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaowen Ji
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada
| | - Xun Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lin Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xianchuan Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang 330031, PR China.
| |
Collapse
|
23
|
Recent nanomaterials development and application in diffusive gradients in thin-film devices. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Ji X, Challis JK, Brinkmann M. A critical review of diffusive gradients in thin films technique for measuring organic pollutants: Potential limitations, application to solid phases, and combination with bioassays. CHEMOSPHERE 2022; 287:132352. [PMID: 34826958 DOI: 10.1016/j.chemosphere.2021.132352] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Diffusive gradient in thin films (DGT) for organics has received considerable attention for studying the chemical dynamics of various organic pollutants in the environment. This review investigates current limitations of DGT for organics and identifies several research gaps for future studies. The application of a protective outer filter membrane has been recommended for most DGT applications, however, important questions regarding longer lag times due to significant interaction or adsorption of specific groups of compounds on the outer membrane remain. A modified DGT configuration has been developed that uses the diffusive gel as the outer membrane without the use of an extra filter membrane, however use of this configuration, while largely successful, remains limited. Biofouling has been a concern when using DGT for metals; however, effect on the performance of DGT for organics needs to be systemically studied. Storage stability of compounds on intact DGT samplers has been assessed in select studies and that data is synthesized here. DGT has been used to describe the kinetic desorption of antibiotics from soils and biosolids based on the soil/biosolid physical-chemical characteristics, yet applications remain limited and requires further research before wide-scale adoption is recommended. Finally, DGT for organics has been rarely, albeit successfully, combined with bioassays as well as in vivo bioaccumulation studies in zebrafish. Studies using DGT combined with bioassays to predict the adverse effects of environmental mixtures on aquatic or terrestrial biota are discussed here and should be considered for future research.
Collapse
Affiliation(s)
- Xiaowen Ji
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada
| | | | - Markus Brinkmann
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, Canada; Centre for Hydrology, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
25
|
Liu B, Luo J, Jiang S, Wang Y, Li Y, Zhang X, Zhou S. Geochemical fractionation, bioavailability, and potential risk of heavy metals in sediments of the largest influent river into Chaohu Lake, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118018. [PMID: 34438169 DOI: 10.1016/j.envpol.2021.118018] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/11/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
As the largest tributary flowing into Chaohu Lake, China, the Hangbu-Fengle River (HFR) has an important impact on the aquatic environment security of the lake. However, existing information on the potential risks of heavy metals (HMs) in HFR sediments was insufficient due to the lack of bioavailability data on HMs. Hence, geochemical fractionation, bioavailability, and potential risk of five HMs (Cr, Cu, Zn, Cd, and Pb) in HFR sediments were investigated by the combined use of the diffusive gradient in thin-films (DGT), sequential extraction (BCR), as well as the physiologically based extraction test (PBET). The average contents of Cd and Zn in the HFR Basin were more than the background values in the sediments of Chaohu Lake. A large percentage of BCR-extracted exchangeable fraction was found in Cd (8.69%), Zn (8.12%), and Cu (8.05%), suggesting higher bioavailability. The PBET-extracted fractions of five HMs were all almost closely positively correlated with their BCR-extracted forms. The pH was an important factor affecting the bioavailability of HMs. The average DGT-measured contents of Zn, Cd, Cr, Cu, and Pb were 28.07, 7.7, 3.69, 2.26, 0.5 μg/L, respectively. Only DGT-measured Cd significantly negatively correlated with Eh, indicating that Cd also had a high release risk under reducing conditions, similar to the risk assessment results. Our results could provide a reference for evaluating the potential bioavailabilities and ecological hazards of HMs in similar study areas.
Collapse
Affiliation(s)
- Bingxiang Liu
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China; Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei, 230601, China; Guizhou Academy of Sciences, Guiyang, 550001, China.
| | - Jun Luo
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China; Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei, 230601, China
| | - Shuo Jiang
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China; Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei, 230601, China
| | - Yan Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yucheng Li
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Xuesheng Zhang
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Shaoqi Zhou
- Guizhou Academy of Sciences, Guiyang, 550001, China
| |
Collapse
|
26
|
Pan F, Cai Y, Guo Z, Fu Y, Wu X, Liu H, Wang X. Kinetic characteristics of mobile Mo associated with Mn, Fe and S redox geochemistry in estuarine sediments. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126200. [PMID: 34111753 DOI: 10.1016/j.jhazmat.2021.126200] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Estuarine sediments are crucial repositories and incubators of molybdenum (Mo) during its transport from rivers to the ocean. Here, Mo mobility and related processes in estuarine sediments were explored using high-resolution dialysis (HR-Peeper) and diffusive gradients in thin films (DGT) techniques. Better correlations were observed between dissolved Mn and Mo than between dissolved Fe and Mo, implying that Mn geochemistry plays a key role in dissolved Mo mobility via molybdate adsorption onto abundant Mn oxides and its substantial release upon intense Mn reduction. As a result, oxic intertidal sediments functioned as Mo sinks, and anoxic subtidal sediments functioned as Mo sources. The opposite vertical distributions between DGT-Labile S and DGT-Labile Mo indicated that the availability of labile Mo can be blocked by aqueous sulfide. However, the corresponding high concentrations of DGT-Labile S and dissolved Mo at subtidal sites demonstrated that the abundant dissolved Mo remobilized via Mn reduction was not effectively solidified by sulfide. Simulation with the DIFS model further verified that redox conditions and induced physicochemical processes are crucial factors controlling Mo mobility, with relatively low dissolved Mo concentrations but an adequate and steady resupply capacity of the bioavailable molybdate in intertidal sediments.
Collapse
Affiliation(s)
- Feng Pan
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China.
| | - Yu Cai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China
| | - Zhanrong Guo
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China.
| | - Yuyao Fu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China
| | - Xindi Wu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China
| | - Huatai Liu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China.
| | - Xinhong Wang
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China
| |
Collapse
|
27
|
Zou K, Wei J, Wang D, Kong Z, Zhang H, Wang H. A novel remediation method of cadmium (Cd) contaminated soil: Dynamic equilibrium of Cd 2+ rapid release from soil to water and selective adsorption by PP-g-AA fibers-ball at low concentration. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125884. [PMID: 34492822 DOI: 10.1016/j.jhazmat.2021.125884] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 06/13/2023]
Abstract
The acid-extractable fraction Cd(II) in soil accumulates easily in organisms, migrates and transforms in the ecological environment, which has posed potential health risks to human. This study found that the acid-extractable fraction Cd(II) in soil could be released rapidly into water at very low Cd2+ concentration. Carboxylated polypropylene (PP-g-AA) fibers-ball with high selectivity as adsorbent was used in the Cd(II) contaminated soil-water system. It could remove promptly trace Cd2+ from water even in the presence of interfering metal ions. Moreover, Cd(II) desorbed from soil to water could be continuously adsorbed by PP-g-AA fibers-ball, which kept the Cd2+ concentration always at a low level. This forms a dynamic equilibrium of rapid release- selective adsorption toward the acid-extractable fraction Cd(II) in the soil-water system. Here, the migratory pathway for the acid-extractable fraction Cd(II) to be released from contaminated soil to water and adsorbed simultaneously on the surface of PP-g-AA fibers-ball was established. This work offers a novel protocol that can remove more than 90% of the acid-extractable fraction Cd(II) from contaminated soil within 12 h, thereby contributes better to mitigate the risk of Cd(II) from soil to the food chain without changing the physical and chemical properties of soil.
