1
|
Mahmudiono T, Fakhri Y, Ranaei V, Pilevar Z, Limam I, Sahlabadi F, Rezaeiarshad N, Torabbeigi M, Jalali S. Concentration of Tetrabromobisphenol-A in fish: systematic review and meta-analysis and probabilistic health risk assessment. REVIEWS ON ENVIRONMENTAL HEALTH 2025; 40:63-83. [PMID: 38386608 DOI: 10.1515/reveh-2023-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Tetrabromobisphenol A (TBBP-A) is an emerging pollutant that enters water resources and affects various marine organisms, such as fish. Consequently, numerous studies globally investigated TBBP-A concentrations in fish fillets of the current study were meta-analyze concentration of TBBP-A in fish fillets and estimate the associated health risks for consumers. The search encompassed international databases, including Science Direct, PubMed, Scopus, Embase, and Web of Science from January 1, 2005, to July 20, 2023. The ranking of countries based on the pooled (Mean) concentration of TBBP-A in fish was as follows: China (1.157 µg/kg-ww) > Czech Republic (1.027 µg/kg-ww) > France (0.500 µg/kg-ww) ∼ Switzerland (0.500 µg/kg-ww) > Netherlands (0.405 µg/kg-ww) > Germany (0.33 µg/kg-ww) > Sweden (0.165 µg/kg-ww)>UK (0.078 µg/kg-ww) > Belgium (0.065 µg/kg-ww) > South Korea (0.013 µg/kg-ww) ∼ Japan (0.013 µg/kg-ww) > Ireland (0.005 µg/kg-ww). The risk assessment showed that the carcinogenic and non-carcinogenic risks of TBBP-A in China and France are higher compared to other countries; however, within all countries, these risks were found to be within acceptable limits.
Collapse
Affiliation(s)
- Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, 148005 Universitas Airlangga , Surabaya, Indonesia
| | - Yadolah Fakhri
- Food Health Research Center, 14656 Hormozgan University of Medical Sciences , Bandar Abbas, Iran
| | - Vahid Ranaei
- School of Health, 48412 Arak University of Medical Sciences , Arak, Iran
| | - Zahra Pilevar
- School of Health, 48412 Arak University of Medical Sciences , Arak, Iran
| | - Intissar Limam
- Laboratory of Materials, Treatment and Analysis, National Institute of Research and Physicochemical Analysis, Biotechpole Sidi-Thabet, and High School for Science and Health Techniques of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Fatemeh Sahlabadi
- Department of Environmental Health Engineering, School of Health, Social Determinants of Health Research Center, 125609 Birjand University of Medical Sciences , Birjand, Iran
| | - Negin Rezaeiarshad
- Department of Environmental Health Engineering, School of Public Health and Safety, 556492 Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Marzieh Torabbeigi
- Department of Environmental Health Engineering, School of Public Health and Safety, 556492 Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Samaneh Jalali
- Department of Environmental Health Engineering, School of Public Health and Safety, 556492 Shahid Beheshti University of Medical Sciences , Tehran, Iran
| |
Collapse
|
2
|
Yin L, Yin Y, Xu L, Zhang Y, Shi K, Wang J, An J, He H, Yang S, Ni L, Li S. Uncovering toxin production and molecular-level responses in Microcystis aeruginosa exposed to the flame retardant Tetrabromobisphenol A. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136886. [PMID: 39689566 DOI: 10.1016/j.jhazmat.2024.136886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
Tetrabromobisphenol A (TBBPA) poses significant ecological risks owing to its toxicity; however, its specific effects on toxin-producing cyanobacteria in aquatic environments remain poorly understood. This study systematically investigated the effects of TBBPA at concentrations ranging from 100 ng/L to 100 mg/L on Microcystis aeruginosa (M. aeruginosa) by examining growth, photosynthesis, toxin production, antioxidant responses, and molecular-level changes. The results indicated that low levels of TBBPA (0.1-1000 μg/L) induced stimulatory effects on the growth and microcystin-leucine-arginine (MC-LR) production of M. aeruginosa. Metabolomic analysis revealed that low levels of TBBPA significantly upregulated metabolites associated with energy metabolism, xenobiotic biodegradation, oxidative stress responses, and protein biosynthesis in M. aeruginosa, potentially contributing to the observed hormetic effect. Conversely, higher doses (40-100 mg/L) inhibited growth and significantly increased MC-LR release by compromising cellular structural integrity. Proteomic analysis revealed that toxic levels of TBBPA significantly affected the expression of proteins associated with energy harvesting and utilization. Specifically, TBBPA disrupted electron flow in oxidative phosphorylation and the photosynthetic system (PS) by targeting PSI, PSII, and Complex I, impairing energy acquisition and causing oxidative damage, ultimately leading to algal cell death. Additionally, proteins involved in the biosynthesis and metabolism of cysteine, methionine, phenylalanine, tyrosine, and tryptophan were upregulated, potentially enhancing M. aeruginosa resistance to TBBPA-induced stress. This study offers insights into the effects of TBBPA on M. aeruginosa and its potential risks to aquatic ecosystems.
Collapse
Affiliation(s)
- Li Yin
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Yu Yin
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Lin Xu
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Yong Zhang
- Department of Geological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Kaipian Shi
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Juan Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Junfeng An
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Lixiao Ni
- School of Environment, Hohai University, Nanjing 210098, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China.
| |
Collapse
|
3
|
Falconer-Turner A, Brooks K, Ogaga E, Whalen MM. Flame retardant, hexabromocyclododecane, increases production of pro-inflammatory cytokines, interleukin 1-beta and interleukin 6, in human immune cells. J Appl Toxicol 2025; 45:273-287. [PMID: 39285786 PMCID: PMC11748055 DOI: 10.1002/jat.4700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 01/19/2025]
Abstract
Hexabromocyclododecane (HBCD) is an environmental contaminant due to its use as a flame retardant in a variety of applications ranging from building insulation, furniture upholstery, and housing for appliances and electronics. HBCD is found in wildlife, human breastmilk, and serum. Interleukin 1-beta (IL-1β) and interleukin 6 (IL-6) are pro-inflammatory cytokines, whose dysregulation is associated with chronic inflammation and the pathologies that result, such as tumor growth, rheumatoid arthritis, Crohn's disease, and multiple sclerosis. HBCD has been shown to increase the secretion of both IL-1β and IL-6 from human immune cells. However, it is not clear if these increases are due solely to HBCD effects on the secretory process or whether it is stimulating cellular production of IL-1β and IL-6. This study examines if HBCD can increase the production of IL-1β and IL-6 by immune cells by simultaneously assessing secreted levels and cellular levels of these cytokines. Additionally, the mechanisms for any observed changes in production are investigated. Peripheral blood mononuclear cells were exposed to HBCD over a range of concentrations and lengths of exposure. HBCD was found to stimulate IL-1β and IL-6 production after 6 hrs. of exposure and production was sustained and intensified at 24 hrs. This increase in IL-1β and IL-6 production appears to, in part, be a result of increased mRNA expression. Additionally, the MAPK pathways, specifically the p38 and p44/42 pathways, appear to be required for HBCD-induced increases in IL-1β and IL-6 production.
Collapse
Affiliation(s)
| | - Kameron Brooks
- Department of Chemistry, Tennessee State University,
Nashville, TN 37209
| | - Eseoghene Ogaga
- Department of Biological Sciences, Tennessee State
University, Nashville, TN 37209
| | - Margaret M. Whalen
- Department of Chemistry, Tennessee State University,
Nashville, TN 37209
| |
Collapse
|
4
|
Mok S, Radhakrishnan A, Nguyen TTT, Park J, Trukhin AM, Lee M, Moon HB. Target, suspect, and non-target analysis of halogenated organic pollutants in spotted seals (Phoca largha) from Peter the Great Bay, East Sea/Sea of Japan. MARINE POLLUTION BULLETIN 2025; 210:117336. [PMID: 39608088 DOI: 10.1016/j.marpolbul.2024.117336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/29/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
Target, suspect, and non-target analyses were conducted to investigate the accumulation status of halogenated organic pollutants (HOPs) in spotted seals (Phoca largha Pallas, 1811) from Peter the Great Bay, East Sea/Sea of Japan. Despite long-standing regulations, polychlorinated biphenyls (PCBs) and organochlorine pesticides were highly accumulated, likely due to placental and lactational transfer. Hexabromocyclododecanes were the predominant brominated flame retardants, with their levels increasing with age. Suspect and non-target analyses identified 35 non-target PCBs not routinely monitored, suggesting conventional methods may underestimate PCB concentrations. Regression analysis showed significant correlations between the concentrations of major PCBs (CBs 138 and 153) and the sum of target and non-target PCBs. The study found that 95 % of the seals exceeded threshold levels for PCBs, posing potential health risks. These findings highlight the need for integrated monitoring, combining target and non-target analyses, to better assess and manage the risks of HOPs to marine mammals.
Collapse
Affiliation(s)
- Sori Mok
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Aiswarya Radhakrishnan
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Thi Thu Trang Nguyen
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Junseong Park
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Alexey M Trukhin
- V.I. Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 41 Baltiyskaya Str., Vladivostok 690043, Russia
| | - Moonjin Lee
- Maritime Safety and Environmental Research Division, Korea Research Institute of Ships and Ocean Engineering, Daejeon 34103, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
5
|
Liu JM, Liu SH, Fu SC, Lai WC, Fang KM, Lin KA, Ke JA, Kuo CY, Su CC, Chen YW. Tetrabromobisphenol A induced p38-MAPK/AMPKα activation downstream-triggered CHOP signal contributing to neuronal apoptosis and death. Toxicology 2025; 510:154014. [PMID: 39586487 DOI: 10.1016/j.tox.2024.154014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
Tetrabromobisphenol A (TBBPA), a brominated flame retardant (BFR), has been implicated as the neurotoxic effects in mammalian. However, the exact mechanisms underlying TBBPA-induced neurotoxicity remain unclear. In the present study, Neuro-2a cells, a mouse neural crest-derived cell line, were used to examine the mechanism of TBBPA-induced neuronal cytotoxicity. TBBPA exposure caused alterations in cell viability and mitochondrial membrane potential (MMP) and induction of apoptotic events, such as increased apoptotic cell population and cleaved caspase-3, -7, -9, and poly (ADP-ribose) polymerase (PARP) protein expression). TBBPA exposure triggered CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) activation. Transfection with CHOP-specific small interfering RNA (siRNA) obviously prevented the expression of CHOP protein and markedly attenuated MMP loss, and caspase-3 and -7 activation in TBBPA-exposed Neuro-2a cells. In addition, TBBPA exposure significantly evoked the phosphorylation of c-Jun N-terminal kinase (JNK), extracellular-signal regulated kinase1/2 (ERK1/2), p38-mitogen-activated protein kinase (p38-MAPK), and AMP-activated protein kinase (AMPK)α proteins. Pretreatment of cells with pharmacological inhibitors of p38-MAPK (SB203580) and AMPK (compound C), but not inhibitors of JNK (SP600125) or ERK1/2 (PD98059), effectively prevented the increase in caspase-3 activity, MMP loss, and activated CHOP and cleaved caspase-3 and -7 protein expression in TBBPA-treated cells. Notably, transfection with either p38α-MAPK- or AMPKα1/2-specific siRNAs markedly attenuated the expression of CHOP, and cleaved caspase-3 and -7. Interestingly, transfection with each siRNA significantly reduced the TBBPA-induced phosphorylation of p38-MAPK and AMPKα proteins. Collectively, these findings suggest that CHOP activation-mediated mitochondria-dependent apoptosis contributes to TBBPA-induced neurotoxicity. An interdependent p38-MAPK and AMPKα signaling-regulated apoptotic pathway may provide new insights into the mechanism understanding TBBPA-elicited neurotoxicity.
