1
|
Kirichkov MV, Polyakov VA, Shende SS, Minkina TM, Nevidomskaya DG, Wong MH, Bauer TV, Shuvaeva VA, Mandzhieva SS, Tsitsuashvili VS. Application of X-ray based modern instrumental techniques to determine the heavy metals in soils, minerals and organic media. CHEMOSPHERE 2024; 349:140782. [PMID: 38013028 DOI: 10.1016/j.chemosphere.2023.140782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
To evaluate the environmental concerns associated with heavy metals (HMs) during their translocations in food chains, it is crucial to gather data on the types of HMs present in soils in order to ascertain their toxicity and potential to migrate. An overview of the findings from several physical techniques used to determine and identify the HMs, sediments, individual minerals, and organic components in contaminated agricultural and industrial soils, is provided in this review article. These studies cover a variety of X-ray-based analytical techniques, including most widely used ones like X-ray absorption near edge structure, extended X-ray absorption fine structure, X-ray diffraction, and less popular ones X-ray fluorescence, etc. When compared to techniques that rely on laboratory radiation sources, synchrotron radiation offers more precision and efficiency. These methods could pinpoint the primary mechanisms influencing the soil's ability to transport contaminants and track their subsequent migration up the food chain.
Collapse
Affiliation(s)
| | | | | | | | | | - Ming Hung Wong
- Southern Federal University, Rostov-on-Don, 344090, Russia; Consortium on Health, Environment, Education, and Research (CHEER), The Education University of Hong Kong, Hong Kong, China
| | | | | | | | | |
Collapse
|
2
|
Kimber RL, Elizondo G, Jedyka K, Boothman C, Cai R, Bagshaw H, Haigh SJ, Coker VS, Lloyd JR. Copper bioreduction and nanoparticle synthesis by an enrichment culture from a former copper mine. Environ Microbiol 2023; 25:3139-3150. [PMID: 37697680 PMCID: PMC10946571 DOI: 10.1111/1462-2920.16488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/16/2023] [Indexed: 09/13/2023]
Abstract
Microorganisms can facilitate the reduction of Cu2+ , altering its speciation and mobility in environmental systems and producing Cu-based nanoparticles with useful catalytic properties. However, only a few model organisms have been studied in relation to Cu2+ bioreduction and little work has been carried out on microbes from Cu-contaminated environments. This study aimed to enrich for Cu-resistant microbes from a Cu-contaminated soil and explore their potential to facilitate Cu2+ reduction and biomineralisation from solution. We show that an enrichment grown in a Cu-amended medium, dominated by species closely related to Geothrix fermentans, Azospira restricta and Cellulomonas oligotrophica, can reduce Cu2+ with subsequent precipitation of Cu nanoparticles. Characterisation of the nanoparticles with (scanning) transmission electron microscopy, energy-dispersive x-ray spectroscopy and electron energy loss spectroscopy supports the presence of both metallic Cu(0) and S-rich Cu(I) nanoparticles. This study provides new insights into the diversity of microorganisms capable of facilitating copper reduction and highlights the potential for the formation of distinct nanoparticle phases resulting from bioreduction or biomineralisation reactions. The implications of these findings for the biogeochemical cycling of copper and the potential biotechnological synthesis of commercially useful copper nanoparticles are discussed.
Collapse
Affiliation(s)
- Richard L. Kimber
- Department of Earth and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, School of Natural SciencesUniversity of ManchesterManchesterUK
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaAustria
| | - Gretta Elizondo
- Department of Earth and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, School of Natural SciencesUniversity of ManchesterManchesterUK
| | - Klaudia Jedyka
- Department of Earth and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, School of Natural SciencesUniversity of ManchesterManchesterUK
| | - Christopher Boothman
- Department of Earth and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, School of Natural SciencesUniversity of ManchesterManchesterUK
| | - Rongsheng Cai
- Department of MaterialsUniversity of ManchesterManchesterUK
| | - Heath Bagshaw
- SEM Shared Research Facility, School of EngineeringUniversity of LiverpoolLiverpoolUK
| | - Sarah J. Haigh
- Department of MaterialsUniversity of ManchesterManchesterUK
| | - Victoria S. Coker
- Department of Earth and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, School of Natural SciencesUniversity of ManchesterManchesterUK
| | - Jonathan R. Lloyd
- Department of Earth and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, School of Natural SciencesUniversity of ManchesterManchesterUK
| |
Collapse
|
3
|
Formentini TA, Basile-Doelsch I, Legros S, Frierdich AJ, Pinheiro A, Fernandes CVS, Mallmann FJK, Borschneck D, da Veiga M, Doelsch E. Copper (Cu) speciation in organic-waste (OW) amended soil: Instability of OW-borne Cu(I) sulfide and role of clay and iron oxide minerals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157779. [PMID: 35926606 DOI: 10.1016/j.scitotenv.2022.157779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
The geochemistry of copper (Cu) is generally assumed to be controlled by organic matter in soils. However, the role of clay and iron oxide minerals may be understated. Soil density fractionation, X-ray diffraction (XRD), and X-ray absorption spectroscopy (XAS) were combined to assess the long-term behavior of Cu in an agricultural soil subject to organic waste application. Two unprecedented molecular environments of natural Cu (i.e. Cu inherited from the parent rock) in soils are reported: Cu dimer in the interlayer of vermiculite and Cu structurally incorporated within hematite. Moreover, the soil naturally containing Cu-vermiculite, Cu-hematite, but also Cu-kaolinite (Cutotal = 122 mg·kg-1) was amended over 11 years with Cu-rich pig slurry in which Cu was 100 % Cu(I) sulfide. Natural Cu associated with clay and iron oxide minerals persisted in the amended soil, but the exogenous Cu(I) sulfide was unstable. The increase in Cu concentration in the amended soil to 174 mg·kg-1 was accounted for the increase of Cu sorbed to kaolinite and Cu bound to organic matter. These results are important for better understanding the natural occurrence of Cu in soils and for assessing the environmental impacts of organic waste recycling in agricultural fields.