Collapse
Affiliation(s)
- Kaijian Zou
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China; School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Junfu Wei
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China; School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China.
| | - Di Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China; Shool of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Zhiyun Kong
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China; Tianjin Engineering Center for Safety Evaluation of Water & Safeguards Technology, Tianjin 300387, China; Shool of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Huan Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China; Tianjin Engineering Center for Safety Evaluation of Water & Safeguards Technology, Tianjin 300387, China; Shool of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Huicai Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China; School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| |
Collapse
|
28
|
Li Y, Han C, Luo J, Jones KC, Zhang H. Use of the Dynamic Technique DGT to Determine the Labile Pool Size and Kinetic Resupply of Pesticides in Soils and Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9591-9600. [PMID: 34029066 DOI: 10.1021/acs.est.1c01354] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The diffusive gradients in thin films (DGT) technique has been successfully and widely applied to investigate the labile fractions of inorganic contaminants in soils and sediments, but there have been almost no applications to organic contaminants. Here we developed and tested the approach for the pesticide Atrazine (ATR) in a controlled soil experiment and in situ in an intact lake sediment core. The soil study explored the relationships between soil solution, DGT measured labile ATR and solvent extractable ATR in dosed soils of different organic matter, pH status and incubation times. The results are further interpreted using the DIFS (DGT-induced fluxes in soils and sediments) model. Resupply of ATR to the soil solution was partially sustained by the solid phase in all the soils. This was due to small labile pool size and slow kinetics, with soil pH being an important controlling factor. The in situ sediment study successfully used a DGT probe to examine labile ATR distribution through the core on the subcm scale. It demonstrated-for the first time-an easy to use in situ technique to investigate the effects of redox on resupply kinetics and biogeochemical processes of trace organic contaminants in sediments.
Collapse
Affiliation(s)
- Yanying Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, U.K
| | - Chao Han
- Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, P. R. China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Kevin C Jones
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, U.K
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, U.K
| |
Collapse
|
29
|
Chen R, Wang Q, Ren F, Ding G, Shi R, Cheng J, Cai X, Cheng N, Liu J, Li L. Determination of Labile Cadmium in Soils Using a New Sodium Alginate-Polyglutamic Acid-Diffusive Gradient in Thin Films. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1559-1569. [PMID: 33651400 DOI: 10.1002/etc.5021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/14/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Sodium alginate-polyglutamic acid was used to develop a new diffusive gradient in thin films (SA-PGA-DGT) device, which was proven to be suitable for the investigation of labile Cd in soil. The adsorption capacity of Cd was calculated to be approximately 16.8 μg/cm2 , which was hardly affected by factors including pH (5-9), ionic strength (0.1-100 mM), and the presence of other metals (Pb, Cu, Ni, and Cr). The SA-PGA gel has dense and uneven pores with large specific surface area, which ensures the adsorption of Cd by functional groups of the gel. A kinetics study indicated that the adsorption rate of Cd by the binding gel can be described as a pseudo-second-order reaction. Deployment of the SA-PGA-DGT in the soils of Tang Gu (located in Binhai New District, Tianjin, China) showed a strong positive linear correlation between Cd measured by the device and exchangeable Cd measured by the Tessier method (R = 0.73, p < 0.01). Cadmium determined by the SA-PGA-DGT device was less affected by soil properties. This new SA-PGA-DGT has obvious advantages over other methods in respect of the labile Cd analysis in soil. The innovative novel device expands the variety of existing DGT technologies and can be utilized to monitor the level of labile Cd in soil effectively. Environ Toxicol Chem 2021;40:1559-1569. © 2021 SETAC.
Collapse
Affiliation(s)
- Rui Chen
- Beijing Jiaotong University, Beijing, China
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing, China
| | - Qi Wang
- Beijing Jiaotong University, Beijing, China
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing, China
| | - Fumin Ren
- Beijing Jiaotong University, Beijing, China
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing, China
| | - Guoyu Ding
- Beijing Jiaotong University, Beijing, China
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing, China
| | - Rongguang Shi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Jing Cheng
- Beijing Jiaotong University, Beijing, China
| | - Xuying Cai
- Beijing Jiaotong University, Beijing, China
| | - Nuo Cheng
- Beijing Jiaotong University, Beijing, China
| | | | - Lanxin Li
- Beijing Jiaotong University, Beijing, China
| |
Collapse
|
30
|
Meng M, Yang L, Wei B, Cao Z, Yu J, Liao X. Plastic shed production systems: The migration of heavy metals from soil to vegetables and human health risk assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112106. [PMID: 33756293 DOI: 10.1016/j.ecoenv.2021.112106] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Plastic shed production system (PSPS) provide abundant vegetable products for human consumption. Comprehensive and accurate heavy metal (HM) risk assessment of soil and vegetable under plastic sheds is crucial for human health. Pollution assessment, bioavailability and mobility evaluation and health risk assessment of Cd, Cr, Cu, Zn Ni, Pb, and As were performed in a presentative Plastic shed production system. The concentrations of the Cd, Cu and Zn exceeded their background value. Positive Igeo values suggested that soil under plastic sheds was widely contaminated with Cd. The bioavailability of heavy metals in soils was evaluated using DTPA extraction and DGT methods. The results of both methods demonstrated that Cd, Cu, and Zn have high bioavailability, especially Cd. Analogically, the results of mobility assignment based on DIFS showed that Cd has a high migration risk due to the large available pool. Based on specific cultivation and management patterns of plastic shed production system, pH reduction and salt and nutrient accumulation may increase the heavy metals migration risk in soil under plastic sheds, while a high organic matter content may reduce the heavy metals migration risk. The average concentrations of Cd, Cr, Cu, Zn, Ni, Pb, and As in vegetables were 0.023, 0.226, 0.654, 2.984, 0.329, 0.041, and 0.010 mg/kg, respectively. All samples were well below the threshold. The order of target hazard quotient of different heavy metals caused by vegetable consumption was Cd > Cr > As > Cu, Ni, Pb, Zn, and the average total hazard index value was below 1, which demonstrated that risk of vegetable consumption in the study area. However, due to its high concentration and transfer coefficient in spinach, Cd might pose a health risk to humans, which requires special attention. In this study, Cd caused a significant issue than other HMs, whether pollution level, health risk and migration risk. DGT and DIFS can be used as an effective evaluation tool in the research of controlling heavy metals migration in soil-crop systems.