Collapse
Affiliation(s)
- Jui-Ming Liu
- Division of Urology, Department of Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 330, Taiwan; Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Shih-Chang Fu
- Division of Urology, Department of Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 330, Taiwan
| | - Wei-Cheng Lai
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| | - Kai-Min Fang
- Department of Otolaryngology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Ken-An Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Jun-An Ke
- Department of Medical Education, Changhua Christian Hospital, Changhua City 500, Taiwan
| | - Chun-Ying Kuo
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua City 500, Taiwan
| | - Chin-Chuan Su
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua City 500, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402202, Taiwan.
| | - Ya-Wen Chen
- Department of Physiology, College of Medicine, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
6
|
Zhang X, Xu X, Zhang Z, Pei L, Han T. Exploration of Quantum Chemistry Methods to Explain Mechanism of Mechanochemical Degradation of Typical Organic Pollutants. TOXICS 2024; 13:23. [PMID: 39853023 PMCID: PMC11769019 DOI: 10.3390/toxics13010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025]
Abstract
The high-efficiency ball milling treatment technology primarily combines the excitation of oxidation processes with high-speed physical collisions, thereby promoting the reaction processes and enhancing the degradation effectiveness of materials. This technology has gained widespread attention in recent years for its application in the degradation of organic solid chemical pollutants. In this study, quantum chemical density functional theory (DFT) was employed to first analyze the impact of electron addition and subtraction on molecular chemical bonds. The molecular energies of the target pollutants and their possible intermediates were then calculated, and the theoretical energies required for the degradation pathways of the target organic compounds under oxidative-enhanced ball milling were computed. This further validated the accuracy of the ball milling experimental results. The theoretical energy required for the complete mineralization of solid organic chemicals through ball milling degradation was calculated, with values of 16,730.74 kJ/mol for lindane, 20,162.46 kJ/mol for tetrabromobisphenol A, 10,628.04 kJ/mol for sulfamethoxazole, and 4867.99 kJ/mol for trimethoprim. By combining different ball milling experimental conditions, the theoretical reaction time required for the complete mineralization of the target organic chemicals can be calculated. The comparison of theoretical calculations with the experimental results provides new insights into the ball milling degradation process and degradation pathways of the target pollutants.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China; (X.X.); (Z.Z.); (T.H.)
| | - Xiaoqian Xu
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China; (X.X.); (Z.Z.); (T.H.)
| | - Zeya Zhang
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China; (X.X.); (Z.Z.); (T.H.)
| | - Liang Pei
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongshun Han
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China; (X.X.); (Z.Z.); (T.H.)
| |
Collapse
|
7
|
Oumeddour H, Aldoori H, Bouberka Z, Mundlapati VR, Madhur V, Foissac C, Supiot P, Carpentier Y, Ziskind M, Focsa C, Maschke U. Degradation processes of brominated flame retardants dispersed in high impact polystyrene under UV-visible radiation. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2024; 42:1241-1252. [PMID: 38158834 PMCID: PMC11608518 DOI: 10.1177/0734242x231219626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/16/2023] [Indexed: 01/03/2024]
Abstract
In order to protect human health and the environment, several regulations have been introduced in recent years to reduce or even eliminate the use of some brominated flame retardants (BFRs) due to their toxicity, persistence and bioaccumulation. Dispersions of these BFRs in polymers are widely used for various applications. In this report, four different brominated molecules, decabromodiphenyl ether (DBDE), hexabromocyclododecane (HBCDD), decabromodiphenyl ethane (DBDPE) and tris(tribromophenoxy)triazine (TTBPT), were dispersed in the solid matrix of an industrial polymer, high impact polystyrene (HIPS). The possibility of degradation of these BFRs within HIPS under UV-visible irradiation in ambient air was investigated. The degradation kinetics of DBDE and HBCDD were followed by Fourier transform infrared spectroscopy (FTIR) and high-resolution two-step laser mass spectrometry (L2MS). The thermal properties of the pristine and irradiated polymer matrix were monitored by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), which showed that these properties were globally preserved. Volatile photoproducts from the degradation of DBDE, DBDPE and TTBPT were identified by headspace gas chromatography/mass spectrometry analysis. Under the chosen experimental conditions, BFRs underwent rapid degradation after a few seconds of irradiation, with conversions exceeding 50% for HIPS/DBDE and HIPS/HBCDD systems.
Collapse
Affiliation(s)
- Hanene Oumeddour
- University Lille, CNRS, INRAE, Centrale Lille, UMR 8207 – UMET – Materials and Transformations Unit, Lille, France
| | - Hussam Aldoori
- University Lille, CNRS, INRAE, Centrale Lille, UMR 8207 – UMET – Materials and Transformations Unit, Lille, France
- Physical Chemistry of Materials-Catalysis and Environment Laboratory, University of Science and Technology of Oran, Oran, Algeria
| | - Zohra Bouberka
- Physical Chemistry of Materials-Catalysis and Environment Laboratory, University of Science and Technology of Oran, Oran, Algeria
| | | | - Vikas Madhur
- University Lille, CNRS, UMR 8523 – Physique des Lasers Atomes et Molécules, Lille, France
| | - Corinne Foissac
- University Lille, CNRS, INRAE, Centrale Lille, UMR 8207 – UMET – Materials and Transformations Unit, Lille, France
| | - Philippe Supiot
- University Lille, CNRS, INRAE, Centrale Lille, UMR 8207 – UMET – Materials and Transformations Unit, Lille, France
| | - Yvain Carpentier
- University Lille, CNRS, UMR 8523 – Physique des Lasers Atomes et Molécules, Lille, France
| | - Michael Ziskind
- University Lille, CNRS, UMR 8523 – Physique des Lasers Atomes et Molécules, Lille, France
| | - Cristian Focsa
- University Lille, CNRS, UMR 8523 – Physique des Lasers Atomes et Molécules, Lille, France
| | - Ulrich Maschke
- University Lille, CNRS, INRAE, Centrale Lille, UMR 8207 – UMET – Materials and Transformations Unit, Lille, France
| |
Collapse
|
8
|
Yin B, Liu C, Sun H, Zhang W. TBBPA exposure causes cartilage cell damage in both in vitro and in vivo models. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117271. [PMID: 39531942 DOI: 10.1016/j.ecoenv.2024.117271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Tetrabromobisphenol A (TBBPA) is a widely used flame retardant. TBBPA is a persistent pollutant that is difficult to degrade and causes sustained pollution to the environment. TBBPA has been detected in human blood and tissues, and studies indicate it causes various toxicological damages to tissues and cells. To date, the toxicological effects of TBBPA on chondrocytes are not fully understood. Here, we evaluated the toxicological effects of TBBPA on chondrocytes and tissues. For this, human- and mouse-derived chondrocyte models were used to analyze the toxicological effects of TBBPA. Physiological concentrations of TBBPA were used to stimulate chondrocytes. Indirect immunofluorescence, flow cytometry, and biochemical assays were utilized to investigate TBBPA's toxicological impact on chondrocytes. The CCK8 experiment indicated that TBBPA reduced chondrocyte proliferation. ELISA and Western blot results indicated that TBBPA increased inflammatory factor expression in chondrocytes. We also found that TBBPA caused oxidative stress in chondrocytes. Mechanistic study showed that TBBPA triggered a imbalance in the homeostasis of calcium ions, leading to mitochondrial depolarization, which induces inflammation and oxidative stress of chondrocytes. In vivo model, our research showed that TBBPA caused inflammation in knee joint cartilage. Safranin O-Fast Green and H&E staining revealed cartilage tissue damage following TBBPA treatment. TBBPA increased MMP9 and MMP13 expression and down-regulated COL2 expression. In summary, we assessed TBBPA's impact on chondrocytes. The experimental data indicate that TBBPA causes damage to chondrocytes. This study establishes a basis for future research on the toxicological impacts of TBBPA.
Collapse
Affiliation(s)
- Bohao Yin
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Orthopedics, Shanghai Sixth People's Hospital, Shanghai, China.
| | - Chenjun Liu
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Orthopedics, Shanghai Sixth People's Hospital, Shanghai, China.
| | - Hui Sun
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Orthopedics, Shanghai Sixth People's Hospital, Shanghai, China.
| | - Wei Zhang
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Orthopedics, Shanghai Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
9
|
Tian LL, Li Y, Yang R, Jiang Y, He JJ, Wang H, Chen LQ, Zhu WY, Xue T, Li BB. Low concentrations of tetrabromobisphenol A promote the biofilm formation of methicillin-resistant Staphylococcus aureus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116853. [PMID: 39137468 DOI: 10.1016/j.ecoenv.2024.116853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
The effect and underlying mechanism of tetrabromobisphenol A (TBBPA), a plastic additive, on biofilm formation of methicillin-resistant Staphylococcus aureus (MRSA USA300) remain unknown. This study first investigated the impact of different concentrations of TBBPA on the growth and biofilm formation of USA300. The results indicated that a low concentration (0.5 mg/L) of TBBPA promoted the growth and biofilm formation of USA300, whereas high concentrations (5 mg/L and 10 mg/L) of TBBPA had inhibitory effects. Further exploration revealed that the low concentration of TBBPA enhance biofilm formation by promoting the synthesis of extracellular proteins, release of extracellular DNA (eDNA), and production of staphyloxanthin. RTqPCR analysis demonstrated that the low concentration of TBBPA upregulated genes associated with extracellular protein synthesis (sarA, fnbA, fnbB, aur) and eDNA formation (atlA) and increased the expression of genes involved in staphyloxanthin biosynthesis (crtM), suggesting a potential mechanism for enhanced resistance of USA300 to adverse conditions. These findings shed light on how low concentrations of TBBPA facilitate biofilm formation in USA300 and highlight the indirect impact of plastic additives on pathogenic bacteria in terms of human health. In the future, in-depth studies about effects of plastic additives on pathogenicity of pathogenic bacteria should be conducted. CAPSULE: The protein and eDNA contents in biofilms of methicillin-resistant Staphylococcus aureus are increased by low concentrations of TBBPA.
Collapse
Affiliation(s)
- Lin-Lin Tian
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yun Li
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Rui Yang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ying Jiang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jiao-Jiao He
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Hui Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Li-Qi Chen
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Wen-Ya Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ting Xue
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China; Food Procession Research Institute, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Bing-Bing Li
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
10
|
Yang X, Huang L, Zhang L, Zhu L, Cheng Y, Wang C, Kang B, Zhao S, Yang Y. Distribution and biomagnification of Hexabromocyclododecanes (HBCDs) in edible marine fish in the Beibu Gulf, China: Implication for seafood dietary risk. MARINE POLLUTION BULLETIN 2024; 206:116737. [PMID: 39053263 DOI: 10.1016/j.marpolbul.2024.116737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/05/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
Hexabromocyclododecanes (HBCDs) are legacy additive brominated flame retardant. In present study, the distribution, biomagnification and potential human health risk associated with HBCDs were investigated in six edible marine fish species collected from three bays in the Beibu Gulf, China, between March and October 2021. The concentration of HBCDs ranged from 0.05 to 200 ng/g lipid weight (lw), with Scoliodon laticaudus and Trichiurus nanhaiensis having the highest and lowest concentration, respectively. The α-HBCD was dominant in most studied fish, expect for Scoliodon laticaudus. Dietary source was the primary factor for the diastereomeric profiles of HBCDs in fish. Only γ-HBCD demonstrated trophic magnification in the studied fish species. Finally, the estimated daily intake (EDI) was 0.18 ng/kg/day for adults, 0.17 ng/kg/day for teenager and children, and all corresponding margin of exposure (MOE) values were lager than 8 indicating relatively low human exposure risks from fish consumption.
Collapse
Affiliation(s)
- Xi Yang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Liangliang Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, Guangxi 541004, China.
| | - Li Zhang
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, Guangxi 536009, China
| | - Liang Zhu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yanan Cheng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Caiguang Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Bin Kang
- College of Fisheries, Ocean University of China, Qingdao, Shandong 266100, China
| | - Shuwen Zhao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yiheng Yang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
11
|
Chen X, Li X, Fan Y, Hu G, Xie H, Chen X, Ding P, Dang Y, Hu X, Chen Q. Inventorization and ecological risk assessment of tetrabromobisphenol A and hexabromocyclododecane in sediments from Guangdong coastal area of South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173527. [PMID: 38802019 DOI: 10.1016/j.scitotenv.2024.173527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Brominated flame retardants (BFRs) exhibit excellent flame retardant properties and are widely used in various industries. Among the common BFRs, tetrabromobisphenol A (TBBPA) and hexabromocyclododecane (HBCDs) pose substantial ecological and human health risks due to their extensive application and long-range transport. This study established 131 sample collection sites along the coast of the South China Sea (SCS) in Guangdong Province to assess the concentration, distribution, inventory, and ecological risk of TBBPA and HBCDs in surface sediments. The concentrations of TBBPA in SCS sediments ranged from < limit of detection (LOD) to 80 μg/kg dry weight (dw), and those of HBCDs from < LOD to 18 μg/kg dw. The diastereoisomers of HBCDs (α-, β-, and γ-HBCD) in the sediment samples accounted for 36 %, 13 %, and 51 %, respectively. Human activities, particularly those associated with nearby electronic waste disassembly and textile and garment industries, considerably influenced the dispersion of TBBPA and HBCDs. The inventories of TBBPA and HBCDs in Guangdong Province's SCS were estimated to be 3.2 × 105 kg and 7.2 × 104 kg, respectively. The average risk quotient values ranged from <0.01 to 0.016, indicating a low to negligible environmental risk. This study provides deeper insights into the distribution and scientific significance of HBCDs and TBBPA in SCS sediment samples, elucidates the current state of BFR contamination, and offers recommendations for future research on environmental safety and human health in the region.