Collapse
Affiliation(s)
- Thiago A Formentini
- Department of Soil and Environment, Swedish University of Agricultural Sciences, P. O. Box 7014, SE-750 07 Uppsala, Sweden; Department of Hydraulics and Sanitation, Federal University of Parana (UFPR), 81531-980 Curitiba, PR, Brazil.
| | - Isabelle Basile-Doelsch
- Aix-Marseille Université, CNRS, IRD, Coll France, INRA, CEREGE, F-13545 Aix-en-Provence, France
| | - Samuel Legros
- CIRAD, UPR Recyclage et risque, F-34398 Montpellier, France; Recyclage et Risque, Univ. Montpellier, CIRAD, Montpellier, France
| | - Andrew J Frierdich
- School of Earth, Atmosphere & Environment, Monash University, Clayton, Victoria, Australia
| | - Adilson Pinheiro
- Environmental Engineering Program, Regional University of Blumenau (FURB), 89030-000 Blumenau, SC, Brazil
| | - Cristovão V S Fernandes
- Department of Hydraulics and Sanitation, Federal University of Parana (UFPR), 81531-980 Curitiba, PR, Brazil
| | - Fábio J K Mallmann
- Department of Soils, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil
| | - Daniel Borschneck
- Aix-Marseille Université, CNRS, IRD, Coll France, INRA, CEREGE, F-13545 Aix-en-Provence, France
| | | | - Emmanuel Doelsch
- CIRAD, UPR Recyclage et risque, F-34398 Montpellier, France; Recyclage et Risque, Univ. Montpellier, CIRAD, Montpellier, France
| |
Collapse
|
4
|
Li J, Weng L, Deng Y, Ma J, Chen Y, Li Y. NOM-mineral interaction: Significance for speciation of cations and anions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153259. [PMID: 35065113 DOI: 10.1016/j.scitotenv.2022.153259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/02/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
In this study, the nano-scale spatial distribution of natural organic matter (NOM) on the surface of iron (hydr)oxides and its relevance to oxyanion (PO43-) and metal cation (Cd2+ and Cu2+) adsorption to the assemblage of oxide (goethite) and NOM (humic acids (HA) or fulvic acids (FA)) was investigated with experiments and advanced surface complexation modeling. Both the linear additive Multi-Surface model (MSM) and the more sophisticated Natural Organic Matter-Charge Distribution (NOM-CD) model were used. The MSM model ignores the effects of NOM-mineral interaction on ion adsorption, whereas the NOM-CD model considers this effect. The results showed that with the increase of NOM loading on oxides, deviation between the MSM and NOM-CD model became bigger for PO43-, but smaller for Cd2+ and Cu2+. Oxyanions bind mainly to oxides and therefore the competitive effect of NOM cannot be neglected, which explains the large difference between these two models for PO43-. On the contrary, at a relatively high NOM loading, a large fraction of NOM extends further away from the surface of oxides. Thus for metal cations that bind mainly to NOM, the influence of NOM-mineral interaction on their adsorption is small and the results of the MSM and NOM-CD model are similar. In top soils, the NOM loading on oxides is often high, therefore the linear additive MSM is applicable for metal cation speciation calculations as reported in many literatures. An approach based on the NOM-CD model was proposed, which can not only calculate the macroscopic solid-solution distribution of both cations and anions, but can also provide information regarding their microscopic surface speciation.
Collapse
Affiliation(s)
- Jinbo Li
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Liping Weng
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Department of Soil Quality, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, the Netherlands.
| | - Yingxuan Deng
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Jie Ma
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yali Chen
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yongtao Li
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; College of Natural Resources & Environment, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
5
|
Xu J, Hu C, Wang M, Zhao Z, Zhao X, Cao L, Lu Y, Cai X. Changeable effects of coexisting heavy metals on transfer of cadmium from soils to wheat grains. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127182. [PMID: 34537640 DOI: 10.1016/j.jhazmat.2021.127182] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) and other heavy metals usually coexist in soils. Effects of coexisting heavy metals on the accumulation and transfer of Cd in field soils by wheat remain poorly understood. Here we revealed changeable effects of coexisting Pb, Zn and Cu on the Cd transfer from soils to wheat grains. Soil burdens of Cd were found to exhibit positive correlations (r = 0.459-0.946) with those of coexisting Pb, Zn and Cu (particularly Pb). Effects of three coexisting metals on to the uptake of Cd by wheat varied in the directions and/or extents with types of metals and transfer processes of Cd. Coexisting Zn inhibited the uptake of Cd by wheat grains to higher extent than Pb and Cu. Soil Zn, along with soil Cd, soil pH and soil Ca, was used to construct the predictive model of grain Cd (R2 = 0.868). External verifications of the model on 572 datasets of large representation performed well. The predictive accuracy was about 54%, 73% and 89% for a factor of 1, 2 and 5 above and below the ideal fit, respectively. This finding has practical interest in risk assessments and remediation measures of Cd-contaminated soil sites in regional scales.