Collapse
Affiliation(s)
- Min Meng
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Beijing 100101, China
| | - Linsheng Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Binggan Wei
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhiqiang Cao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiangping Yu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoyong Liao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Beijing 100101, China.
| |
Collapse
|
31
|
Hamilton EM, Young SD, Bailey EH, Humphrey OS, Watts MJ. Online Microdialysis-High-Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry (MD-HPLC-ICP-MS) as a Novel Tool for Sampling Hexavalent Chromium in Soil Solution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2422-2429. [PMID: 33497200 DOI: 10.1021/acs.est.0c08140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Conventional soil solution sampling of species-sensitive inorganic contaminants, such as hexavalent chromium (CrVI), may induce interconversions due to disruption of system equilibrium. The temporal resolution that these sampling methods afford may also be insufficient to capture dynamic interactions or require time-consuming and expensive analysis. Microdialysis (MD) is emerging as a minimally invasive passive sampling method in environmental science, permitting the determination of solute fluxes and concentrations at previously unobtainable spatial scales and time frames. This article presents the first use of MD coupled to high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS) for the continuous sampling and simultaneous detection of CrVI in soil solution. The performance criteria of the system were assessed using stirred solutions; good repeatability of measurement (RSD < 2.5%) was obtained for CrVI, with a detection limit of 0.2 μg L-1. The online MD-HPLC-ICP-MS setup was applied to the sampling of native CrVI in three soils with differing geochemical properties. The system sampled and analyzed fresh soil solution at 15 min intervals, offering improved temporal resolution and a significant reduction in analysis time over offline MD. Simple modifications to the chromatographic conditions could resolve additional analytes, offering a powerful tool for the study of solute fluxes in soil systems to inform research into nutrient availability or soil-to-plant transfer of potentially harmful elements.
Collapse
Affiliation(s)
- Elliott M Hamilton
- Inorganic Geochemistry, Centre for Environmental Geochemistry, British Geological Survey, Keyworth, Nottingham NG12 5GG, U.K
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, U.K
| | - Scott D Young
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, U.K
| | - Elizabeth H Bailey
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, U.K
| | - Olivier S Humphrey
- Inorganic Geochemistry, Centre for Environmental Geochemistry, British Geological Survey, Keyworth, Nottingham NG12 5GG, U.K
| | - Michael J Watts
- Inorganic Geochemistry, Centre for Environmental Geochemistry, British Geological Survey, Keyworth, Nottingham NG12 5GG, U.K
| |
Collapse
|
32
|
De Silva S, Ball AS, Indrapala DV, Reichman SM. Review of the interactions between vehicular emitted potentially toxic elements, roadside soils, and associated biota. CHEMOSPHERE 2021; 263:128135. [PMID: 33297123 DOI: 10.1016/j.chemosphere.2020.128135] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 06/12/2023]
Abstract
Given the large size of the world road network, the land area affected by vehicular emissions is extensive. This review provides the first global picture of the relationships between vehicular emitted potentially toxic elements, roadside soils, and risks to associated biota. The following potentially toxic elements that accumulate in roadside soils have been examined in this review: As, Co, Cr, Cu, Mn, Mo, Ni, Pb, Pd, Pt, Rh, Se, Sb, Sn, Sr, Ti and Zn. The meta-analysis undertaken demonstrated an increase in concentrations of Cd, Pb, Zn, Pt, Pd and Rh in roadside soils compared to the mean global crustal concentrations. Positive correlations between potentially toxic element concentrations in roadside soil, plants, microbes, and animals were observed. Roadside studies have found increased potentially toxic element concentrations in plants and animals with increasing proximity to roads. The mean concentrations of Pb in roadside plants and vertebrates were at values above the World Health Organisation guidelines. Research has shown a range of impacts of potentially toxic elements in roadside soils on microbial activity including decreased litter decomposition, nitrogen fixation, nutrient cycling and enzyme synthesis. However, aside from the impact on microbial communities, there has been little research investigating the impacts of roadside soil elements on the associated biota. Thus, there is a need for research that investigates the toxicity of elements in roadside soils to plants and animals and to investigate the transfer of roadside elements through the food chain, and thus, risks posed to human health and the environment.
Collapse
Affiliation(s)
- Shamali De Silva
- School of Engineering, RMIT University, Melbourne, 3001, Australia; Centre for Environmental Sustainability and Remediation (EnSuRe), RMIT University, Melbourne, 3001, Australia.
| | - Andrew S Ball
- Centre for Environmental Sustainability and Remediation (EnSuRe), RMIT University, Melbourne, 3001, Australia; School of Science, RMIT University, Melbourne, 3001, Australia
| | - Demidu V Indrapala
- School of Engineering, RMIT University, Melbourne, 3001, Australia; School of Science, RMIT University, Melbourne, 3001, Australia
| | - Suzie M Reichman
- School of Engineering, RMIT University, Melbourne, 3001, Australia; Centre for Environmental Sustainability and Remediation (EnSuRe), RMIT University, Melbourne, 3001, Australia; Centre for Anthropogenic Pollution Impact and Management (CAPIM) School of Biosciences, University of Melbourne, Carlton, 3010, Australia
| |
Collapse
|
33
|
Fu Y, Guo Z, Pan F, Cai Y, Wu J, Wang B. Distribution characteristics and release mechanisms of Pb in surface sediments in different aquatic environments. JOURNAL OF CONTAMINANT HYDROLOGY 2020; 235:103704. [PMID: 32896763 DOI: 10.1016/j.jconhyd.2020.103704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/03/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
As a trace heavy metal, lead (Pb) has many anthropogenic applications but also produces many environmental pollution problems because of its high toxicity. In this study, we combined two in situ high-resolution sampling techniques - high-resolution dialysis (HR-Peeper) and diffusive gradients in thin films (DGT) - with the DGT-induced fluxes in sediment (DIFS) model to explore the mechanism of Pb release and resupply between sediments and pore water in the lower reaches and estuary of the Jiuxi River and the adjacent coast. An analysis of the chemical forms of Pb in the sediments showed that the content of the acid-extractable fraction (F1) was higher at the coastal site than at the other sampling sites, which indicates that Pb in the coastal sediments had greater activity and was more likely to cause Pb pollution. The apparent diffusion fluxes of Pb across the sediment-water interface (SWI) in the lower reaches, estuary and coastal zone are negative, and the absolute value of Pb flux in the estuary is several times higher than that in the other two stations, indicating a strong downward Pb diffusion trend, which may be due to water pollution caused by the nearby sewage outlet. As an insensitive element to redox, Pb did not exhibit an obvious correlation with Fe. In particular, the high Pb concentration and strong downward diffusion trend of the overlying water in the estuary caused the significant negative correlation between Pb and Fe. The calculated results of the DIFS model show that the reduced layer in the intertidal zone along the coast has the highest R value, the highest desorption rate (k-1) and the shortest response time (Tc), indicating that sediment particles in the coastal intertidal zone supply Pb to the pore water at the fastest rate; consequently, Pb pollution in the coastal zone is worthy of further attention.