Collapse
Affiliation(s)
- Xiaoxia Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Xin Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Yuqing Fan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Hang Xie
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Xiaoyan Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Xiyuan Hu
- China Academy of Transportation Sciences, Ministry of Transport of the People's Republic of China, Beijing 100029, PR China.
| | - Qinghua Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| |
Collapse
|
12
|
Zhang X, Lu H, Liu J, Tadiyose B, Wan H, Zhong Z, Deng Y, Chi G, Zhao H. Mechanism of tartaric acid mediated dissipation and biotransformation of tetrabromobisphenol A and its derivatives in soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134350. [PMID: 38643580 DOI: 10.1016/j.jhazmat.2024.134350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
Biotransformation is a major dissipation process of tetrabromobisphenol A and its derivatives (TBBPAs) in soil. The biotransformation and ultimate environmental fate of TBBPAs have been widely studied, yet the effect of root exudates (especially low-molecular weight organic acids (LMWOAs)) on the fate of TBBPAs is poorly documented. Herein, the biotransformation behavior and mechanism of TBBPAs in bacteriome driven by LMWOAs were comprehensively investigated. Tartaric acid (TTA) was found to be the main component of LMWOAs in root exudates of Helianthus annus in the presence of TBBPAs, and was identified to play a key role in driving shaping bacteriome. TTA promoted shift of the dominant genus in soil bacteriome from Saccharibacteria_genera_incertae_sedis to Gemmatimonas, with a noteworthy increase of 24.90-34.65% in relative abundance of Gemmatimonas. A total of 28 conversion products were successfully identified, and β-scission was the principal biotransformation pathway for TBBPAs. TTA facilitated the emergence of novel conversion products, including 2,4-dibromophenol, 3,5-dibromo-4-hydroxyacetophenone, para-hydroxyacetophenone, and tribromobisphenol A. These products were formed via oxidative skeletal cleavage and debromination pathways. Additionally, bisphenol A was observed during the conversion of derivatives. This study provides a comprehensive understanding about biotransformation of TBBPAs driven by TTA in soil bacteriome, offering new insights into LMWOAs-driven biotransformation mechanisms.
Collapse
Affiliation(s)
- Xiaonuo Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Hong Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bekele Tadiyose
- Department of Biology, Eastern Nazarene College, MA 02170, USA
| | - Huihui Wan
- Instrumental Analysis Center, Dalian University of Technology, 116024 Dalian, China
| | - Zhihui Zhong
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Yaxi Deng
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Goujian Chi
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, 116024 Dalian, China.
| |
Collapse
|
13
|
Xie Y, Zhang K, Shen Z, Feng M, Wang C. Simulated sunlight/periodate-triggered formation of toxic halogenated bisphenols in highly saline water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26320-26329. [PMID: 38523216 DOI: 10.1007/s11356-024-32962-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
Periodate (PI)-based oxidation using the activators, such as metal ions and light irradiation, has emerged as a feasible treatment strategy for the effective remediation of contaminated water and wastewater. Given the pervasive nature of PI residues and solar exposure during application, the role of solar light in remediating the challenging highly saline water matrices needs to be elucidated. In this study, bisphenol A (BPA) was selected as the targeted micropollutant, which can be efficiently eliminated by the simulated sunlight (SSL)/PI system in the presence of high-level Cl- (up to 846.0 mM) at pH 7.0. The presence of different background constituents of water, such as halides, nitrate, and dissolved organic matter, had no effect, or even accelerated BPA abatement. Particularly, the ubiquitous Br- or I- appreciably enhanced the BPA transformation efficiency, which may be ascribed to the generation of high-selective reactive HOBr or HOI. The in silico predictions suggested that the transformation products generated by halide-mediated SSL/PI systems via halogen substitutions showed greater persistence, bioaccumulation, and aquatic toxicity than BPA itself. These findings highlighted a widespread phenomenon during PI-based oxidative treatment of highly saline water, which needs special attention under solar light illumination.
Collapse
Affiliation(s)
- Yuwei Xie
- College of the Environment & Ecology, Xiamen University, Xiamen, 361100, People's Republic of China
| | - Kaiting Zhang
- College of the Environment & Ecology, Xiamen University, Xiamen, 361100, People's Republic of China
| | - Zhen Shen
- College of the Environment & Ecology, Xiamen University, Xiamen, 361100, People's Republic of China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen, 361100, People's Republic of China
| | - Chong Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
14
|
Yu YJ, Tian JL, Zheng T, Kuang HX, Li ZR, Hao CJ, Xiang MD, Li ZC. Perturbation of lipid metabolism in 3T3-L1 at different stages of preadipocyte differentiation and new insights into the association between changed metabolites and adipogenesis promoted by TBBPA or TBBPS. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133183. [PMID: 38070267 DOI: 10.1016/j.jhazmat.2023.133183] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 02/08/2024]
Abstract
Tetrabromobisphenol A (TBBPA) and tetrabromobisphenol S (TBBPS) are widely distributed brominated flame retardants. While TBBPA has been demonstrated to stimulate adipogenesis, TBBPS is also under suspicion for potentially inducing comparable effects. In this study, we conducted a non-targeted metabolomics to examine the metabolic changes in 3T3-L1 cells exposed to an environmentally relevant dose of TBBPA or TBBPS. Our findings revealed that 0.1 µM of both TBBPA and TBBPS promoted the adipogenesis of 3T3-L1 preadipocytes. Multivariate analysis showed significant increases in glycerophospholipids, sphingolipids, and steroids relative levels in 3T3-L1 cells exposed to TBBPA or TBBPS at the final stage of preadipocyte differentiation. Metabolites set composed of glycerophospholipids was found to be highly effective predictors of adipogenesis in 3T3-L1 cells exposed to TBBPA or TBBPS (revealed from the receiver operating characteristic curve with an area under curve > 0.90). The results from metabolite set enrichment analysis suggested both TBBPA and TBBPS exposures significantly perturbed steroid biosynthesis in adipocytes. Moreover, TBBPS additionally disrupted the sphingolipid metabolism in the adipocytes. Our study presents new insights into the obesogenic effects of TBBPS and provides valuable information about the metabolites associated with adipogenesis induced by TBBPA or TBBPS.
Collapse
Affiliation(s)
- Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangdong 510655, China
| | - Jing-Lin Tian
- Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Tong Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangdong 510655, China
| | - Hong-Xuan Kuang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangdong 510655, China
| | - Zong-Rui Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangdong 510655, China
| | - Chao-Jie Hao
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangdong 510655, China
| | - Ming-Deng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangdong 510655, China
| | - Zhen-Chi Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
15
|
Sun CS, Yuan SW, Hou R, Zhang SQ, Huang QY, Lin L, Li HX, Liu S, Cheng YY, Li ZH, Xu XR. First insights into the bioaccumulation, biotransformation and trophic transfer of typical tetrabromobisphenol A (TBBPA) analogues along a simulated aquatic food chain. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133390. [PMID: 38163409 DOI: 10.1016/j.jhazmat.2023.133390] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/28/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Tetrabromobisphenol A (TBBPA) analogues have been investigated for their prevalent occurrence in environments and potential hazardous effects to humans and wildlife; however, there is still limited knowledge regarding their toxicokinetics and trophic transfer in aquatic food chains. Using a developed toxicokinetic model framework, we quantified the bioaccumulation, biotransformation and trophic transfer of tetrabromobisphenol S (TBBPS) and tetrabromobisphenol A di(allyl ether) (TBBPA-DAE) during trophic transfer from brine shrimp (Artemia salina) to zebrafish (Danio rerio). The results showed that the two TBBPA analogues could be readily accumulated by brine shrimp, and the estimated bioconcentration factor (BCF) value of TBBPS (5.68 L kg-1 ww) was higher than that of TBBPA-DAE (1.04 L kg-1 ww). The assimilation efficiency (AE) of TBBPA-DAE in zebrafish fed brine shrimp was calculated to be 16.3%, resulting in a low whole-body biomagnification factor (BMF) in fish (0.684 g g-1 ww). Based on the transformation products screened using ultra-high-performance liquid chromatograph-high resolution mass spectrometry (UPLC-HRMS), oxidative debromination and hydrolysis were identified as the major transformation pathways of TBBPS, while the biotransformation of TBBPA-DAE mainly took place through ether bond breaking and phase-II metabolism. Lower accumulation of TBBPA as a metabolite than its parent chemical was observed in both brine shrimp and zebrafish, with metabolite parent concentration factors (MPCFs) < 1. The investigated BCFs for shrimp of the two TBBPA analogues were only 3.77 × 10-10 - 5.59 × 10-3 times of the theoretical Kshrimp-water based on the polyparameter linear free energy relationships (pp-LFERs) model, and the BMF of TBBPA-DAE for fish was 0.299 times of the predicted Kshrimp-fish. Overall, these results indicated the potential of the trophic transfer in bioaccumulation of specific TBBPA analogues in higher trophic-level aquatic organisms and pointed out biotransformation as an important mechanism in regulating their bioaccumulation processes. ENVIRONMENTAL IMPLICATION: The internal concentration of a pollutant in the body determines its toxicity to organisms, while bioaccumulation and trophic transfer play important roles in elucidating its risks to ecosystems. Tetrabromobisphenol A (TBBPA) analogues have been extensively investigated for their adverse effects on humans and wildlife; however, there is still limited knowledge regarding their toxicokinetics and trophic transfer in aquatic food chains. This study investigated the bioaccumulation, biotransformation and trophic transfer of TBBPS and TBBPA-DAE in a simulated di-trophic food chain. This state-of-art study will provide a reference for further research on this kind of emerging pollutant in aquatic environments.
Collapse
Affiliation(s)
| | - Sheng-Wu Yuan
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Rui Hou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Si-Qi Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Qian-Yi Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Lang Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Heng-Xiang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Yuan-Yue Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai 264209, China.
| | - Xiang-Rong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
16
|
Yun X, Zhang L, Wang W, Gu J, Wang Y, He Y, Ji R. Composition, Release, and Transformation of Earthworm Tissue-Bound Residues of Tetrabromobisphenol A in Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2069-2077. [PMID: 38237036 DOI: 10.1021/acs.est.3c09051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Earthworms accumulate organic pollutants to form earthworm tissue-bound residues (EBRs); however, the composition and fate of EBRs in soil remain largely unknown. Here, we investigated the fate of tetrabromobisphenol A (TBBPA)-derived EBRs in soil for 250 days using a 14C-radioactive isotope tracer and the geophagous earthworm Metaphire guillelmi. The EBRs of TBBPA in soil were rapidly transformed into nonextractable residues (NERs), mainly in the form of sequestered and ester-linked residues. After 250 days of incubation, 4.9% of the initially applied EBRs were mineralized and 69.3% were released to extractable residues containing TBBPA and its transformation products (TPs, generated mainly via debromination, O-methylation, and skeletal cleavage). Soil microbial activity and autolytic enzymes of earthworms jointly contributed to the release process. In their full-life period, the earthworms overall retained 24.1% TBBPA and its TPs in soil and thus prolonged the persistence of these pollutants. Our study explored, for the first time, the composition and fate of organic pollutant-derived EBRs in soil and indicated that the decomposition of earthworms may release pollutants and cause potential environmental risks of concern, which should be included in both environmental risk assessment and soil remediation using earthworms.
Collapse
Affiliation(s)
- Xiaoming Yun
- State Key Laboratory of Pollution Control and Resource Reuse, School of The Environment, Nanjing University, Nanjing 210023, China
| | - Lidan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of The Environment, Nanjing University, Nanjing 210023, China
| | - Wenji Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of The Environment, Nanjing University, Nanjing 210023, China
| | - Jianqiang Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of The Environment, Nanjing University, Nanjing 210023, China
| | - Yongfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of The Environment, Nanjing University, Nanjing 210023, China
| | - Yujie He
- State Key Laboratory of Pollution Control and Resource Reuse, School of The Environment, Nanjing University, Nanjing 210023, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of The Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
17
|
Liu G, Chen K, Wu Z, Ji Y, Lu L, Liu S, Li ZL, Ji R, Liu SJ, Jiang J, Qiao W. Genome-Centric Metatranscriptomic Characterization of a Humin-Facilitated Anaerobic Tetrabromobisphenol A-Dehalogenating Consortium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1299-1311. [PMID: 38113523 DOI: 10.1021/acs.est.3c06118] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Tetrabromobisphenol A (TBBPA), a widely used brominated flame retardant in electronics manufacturing, has caused global contamination due to improper e-waste disposal. Its persistence, bioaccumulation, and potential carcinogenicity drive studies of its transformation and underlying (a)biotic interactions. This study achieved an anaerobic enrichment culture capable of reductively dehalogenating TBBPA to the more bioavailable bisphenol A. 16S rRNA gene amplicon sequencing and quantitative PCR confirmed that successive dehalogenation of four bromide ions from TBBPA was coupled with the growth of both Dehalobacter sp. and Dehalococcoides sp. with growth yields of 5.0 ± 0.4 × 108 and 8.6 ± 4.6 × 108 cells per μmol Br- released (N = 3), respectively. TBBPA dehalogenation was facilitated by solid humin and reduced humin, which possessed the highest organic radical signal intensity and reducing groups -NH2, and maintained the highest dehalogenation rate and dehalogenator copies. Genome-centric metatranscriptomic analyses revealed upregulated putative TBBPA-dehalogenating rdhA (reductive dehalogenase) genes with humin amendment, cprA-like Dhb_rdhA1 gene in Dehalobacter species, and Dhc_rdhA1/Dhc_rdhA2 genes in Dehalococcoides species. The upregulated genes of lactate fermentation, de novo corrinoid biosynthesis, and extracellular electron transport in the humin amended treatment also stimulated TBBPA dehalogenation. This study provided a comprehensive understanding of humin-facilitated organohalide respiration.