Collapse
Affiliation(s)
- Jiahui Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Canyang Hu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Maolin Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zongsheng Zhao
- Key Laboratory of Heavy-metal Pollution Monitoring and Remediation of Henan Province, Jiyuan 459000, China
| | - Xiaoxue Zhao
- Key Laboratory of Heavy-metal Pollution Monitoring and Remediation of Henan Province, Jiyuan 459000, China
| | - Liu Cao
- Key Laboratory of Heavy-metal Pollution Monitoring and Remediation of Henan Province, Jiyuan 459000, China
| | - Yifu Lu
- Key Laboratory of Heavy-metal Pollution Monitoring and Remediation of Henan Province, Jiyuan 459000, China
| | - Xiyun Cai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
6
|
Stein M, Georgiadis A, Ingwersen J, Rennert T. Does silica addition affect translocation and leaching of cadmium and copper in soil? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117738. [PMID: 34256290 DOI: 10.1016/j.envpol.2021.117738] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/16/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Soil and groundwater contamination with potentially toxic elements (PTEs) including cadmium (Cd) and copper (Cu) has become a serious problem for ecosystem functioning. Silicon (Si) may precipitate these metals as silicates, and may also form, at undersaturation of silicates, 'Si-contaminant compounds', i.e. particles of polymerized silica with PTEs incorporated or adsorbed by inner-sphere complexes. While the formation of these compounds in aqueous solution has been proven, their formation in soil remains unclear yet. Therefore, we conducted column experiments with a topsoil horizon artificially contaminated with Cd or Cu solutions (10 mM) in the presence (10 mM) and absence of monomeric Si, and monitored the elemental composition of the eluates during 12 irrigation steps with artificial rainwater by microwave-plasma atomic emission spectrometry, the size and charge of the particles eluted by dynamic light scattering and phase analysis light scattering, and determined the spatial distribution of total and exchangeable Cd and Cu in soil after the experiments. When Si was previously applied to soil, significantly larger particles (up to > 200 nm) in the eluates indicated Si polymerization and formation of Si-contaminant compounds. However, Cd and Cu concentrations were very low (<0.4 μM), pointing to efficient retardation in soil. In any variant, the particles formed were slightly negatively charged (-11 mV). The molar metal:Si ratios in the eluates and significant correlations between the amounts of Si and metals in soil extracted by NH4NO3 pointed to the formation of Si-contaminant compounds, too. More Cu than Cd was retained in soil, and significantly more in the presence of Si, but less Cu than Cd was in exchangeable form. While particularly Cu formed Si-contaminant compounds, which reduced the concentration of Cu ions, the Si-contaminant-compound particles in the eluates remained very small, thus potentially susceptible to particulate export from soil into the groundwater.
Collapse
Affiliation(s)
- Mathias Stein
- Fachgebiet Bodenchemie mit Pedologie, Institut für Bodenkunde und Standortslehre, Universität Hohenheim, 70593, Stuttgart, Germany
| | - Anna Georgiadis
- Fachgebiet Bodenchemie mit Pedologie, Institut für Bodenkunde und Standortslehre, Universität Hohenheim, 70593, Stuttgart, Germany
| | - Joachim Ingwersen
- Fachgebiet Biogeophysik, Institut für Bodenkunde und Standortslehre, Universität Hohenheim, 70593, Stuttgart, Germany
| | - Thilo Rennert
- Fachgebiet Bodenchemie mit Pedologie, Institut für Bodenkunde und Standortslehre, Universität Hohenheim, 70593, Stuttgart, Germany.
| |
Collapse
|
7
|
Sonoda K, Hashimoto Y, Wang SL, Ban T. Copper and zinc in vineyard and orchard soils at millimeter vertical resolution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:958-962. [PMID: 31280176 DOI: 10.1016/j.scitotenv.2019.06.486] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/19/2019] [Accepted: 06/28/2019] [Indexed: 06/09/2023]
Abstract
Intensive uses of agrochemicals and soil amendments often cause the elevation of Cu and Zn concentrations in vineyard (VY) and orchard soils. The concentration and speciation of Cu and Zn in the soils at millimeter resolution is critical to understanding the risk of transport of these metals via surface runoff and infiltration. The objective of this study was to investigate the concentration and chemical species of Zn and Cu in VY and persimmon (PS) soils at millimeter vertical resolution. The soils were collected with 5 mm increments down to 5 cm depth and with 5 cm increments down to 25 cm depth. The total concentration and chemical species of Zn and Cu were determined by total digestion and X-ray absorption fine structure (XAFS) spectroscopy, respectively. The Zn concentration of VY soil reached a maximum of 290 mg kg-1 at the uppermost layer of the profile (0.5-1.0 cm). The Cu concentration of VY soil reached a maximum of 201 mg kg-1 (10-15 cm). These Zn and Cu concentrations were greater than background levels. Zinc K-edge XAFS spectroscopy determined that the uppermost layer of VY soil (0-0.5 cm) contained 42% Zn associated with humus and lesser extent of Zn associated with gibbsite (37%) and kaolinite (21%). Zinc associated with humus was not observed in the VY soil profiles below 0.5 cm, whereas Zn associated with gibbsite and kaolinite contributed >83% of total Zn species. Copper K-edge XAFS spectroscopy determined the presence of Cu bonded with humus (40-67%) and Cu adsorbed on kaolinite (26-45%) in the entire soil profile. Our study found the remarkable variation of Cu and Zn concentration and speciation within several centimeters from the soil surface in vineyard and orchard landscapes.
Collapse
Affiliation(s)
- Kent Sonoda
- Department of Bioapplications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 1848588, Japan
| | - Yohey Hashimoto
- Department of Bioapplications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 1848588, Japan.
| | - Shan-Li Wang
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Rd, Da'an District, Taipei 10617, Taiwan
| | - Takuya Ban
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 1838509, Japan
| |
Collapse
|
8
|
Zhang Y, Guo X, Si X, Yang R, Zhou J, Quan X. Environmentally persistent free radical generation on contaminated soil and their potential biotoxicity to luminous bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:348-354. [PMID: 31207524 DOI: 10.1016/j.scitotenv.2019.06.137] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/04/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
Environmentally persistent free radicals (EPFRs) are detected in the clay, mineral or humic part of the soil, especially in soil contaminated with phenolic compounds. To clarify the detailed information on the formation of EPFRs, we used the contaminated soil with catechol to mimic their formation process in laboratory scale and tested their biotoxicity with luminescent bacteria (Photobacterium phosphoreum, P. phosphoreum). Our results showed that the concentration of EPFRs reached the maximum at pyrolysis temperature of 300 °C, and EPFRs could significantly inhibit the luminescence of P. phosphoreum. Based on the detection of OH radicals in the aquatic system we used, we speculated that the generation of OH may be a crucial contributor to the toxicity of EPFRs. Our results aid to understand the detailed process on the formation of EPFRs in contaminated soil, as well as the basic biotoxicity data of EPFRs, which will be helpful and essential for their potential environmental risk assessments.