Collapse
Affiliation(s)
- Yuyao Fu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China
| | - Zhanrong Guo
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China.
| | - Feng Pan
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China
| | - Yu Cai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China
| | - Jinye Wu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China
| | - Bo Wang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China
| |
Collapse
|
34
|
Che F, Chen J, Zhang B, Jiang X, Wang S. Distribution, risk and bioavailability of metals in sediments of Lake Yamdrok Basin on the Tibetan Plateau, China. J Environ Sci (China) 2020; 97:169-179. [PMID: 32933732 DOI: 10.1016/j.jes.2020.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Total contents of metals in soil and sediments on the Tibetan Plateau of China have been widely analyzed, but existing information is insufficient to effectively evaluate metal ecological risk because of a lack of metal bioavailability data. In this study, distribution, potential risk, mobility and bioavailability of metals in sediments of Lake Yamdrok Basin in Tibet of China were explored by combined use of total digestion, sequential extraction and the diffusive gradient in thin-films (DGT). Average concentrations of Cr, Ni, Cu, Zn, As, Cd and Pb in surface sediments were 31.25, 30.31, 22.00, 45.04, 31.32, 0.13 and 13.39 mg/kg, respectively. Higher levels of metals were found near the inflowing rivers. Residual form was dominant in Cr, Ni, Zn, Cd and Pb, and reducible form was dominant in As and Cd. Metals in surface sediments showed a low enrichment degree overall, but Cd and As had higher ecological risk levels than the other metals. Furthermore, there was a larger average proportion of exchangeable form of As (20.4%) and Cd (9.0%) than the other metals (1.7%-3.3%), implying their higher mobility and release risk. Average DGT-labile concentrations of Cr, Ni, Cu, Zn, As, Cd and Pb were 0.5, 4.5, 0.7, 25.1, 60.0, 0.22 and 1.0 µg/L, respectively. The DGT-labile As was significantly correlated with extractable As forms (p< 0.01), suggesting that extractable As in sediments acts as a "mobile pool" for bioavailable As. These results suggest potential risks of As and Cd, especially As, deserve further attention in Lake Yamdrok Basin.
Collapse
Affiliation(s)
- Feifei Che
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing100012, China
| | - Junyi Chen
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing100012, China
| | - Bo Zhang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing100012, China
| | - Xia Jiang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing100012, China
| | - Shuhang Wang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing100012, China.
| |
Collapse
|
35
|
Yuan H, Yin H, Yang Z, Yu J, Liu E, Li Q, Tai Z, Cai Y. Diffusion kinetic process of heavy metals in lacustrine sediment assessed under different redox conditions by DGT and DIFS model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140418. [PMID: 32886994 DOI: 10.1016/j.scitotenv.2020.140418] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Different fractions and variations of Mn, Co, Ni, Cu, Cd, Pb, Zn, and Fe in sediment via oxic and anaerobic treatments were investigated using BCR sequential extraction methods, DGT technique, and DIFS model. The results indicated that reducible fraction was the considerable pool apart from residual fraction, suggesting the high desorption potential of heavy metals. The high-resolution DGT measurement indicated that CDGT significantly rose after anaerobic condition and characterized by the relative high R value. Significantly increasing positive fluxes varying from 0.64 to 339.4 μg cm-2 s-1 except Ni suggested that apparent diffusion upward occurred over time from the sediment to the overlying water on anaerobic episode. High proportion of reducible Fe fraction and concurrent reduction of Fe(III) to Fe(II) during anaerobic condition were responsible for the increase of labile metals. The diffusion kinetic parameters including the equilibrium distribution coefficient (Kd), response time (Tc), and rate constant (k1 and k-1) were obtained using DIFS model. These parameters confirmed the partially sustained resupply capacity of heavy metals from solid sediment particle to pore water because of the considerable reducible fractions. Additionally, planar optode (PO) imaging approach demonstrated that low pH accompanied with decreasing dissolved oxygen (DO) concentration on anaerobic condition enhanced the release of labile metal fraction. Generally, anoxia facilitated the reduction of reducible fraction of heavy metals and further strengthened the desorption, resupply and diffusion in the aquatic ecosystems.
Collapse
Affiliation(s)
- Hezhong Yuan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Hongbin Yin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhen Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jianghu Yu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan 250359, China
| | - Qiang Li
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, United States
| | - Ziqiu Tai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yiwei Cai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
36
|
Abstract
Finding a reliable method to predict soil metal bioavailability in aged soil continues to be one of the most important problems in contaminated soil chemistry. To investigate the bioavailability of metals aged in soils, we used roadside soils that had accumulated metals from vehicle emissions over a range of years. We collected topsoil (0–10 cm) samples representing new-, medium- and old-aged roadside soils and control site soil. These soils were studied to compare the ability of the diffusive gradients in thin films technique (DGT), soil water extraction, CaCl2 extraction, total metal concentrations and optimised linear models to predict metal bioavailability in wheat plants. The response time for the release of metals and the effect on metal bioavailability in field aged soils was also studied. The DGT, and extractable metals such as CaCl2 extractable and soil solution metals in soil, were not well correlated with metal concentrations in wheat shoots. In comparison, the strongest relationships with concentrations in wheat shoots were found for Ni and Zn total metal concentrations in soil (e.g., Ni r = 0.750, p = 0.005 and Zn r = 0.833, p = 0.001); the correlations were still low, suggesting that total metal concentrations were also not a robust measure of bioavailability. Optimised linear models incorporating soil physiochemical properties and metal extracts together with road age as measure of exposure time, demonstrated a very strong relationship for Mn R2 = 0.936; Ni R2 = 0.936 and Zn R2 = 0.931. While all the models developed were dependent on total soil metal concentrations, models developed for Mn and Zn clearly demonstrated the effect of road age on metal bioavailability. Therefore, the optimised linear models developed have the potential for robustly predicting bioavailable metal concentrations in field soils where the metals have aged in situ. The intrinsic rate of release of metals increased for Mn (R2 = 0.617, p = 0.002) and decreased for Cd (R2 = 0.456, p = 0.096), Cu (R2 = 0.560, p = 0.083) and Zn (R2 =0.578, p = 0.072). Nickel did not show any relationship between dissociation time (Tc) and road age. Roadside soil pH was likely to be the key parameter controlling metal aging in roadside soil.