Collapse
Affiliation(s)
- Guiping Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Kai Chen
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Zhiming Wu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Yanhan Ji
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Lianghua Lu
- Jiangsu Provincial Academy of Environmental Science, Jiangsu Provincial Key Laboratory of Environmental Engineering, Nanjing 210036, China
| | - Songmeng Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Zhi-Ling Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Wenjing Qiao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| |
Collapse
|
18
|
Deng J, Liu W, Gao L, Jia T, He Y, Mao T, Hussain J. A Review of Distribution and Profiles of HBCD in Different Environmental Media of China. Molecules 2023; 29:36. [PMID: 38202620 PMCID: PMC10779568 DOI: 10.3390/molecules29010036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Hexabromocyclododecane (HBCD) is the most important flame retardant that has been used in Expanded Polystyrene foam and Extruded Polystyrene foam in the past forty years across the world. China was the major producer and user of HBCD, and the total HBCD production was about 0.3 million tons. Although HBCD was completely banned in China in 2021 because of its long-range transport, bioaccumulation and toxicity, there is still a lot of residue in the environment. Therefore, we reviewed multiple studies concerning the distribution of HBCD in diverse environmental matrices, such as in the air, dust, soil, water, sediment, and biota. Results revealed that HBCD levels in different environments in China present geographical variation and were at a high level compared with other countries. In all environmental media, relatively high HBCD concentrations have been found in industrial and urban areas. Industrialization and urbanization are two important factors that influence the concentration and distribution of HBCD in the environment. In terms of isomer, γ-HBCD was the dominant isomer in soil, water, and sediment, while in the biota α-HBCD was the predominant isomer.
Collapse
Affiliation(s)
- Jinglin Deng
- Research Center for Eco-Environmental Sciences, Beijing 100085, China; (J.D.); (L.G.); (T.J.); (Y.H.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; (T.M.); (J.H.)
| | - Wenbin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; (T.M.); (J.H.)
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Lirong Gao
- Research Center for Eco-Environmental Sciences, Beijing 100085, China; (J.D.); (L.G.); (T.J.); (Y.H.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; (T.M.); (J.H.)
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Tianqi Jia
- Research Center for Eco-Environmental Sciences, Beijing 100085, China; (J.D.); (L.G.); (T.J.); (Y.H.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; (T.M.); (J.H.)
| | - Yunchen He
- Research Center for Eco-Environmental Sciences, Beijing 100085, China; (J.D.); (L.G.); (T.J.); (Y.H.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; (T.M.); (J.H.)
| | - Tianao Mao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; (T.M.); (J.H.)
| | - Javid Hussain
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; (T.M.); (J.H.)
- Department of Environmental Sciences, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87100, Pakistan
| |
Collapse
|
19
|
Li L, Li W, Liu Y, Jin X, Yu Y, Lin H. TBBPA and lead co-exposure induces grass carp liver cells apoptosis via ROS/JAK2/STAT3 signaling axis. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109100. [PMID: 37793490 DOI: 10.1016/j.fsi.2023.109100] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
Tetrabromobisphenol A (TBBPA) and lead (Pb) are widely used in industrial field, which poses a serious threat to human and animal health. In particular, a large volume of wastewater containing TBBPA and Pb was discharged into the aquatic environment, causing a seriously negative impact on fish. Currently, whether TBBPA and Pb have a synergistic toxicity on fish remains unclear. In this study, we used the grass carp hepatocytes (L8824 cell line) exposed to either TBBPA or Pb, or both to determine their potential impacts on fish. The results showed that Pb or TBBPA induced oxidative stress and the loss of mitochondrial membrane potential in grass carp hepatocytes. In contrast to the control cells, the levels of JAK2, p-JAK2, STAT3 and p-STAT3 were significantly upregulated after exposure to TBBPA and Pb. Furthermore, the levels of Caspase3, Caspase9 and Bax were all increased while the level of Bcl2 was decreased in hepatocytes exposed to TBBPA or Pb. Results of flow cytometry and AO/EB staining reveled significant increases in the number of apoptotic cells in the TBBPA and Pb group compared to the controls. Notably, cells exposed to both TBBPA and Pb exhibited more severe damage than the single exposure, manifested by a higher number of apoptotic cells in the co-exposure group than the single exposure groups. Nevertheless, N-acetyl-l-cysteine (NAC) treatment could remarkably alleviate oxidative damage and loss of membrane potential in grass carp hepatocytes induced by TBBPA and Pb. Altogether, our study showed that combined exposure of TBBPA and Pb has a synergistic toxicity due to, inducing oxidative stress to activate JAK2/STAT3 signaling pathway, resulting in apoptosis of carp hepatocytes. This study shed a new light on the toxicological mechanism of exposure of TBBPA and Pb and provided a potential treatment of toxicity induced by TBBPA and Pb.
Collapse
Affiliation(s)
- Lu Li
- Northeast Agricultural University, Harbin, 150030, PR China
| | - Wan Li
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, PR China
| | - Yufeng Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, PR China
| | - Xin Jin
- Northeast Agricultural University, Harbin, 150030, PR China
| | - Yanbo Yu
- Northeast Agricultural University, Harbin, 150030, PR China
| | - Hongjin Lin
- Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
20
|
Meenu, Rani M, Shanker U. Efficient photodegradation of hexabromocyclododecane leached from polystyrene by biochar and sulfur doped CuO nanocomposite: Optimization factors, kinetics, and photoactivity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 340:122818. [PMID: 39491157 DOI: 10.1016/j.envpol.2023.122818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/30/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
Herein, efficient degradation of hexabromocyclododecane (HBCD), a persistent organic pollutant using biochar (BC) and S co-doped CuO nanocomposite, has been reported. The nanocomposite was prepared by one-step co-precipitation-based green synthesis using plant extract as surfactant and reducing agent and was well characterized. The maximum degradation of HBCD was observed at 10 mg catalyst loading, basic pH, and 2 mg L-1 of HBCD amount. The photocatalytic performance of BC@S-CuO for HBCD photodegradation was evaluated, and it was found that the Kapp increased in the order of BC@S-CuO (0.495 h-1) > S-CuO (0.385 h-1) > CuO (0.365 h-1). BC@S-CuO demonstrated the highest photocatalytic activity because of its substantial specific surface area and synergistic interactions among S and BC moieties. It achieved HBCD elimination rates of 55% and 92% by photo-adsorptive degradation within 120 min. Meanwhile, the leaching of HBCD from expanded polystyrene (EPS) materials (28-123 ng g-1) underwater with different time intervals and degradation of leachate HBCD were also assessed. It has been reported that BC@S-CuO may be reused and regenerated by washing with distilled water up to seven times after deactivation. The photodegradation was assessed by HPLC analysis, while chemical scavengers were used to support radical pathways. Finally, GC-MS data identified the degradation intermediates by identifying the HBCD degradation pathway. Overall, this work shows that BC@S-CuO has practical application potential in pollution remediation, and studying the leaching of HBCD from EPS materials in an environment matrix should be an essential research priority.
Collapse
Affiliation(s)
- Meenu
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan, 302017, India
| | - Manviri Rani
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan, 302017, India
| | - Uma Shanker
- Department of Chemistry, Dr. B R Ambedkar National Institute of Technology Jalandhar, Jalandhar, Punjab, 144008, India.
| |
Collapse
|
21
|
Chen Q, Lü F, Zhang H, Xu Q, He P. Different Fenton treatments on diverse landfill organics: Discover the underestimated effect of derived-DOM. WATER RESEARCH 2023; 244:120536. [PMID: 37659183 DOI: 10.1016/j.watres.2023.120536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
Fenton is one of the most promising processes for the removal of dissolved organic matter (DOM). It has always been highly suspected that derived-DOM would be generated during Fenton reaction, but there is lack of direct evidence at the molecular level. The present study explored the molecular properties of the derived-DOM of five common Fenton technologies for degradation of nine landfill organics including leachates and concentrates based on UPLC Orbitrap MS/MS analysis. The comparative results confirmed that DOM derivation was essential for Fenton technologies, with the DOM derivation rate as high as 17.3%-70.3%. The derived-DOM are dominated by trace organic contaminants (CHON-DOM), and typical new contaminants (PPCPs, flavors, etc.). Heterogeneous Fenton had significantly lesser derived-DOM (35.1% ± 16.9%) than other Fenton technologies. Among all landfill organics, medium leachate was most likely to derive DOM (51.4% ± 13.9%), while unexpectedly old leachate had the lowest derivation rate (32.0% ± 5.3%). In the overall membrane treatment process, the secondary membrane concentrate is more susceptible to DOM derivation (43.4% ± 5.5%-49.6% ± 3.8%) than the primary membrane concentrate (40.7% ± 14.1%), and the elements and subcategories composition and molecular property indexes of the derived-DOM become more complex. On the contrary, the DOM derivatization rate of the biological treatment effluent after Fenton treatment was much lower than that of the various concentrates after Fenton treatment and the molecular property are simpler. Therefore, Fenton may replace the membrane process directly as a deep treatment process after biological treatment of landfill leachate. These information would help the selection and application of Fenton technologies.
Collapse
Affiliation(s)
- Qi Chen
- Institute of Waste Treatment and Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Fan Lü
- Institute of Waste Treatment and Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Hua Zhang
- Institute of Waste Treatment and Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-Efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, China
| | - Pinjing He
- Institute of Waste Treatment and Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
22
|
Li T, Lu Y, Liu L, He Y, Huang J, Peng X. Efficient degradation of hexabromocyclododecane using montmorillonite supported nano-zero-valent iron and Citrobacter sp. Y3. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131739. [PMID: 37269562 DOI: 10.1016/j.jhazmat.2023.131739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/15/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
The coupling of modified nanoscale zero-valent iron (nZVI) with organohalide-degrading bacteria provides a promising solution for the remediation of hexabromocyclododecane (HBCD)-contaminated environments. However, the interactions between modified nZVI and dehalogenase bacteria are intricate, and the mechanisms of synergistic action and electron transfer are not clear, and requires further specific investigation. In this study, HBCD was used as a model pollutant, and stable isotope analysis revealed that organic montmorillonite (OMt)-supported nZVI coupled with the degrading bacterial strain Citrobacter sp. Y3 (nZVI/OMt-Y3) can use [13C]HBCD as the sole carbon source and degrade or even mineralise it into 13CO2 with a maximum conversion rate of 100% within approximately 5 days. Analysis of the intermediates showed that the degradation of HBCD mainly involves three different pathways: dehydrobromination, hydroxylation, and debromination. The proteomics results showed that nZVI introduction promoted the transport of electrons and debromination. Combining the results from XPS, FTIR, and Raman spectroscopy with the analysis results of proteinomics and biodegradation products, we verified the process of electron transport and proposed a metabolic mechanism of HBCD degradation by the nZVI/OMt-Y3. Moreover, this study provides insightful avenues and models for the further remediation of HBCD and other similar pollutants in the environment.