Collapse
Affiliation(s)
- Ying Zhang
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Xi Guo
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaohui Si
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ruixin Yang
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiti Zhou
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xie Quan
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
9
|
Mehlhorn J, Besold J, Lezama Pacheco JS, Gustafsson JP, Kretzschmar R, Planer-Friedrich B. Copper Mobilization and Immobilization along an Organic Matter and Redox Gradient-Insights from a Mofette Site. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13698-13707. [PMID: 30199245 DOI: 10.1021/acs.est.8b02668] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mofettes (natural geogenic CO2 exhalations) represent excellent sites to study the behavior of Cu in soils and the co-occurrence of different mobilization and immobilization processes since they exhibit both a gradient in redox conditions (oxic to permanently anoxic) and in soil organic matter (SOM; low to high contents). Soil and pore water samples from an 18 m-transect over a mofette showed a complex behavior of Cu, with highest mobility in the transition between oxic and anoxic conditions. Cu(II) sorption experiments on SOM-rich topsoil revealed that Cu mobility under oxic conditions was confined by adsorption to SOM while in the oxygen-free mofette center reduction and precipitation of sulfides was the dominating Cu-sequestering process. In transition areas with low amounts of oxygen (<10%), there was no mineral precipitation, instead high dissolved-to-soil organic carbon ratios strongly increased Cu mobility. Our results show that low stability of SOM formed under oxygen-limited conditions leads to increased Cu mobility unless sulfur-reducing conditions cause Cu sequestration by sulfide precipitation. The interplay of these (im)mobilization processes and especially the unexpectedly high mobility under suboxic conditions have to be considered when assessing Cu mobility along spatial or temporal redox gradients, e.g., at contamination sites or periodically flooded soils.
Collapse
Affiliation(s)
- Judith Mehlhorn
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER) , University of Bayreuth , D-95440 Bayreuth , Germany
| | - Johannes Besold
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER) , University of Bayreuth , D-95440 Bayreuth , Germany
| | - Juan S Lezama Pacheco
- Department of Environmental Earth System Science , Stanford University , Stanford , California 94305 , United States
| | - Jon Petter Gustafsson
- Department of Soil and Environment , Swedish University of Agricultural Sciences , 75007 Uppsala , Sweden
| | - Ruben Kretzschmar
- Soil Chemistry Group , Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, CHN , CH-8092 Zurich , Switzerland
| | - Britta Planer-Friedrich
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER) , University of Bayreuth , D-95440 Bayreuth , Germany
| |
Collapse
|
10
|
Du H, Peacock CL, Chen W, Huang Q. Binding of Cd by ferrihydrite organo-mineral composites: Implications for Cd mobility and fate in natural and contaminated environments. CHEMOSPHERE 2018; 207:404-412. [PMID: 29803890 DOI: 10.1016/j.chemosphere.2018.05.092] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/13/2018] [Accepted: 05/15/2018] [Indexed: 05/26/2023]
Abstract
Adsorption and coprecipitation of organic matter with iron (hydr)oxides can alter iron (hydr)oxide surface properties and their reactivity towards nutrient elements and heavy metals. Organo-mineral composites were synthesized using humic acid (HA) and iron oxide, during coprecipitation with ferrihydrite (Fh) and adsorption to pre-formed Fh with two C loadings. The Fh-HA coprecipitated composites have a higher C content and smaller surface area compared to the equivalent adsorbed composites. NanoSIMS shows there is a high degree of spatial correlation between Fe and C for both composites, but C distribution is more uniform in the coprecipitated composites. The C 1s NEXAFS reveals a similar C composition between the Fh-HA coprecipitated and adsorbed composites. However composites at high carbon loading are more enriched in aromatic C, likely due to preferential binding of carboxyl functional groups on aromatic rings in the HA. The amount of Cd sorbed is independent of the composite type, either coprecipitated or adsorbed, but is a function of the C loading. Composites with low C loading show Cd sorption that is almost identical to pure Fh, while composites with high C loading show Cd sorption that is intermediate between pure Fh and pure HA, with sorption significantly enhanced over pure Fh at pH < 6.5. A bidentate edge-sharing binding was identified for Cd on pure Fh and Cd-carboxyl binding on pure HA. These findings have significant implications not only for the sequestration of Cd in contaminated environments but also the coupled biogeochemical cycling of Cd, Fe and C in the critical zone.
Collapse
Affiliation(s)
- Huihui Du
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Caroline L Peacock
- University of Leeds, School of Earth and Environment, Leeds, LS2 9JT, UK.
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
11
|
Tiberg C, Sjöstedt C, Gustafsson JP. Metal sorption to Spodosol Bs horizons: Organic matter complexes predominate. CHEMOSPHERE 2018; 196:556-565. [PMID: 29329088 DOI: 10.1016/j.chemosphere.2018.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/22/2017] [Accepted: 01/02/2018] [Indexed: 06/07/2023]
Abstract
While metal sorption mechanisms have been studied extensively for soil surface horizons, little information exists for subsoils, for example Spodosol Bs horizons. Here the sorption of cadmium(II), copper(II) and lead(II) to seven Bs horizons from five sites was studied. Extended X-ray absorption fine structure (EXAFS) spectroscopy showed that cadmium(II) and lead(II) were bound as inner-sphere complexes to organic matter. Addition of o-phosphate (to 1 μmol l-1) did not result in any significant enhancement of metal sorption, nor did it influence EXAFS speciation. An assemblage model using the SHM and CD-MUSIC models overestimated metal sorption for six out of seven soil samples. To agree with experimental results, substantial decreases (up to 8-fold) had to be made for the fraction 'active organic matter', fHS, while the point-of-zero charge (PZC) of ferrihydrite had to be increased. The largest decreases of fHS were found for the soils with the lowest ratio of pyrophosphate-to oxalate-extractable Al (Alpyp/Alox), suggesting that in these soils, humic and fulvic acids were to a large extent inaccessible for metal sorption. The low reactivity of ferrihydrite towards lead(II) can be explained by potential spillover effects from co-existing allophane, but other factors such as ferrihydrite crystallisation could not be ruled out. In conclusion, organic matter was the predominant sorbent for cadmium(II), copper(II) and lead(II). However, for lead(II) the optimised model suggests additional, but minor, contributions from Fe (hydr)oxide surface complexes. These results will be important to correctly model metal sorption in spodic materials.