Collapse
|
37
|
Gong B, He E, Peijnenburg WJGM, Iwasaki Y, Van Gestel CAM, Cao X, Zhao L, Xu X, Qiu H. Coupling mixture reference models with DGT-perceived metal flux for deciphering the nonadditive effects of rare earth mixtures to wheat in soils. ENVIRONMENTAL RESEARCH 2020; 188:109736. [PMID: 32521305 DOI: 10.1016/j.envres.2020.109736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
The risk assessment of mixtures of rare earth elements (REEs) is hampered by a lack of fundamental understanding of their interactions in different soil types. Here, we assessed mixture interactions and toxicity to Triticum aestivum of Y and Ce in four different soils in relation to their bioavailability. Mixture toxicity was modelled by concentration addition (CA) and independent action (IA), in combination with different expressions of exposure: three equilibrium-based doses (total soil concentrations [M]tot, free ion activity in soil solution {M3+}, and the fraction (f) of metal ions bound to the biotic ligands (BLs)) and one kinetically controlled dose ([M]flux) metrics. Upon single exposure, REE toxicity was increasingly better described when using exposure expressions based on deepened understanding of their bioavailability: [M]flux > f > {M3+} > [M]tot. The mixture analyses based on [M]tot and {M3+} displayed deviations from additivity depending on the soil type. With the parameters derived from single exposures, the BLM approach gave better predictions of mixture toxicity (R2 ~ 0.70) than when using CA and IA based on either [M]tot or {M3+} (R2 < 0.64). About 30% of the variance in toxicity remained unexplained, challenging the view that the free metal ion is the main bioavailable form under the BLM framework based on thermodynamic equilibrium. Toxicity was best described when accounting for changes in the size of the labile metal pool by using a kinetically controlled dose metric (R2 ~ 0.80). This suggests that dynamic bioavailability analysis could provide a robust basis for modeling and reconciling the interplays and toxicity of metal mixtures in different soils.
Collapse
Affiliation(s)
- Bing Gong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Erkai He
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, Leiden, 2333CC, the Netherlands; National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, Bilthoven, 3720 BA, the Netherlands
| | - Yuichi Iwasaki
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, 305-8569, Japan
| | - Cornelis A M Van Gestel
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
38
|
Liu L, Luo D, Wei L, Liu Y, Huang S, Huang L, Xie Z, Xiao T, Huang X, Wu Q. Effects of metal stabilizers on soil hydraulic characteristics and mobility of cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:33712-33722. [PMID: 32533487 DOI: 10.1007/s11356-020-09483-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the effect of typical stabilizers on hydraulic properties, immobilization, and leachate characteristics based on the diffusive gradient thin-films technique (DGT) and a leaching experiment. Three types of stabilizers were classified based on various characteristics of soil field capacity (θf), and their immobilization effects were as follows: (i) θf increased and the immobilization of Cd was achieved with nanohydroxyapatite, increasing θf by 19.36% and decreasing the bioavailable Cd by 78.84%; (ii) the increasing θf conversely inhibited cadmium stabilization. Straw biochar averagely promoted θf by 17.39%, while the stabilization was suppressed; (iii) other stabilizers (zeolite, montmorillonite, and sepiolite) had no significant effect on θf and immobilization. It is suggested that stabilization depends on chemical mechanisms and is probably also affected by hydraulic mechanisms. The first types of stabilizers formed precipitates with poor solubility, and the strong affinity of heavy metals to soil particles can account for that the increasing θf had a negligible influence on the dissolution equilibrium of the heavy metals. Attapulgite also belongs to this type. The second and third types of stabilizers primarily adsorbed cadmium through ion exchange, resulting in the relatively easy heavy metal release. Increasing θf facilitated the desorption of heavy metals in the case of the second stabilizer type. However, the inconspicuous change in θf caused by the third stabilizer type had no impact on stabilization. Moreover, Cd leaching was positively correlated with bioavailable Cd and soil permeability. Heavy metal migration induced by colloids less than 90 nm in coarse biochar treatments deserves further research.
Collapse
Affiliation(s)
- Lirong Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Dinggui Luo
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
- Linköping University-Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, 510006, China.
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou, 510006, China.
| | - Lezhang Wei
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
- Linköping University-Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yu Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
- Linköping University-Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Sibin Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Liting Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Zhenyu Xie
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xuexia Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
- Linköping University-Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou, 510006, China
| | - Qihang Wu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
39
|
Gao L, Sun K, Xu D, Gao B. Kinetic process of Cr(III) in contaminated soils characterized by diffusive gradients in thin films technique. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137425. [PMID: 32145614 DOI: 10.1016/j.scitotenv.2020.137425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Trivalent chromium has historically been considered as an environmentally benign micronutrient due to its low mobility; however, its kinetic process in soil remains poorly understood. Here, the labile fraction and kinetics of Cr(III) in contaminated soils were explored using diffusive gradients in thin films (DGT) and the DGT-induced fluxes model. In contrast to the low mobility of Cr(III) in soils reported by the classic equilibrium partitioning method, we observed steady resupply from the solid phase through a dynamic process, wherein Cr(III) in the soils were maintained by an intermediate resupply rate with the R values at their maximum (Rmax). The resupply of Cr(III) was influenced by the kinetic parameters and soil properties: (i) the resupply ability (R-Rdiff) was influenced by pH and response time (Tc); (ii) Rmax, was controlled by pH, Tc, and the desorption rate (k-1); (iii) k-1 was influenced by pH and soil texture. This study presents the new information regarding the kinetics of Cr(III) in soils and demonstrates that Cr(III) is steadily resupplied by soil, which is not captured by equilibrium-based methods, furthering our insight of the geochemical behavior of Cr(III). This information was essential for understanding the toxicity of Cr and improving remediation.
Collapse
Affiliation(s)
- Li Gao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ke Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Dongyu Xu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Bo Gao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China.
| |
Collapse
|
40
|
Pan F, Guo Z, Cai Y, Fu Y, Wu J, Wang B, Liu H, Gao A. Cyclical patterns and (im)mobilization mechanisms of phosphorus in sediments from a small creek estuary: Evidence from in situ monthly sampling and indoor experiments. WATER RESEARCH 2020; 171:115479. [PMID: 31935642 DOI: 10.1016/j.watres.2020.115479] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 12/24/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
Internal phosphorus (P) mobility is crucially important to overlying water ecosystems, while its spatiotemporal variations and mechanisms remain to be studied, especially in dynamic estuarine sediments. In this study, in situ monthly field sampling and indoor experiments were combined to measure the soluble reactive P (SRP), soluble Fe and diffusive gradients in thin films (DGT)-labile P/S in the overlying water, sediment and porewater in the Jiuxi River Estuary by employing high-resolution dialysis (HR-Peeper), the DGT technique and a MicroRhizon sampler. The consistent tendency between DGT-labile S and P in most seasons indicates that P mobilization was dominated by intense dissimilatory sulfate reduction (DSR), causing high SRP concentrations and active exchange with the overlying water. The circannual cyclical pattern of P is summarized, where in addition to temperature, monthly changes in runoff and tidal range are crucial external factors to control long-term P cycling via changed redox environments and terrigenous materials inputs. The mobile P, Fe and S present higher values during flood tides and lower values during ebb tides in tidal simulation experiments, demonstrating that the short-term cycling of P, Fe and S in intertidal surface sediments is highly redox-sensitive and controlled by tidal processes. The results also reveal that DSR greatly facilitates P mobility and release, while sediment oxidation and the induced enhancement in DIR and Fe cycling can effectively control P immobilization.