Collapse
Affiliation(s)
- Tianyu Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yingyuan Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Lei Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuzhe He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Jingfei Huang
- College of Plant Protection, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, China.
| | - Xingxing Peng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China.
| |
Collapse
|
23
|
Jiang Y, Wang Q, Du Y, Yang D, Xu J, Yan C. Occurrence and Distribution of Tetrabromobisphenol A and Diversity of Microbial Community Structure in the Sediments of Mangrove. BIOLOGY 2023; 12:biology12050757. [PMID: 37237569 DOI: 10.3390/biology12050757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
The occurrence and distribution characteristics of tetrabromobisphenol A (TBBPA) and its relationship with microbial community diversity in different mangrove sediments need further investigation. The results of this study indicated levels of TBBPA in mangrove sediments from the Zhangjiang Estuary (ZJ), Jiulongjiang Estuary (JLJ), and Quanzhou Bay (QZ) in Southeast China ranging from 1.80 to 20.46, 3.47 to 40.77, and 2.37 to 19.83 ng/g dry weight (dw), respectively. Mangrove sediments from JLJ contained higher levels of TBBPA, possibly due to agricultural pollution. A correlation analysis revealed a significant correlation between total organic carbon (TOC), total nitrogen (TN), and TBBPA distribution in ZJ and JLJ mangrove sediments, but not in QZ mangrove sediments. TOC significantly affected the distribution of TBBPA in mangrove sediments, but pH had no effect. High-throughput 16S rRNA gene sequencing showed that Pseudomonadota dominated the sediment bacteria followed by Chloroflexota, Actinobacteota, Bacillota, Acidobacteriota, Bacteroidota, and Aminicenantes in mangrove sediments. Although the microbial community structure of the ZJ, JLJ, and QZ mangrove sediments was similar, the taxonomic profile of their sensitive responders differed markedly. The genus Anaerolinea was dominant in the mangrove sediments and was responsible for the in situ dissipation of TBBPA. Based on redundancy analysis, there was a correlation between TBBPA, TOC, TN, C/N, pH, and microbial community structure at the genus level. Combining TBBPA, TN, and TOC may induce variations in the microbial community of mangrove sediments.
Collapse
Affiliation(s)
- Yongcan Jiang
- PowerChina Huadong Engineering Corporation Ltd., Hangzhou 311122, China
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Qiang Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yunling Du
- PowerChina Huadong Engineering Corporation Ltd., Hangzhou 311122, China
| | - Dong Yang
- PowerChina Huadong Engineering Corporation Ltd., Hangzhou 311122, China
| | - Jianming Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chongling Yan
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
24
|
Yu Y, Li B, Zhou C, Ma S, Dang Y, Zhu M, Xiang M, Sun B. Sorption in soils and bioaccumulation potential of 2,2'-DiBBPA. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114969. [PMID: 37167736 DOI: 10.1016/j.ecoenv.2023.114969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
2,2'-Dibromobisphenol A (2,2'-DiBBPA) is frequently detected in the environment. However, the mobility of 2,2'-DiBBPA in the soil environment is poorly understood. The present study examined the effects of soil components such as the NaClO-resistant fraction, dithionite-citrate-bicarbonate -demineralized fraction, humin fraction, black carbon, DOC-removed fraction, exogenous dissolved organic carbon and heavy metal cations on the adsorption of 2,2'-DiBBPA on several types of agricultural soils. The adsorption isotherms on soils and soil components were well fitted to the linear isotherm equation. 2,2'-DiBBPA sorption onto soils was dominated by soil organic matter content (SOM) and affected by exogenous dissolved organic carbon. Linear regression relationships between adsorption capacity (Kd) and soil characteristics were evaluated to predict partitioning of 2,2'-DiBBPA. Black carbon played a predominant role in the adsorption of 2,2'-DiBBPA. Heavy metal ions significantly inhibited the adsorptive behavior of 2,2'-DiBBPA under alkaline conditions. Semiempirical linear relationships were observed between biota-sediment accumulation factors (1.18-2.47)/logarithm of bioconcentration factors (BCFs, 2.49-2.52) of 2,2'-DiBBPA in lugworms and Kd. These results allow for the prediction of the bioaccumulation of 2,2'-DiBBPA in other soils. Furthermore, values of log BCF > 1.0 indicate the preferential bioaccumulation of 2,2'-DiBBPA in biota. These data are of significance for understanding the migration of 2,2'-DiBBPA in agricultural soils and bioaccumulation in organisms.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China.
| | - Beibei Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China; School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Chang Zhou
- College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Wanzhou 404100, China
| | - Shexia Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Ming Zhu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Bingbing Sun
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China.
| |
Collapse
|
25
|
Marques ML, Cairrao E. Occurrence and Health Effects of Hexabromocyclododecane: An Updated Review. TOXICS 2023; 11:toxics11050409. [PMID: 37235223 DOI: 10.3390/toxics11050409] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023]
Abstract
Hexabromocyclododecane (HBCD) is a non-aromatic compound belonging to the bromine flame retardant family and is a known persistent organic pollutant (POP). This compound accumulates easily in the environment and has a high half-life in water. With a variety of uses, the HBCD is found in house dust, electronics, insulation, and construction. There are several isomers and the most studied are α-, β-, and γ-HBCD. Initially used as a substitute for other flame retardants, the polybrominated diphenyl ethers (PBDEs), the discovery of its role as a POP made HBCD use and manufacturing restricted in Europe and other countries. The adverse effects on the environment and human health have been piling, either as a result from its accumulation or considering its power as an endocrine disruptor (ED). Furthermore, it has also been proven that it has detrimental effects on the neuronal system, endocrine system, cardiovascular system, liver, and the reproductive system. HBCD has also been linked to cytokine production, DNA damage, increased cell apoptosis, increased oxidative stress, and reactive oxygen species (ROS) production. Therefore, this review aims to compile the most recent studies regarding the negative effects of this compound on the environment and human health, describing the possible mechanisms by which this compound acts and its possible toxic effects.
Collapse
Affiliation(s)
- Maria Lopes Marques
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
26
|
Yu Y, Zheng T, Li H, Hou Y, Dong C, Chen H, Wang C, Xiang M, Hu G, Dang Y. Growth inhibition of offspring larvae caused by the maternal transfer effects of tetrabromobisphenol A in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121143. [PMID: 36731738 DOI: 10.1016/j.envpol.2023.121143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is an industrial chemical and the most widely used brominated flame retardant, and has raised environmental health concerns. However, the maternal transfer toxicity of TBBPA is less studied in fish despite its frequency in the water environment, and limited evidence exists to confirm the major contributing factors. In this study, we performed a 28-d experiment on female and male zebrafish exposed to TBBPA (0, 5, 50, and 500 μg/L), and shortened body length of offspring larvae was observed at the maximum exposure concentration. By cross-mating control and exposed zebrafish (male or female), our results showed that the observed growth inhibition in the progeny was attributed to the maternal transfer effect. Although 28-d exposure resulted in the existence of TBBPA in ovaries and ova, the maternal transfer of TBBPA was not responsible for the shortened body length of offspring larvae, as evidenced through TBBPA embryo microinjection. Moreover, proteomic analyses in ova indicated that the abundance of apolipoproteins (apoa1, apoa1b, apoa2, apoa4b, and apoc1) was significantly downregulated in the ova, which may be partially responsible for the shortened body length of offspring larvae. Interestingly, these proteins did not differentially express in the ovaries. Therefore, our results demonstrate that TBBPA exposure disturbed maternal protein transfer from the ovaries to the ova, providing novel insights into the underlying maternal transfer effects.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Tong Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Hongyan Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yunbo Hou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Chenyin Dong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Haibo Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chuanhua Wang
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| |
Collapse
|
27
|
Zhao Z, Li H, Yao J, Lan J, Bao Y, Zhao L, Zong W, Zhang Q, Hollert H, Zhao X. Binding of Tetrabromobisphenol A and S to Human Serum Albumin Is Weakened by Coexisting Nanoplastics and Environmental Kosmotropes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4464-4470. [PMID: 36893289 DOI: 10.1021/acs.est.2c09090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Human serum albumin (HSA) was used as a model protein to explore the effects of brominated flame retardant (BFR) binding and the corona formation on polystyrene nanoplastics (PNs). Under physiological conditions, HSA helped to disperse PNs but promoted the formation of aggregates in the presence of tetrabromobisphenol A (TBBPA, ΔDh = 135 nm) and S (TBBPS, ΔDh = 256 nm) at pH 7. At pH 4, these aggregates became larger with fewer electrostatic repulsion effects (ΔDh = 920 and 691 nm for TBBPA and TBBPS, respectively). However, such promotion effects as well as BFR binding are different due to structural differences of tetrabromobisphenol A and S. Environmental kosmotropes efficiently stabilized the structure of HSA and inhibited BFR binding, while the chaotropes favored bioconjugated aggregate formation. Such effects were also verified in natural seawater. The newly gained knowledge may help us anticipate the behavior and fate of plastic particles and small molecular pollutants in both physiological and natural aqueous systems.
Collapse
Affiliation(s)
- Zongshan Zhao
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Haimei Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jiaqiang Yao
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jing Lan
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yan Bao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Lining Zhao
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Qing Zhang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Henner Hollert
- Department for Evolutionary Ecology and Environmental Toxicology, Goethe University, Frankfurt am Main 60438, Germany
| | - Xingchen Zhao
- Department for Evolutionary Ecology and Environmental Toxicology, Goethe University, Frankfurt am Main 60438, Germany
| |
Collapse
|
28
|
Berger ML, Shaw SD, Rolsky C, Harris JH, Guo Y, Kannan K. Occurrence and tissue-specific partitioning of alternative brominated flame retardants in northwest Atlantic harbor seal pups (Phoca vitulina vitulina). CHEMOSPHERE 2023; 318:137968. [PMID: 36708778 DOI: 10.1016/j.chemosphere.2023.137968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Brominated flame retardants such as polybrominated diphenyl ethers (PBDEs) have been used for decades until evidence of negative health effects led to bans in many countries. PBDEs have since been replaced by alternative legacy compounds or newly developed chemicals. In this study, eight alternative brominated flame retardants were analyzed in blubber and liver of harbor seal pups (≤6 months) from the Northwest Atlantic collected during 2001-2010 to elucidate concentrations, patterns, contamination trends, potential maternal transfer, and tissue partitioning. All compounds were detected in liver and blubber tissues with hexabromocyclododecane (HBCD) isomers and 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (TBB) predominating. Overall, α-HBCD was the dominant HBCD isomer in both tissues although the concentrations of γ-HBCD exceeded those of α-HBCD in seven pups, indicating their mothers may have had alternative dietary patterns or recent exposure to the commercial mixture. Although it was detected in less than half of the samples, to our knowledge, this is the first study to report tetrabromobisphenol A (TBBPA) concentrations in multiple tissues of a top marine predator. For the brominated components of Firemaster® flame retardants, TBB concentrations exceeded bis-(2-ethylhexyl)-tetrabromophthalate (TBPH). This pattern may result from recent exposure to commercial mixtures in which TBB exceeds TBPH 4:1 or from differences in perinatal or lactational transfer efficiency of the two compounds. Between the two tissues, lipid-normalized β-HBCD, γ-HBCD, TBB and decabromodiphenyl ethane (DBDPE) concentrations were significantly higher in liver than blubber. This indicates that the bioaccumulation of these chemicals is not simply related to lipid dynamics but may be linked to blood proteins. This study demonstrates that harbor seal pups from this region are contaminated with alternative flame retardants passed to them via placental or lactational transfer. Given the evidence for negative health effects of these chemicals, this contamination adds additional pressure on the first year survival of these young, developing animals.
Collapse
Affiliation(s)
- Michelle L Berger
- Shaw Institute, Blue Hill Research Center, 55 Main Street, Blue Hill, ME, 04614, USA.
| | - Susan D Shaw
- Shaw Institute, Blue Hill Research Center, 55 Main Street, Blue Hill, ME, 04614, USA
| | - Charles Rolsky
- Shaw Institute, Blue Hill Research Center, 55 Main Street, Blue Hill, ME, 04614, USA
| | - Jennifer H Harris
- Shaw Institute, Blue Hill Research Center, 55 Main Street, Blue Hill, ME, 04614, USA
| | - Ying Guo
- School of Environment, Jinan University, Guangzhou, 510632, China
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, 550 First Avenue, 698 MSB 6th Floor, New York, NY, 10016, USA
| |
Collapse
|
29
|
Pan YF, Liu S, Li HX, Lin L, Hou R, Cheng YY, Xu XR. Expanded polystyrene buoys as an important source of hexabromocyclododecanes for aquatic ecosystem: Evidence from field exposure with different substrates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120920. [PMID: 36565907 DOI: 10.1016/j.envpol.2022.120920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/04/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The production and use of hexabromocyclododecanes (HBCDs) have been strictly limited due to their persistence, toxicity and bioaccumulation. However, the release of HBCDs from related products and wastes would continue for a long time, which may cause many environmental problems. In this study, we investigated the occurrence and distribution of HBCDs and microplastics (MPs) in aquatic organisms inhabiting different substrates. HBCDs were measurable in the seawater, sediment, expanded polystyrene (EPS) substrates and organism samples. Mostly, the concentrations of HBCDs in organisms inhabiting EPS buoys were significantly higher than those of the same species inhabiting other substrates. Meanwhile, the diastereomeric ratio (α/γ) of HBCDs in organisms inhabiting EPS buoys was closer to that in EPS buoys. The fugacity values of HBCDs in EPS buoys were much higher than those in other media, implying that HBCDs can be transferred from EPS buoys to other media. Additionally, MPs derived from EPS buoys would be mistaken as food and ingested by aquatic organisms. The transfer of HBCDs from EPS buoys to aquatic organisms can be achieved by aqueous and dietary exposures. In combination, the contribution of MP ingestion to HBCDs for aquatic organisms should be very limited. These results supported EPS buoys as an important source of HBCDs for the aquatic ecosystem. To effectively control HBCDs pollution, it is necessary to discontinue or reduce the use of EPS buoys.