Collapse
Affiliation(s)
- Charlotta Tiberg
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, SE-750 07, Uppsala, Sweden; Swedish Geotechnical Institute, Kornhamnstorg 61, SE-111 27, Stockholm, Sweden
| | - Carin Sjöstedt
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, SE-750 07, Uppsala, Sweden
| | - Jon Petter Gustafsson
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, SE-750 07, Uppsala, Sweden; Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-100 44, Stockholm, Sweden.
| |
Collapse
|
12
|
Xiong T, Dumat C, Dappe V, Vezin H, Schreck E, Shahid M, Pierart A, Sobanska S. Copper Oxide Nanoparticle Foliar Uptake, Phytotoxicity, and Consequences for Sustainable Urban Agriculture. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5242-5251. [PMID: 28383257 DOI: 10.1021/acs.est.6b05546] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Throughout the world, urban agriculture supplies fresh local vegetables to city populations. However, the increasing anthropogenic uses of metal-containing nanoparticles (NPs) such as CuO-NPs in urban areas may contaminate vegetables through foliar uptake. This study focused on the CuO-NP transfer processes in leafy edible vegetables (i.e., lettuce and cabbage) to assess their potential phytotoxicity. Vegetables were exposed via leaves for 5, 10, or 15 days to various concentrations of CuO-NPs (0, 10, or 250 mg per plant). Biomass and gas exchange values were determined in relation to the Cu uptake rate, localization, and Cu speciation within the plant tissues. High foliar Cu uptake occurred after exposure for 15 days for lettuce [3773 mg (kg of dry weight)-1] and cabbage [4448 mg (kg of dry weight)-1], along with (i) decreased plant weight, net photosynthesis level, and water content and (ii) necrotic Cu-rich areas near deformed stomata containing CuO-NPs observed by scanning electron microscopy and energy dispersive X-ray microanalysis. Analysis of the CuO-NP transfer rate (7.8-242 μg day-1), translocation of Cu from leaves to roots and Cu speciation biotransformation in leaf tissues using electron paramagnetic resonance, suggests the involvement of plant Cu regulation processes. Finally, a potential health risk associated with consumption of vegetables contaminated with CuO-NPs was highlighted.
Collapse
Affiliation(s)
- TianTian Xiong
- School of Life Science, South China Normal University , No. 55 Zhongshan Avenue West, Tianhe District, Guangzhou 510631, P. R. China
| | - Camille Dumat
- Université de Toulouse , INP-ENSAT, Av. Agrobiopole, 31326 Castanet-Tolosan, France
- Certop UMR5044-Centre d'Etude et de Recherche Travail Organisation Pouvoir, Université Toulouse J. Jaurès-Toulouse II , 5 allée Antonio Machado, 31058 Toulouse Cedex 9, France
| | - Vincent Dappe
- LASIR, UMR CNRS 8516, Université Lille 1 , Bât. C5, 59655 Villeneuve d'Ascq, France
| | - Hervé Vezin
- LASIR, UMR CNRS 8516, Université Lille 1 , Bât. C5, 59655 Villeneuve d'Ascq, France
| | - Eva Schreck
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD , 14 avenue E. Belin, F-31400 Toulouse, France
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS Institute of Information Technology , Vehari 61100, Pakistan
| | - Antoine Pierart
- Environmental Science and Biochemistry Ecotoxicology Laboratory, University of Castilla-La Mancha , Toledo, Spain
| | - Sophie Sobanska
- LASIR, UMR CNRS 8516, Université Lille 1 , Bât. C5, 59655 Villeneuve d'Ascq, France
| |
Collapse
|
13
|
Colloidal Mobilization and Fate of Trace Heavy Metals in Semi-Saturated Artificial Soil (OECD) Irrigated with Treated Wastewater. SUSTAINABILITY 2016. [DOI: 10.3390/su8121257] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Pontoni L, van Hullebusch ED, Fabbricino M, Esposito G, Pirozzi F. Assessment of trace heavy metals dynamics during the interaction of aqueous solutions with the artificial OECD soil: Evaluation of the effect of soil organic matter content and colloidal mobilization. CHEMOSPHERE 2016; 163:382-391. [PMID: 27565305 DOI: 10.1016/j.chemosphere.2016.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/26/2016] [Accepted: 08/01/2016] [Indexed: 06/06/2023]
Abstract
A micro-contamination phenomenon was reproduced and studied at lab-scale, mimicking the irrigation of a standard artificial soil with a water solution containing three Heavy Metals (HMs) at trace concentration level. To assess the dynamics of micro-pollutants accumulation and migration trough the soil, the organic matter in the soil was varied, together with sodicity of the irrigation water. Accumulation of the investigated contaminants was observed mainly in the top layer (≤1 cm) of the irrigated soil. This was attributed to the high interaction capacity of the soil compared to the low HM concentrations in the water phase. HMs transport pattern was described assuming a multi-component mechanism including: i) the interaction of HMs with the colloidal phase of the soil; ii) the slow and constant release of small molecular weight ligands detaching from the soil immobile matrix; iii) the transportation of HMs through the soil by these low molecular weight chaperon molecules. The mobility was directly related to the soil organic matter (SOM), since higher amount of SOM correspond to a higher number of chaperon molecules. In the first centimetre of the soil the metals were mostly bound to the acid labile fraction. Very low mobilization was observed with increasing sodicity in the leaching water, since such conditions were unfavourable to the colloidal mobilization of SOM. This indicated that water/soil transfer of pollutant is not only related to the contaminant concentration in the irrigation water but also to the characteristics of the aqueous solution and to the physical-chemical properties of the soil.