Collapse
Affiliation(s)
- Feng Pan
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, PR China
| | - Zhanrong Guo
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, PR China.
| | - Yu Cai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, PR China
| | - Yuyao Fu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, PR China
| | - Jinye Wu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, PR China
| | - Bo Wang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, PR China
| | - Huatai Liu
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, PR China
| | - Aiguo Gao
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, PR China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, PR China
| |
Collapse
|
41
|
Ren S, Wang Y, Cui Y, Wang Y, Wang X, Chen J, Tan F. Desorption kinetics of tetracyclines in soils assessed by diffusive gradients in thin films. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113394. [PMID: 31662246 DOI: 10.1016/j.envpol.2019.113394] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/12/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
Tetracyclines (TCs) are frequently detected in agricultural soils worldwide, causing a potential threat to crops and human health. In this study, diffusive gradients in thin films technique (DGT) was used to measure the distribution and exchange rates of three TCs (tetracycline (TC), oxytetracycline (OTC) and chlortetracycline (CTC)) between the solid phase and solution in five farmland soils. The relationship between the accumulated masses with time suggested that TCs consumption in soil solution by DGT would induce the supply from the soil solid phase. The distribution coefficient for the labile antibiotics (Kdl), response time (Tc) and desorption/adsorption rates (kb and kf) between dissolved and sorbed TCs were derived from the dynamic model of DIFS (DGT induced fluxes in soils). The Kdl showed similar sizes of labile solid phase pools for TC and OTC while larger pool sizes were observed for CTC in the soils. Although the concentrations of CTC were lowest in soil solution, the potential hazard caused by continuous release from soil particles could not be ignored. The long response time (>30 min in most cases) suggested that the resupply of TCs from soil solids was limited by their desorption rates (1.26-121 × 10-6 s-1). The soils in finer texture, with higher clay and silt contents (<50 μm) showed a greater potential for TCs release.
Collapse
Affiliation(s)
- Suyu Ren
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yi Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ying Cui
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaochun Wang
- Anshan Normal College, Department of Chemistry & Life Science, Anshan 114005, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Feng Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
42
|
Sun H, Gao B, Gao L, Xu D, Sun K. Using diffusive gradients in thin films (DGT) and DGT-induced fluxes in sediments model to assess the dynamic release of copper in sediment cores from the Three Gorges Reservoir, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:192-200. [PMID: 30954818 DOI: 10.1016/j.scitotenv.2019.03.400] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/03/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
As one of the largest man-made reservoir, the Three Gorges Reservoir (TGR) brings great uncertainty and challenges regarding trace metal (e.g., Cu) remobilization in the sediment. Therefore, in this study, sediment cores were collected from the mainstream of the Yangtze River and its three tributaries in the TGR, with a focus on evaluating the Cu remobilization risk and release dynamics using conventional methods, diffusive gradients in thin films (DGT), and the DGT-induced fluxes in sediments (DIFS) model. The results showed that although total Cu concentrations were slightly higher than background values, Cu was mainly observed in the unreactive residual fraction. Additionally, assessment of sediment quality guidelines and the risk assessment code indicated low Cu contamination risk for all sampling sites. However, the results of DGT measurements at the sediment-water interface showed efflux of Cu from sediment to the overlying water at most sites, except for the upstream of the Meixi River and the mainstream of the Yangtze River. Interestingly, diffusion fluxes at the three tributaries displayed an increase trend from the upper to lower reaches. The DIFS model simulation further implied that the highest resupply capacity and desorption rate occurred in the Zhuyi River and the upstream of the Meixi River. In fact, the accumulation of Cu from the upper to the lower reaches of the Zhuyi River significantly elevated the Cu resupply capacity. Thus, more attention should be paid to Cu mobilization in the TGR, especially in the Zhuyi River and the upstream of the Meixi River.
Collapse
Affiliation(s)
- Haoran Sun
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Bo Gao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China.
| | - Li Gao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Dongyu Xu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Ke Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
43
|
Huu Nguyen V, Yee SK, Hong Y, Moon DH, Han S. Predicting mercury bioavailability in soil for earthworm Eisenia fetida using the diffusive gradients in thin films technique. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:19549-19559. [PMID: 31079304 DOI: 10.1007/s11356-019-05180-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
In general, the diffusive gradients in thin films (DGT) technique is an effective tool for evaluating metal bioavailability; however, its applicability is subject to the type of metal and organism involved. In this study, the accumulated masses of Hg in DGT probes and in the earthworm species Eisenia fetida were monitored for 10 days, to test if the DGT technique can be used as a predicting method for the bioavailability of soil Hg to earthworms. In the Hg exposure tests using soils prepared with different peat moss concentrations of 5, 10, 15, and 20% and varying pH values of 4.6, 5.6, and 6.2, the experimentally determined DGT-soil accumulation factor (DSAF) and biota-soil accumulation factor (BSAF) both increased as the peat moss content decreased and the pH increased. According to a one compartment model, this was a result of the increased Hg uptake rate constant (k1) and the relatively stable Hg elimination constant (k2) under lower peat moss and higher pH conditions. It is interesting to note that the Hg uptake rates by DGT and earthworms were considerably higher for fresh soils than for aged soils, while porewater (and acid-extractable) Hg concentrations were rather similar between the two types of soils. Across diverse soil properties, steady-state Hg in earthworm tissue showed a strong positive correlation with DGT-measured Hg flux ([earthworm Hg] = 354(DGT-Hg flux)-34, r2 = 0.88), while meager correlations were found between Hg concentration in earthworms and that in porewater (and acid-extractable). The overall results indicate that DGT-measured Hg flux is a better tool than conventional methods for predicting Hg bioavailability for earthworms inhabiting diverse types of soil.
Collapse
Affiliation(s)
- Viet Huu Nguyen
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Seah Kah Yee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Yongseok Hong
- Department of Environmental Systems Engineering, Korea University, Sejong City, 30019, Republic of Korea
| | - Deok Hyun Moon
- Department of Environmental Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Seunghee Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
44
|
Menezes-Blackburn D, Sun J, Lehto NJ, Zhang H, Stutter M, Giles CD, Darch T, George TS, Shand C, Lumsdon D, Blackwell M, Wearing C, Cooper P, Wendler R, Brown L, Al-Kasbi M, Haygarth PM. Simultaneous Quantification of Soil Phosphorus Labile Pool and Desorption Kinetics Using DGTs and 3D-DIFS. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6718-6728. [PMID: 31083927 DOI: 10.1021/acs.est.9b00320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The buffering of phosphorus concentrations in soil solution by the soil-solid phase is an important process for providing plant root access to nutrients. Accordingly, the size of labile solid phase-bound phosphorus pool and the rate at which it can resupply phosphorous into the dissolved phase can be important variables in determining when the plant availability of the nutrient may be limited. The phosphorus labile pool (Plabile) and its desorption kinetics were simultaneously evaluated in 10 agricultural UK soils using the diffusive gradients in thin-films (DGT) technique. The DGT-induced fluxes in the soil and sediments model (DIFS) was fitted to the time series of DGT deployments (1-240 h), which allowed the estimation of Plabile, and the system response time ( Tc). The Plabile concentration was then compared to that obtained by several soil P extracts including Olsen P, FeO-P, and water extractable P, in order to assess if the data from these analytical procedures can be used to represent the labile P across different soils. The Olsen P concentration, commonly used as a representation of the soil labile P pool, overestimated the desorbable P concentration by 6-fold. The use of this approach for the quantification of soil P desorption kinetic parameters found a wide range of equally valid solutions for Tc. Additionally, the performance of different DIFS model versions working in different dimensions (1D, 2D, and 3D) was compared. Although all models could provide a good fit to the experimental DGT time series data, the fitted parameters showed a poor agreement between different model versions. The limitations of the DIFS model family are associated with the assumptions taken in the modeling approach and the three-dimensional (3D) version is here considered to be the most precise among them.