Collapse
Affiliation(s)
- Yun-Feng Pan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Heng-Xiang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Lang Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Rui Hou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yuan-Yue Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xiang-Rong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
30
|
Khan AUH, Naidu R, Dharmarajan R, Fang C, Shon H, Dong Z, Liu Y. The interaction mechanisms of co-existing polybrominated diphenyl ethers and engineered nanoparticles in environmental waters: A critical review. J Environ Sci (China) 2023; 124:227-252. [PMID: 36182134 DOI: 10.1016/j.jes.2021.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 06/16/2023]
Abstract
This review focuses on the occurrence and interactions of engineered nanoparticles (ENPs) and brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) in water systems and the generation of highly complex compounds in the environment. The release of ENPs and BFRs (e.g. PBDEs) to aquatic environments during their usage and disposal are summarised together with their key interaction mechanisms. The major interaction mechanisms including electrostatic, van der Waals, hydrophobic, molecular bridging and steric, hydrogen and π-bonding, cation bridging and ligand exchange were identified. The presence of ENPs could influence the fate and behaviour of PBDEs through the interactions as well as induced reactions under certain conditions which increases the formation of complex compounds. The interaction leads to alteration of behaviour for PBDEs and their toxic effects to ecological receptors. The intermingled compound (ENPs-BFRs) would show different behaviour from the parental ENPs or BFRs, which are currently lack of investigation. This review provided insights on the interactions of ENPs and BFRs in artificial, environmental water systems and wastewater treatment plants (WWTPs), which are important for a comprehensive risk assessment.
Collapse
Affiliation(s)
- Anwar Ul Haq Khan
- Global Centre for Environmental Remediation (GCER), College of Engineering Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), College of Engineering Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Raja Dharmarajan
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Cheng Fang
- Global Centre for Environmental Remediation (GCER), College of Engineering Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Hokyong Shon
- School of Civil and Environmental Engineering, University of Technology Sydney (UTS), City Campus, Broadway, NSW 2007, Australia
| | - Zhaomin Dong
- School of Space and Environment, Beihang University, Beijging 100191, China
| | - Yanju Liu
- Global Centre for Environmental Remediation (GCER), College of Engineering Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
31
|
Malala Irugal Bandaralage S, Ignacio Bertucci J, Park B, Green D, Brinkmann M, Masse A, Crump D, Basu N, Hogan N, Hecker M. Maternal Transfer and Apical and Physiological Effects of Dietary Hexabromocyclododecane Exposure in Parental Fathead Minnows (Pimephales promelas). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:143-153. [PMID: 36282020 DOI: 10.1002/etc.5506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/22/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Hexabromocyclododecane (HBCD) is a persistent organic pollutant that has been characterized as an endocrine disruptor, undergoes maternal transfer, and hinders development and growth in oviparous organisms. The present study examined the apical effects of dietary HBCD (11.5, 36.4, 106 mg/kg, wet wt) on adult fathead minnow exposed for 49 days and the subsequent accumulation and maternal transfer kinetics in adult tissue and eggs, respectively. Exposed adults displayed a significant increase in egg production in the medium treatment group, but no other significant effects were noted. Maternal transfer of dietary HBCD had a similar egg-to-muscle ratios (EMR) in the low and medium treatment groups (1.65 and 1.27 [wet wt], respectively). However, the high treatment group deviated from other treatments with an EMR of 4.2 (wet wt), potentially due to differences in total lipid content in food and/or reaching diffusion/lipid saturation limits in adult tissue, resulting in lower accumulation in the adult muscle tissue. A positive correlation was observed between egg HBCD concentration and time of exposure, which indicates that maternal transfer of HBCD is of concern in fish, and further studies should be conducted to fully elucidate the potential adverse effects that may be observed in the early life stage of oviparous organisms. Environ Toxicol Chem 2023;42:143-153. © 2022 SETAC.
Collapse
Affiliation(s)
- Susari Malala Irugal Bandaralage
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Spanish Institute of Oceanography, Oceanographic Centre of Vigo, Vigo, Spain
| | - Juan Ignacio Bertucci
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Spanish Institute of Oceanography, Oceanographic Centre of Vigo, Vigo, Spain
| | - Brad Park
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Derek Green
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Anita Masse
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Doug Crump
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Natacha Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
32
|
Tribondeau A, Sachs LM, Buisine N. Tetrabromobisphenol A effects on differentiating mouse embryonic stem cells reveals unexpected impact on immune system. Front Genet 2022; 13:996826. [PMID: 36386828 PMCID: PMC9640982 DOI: 10.3389/fgene.2022.996826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/06/2022] [Indexed: 07/27/2023] Open
Abstract
Tetrabromobisphenol A (TBBPA) is a potent flame retardant used in numerous appliances and a major pollutant in households and ecosystems. In vertebrates, it was shown to affect neurodevelopment, the hypothalamic-pituitary-gonadal axis and thyroid signaling, but its toxicity and modes of actions are still a matter of debate. The molecular phenotype resulting from exposure to TBBPA is only poorly described, especially at the level of transcriptome reprogramming, which further limits our understanding of its molecular toxicity. In this work, we combined functional genomics and system biology to provide a system-wide description of the transcriptomic alterations induced by TBBPA acting on differentiating mESCs, and provide potential new toxicity markers. We found that TBBPA-induced transcriptome reprogramming affect a large collection of genes loosely connected within the network of biological pathways, indicating widespread interferences on biological processes. We also found two hotspots of action: at the level of neuronal differentiation markers, and surprisingly, at the level of immune system functions, which has been largely overlooked until now. This effect is particularly strong, as terminal differentiation markers of both myeloid and lymphoid lineages are strongly reduced: the membrane T cell receptor (Cd79a, Cd79b), interleukin seven receptor (Il7r), macrophages cytokine receptor (Csf1r), monocyte chemokine receptor (Ccr2). Also, the high affinity IgE receptor (Fcer1g), a key mediator of allergic reactions, is strongly induced. Thus, the molecular imbalance induce by TBBPA may be stronger than initially realized.
Collapse
|
33
|
Klančič V, Gobec M, Jakopin Ž. Halogenated ingredients of household and personal care products as emerging endocrine disruptors. CHEMOSPHERE 2022; 303:134824. [PMID: 35525453 DOI: 10.1016/j.chemosphere.2022.134824] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
The everyday use of household and personal care products (HPCPs) generates an enormous amount of chemicals, of which several groups warrant additional attention, including: (i) parabens, which are widely used as preservatives; (ii) bisphenols, which are used in the manufacture of plastics; (iii) UV filters, which are essential components of many cosmetic products; and (iv) alkylphenol ethoxylates, which are used extensively as non-ionic surfactants. These chemicals are released continuously into the environment, thus contaminating soil, water, plants and animals. Wastewater treatment and water disinfection procedures can convert these chemicals into halogenated transformation products, which end up in the environment and pose a potential threat to humans and wildlife. Indeed, while certain parent HPCP ingredients have been confirmed as endocrine disruptors, less is known about the endocrine activities of their halogenated derivatives. The aim of this review is first to examine the sources and occurrence of halogenated transformation products in the environment, and second to compare their endocrine-disrupting properties to those of their parent compounds (i.e., parabens, bisphenols, UV filters, alkylphenol ethoxylates). Albeit previous reports have focused individually on selected classes of such substances, none have considered the problem of their halogenated transformation products. This review therefore summarizes the available research on these halogenated compounds, highlights the potential exposure pathways, and underlines the existing knowledge gaps within their toxicological profiles.
Collapse
Affiliation(s)
- Veronika Klančič
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Martina Gobec
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Žiga Jakopin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
34
|
Pan YF, Liu S, Tian F, Chen HG, Xu XR. Tetrabromobisphenol A and hexabromocyclododecanes in sediments from fishing ports along the coast of South China: Occurrence, distribution and ecological risk. CHEMOSPHERE 2022; 302:134872. [PMID: 35537630 DOI: 10.1016/j.chemosphere.2022.134872] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
Tetrabromobisphenol A (TBBPA) and hexabromocyclododecanes (HBCDDs) have attracted extensive attention due to their strong persistence and toxicity. However, little has been known about their pollution status in fishing ports, which are typical sinks of land-sourced pollutants. In this study, we investigated the occurrence, distribution and ecological risk of TBBPA and HBCDDs in sediments from fishing ports along the coast of South China. The concentrations of TBBPA and ΣHBCDD (sum of α-, β-, and γ-HBCDD) in the fishing-port sediments were in the ranges of 0.02-21.5 ng/g dw and 1.06-14.1 ng/g dw, respectively. γ-HBCDD was the predominant diastereoisomer in most fishing-port sediments. The enantiomeric analysis indicated a preferential enrichment of (-)-enantiomers for α-, β-, and γ-HBCDD. The geographical location of fishing ports is a significant determinant of distribution for TBBPA and HBBCDs. The concentrations of TBBPA and HBCDDs in fishing-port sediments were strongly associated with local population density, but weakly correlated with total organic carbon content of the sediment. The mass inventories of TBBPA and ΣHBCDD were estimated to be 77.0 ng/cm2 and 141 ng/cm2, respectively. The ecological risk assessment demonstrated that TBBPA and HBCDDs in fishing-port sediments exhibited low risks to marine organisms. This study contributes to the understanding pollution situation of fishing ports, and provides a reference for environmental safety assessment and environmental pollution control.
Collapse
Affiliation(s)
- Yun-Feng Pan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| | - Fei Tian
- Scientific Observation and Research Field Station of Pearl River Estuary Ecosystem, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510300, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Scientific Observing and Experimental Station of South China Sea Fishery Resource and Environment, Ministry of Agriculture and Rural Affairs, Guangzhou, 510300, China
| | - Hai-Gang Chen
- Scientific Observation and Research Field Station of Pearl River Estuary Ecosystem, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510300, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Scientific Observing and Experimental Station of South China Sea Fishery Resource and Environment, Ministry of Agriculture and Rural Affairs, Guangzhou, 510300, China
| | - Xiang-Rong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
35
|
Yu F, Luo W, Xie W, Li Y, Meng S, Kan J, Ye X, Peng T, Wang H, Huang T, Hu Z. Community reassemblies of eukaryotes, prokaryotes, and viruses in the hexabromocyclododecanes-contaminated microcosms. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129159. [PMID: 35643009 DOI: 10.1016/j.jhazmat.2022.129159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The microbial community in seriously contaminated environment were not well known. This research investigated the community reassemblies in microcosms made of two distinct mangrove sediments amended with high levels of hexabromocyclododecanes (HBCDs). After eight months of contamination, the transformation of HBCDs yielded various lower brominated products and resulted in acidification (pH ~2). Therefore, the degraders and dehalogenase homologous genes involved in transformation of HBCDs only presented in low abundance to avoid further deterioration of the habitats. Moreover, in these deteriorated habitats, 1344 bacterial, 969 archaeal, 599 eukaryotic (excluded fungi), 187 fungal OTUs, and 10 viral genera, were reduced compared with controls. Specifically, in two groups of microcosms, Zetaproteobacteria, Deinococcus-Thermus, Spirochaetes, Bacteroidetes, Euryarchaeota, and Ascomycota, were positively responding taxa to HBCDs. Caloneis (Bacillariophyta) and Ascomycota turned to the dominant eukaryotic and fungal taxa. Most of predominant taxa were related to the contamination of brominated flame retardants (BFRs). Microbial communities were reassembled in divergent and sediment-dependent manner. The long-term contamination of HBCDs leaded to the change of relations between many taxa, included some of the environmental viruses and their known hosts. This research highlight the importance of monitoring the ecological effects around plants producing or processing halogenated compounds.