Collapse
Affiliation(s)
- Ludovico Pontoni
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, via Di Biasio 43, 03043, Cassino, FR, Italy; Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, 77454, Marne-la-Vallée, France.
| | - Eric D van Hullebusch
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, 77454, Marne-la-Vallée, France
| | - Massimiliano Fabbricino
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125, Naples, Italy
| | - Giovanni Esposito
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, via Di Biasio 43, 03043, Cassino, FR, Italy
| | - Francesco Pirozzi
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125, Naples, Italy
| |
Collapse
|
15
|
Citric Acid Enhanced Copper Removal by a Novel Multi-amines Decorated Resin. Sci Rep 2015; 5:9944. [PMID: 25962970 PMCID: PMC4649996 DOI: 10.1038/srep09944] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/10/2015] [Indexed: 12/31/2022] Open
Abstract
Cu removal by a novel multi-amines decorated resin (PAMD) from wastewater in the absence or presence of citric acid (CA) was examined. Adsorption capacity of Cu onto PAMD markedly increased by 186% to 5.07 mmol/g in the presence of CA, up to 7 times of that onto four commercial resins under the same conditions. Preloaded and kinetic studies demonstrated adsorption of [Cu-CA] complex instead of CA site-bridging and variations of adsorbate species were qualitatively illustrated. The interaction configuration was further studied with ESI-MS, FTIR, XPS and XANES characterizations. The large enhancement of Cu adsorption in Cu-CA bi-solutes systems was attributed to mechanism change from single-site to dual-sites interaction in which cationic or neutral Cu species (Cu2+ and CuHL0) coordinated with neutral amine sites and anionic complex species (CuL− and Cu2L22−) directly interacted with protonated amine sites via electrostatic attraction, and the ratio of the two interactions was approximately 0.5 for the equimolar bi-solutes system. Moreover, commonly coexisting ions in wastewaters had no obvious effect on the superior performance of PAMD. Also, Cu and CA could be recovered completely with HCl. Therefore, PAMD has a great potential to efficiently remove heavy metal ions from wastewaters in the presence of organic acids.
Collapse
|
16
|
Experimental and theoretical approaches for the surface interaction between copper and activated sludge microorganisms at molecular scale. Sci Rep 2014; 4:7078. [PMID: 25399801 PMCID: PMC4233339 DOI: 10.1038/srep07078] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 10/30/2014] [Indexed: 02/04/2023] Open
Abstract
Interactions between metals and activated sludge microorganisms substantially affect the speciation, immobilization, transport, and bioavailability of trace heavy metals in biological wastewater treatment plants. In this study, the interaction of Cu(II), a typical heavy metal, onto activated sludge microorganisms was studied in-depth using a multi-technique approach. The complexing structure of Cu(II) on microbial surface was revealed by X-ray absorption fine structure (XAFS) and electron paramagnetic resonance (EPR) analysis. EPR spectra indicated that Cu(II) was held in inner-sphere surface complexes of octahedral coordination with tetragonal distortion of axial elongation. XAFS analysis further suggested that the surface complexation between Cu(II) and microbial cells was the distorted inner-sphere coordinated octahedra containing four short equatorial bonds and two elongated axial bonds. To further validate the results obtained from the XAFS and EPR analysis, density functional theory calculations were carried out to explore the structural geometry of the Cu complexes. These results are useful to better understand the speciation, immobilization, transport, and bioavailability of metals in biological wastewater treatment plants.
Collapse
|
17
|
Yang J, Liu J, Dynes JJ, Peak D, Regier T, Wang J, Zhu S, Shi J, Tse JS. Speciation and distribution of copper in a mining soil using multiple synchrotron-based bulk and microscopic techniques. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:2943-2954. [PMID: 24170498 DOI: 10.1007/s11356-013-2214-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 10/02/2013] [Indexed: 06/02/2023]
Abstract
Molecular-level understanding of soil Cu speciation and distribution assists in management of Cu contamination in mining sites. In this study, one soil sample, collected from a mining site contaminated since 1950s, was characterized complementarily by multiple synchrotron-based bulk and spatially resolved techniques for the speciation and distribution of Cu as well as other related elements (Fe, Ca, Mn, K, Al, and Si). Bulk X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy revealed that soil Cu was predominantly associated with Fe oxides instead of soil organic matter. This agreed with the closest association of Cu to Fe by microscopic X-ray fluorescence (U-XRF) and scanning transmission X-ray microscopy (STXM) nanoanalysis, along with the non-occurrence of photoreduction of soil Cu(II) by quick Cu L3,2-edge XANES spectroscopy (Q-XANES) which often occurs when Cu organic complexes are present. Furthermore, bulk-EXAFS and STXM-coupled Fe L3,2-edge nano-XANES analysis revealed soil Cu adsorbed primarily to Fe(III) oxides by inner-sphere complexation. Additionally, Cu K-edge μ-XANES, L3,2-edge bulk-XANES, and successive Q-XANES results identified the presence of Cu2S rather than radiation-damage artifacts dominant in certain microsites of the mining soil. This study demonstrates the great benefits in use of multiple combined synchrotron-based techniques for comprehensive understanding of Cu speciation in heterogeneous soil matrix, which facilitates our prediction of Cu reactivity and environmental fate in the mining site.