Collapse
Affiliation(s)
- Daniel Menezes-Blackburn
- Department of Soils, Water and Agricultural Engineering, CAMS , Sultan Qaboos University , PO Box 34, Al-khod 123 , Sultanate of Oman
- Lancaster University: Lancaster Environment Centre , Lancaster , LA1 4YQ , U.K
| | - Jiahui Sun
- Lancaster University: Lancaster Environment Centre , Lancaster , LA1 4YQ , U.K
| | - Niklas J Lehto
- Department of Soil and Physical Sciences , Lincoln University , Christchurch , New Zealand
| | - Hao Zhang
- Lancaster University: Lancaster Environment Centre , Lancaster , LA1 4YQ , U.K
| | - Marc Stutter
- Lancaster University: Lancaster Environment Centre , Lancaster , LA1 4YQ , U.K
- The James Hutton Institute , Aberdeen , AB15 8QH and Dundee, DD2 5DA, Scotland, U.K
| | - Courtney D Giles
- The James Hutton Institute , Aberdeen , AB15 8QH and Dundee, DD2 5DA, Scotland, U.K
| | - Tegan Darch
- Rothamsted Research: North Wyke , Okehampton , Devon EX20 2SB , U.K
| | - Timothy S George
- The James Hutton Institute , Aberdeen , AB15 8QH and Dundee, DD2 5DA, Scotland, U.K
| | - Charles Shand
- The James Hutton Institute , Aberdeen , AB15 8QH and Dundee, DD2 5DA, Scotland, U.K
| | - David Lumsdon
- The James Hutton Institute , Aberdeen , AB15 8QH and Dundee, DD2 5DA, Scotland, U.K
| | - Martin Blackwell
- Rothamsted Research: North Wyke , Okehampton , Devon EX20 2SB , U.K
| | - Catherine Wearing
- Lancaster University: Lancaster Environment Centre , Lancaster , LA1 4YQ , U.K
| | - Patricia Cooper
- The James Hutton Institute , Aberdeen , AB15 8QH and Dundee, DD2 5DA, Scotland, U.K
| | - Renate Wendler
- The James Hutton Institute , Aberdeen , AB15 8QH and Dundee, DD2 5DA, Scotland, U.K
| | - Lawrie Brown
- The James Hutton Institute , Aberdeen , AB15 8QH and Dundee, DD2 5DA, Scotland, U.K
| | - Mohammed Al-Kasbi
- Ministry of Environment and Climate Affairs , P.O. Box: 323, Muscat 100 , Sultanate of Oman
| | - Philip M Haygarth
- Lancaster University: Lancaster Environment Centre , Lancaster , LA1 4YQ , U.K
| |
Collapse
|
45
|
Gao B, Gao L, Xu D, Zhang M, Qu X, Li Y. A novel method for evaluating the potential release of trace metals associated with rainfall leaching/runoff from urban soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:37-44. [PMID: 30743129 DOI: 10.1016/j.scitotenv.2019.01.418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
The release of pollutants in soils owing to rainfall is a major challenge related to urbanization. Here, urban soils from different functional zones were collected to evaluate the release risk and estimate their annual release amounts of trace metals (Co and Ni) using multiple techniques, including diffusive gradients in thin-films (DGT), DGT-induced fluxes in sediments (DIFS) model, and Fourier-transform infrared (FTIR) spectroscopy. The results indicate that the average concentration of Co (6.55 mg kg-1) was slightly lower than that of the local soil background, whereas for Ni, the trend was reversed. Risk assessments based on total concentrations show that the soil samples were uncontaminated with Co while uncontaminated to moderately contaminated with Ni. However, the mobility coefficients indicate that Co posed low to medium risk, while Ni posed low risk. Hence, further investigation of DGT measurements and DIFS model show that the DGT-measured Co and Ni concentrations were lower than the corresponding concentrations in solution, leading to low R values and the partial resupply of Co and Ni from the solid phase. The FTIR spectra and elemental analysis suggest that because of the electrostatic attraction and complexation of the hydrosilicate minerals and organic matters, the metal resupply was restrained, resulting in them being only a partial resupply. Moreover, the mobility of Co was mainly controlled by the resupply ability, response time, and desorption rate; while for Ni, the particle concentration and porosity played important roles in determining mobility. In addition, the release amounts of the trace metals were quantified using the binary mixing equation. The estimated annual release amounts of Co and Ni in Pingshan District were 0.44-3.54 t and 1.93-16.47 t, respectively. This study provides an effective in-situ method for estimating the release amounts of trace metals in soils during rainfall combining DGT and DIFS model.
Collapse
Affiliation(s)
- Bo Gao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China.
| | - Li Gao
- Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Dongyu Xu
- Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Min Zhang
- Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Xiaodong Qu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Yanyan Li
- Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| |
Collapse
|
46
|
Xu D, Gao B, Peng W, Gao L, Wan X, Li Y. Application of DGT/DIFS and geochemical baseline to assess Cd release risk in reservoir riparian soils, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:1546-1553. [PMID: 30235639 DOI: 10.1016/j.scitotenv.2018.07.262] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/16/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
As the sole drinking water source for Beijing City, Cd has been previously assessed as the major contaminant in Miyun Reservoir (MYR) riparian soils. However, the potential release risk of Cd in such soils, and the labile-Cd release-resupply process from the soil solid phase to solution after water impoundment remain poorly understood. We established a geochemical baseline concentration (GBC) of Cd in MYR riparian soils, combined with the diffusive gradient in thin films (DGT) technique and DGT-induced fluxes in soil (DIFS) model, to reveal a dynamic release-resupply process and influencing factors of labile Cd in riparian soils. The results showed that Cd GBC in riparian soils was 0.12 mg/kg, which was higher than the Cd background value (BV) for Beijing. Using Cd GBC as BV to assess the Cd contaminant level, the geo-accumulation index showed that Cd in riparian soils was at the uncontaminated level. In addition, Cd in the soils belonged to the non-residual fraction using the Community Bureau of Reference method. Cd mobility coefficients (F1/CTotal-Cd) of soils at low elevation had relatively high values, implying that Cd may be released during the initial impoundment of the MYR. Moreover, correlation analysis was used to found the major influencing factors between DGT-labile Cd and several parameters. The results showed that the DGT-labile Cd was positively correlated to the reducible and oxidizable fraction, CDGT-Fe, and total organic carbon, illustrating that the release of Cd from soils was controlled by Fe oxides and organic matter. The resupply ability (R values) and DIFS model parameters revealed that Cd in MYR soils belonged to the partially sustained case, and the slow desorption rate suggested that the release risk of Cd was low in the MYR riparian soils.