Collapse
Affiliation(s)
- Fei Yu
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Wenqi Luo
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Wei Xie
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Yuyang Li
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Shanshan Meng
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Jie Kan
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Xueying Ye
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Tao Peng
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Hui Wang
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Tongwang Huang
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, PR China.
| |
Collapse
|
36
|
Rezania S, Talaiekhozani A, Oryani B, Cho J, Barghi M, Rupani PF, Kamali M. Occurrence of persistent organic pollutants (POPs) in the atmosphere of South Korea: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119586. [PMID: 35680069 DOI: 10.1016/j.envpol.2022.119586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/28/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Numerous studies found the presence of persistent organic pollutants (POPs) in various environmental compartments, including air, water, and soil. POPs have been discovered in various industrial and agricultural products with severe environmental and human health consequences. According to the data, South Korea is a hotspot for POP pollution in the southern part of Asia; hence, South Korea has implemented the Stockholm Convention's National Implementation Plan (NIP) to address this worldwide issue. The purpose of this review is to assess the distribution pattern of POPs pollution in South Korea's atmosphere. According to findings, PAHs, PCBs, BFRs, and PBDEs significantly polluted the atmosphere of South Korea; however, assessing their exposure nationwide is difficult due to a shortage of data. The POPs temporal trend and meta-analysis disclosed no proof of a decrease in PAHs and BFRs residues in the atmosphere. However, POP pollution in South Korea tends to decrease compared to contamination levels in neighboring countries like Japan and China.
Collapse
Affiliation(s)
- Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea.
| | - Amirreza Talaiekhozani
- Department of Civil Engineering, Jami Institute of Technology, Isfahan, 84919-63395, Iran
| | - Bahareh Oryani
- Technology Management, Economics and Policy Program, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jinwoo Cho
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | | | - Parveen Fatemeh Rupani
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Mohammadreza Kamali
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| |
Collapse
|
37
|
Yang Y, Zhang M, Gao Y, Chen H, Cui J, Yu Y, Ma S. Identification and occurrence of TBBPA and its debromination and O-methylation transformation products in sediment, fish and whelks from a typical e-waste dismantling site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155249. [PMID: 35427616 DOI: 10.1016/j.scitotenv.2022.155249] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/24/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Tetrabromobisphenol A (TBBPA) and its debromination (∑BBPA) and O-methylation (∑MeO-TBBPA) products were widely detected in matched sediments, fish, and whelks samples collected from a typical electronic waste (e-waste) dismantling site in Southern China, with concentrations ranging from 19.8 to 1.52 × 104, 8.05 to 1.84 × 103, and 0.08 to 11.9 ng/g dry weight in sediments, and 6.96 to 1.97 × 105, 3.84 to 7.07 × 103, and 3.42 to 472 ng/g lipid in biotas, for TBBPA, ∑BBPA, and ∑MeO-TBBPA, respectively. Significantly higher concentrations of these targets were found in samples collected close to the e-waste site, indicating their potential e-waste sources. Tri-BBPA was the most abundant debromination products in sediments, whereas diMeO-TBBPA was the dominant O-methylation product in biotas. Relatively higher levels of diMeO-TBBPA found in liver and kidneys, suggesting these chemicals might be mainly derived from the in vivo biotransformation. Furthermore, significantly higher biota-sediment accumulation factor values were found for diMeO-TBBPA than these of TBBPA, indicating that O-methylation would increases their accumulation in aquatic organisms. Our study provides insights into the accumulation and biotransformation of TBBPA in aquatic systems. Further studies should pay attention to the occurrence as well as potential health risks of these transformation products.
Collapse
Affiliation(s)
- Yan Yang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515041, Guangdong, China; Synergy Innovation Institute of GDUT, Shantou 515041, China
| | - Mengdi Zhang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuan Gao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Haojia Chen
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515041, Guangdong, China; Synergy Innovation Institute of GDUT, Shantou 515041, China
| | - Juntao Cui
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515041, Guangdong, China; Synergy Innovation Institute of GDUT, Shantou 515041, China.
| |
Collapse
|
38
|
Kuo CS, Kuo DTF, Chang A, Wang K, Chou PH, Shih YH. Rapid debromination of tetrabromobisphenol A by Cu/Fe bimetallic nanoparticles in water, its mechanisms, and genotoxicity after treatments. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128630. [PMID: 35299103 DOI: 10.1016/j.jhazmat.2022.128630] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Tetrabromobisphenol A (TBBPA), a widely used brominated flame retardants, has been detected in various environmental matrices and is known to cause various adverse effects on human bodies. This study examined the feasibility and effectiveness of remediating TBBPA using Cu/Fe bimetallic nanoparticles (Cu/Fe BNPs) at various environmental and operational conditions. In general, TBBPA removal rate and debromination efficiency increased with higher Cu doping, higher Cu/Fe BNPs loading, higher temperature, and lower pH. At optimal conditions, TBBPA was completed removed at a rate constant > 0.2 min-1 where over 90% TBBPA was transformed to BPA within 30 min. The activation energy was found to be 35.6 kJ/mol, indicating that TBBPA was predominantly removed via surface-controlled reactions. Under pH 3-7 and ≥ 25 °C, debromination was the dominant removal mechanism compared to adsorption. The complete debromination pathway and the time-evolution of intermediates byproducts at different pHs were also presented. Cu/Fe BNPs can be reused for more than 6 times with performance constancy. Genotoxic tests showed that the treated solution did not find a significant hazardous potential. The byproducts can be further degraded by additional H2O2 through Fenton reaction. These results demonstrated the efficacy of Cu/Fe BNPs for treating TBBPA and its potential for degrading other halogenated organic compounds.
Collapse
Affiliation(s)
- Chin-Shun Kuo
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Dave Ta Fu Kuo
- Civil and Architectural Engineering, City University of Hong Kong, Hong Kong, China; Kuo Research & Consulting, Toronto, Canada
| | - Andy Chang
- Air Permit Division, Texas Commission on Environmental Quality, United States
| | - Kai Wang
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Pei-Hsin Chou
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yang-Hsin Shih
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
39
|
Transformation of HBCDs by Rhodococcus sp. stu-38. Curr Microbiol 2022; 79:200. [PMID: 35596087 DOI: 10.1007/s00284-022-02872-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/10/2022] [Indexed: 11/03/2022]
Abstract
1,2,5,6,9,10-Hexabromocyclododecanes (HBCDs) are brominated flame retardants causing serious environmental pollution. HBCDs in the environment could be transformed to various products. Identification of transformation products has been performed using various mass-spectrometric techniques. However, bacterial transformation of HBCDs yielding low-level products was not well studied. In this paper, a Rhodococcus strain stu-38 which could stereoselectively transform HBCDs in mineral salt medium, seawater, and growth medium was isolated. Seven potential biotransformation products of HBCDs were identified by using GC-MS. These products, including brominated alkenes, dibromocyclododecadiene and bromocyclododecatriene; brominated alkenols, bromocyclododecadienol and bromocyclododecatrienol; fully debrominated compounds, cyclododecadiendiol, 1,2-epoxy-5,9-cyclododecadiene, and cyclododecadienol, were presented in rather low level which could lead to false negative results. The low-level transformation products should not be ignored because their toxicity was less assessment. This research highlighted identification of the low-level transformation products to reveal the complicated stereoselective biotransformation of HBCDs.
Collapse
|
40
|
Maur G, Edwards B, Habibi HR, Allan ER. TBBPA downregulates thyroid receptor and estrogen receptor mRNA levels in goldfish gonadal tissue. Anim Reprod Sci 2022; 240:106990. [DOI: 10.1016/j.anireprosci.2022.106990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 11/01/2022]
|
41
|
Sunday OE, Bin H, Guanghua M, Yao C, Zhengjia Z, Xian Q, Xiangyang W, Weiwei F. Review of the environmental occurrence, analytical techniques, degradation and toxicity of TBBPA and its derivatives. ENVIRONMENTAL RESEARCH 2022; 206:112594. [PMID: 34973196 DOI: 10.1016/j.envres.2021.112594] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/08/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
BFRs (brominated flame retardants) are a class of compounds that are added to or applied to polymeric materials to avoid or reduce the spread of fire. Tetrabromobisphenol A (TBBPA) is one of the known BFR used many in industries today. Due to its wide application as an additive flame retardant in commodities, TBBPA has become a common indoor contaminant. Recent researches have raised concerns about the possible hazardous effect of exposure to TBBPA and its derivatives in humans and wildlife. This review gives a thorough assessment of the literature on TBBPA and its derivatives, as well as environmental levels and human exposure. Several analytical techniques/methods have been developed for sensitive and accurate analysis of TBBPA and its derivatives in different compartments. These chemicals have been detected in practically every environmental compartment globally, making them a ubiquitous pollutant. TBBPA may be subject to adsorption, biological degradation or photolysis, photolysis after being released into the environment. Treatment of TBBPA-containing waste, as well as manufacturing and usage regulations, can limit the release of these chemicals to the environment and the health hazards associated with its exposure. Several methods have been successfully employed for the treatment of TBBPA including but not limited to adsorption, ozonation, oxidation and anaerobic degradation. Previous studies have shown that TBBPA and its derivative cause a lot of toxic effects. Diet and dust ingestion and have been identified as the main routes of TBBPA exposure in the general population, according to human exposure studies. Toddlers are more vulnerable than adults to be exposed to indoor dust through inadvertent ingestion. Furthermore, TBBP-A exposure can occur during pregnancy and through breast milk. This review will go a long way in closing up the knowledge gap on the silent and over ignored deadly effects of TBBPA and its derivatives and their attendant consequences.
Collapse
Affiliation(s)
- Okeke Emmanuel Sunday
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China; Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, SGS, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Huang Bin
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China
| | - Mao Guanghua
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China
| | - Chen Yao
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China
| | - Zeng Zhengjia
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China
| | - Qian Xian
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China
| | - Wu Xiangyang
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China.
| | - Feng Weiwei
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China.
| |
Collapse
|
42
|
Wang Y, Xianyu Y. Nanobody and Nanozyme-Enabled Immunoassays with Enhanced Specificity and Sensitivity. SMALL METHODS 2022; 6:e2101576. [PMID: 35266636 DOI: 10.1002/smtd.202101576] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Immunoassay as a rapid and convenient method for detecting a variety of targets has attracted tremendous interest with its high specificity and sensitivity. Among the commonly used immunoassays, enzyme-linked immunosorbent assay has been widely used as a gold standard method in various fields that consists of two main components including a recognition element and an enzyme label. With the rapid advances in nanotechnology, nanobodies and nanozymes enable immunoassays with enhanced specificity and sensitivity compared with conventional antibodies and natural enzymes. This review is focused on the applications of nanobodies and nanozymes in immunoassays. Nanobodies advantage lies in their small size, high specificity, mass expression, and high stability. Nanozymes with peroxidase, phosphatase, and oxidase activities and their applications in immunoassays are highlighted and discussed in detail. In addition, the challenges and outlooks in terms of the use of nanobodies and the development of novel nanozymes in practical applications are discussed.
Collapse
Affiliation(s)
- Yidan Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yunlei Xianyu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang, 315100, China
| |
Collapse
|
43
|
Zhang W, Tang Y, Han Y, Zhou W, Shi W, Teng S, Ren P, Xiao G, Li S, Liu G. Microplastics boost the accumulation of tetrabromobisphenol A in a commercial clam and elevate corresponding food safety risks. CHEMOSPHERE 2022; 292:133499. [PMID: 34979205 DOI: 10.1016/j.chemosphere.2021.133499] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/30/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Marine bivalve molluscs are one of the primary seafood for consumers. Inhabiting terrigenous pollutant-convergent coastal areas and feeding through seawater filtration, edible bivalves are subjected to waterborne emerging pollutants such as microplastics (MPs) and tetrabromobisphenol A (TBBPA). Nevertheless, the potential risks of consuming MP-TBBPA contaminated seafood are still largely unknown. With that, accumulation of TBBPA with and without the presence of MPs in a commercial bivalve species, blood clam (Tegillarca granosa), was determined in the present study. Meanwhile, corresponding target hazard quotients (THQs) as well as margins of exposure (MoEs) were estimated to evaluate the potential health risks for clam consumers. Furthermore, the impacts of pollutants accumulation on the detoxification process and energy supply were analysed. The data obtained demonstrated that MPs aggravate the accumulation of TBBPA in clams, leading to elevated potential food safety risks (indicated by higher THQ values and lower MoE values) for consumers. In addition, the in vivo contents of CYP1A1 and UDP-glucuronosyltransferase, the enzymatic activity of glutathione-S-transferase, and the expression levels of five detoxification-related genes were all dramatically suppressed by MP-TBBPA. Furthermore, clams exposed to MP-TBBPA had significantly lower adenosine triphosphate contents and lower pyruvate kinase and phosphofructokinase activities. These results indicated that the aggravation of TBBPA accumulation may be due to the hence disruption of detoxification process and limited energy available for detoxification.