Collapse
Affiliation(s)
- Jianjun Yang
- Department of Environmental Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Phillips CL, Regier TZ, Peak D. Aqueous Cu(II)-organic complexation studied in situ using soft X-ray and vibrational spectroscopies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:14290-14297. [PMID: 24261818 DOI: 10.1021/es401643e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In situ aqueous solutions containing copper-ligand mixtures were measured at the Cu L-edge using X-ray absorption near edge structure (XANES) and with attenuated total reflectance infrared (ATR-FTIR) spectroscopies. Copper complexation with environmentally relevant ligands such as EDTA, citrate, and malate provided a bridge between spectroscopic studies and general environmental behavior and will allow for future study of complex environmental samples. XANES results show that the lowest unoccupied molecular orbital (LUMO) energy is governed by the ligand field strength and is related to Lewis acid/base properties of the ligand functional groups. Complementary ATR-FTIR studies confirmed the importance of water molecules in the structure of these Cu-ligand complexes and provided in-depth structural analysis to support the XANES data. Copper-malate is shown to have a 5/6-O-ring structure, and Cu-ethylenediaminetetraacetate has pentadentate coordination. Cu L-edge XANES also revealed direct Cu-N coordination in these aqueous solutions with amide functional groups.
Collapse
Affiliation(s)
- Courtney L Phillips
- Department of Soil Science, University of Saskatchewan , Saskatoon, Saskatchewan, Canada
| | | | | |
Collapse
|
19
|
Graouer-Bacart M, Sayen S, Guillon E. Macroscopic and molecular approaches of enrofloxacin retention in soils in presence of Cu(II). J Colloid Interface Sci 2013; 408:191-9. [PMID: 23953649 DOI: 10.1016/j.jcis.2013.07.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/09/2013] [Accepted: 07/17/2013] [Indexed: 01/16/2023]
Abstract
The co-adsorption of copper and the fluoroquinolone antibiotic enrofloxacin (ENR) at the water-soil interface was studied by means of batch adsorption experiments, and extended X-ray absorption fine structure (EXAFS) spectroscopy. The system was investigated over a pH range between 6 and 10, at different contact times, ionic strengths, and ENR concentrations. Adsorption coefficient - Kd - was determined at relevant environmental concentrations and the value obtained in water at a ionic strength imposed by the soil and at soil natural pH was equal to 0.66Lg(-1). ENR adsorption onto the soil showed strong pH dependence illustrating the influence of the electrostatic interactions in the sorption processes. The simultaneous co-adsorption of ENR and Cu(II) on the soil was also investigated. The presence of Cu(II) strongly influenced the retention of the antibiotic, leading to an increase up to 35% of adsorbed ENR amount. The combined quantitative and spectroscopic results showed that Cu(II) and ENR directly interacted at the water-soil interface to form ternary surface complexes. Cu K-edge EXAFS data indicated a molecular structure where the carboxylate and carbonyl groups of ENR coordinate to Cu(II) to form a 6-membered chelate ring and where Cu(II) bridges between ENR and the soil surface sites. Cu(II) bonds bidentately to the surface in an inner-sphere mode. Thus, the spectroscopic data allowed us to propose the formation of ternary surface complexes with the molecular architecture soil-Cu(II)-ENR.
Collapse
Affiliation(s)
- Mareen Graouer-Bacart
- Institut de Chimie Moléculaire de Reims (ICMR, UMR CNRS 7312), Groupe Chimie de Coordination, Université de Reims Champagne-Ardenne, F-51687 Reims Cedex 2, France
| | | | | |
Collapse
|
20
|
Donner E, Howard DL, de Jonge MD, Paterson D, Cheah MH, Naidu R, Lombi E. X-ray absorption and micro X-ray fluorescence spectroscopy investigation of copper and zinc speciation in biosolids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:7249-57. [PMID: 21793501 DOI: 10.1021/es201710z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Despite its pivotal role in determining the risks and time frames associated with contaminant release, metal speciation remains a poorly understood aspect of biosolids chemistry. The work reported here used synchrotron-based spectroscopy techniques to investigate the speciation of copper and zinc in a range of Australian biosolids. High resolution element mapping of biosolids samples using micro X-ray fluorescence spectroscopy revealed considerable heterogeneity in key element associations, and a combination of both organic and inorganic copper and zinc binding environments. Linear combination fitting of K-edge X-ray absorption spectra indicated consistent differences in metal speciation between freshly produced and stockpiled biosolids. While sulfide minerals play a dominant role in metal binding in freshly dewatered biosolids, they are of lesser importance in dried biosolids that have been stockpiled. A degree of metal binding with iron oxide minerals was apparent but the results did not support the hypothesis that biosolids metals are chiefly associated with iron minerals. This work has potential implications for the long-term stability of metals in biosolids and their eventual fate following land application.
Collapse
Affiliation(s)
- Erica Donner
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Building X, Mawson Lakes Campus, South Australia 5095, Australia.
| | | | | | | | | | | | | |
Collapse
|
21
|
Zheng YM, Liu T, Jiang J, Yang L, Fan Y, Wee ATS, Chen JP. Characterization of hexavalent chromium interaction with Sargassum by X-ray absorption fine structure spectroscopy, X-ray photoelectron spectroscopy, and quantum chemistry calculation. J Colloid Interface Sci 2011; 356:741-8. [PMID: 21310422 DOI: 10.1016/j.jcis.2010.12.070] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 12/17/2010] [Accepted: 12/18/2010] [Indexed: 11/30/2022]
Abstract
Hexavalent chromium represents higher toxicity in aqueous solutions. It can be removed by such low-cost biosorbents as Sargassum sp. In this study, X-ray absorption fine structure spectroscopy, X-ray photoelectron spectroscopy, and quantum chemistry (QC) calculation were used to study the interactions between hexavalent chromium and Sargassum sp. during the biosorption. It was found that most of the adsorbed Cr(VI) ions were reduced to Cr(III) after the biosorption. The electrons for the reduction of Cr(VI) were possibly supplied from the Sargassum biomass, some organic compounds of which were oxidized. Cr(III) ions were coordinated with the oxygen atoms from either carboxyl or hydroxyl functional groups to form an octahedral structural metal complex. The coordination numbers of the formed Cr complex were 4-6, and bond length of Cr-O was 1.98Å. QC calculation proved the possible formation of the Cr(III) metal complex, and revealed that carboxyl from biomass could be strongly bound with Cr(III). A three-step removal mechanism of Cr(VI) by Sargassum was proposed.