Collapse
Affiliation(s)
- Dongyu Xu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Bo Gao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China.
| | - Wenqi Peng
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Li Gao
- Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Xiaohong Wan
- Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Yanyan Li
- Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| |
Collapse
|
47
|
Liu JF, Zhao YJ, Song ZT, Zhou QW, Liu XW, Fan HT. Characterization of the dissociation kinetics of Cd and Ni in soils based on diffusive gradients in thin films technique. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:446-452. [PMID: 30292111 DOI: 10.1016/j.ecoenv.2018.09.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
A new theoretical method was established for the combinatorial calculation of the dissociation rate constant (K-1) of the metal-organic complexes (MLs), the concentration of free ionic soil metals (CM), the labile concentration of soil metal-organic complexes (CML) based on diffusive gradients in thin-films (DGT) technique with a range of diffusive layer thicknesses (0.053-0.173 mm) in soils. The fitting results agreed well with the determined values. The values of K-1, CML and CM were calculated without other morphological analysis software and the fitting results agreed well with the determined values with some advantages such as the use of fewer hypothetical parameters, ease of calculation, the full embodiment of the contribution of MLs to the labile content. According to the results of model fitting, cation exchange capacity and soil organic matter were found to be the key environmental factors for K-1 values of Cd and Ni, respectively. The labile contents of Cd and Ni in soil were closely related with pH, soil organic matter and the total contents of heavy metals.
Collapse
Affiliation(s)
- Jia-Feng Liu
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture, Tianjin 300191, China; College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| | - Yu-Jie Zhao
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture, Tianjin 300191, China.
| | - Zhi-Ting Song
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture, Tianjin 300191, China
| | - Qi-Wen Zhou
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture, Tianjin 300191, China
| | - Xiao-Wei Liu
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture, Tianjin 300191, China.
| | - Hong-Tao Fan
- College of Chemistry Chemical Engineering, and Environmental Engineering, Liaoning University of Petroleum & Chemical Technology, Fushun 113001, China.
| |
Collapse
|
48
|
Yuan Y, Ding S, Wang Y, Zhang L, Ren M, Zhang C. Simultaneous measurement of fifteen rare earth elements using diffusive gradients in thin films. Anal Chim Acta 2018; 1031:98-107. [DOI: 10.1016/j.aca.2018.05.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 10/16/2022]
|
49
|
D'Angelo E, Martin A. Tetracycline desorption kinetics in municipal biosolids and poultry litter amendments determined by diffusive gradients in thin films (DGT). CHEMOSPHERE 2018; 209:232-239. [PMID: 29933159 DOI: 10.1016/j.chemosphere.2018.06.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/07/2018] [Accepted: 06/10/2018] [Indexed: 06/08/2023]
Abstract
Tetracycline (TET) is commonly used to treat bacterial diseases in humans and chickens (Gallus gallus domesticus), is largely excreted, and is often found at elevated concentrations in treated sewage sludge (biosolids) and poultry litter (excrement plus bedding materials). Land spreading of these materials is practiced worldwide to improve soil fertility, but the practice raises questions about whether TET could be released to the environment and cause adverse effects. Hazard risks largely depend on the concentration in the solid phase that can be released to the solution phase (labile TET), it's desorption rate constant, and diffusion rate of dissolved TET in amendments. In this study, these quantities were evaluated in biosolids and three types of litter amendments by combinations of equilibrium sorption-desorption isotherm and desorption kinetic studies using diffusive gradient in thin films (DGT) samplers. Results from isotherm experiments showed that TET partitioning was inhibited at the high dissolved organic carbon (DOC) concentrations in amendments (6-15% of dry mass). Despite low partition coefficients determined at high particle/DOC concentrations of amendments (Kd = 9-46 mL g-1), results from DGT experiments revealed that TET release by desorption and diffusion would be slow and short-lived (<3 d) due to small effective diffusion coefficients (<8 × 10-8 cm2 s-1) and low concentrations of labile TET in amendments (<5% of total TET). Despite this, evaluations of antibiotic uptake during microbial colonization and plant root interception of amendment surfaces are highly warranted.
Collapse
Affiliation(s)
- E D'Angelo
- Department of Plant and Soil Sciences, University of Kentucky, N-122 Agricultural Science Building North, Lexington KY 40546-0091, USA.
| | - Angela Martin
- Department of Plant and Soil Sciences, University of Kentucky, N-122 Agricultural Science Building North, Lexington KY 40546-0091, USA.
| |
Collapse
|
50
|
Xu Q, Gao L, Peng W, Gao B, Xu D, Sun K. Assessment of labile Zn in reservoir riparian soils using DGT, DIFS, and sequential extraction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 160:184-190. [PMID: 29804015 DOI: 10.1016/j.ecoenv.2018.05.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/12/2018] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
The middle route of the South-to-North Water Diversion project alleviates drought in northern China, especially reducing water shortage pressure in Beijing. However, after submersion, the potential release risk of metals in newly submerged soils into the water in the receiving reservoir remains unclear. Here, we assess the labile Zn in the riparian soils of Miyun Reservoir (MYR) using the diffusive gradients in thin films (DGT), DGT-induced fluxes in soils (DIFS) model, and Community Bureau of Reference (BCR) sequential extraction. The results showed that the average Zn concentrations at three sampling sites (S2, S3, and S5) exceeded soil background value (74.8 mg/kg), indicative of Zn accumulation in the MYR. The concentrations of DGT-labile Zn varied within 39.7-62.4 μg/L (average: 56.7 μg/L), with the greatest value observed at 145 m at sampling site S3, attributed to anthropogenic activities in recreational areas. The DGT-labile Zn showed no correlation with classes of land, elevations, or soil properties. Sequential extraction results demonstrated that Zn predominantly existed in the residual fraction, but still showed a strong capability for resupply from the solid phase (R >1). The DIFS model simulation results showed that Zn underwent irreversible diffusion of intra-particle metals from the solid phase to the soil solution. Therefore, the potential release risk of labile Zn in riparian soils in MYR cannot be ignored, especially for areas experiencing human disturbance.
Collapse
Affiliation(s)
- Qiuyun Xu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Li Gao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wenqi Peng
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Bo Gao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China.
| | - Dongyu Xu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Ke Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|