Collapse
Affiliation(s)
- Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | | | - Peng Ren
- Zhejiang Mariculture Research Institute, Wenzhou, 325005, PR China
| | - Guoqiang Xiao
- Zhejiang Mariculture Research Institute, Wenzhou, 325005, PR China
| | - Shiguo Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
44
|
Photocatalytic Degradation of 4,4'-Isopropylidenebis(2,6-dibromophenol) on Magnetite Catalysts vs. Ozonolysis Method: Process Efficiency and Toxicity Assessment of Disinfection By-Products. Int J Mol Sci 2022; 23:ijms23073438. [PMID: 35408795 PMCID: PMC8999079 DOI: 10.3390/ijms23073438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/13/2022] [Accepted: 03/20/2022] [Indexed: 01/27/2023] Open
Abstract
Flame retardants have attracted growing environmental concern. Recently, an increasing number of studies have been conducted worldwide to investigate flame-retardant sources, environmental distribution, living organisms’ exposure, and toxicity. The presented studies include the degradation of 4,4′-isopropylidenebis(2,6-dibromophenol) (TBBPA) by ozonolysis and photocatalysis. In the photocatalytic process, nano- and micro-magnetite (n-Fe3O4 and μ-Fe3O4) are used as a catalyst. Monitoring of TBBPA decay in the photocatalysis and ozonolysis showed photocatalysis to be more effective. Significant removal of TBBPA was achieved within 10 min in photocatalysis (ca. 90%), while for ozonation, a comparable effect was observed within 70 min. To determine the best method of TBBPA degradation concentration on COD and TOC, the removals were examined. The highest oxidation state was obtained for photocatalysis on μ-Fe3O4, whereas for n-Fe3O4 and ozonolysis, the COD/TOC ratio was lower. Acute toxicity results show noticeable differences in the toxicity of TBBPA and its degradation products to Artemia franciscana and Thamnocephalus platyurus. The EC50 values indicate that TBBPA degradation products were toxic to harmful, whereas the TBPPA and post-reaction mixtures were toxic to the invertebrate species tested. The best efficiency in the removal and degradation of TBBPA was in the photocatalysis process on μ-Fe3O4 (reaction system 1). The examined crustaceans can be used as a sensitive test for acute toxicity evaluation.
Collapse
|
45
|
Rani M, Shanker U. Efficient removal of plastic additives by sunlight active titanium dioxide decorated Cd-Mg ferrite nanocomposite: Green synthesis, kinetics and photoactivity. CHEMOSPHERE 2022; 290:133307. [PMID: 34929280 DOI: 10.1016/j.chemosphere.2021.133307] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/27/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Large use of flame retardants or additives in plastic industries have caused scientific attention as their leaching from consumer products is indicative of environmental concern. Moreover, plastic additives have proven features of endocrine disruptors, genotoxicity and persistence. Therefore, photodegradation of tetrabromobisphenol A (TBBPA) and bisphenol A (BPA) were explored in water. Seeing environmental safety, titanium dioxide decorated magnesium substituted cadmium ferrite (CdMgFe2O4@TiO2) was synthesized by using plant extract of M. koenigii via co-precipitation. Sharp peaks obtained in PXRD ensured high crystallinity and purity of distorted spherical nanocomposite (5-25 nm). Subsequently, CdMgFe2O4@TiO2 nanocatalyst was evaluated for the effective elimination of plastic additives at variable reaction parameters (pollutant: 2-10 mgL-1; catalyst: 5-25 mg; pH: 3-7, dark-sunlight). With 20 mg of catalytic dose, CdMgFe2O4@TiO2 showed maximum degradation of 2 mgL-1 of TBBPA (91%) and BPA (94%) at neutral pH under sunlight. Considerable reduction in persistence of TBBPA (t1/2:2.4 h) and BPA (t1/2:2.1 h) indicated admirable photoactivity of CdMgFe2O4@TiO2. Results were supported by BET, zeta potential, band reflectance and photoluminescence analysis that indicated for higher surface area (90 m2g-1), larger particle stability (-20 mV), lower band gap (1.9 eV) and inhibited charge-pairs recombination in nanocomposite. Degradation consisted of initial Langmuir-adsorption followed by first order kinetics. Scavenger analysis revealed the role of hydroxyl radical in photodegradation studies. Nanocomposite was effective up to eight cycles without any significant loss of activity that advocated its high-sustainability and cost-effectiveness. Overall, with excellent surface characteristics, green synthesized CdMgFe2O4@TiO2 nanocomposite is a promising and alternative photocatalyst for industrial applications.
Collapse
Affiliation(s)
- Manviri Rani
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan, 302017, India.
| | - Uma Shanker
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology Jalandhar, Jalandhar, Punjab, 144011, India.
| |
Collapse
|
46
|
|
47
|
Analysis of brominated flame retardants in the aquatic environment: a review. Arh Hig Rada Toksikol 2021; 72:254-267. [PMID: 34985845 PMCID: PMC8785114 DOI: 10.2478/aiht-2021-72-3576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/01/2021] [Indexed: 11/20/2022] Open
Abstract
The most common and consequently analysed brominated flame retardants (BFRs) are polybrominated biphenyls (PBBs), polybrominated diphenyl ethers (PBDEs), tetrabromobisphenol A (TBBPA), tetrabromobisphenol S (TBBPS), and hexabromocyclododecane (HBCD). As these persistent organic pollutants are widespread in the environment and have a number of harmful effects on human health, the production and use of most has been banned for several years. The aquatic environment is polluted by these compounds through their deposition from the atmosphere, sewage sludge, wastewater treatment plants, and landfills, and higher levels are found in areas with developed industry and agriculture and near landfills. Each compound also seems to show preference for specific compartments of the aquatic environment, i.e. water, sediment, or aquatic organisms, according to their physicochemical properties. The aim of this review was to take a closer look at the analysis of BFRs, as without reliable analysis we would not be able to determine their levels and distribution across the aquatic compartments and assess human exposure and health risks. Particularly worrying are the health risks associated with PBDEs in fish, whose levels generally exceed the permitted values.
Collapse
|
48
|
Chen P, Ma S, Yang Y, Qi Z, Wang Y, Li G, Tang J, Yu Y. Organophosphate flame retardants, tetrabromobisphenol A, and their transformation products in sediment of e-waste dismantling areas and the flame-retardant production base. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112717. [PMID: 34478981 DOI: 10.1016/j.ecoenv.2021.112717] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Due to the prohibition of polybrominated diphenyl ethers, organophosphate flame retardants (OPFRs) and tetrabromobisphenol A (TBBPA) have become emerging flame retardants. However, knowledge about their occurrence, especially their transformation products, is still limited. This study collected sediment samples from two rivers, i.e., Lianjiang River (located at an e-waste dismantling area) and Xiaoqing River (situated at a flame retardant production base), to investigate the occurrence, composition, and spatiality distribution of OPFRs, TBBPA, and their transformation products. Both targets were detected in the Lianjiang River in the range of 220-1.4 × 104 and 108-3.1 × 103 ng/g dw (dry weight) for OPFRs and TBBPA, and 0.11-2.35 and 4.8-414 ng/g dw for their respective transformation products, respectively. The concentrations of OPFRs and TBBPA in the Xiaoqing River ranged from 4.15 to 31.5 and 0.76-2.51 ng/g dw, respectively, and no transformation products were detected. Different compositional characteristics of OPFRs and distinct spatial distribution from mainstream and tributary observed between the two rivers are attributed to the difference in the local industries. Spatial distribution and principal component analysis indicated that e-waste dismantling activities could be a vital source of local pollution. Besides, the confluence of tributaries seemed to determine the contaminant levels in the Xiaoqing River. Also, concentration ratios and Spearman's correlation between metabolites and parent chemicals were analyzed. Low concentration ratios (3.6 ×10-4 to 0.16) indicated a low transformation degree, and Spearman's correlation analysis suggested transformation products were partly stemming from commercial products. Considering the limited study of these transformation products, more studies on their sources, transform mechanism, and toxicity are required.
Collapse
Affiliation(s)
- Peng Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of GDUT, Shantou 515041, China
| | - Yan Yang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of GDUT, Shantou 515041, China
| | - Zenghua Qi
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yujie Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianhui Tang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
49
|
Miglioli A, Balbi T, Montagna M, Dumollard R, Canesi L. Tetrabromobisphenol A acts a neurodevelopmental disruptor in early larval stages of Mytilus galloprovincialis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148596. [PMID: 34328967 DOI: 10.1016/j.scitotenv.2021.148596] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/08/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Tetrabromobisphenol A-TBBPA, a widely used brominated flame retardant detected in aquatic environments, is considered a potential endocrine disruptor-ED for its reproductive/developmental effects in vertebrates. In aquatic invertebrates, the modes of action of most EDs are largely unknown, due to partial knowledge of the mechanisms controlling neuroendocrine functions. In the marine bivalve Mytilus galloprovincialis, TBBPA has been previously shown to affect larval development in the 48 h larval toxicity assay at environmental concentrations. In this work, the effects of TBBPA were further investigated at different times post-fertilization. TBBPA, from 1 μg/L, affected shell biogenesis at 48 hours post fertilization-hpf, as shown by phenotypic and SEM analysis. The mechanisms of action of TBBPA were investigated at concentrations of the same order of magnitude as those found in highly polluted coastal areas (10 μg/L). At 28-32 hpf, TBBPA significantly affected deposition of both the organic matrix and CaCO3 in the shell. TBBPA also altered expression of shell-related genes from 24 to 48 hpf, in particular of tyrosinase, a key enzyme in shell matrix remodeling. At earlier stages (24 hpf), TBBPA affected the development of dopaminergic, serotoninergic and GABAergic systems, as shown by in situ hybridization-ISH and immunocytochemistry. These data contribute draw adverse outcome pathways-AOPs, where TBBPA affects the synthesis of neutrotransmitters involved in key events (neurodevelopment and shell biogenesis), resulting in phenotypic changes on individuals (delayed or arrested development) that might lead to detrimental consequences on populations.
Collapse
Affiliation(s)
- A Miglioli
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, DISTAV, Università di Genova, Corso Europa 26, 16132 Genova, Italy; Sorbonne Université/CNRS, Institut de la Mer, UMR7009 Laboratoire de Biologie du Développement, 06230, Chemin du Lazaret, 06230 Villefranche-sur-Mer, France
| | - T Balbi
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, DISTAV, Università di Genova, Corso Europa 26, 16132 Genova, Italy.
| | - M Montagna
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, DISTAV, Università di Genova, Corso Europa 26, 16132 Genova, Italy
| | - R Dumollard
- Sorbonne Université/CNRS, Institut de la Mer, UMR7009 Laboratoire de Biologie du Développement, 06230, Chemin du Lazaret, 06230 Villefranche-sur-Mer, France
| | - L Canesi
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, DISTAV, Università di Genova, Corso Europa 26, 16132 Genova, Italy
| |
Collapse
|
50
|
Gong W, Wang J, Cui W, Zhu L. Distribution characteristics and risk assessment of TBBPA in seawater and zooplankton in northern sea areas, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:4759-4769. [PMID: 33974200 DOI: 10.1007/s10653-021-00948-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Tetrabromobisphenol-A (TBBPA) is a typical persistent organic pollutant (POP) that is harmful to the environment and organisms. It easily accumulates in organisms and is transmitted along the food chain or food web for long distances and long periods of time. The experiment was designed to assess the TBBPA pollution levels in marine environments via environmental sample testing and risk assessment. TBBPA levels in seawater and zooplankton samples at each station (n = 38) were detected, whereafter the bioaccumulation factor (BAF) and risk quotient (RQ) were calculated to evaluate the potential bioaccumulation and ecological risk of TBBPA to zooplankton, respectively. The results showed that TBBPA was widely detected in surface seawater and zooplankton samples in the Yellow Sea and Bohai Sea, with levels ranging from ND (non-detected) to 0.46 μg/L and ND to 9.83 μg/kg (wet weight), respectively. In both the Yellow Sea and Bohai Sea, the distance from the shore was one of the main factors affecting the TBBPA concentration in seawater, regardless of visibility. The BAF was significantly correlated with the TBBPA content in zooplankton samples (P < 0.01), which ranged from 372.32 to 29,941.55, indicating that TBBPA exhibits an obvious bioaccumulation risk to marine zooplankton. The ecological risk assessment indicated that TBBPA levels in seawater pose a high ecotoxicity risk to zooplankton (RQ > 1). This finding suggests that both the significant bioaccumulation of TBBPA in marine ecosystems and its potential ecological risks cannot be ignored.
Collapse
Affiliation(s)
- Wenjing Gong
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, No.133 Hehua Road, Taibai Lake New District, Jining, Shandong, China
- Laboratory for Plankton, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Junjian Wang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Wen Cui
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, No.133 Hehua Road, Taibai Lake New District, Jining, Shandong, China.
| | - Liyan Zhu
- Laboratory for Plankton, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China.
| |
Collapse
|