Collapse
Affiliation(s)
- Yu-Ming Zheng
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
22
|
Flores-Álvarez JM, González I, García-de la Rosa LA, Mancilla-Peña F, Reyes-Gómez J. Carbon paste electrodes modified with biosolids, soils and biocomposites utilized to study the interaction between organic matter and copper. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2011; 92:448-456. [PMID: 21044813 DOI: 10.1016/j.jenvman.2010.08.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 07/22/2010] [Accepted: 08/22/2010] [Indexed: 05/30/2023]
Abstract
Carbon paste electrodes (CPEs) modified with a biosolid, two types of soils with different amounts of organic matter (OM), and two biocomposites (soils mixed with a biosolid) were used to assess and compare the Cu(II) ion retention properties of the organic matter contained in the samples. The accumulation of Cu(II) on the surface of the modified carbon paste electrodes (MCPEs) was performed under open-circuit conditions. When comparing the response of the MCPEs while assessing parameters such as pH, preconcentration time, and adsorption/desorption capacity, it was found that the reaction mechanism of the two soils is different between the soils and dissimilar from the biosolid; while the biocomposites show reaction mechanisms that are intermediate between those of the soils and the biosolid. This was proven with the use of infrared spectroscopy, since the FTIR spectra show similarities between the two soils and significant differences between the soils and the biosolid.
Collapse
Affiliation(s)
- J M Flores-Álvarez
- Facultad de Ciencias Químicas, Universidad de Colima, Carr. Colima-Coquimatlán, km. 9, C. P. 28400, Coquimatlán, Colima, Mexico.
| | | | | | | | | |
Collapse
|
23
|
Shi JY, Lin HR, Yuan XF, Chen XC, Shen CF, Chen YX. Enhancement of copper availability and microbial community changes in rice rhizospheres affected by sulfur. Molecules 2011; 16:1409-17. [PMID: 21350394 PMCID: PMC6259926 DOI: 10.3390/molecules16021409] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 01/18/2011] [Accepted: 01/20/2011] [Indexed: 11/18/2022] Open
Abstract
The role of sulfur on the availability of Cu and the bacterial community in rice rhizospheres was investigated by pot experiments. With sulfur addition, pH in rhizosphere soil decreased and Mg(NO3)2 extractable Cu increased significantly. The bacterial community composition also changed with sulfur addition. Some specific clones having high similarity to Thiobacillus, which indicated that sulfur oxidation in the rice rhizosphere could increase the availability of Cu. These results suggested that sulfur source which could provide substrate to sulfur oxidizing bacteria and enhance the availability of Cu was not a suitable sulfur fertilizer for Cu polluted soil.
Collapse
Affiliation(s)
- Ji-Yan Shi
- Ministry of Agriculture Key Laboratory of Non-point Source Pollution Control, Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310029, China; E-Mails: (H.-R.L.); (X.-C.C.); (C.-F.S.); (Y.-X.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-571-86971424, Fax: +86-571-86971898
| | - Hui-Rong Lin
- Ministry of Agriculture Key Laboratory of Non-point Source Pollution Control, Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310029, China; E-Mails: (H.-R.L.); (X.-C.C.); (C.-F.S.); (Y.-X.C.)
- Department of Environmental Science and Engineering, Xiamen University Tan Kah Kee College, Zhangzhou 363105, China
| | - Xiao-Feng Yuan
- Life Science Department, Zhejiang Chinese Medical University, Hangzhou 310053, China; E-Mail: (X.-F.Y.)
| | - Xin-Cai Chen
- Ministry of Agriculture Key Laboratory of Non-point Source Pollution Control, Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310029, China; E-Mails: (H.-R.L.); (X.-C.C.); (C.-F.S.); (Y.-X.C.)
| | - Chao-Feng Shen
- Ministry of Agriculture Key Laboratory of Non-point Source Pollution Control, Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310029, China; E-Mails: (H.-R.L.); (X.-C.C.); (C.-F.S.); (Y.-X.C.)
| | - Ying-Xu Chen
- Ministry of Agriculture Key Laboratory of Non-point Source Pollution Control, Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310029, China; E-Mails: (H.-R.L.); (X.-C.C.); (C.-F.S.); (Y.-X.C.)
| |
Collapse
|
24
|
Ginder-Vogel M, Sparks DL. The Impacts of X-Ray Absorption Spectroscopy on Understanding Soil Processes and Reaction Mechanisms. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s0166-2481(10)34001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
25
|
Papadas IT, Kosma C, Deligiannakis Y. Ternary [Al2O3–electrolyte–Cu2+] species: EPR spectroscopy and surface complexation modeling. J Colloid Interface Sci 2009; 339:19-30. [DOI: 10.1016/j.jcis.2009.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/02/2009] [Accepted: 07/03/2009] [Indexed: 10/20/2022]
|
26
|
Strawn DG, Baker LL. Molecular characterization of copper in soils using X-ray absorption spectroscopy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2009; 157:2813-21. [PMID: 19446385 DOI: 10.1016/j.envpol.2009.04.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 04/15/2009] [Accepted: 04/17/2009] [Indexed: 05/14/2023]
Abstract
Bioavailability of Cu in the soil is a function of its speciation. In this paper we investigated Cu speciation in six soils using X-ray absorption near edge structure (XANES), extended X-ray absorption fine structure (EXAFS), and synchrotron-based micro X-ray fluorescence (mu-XRF). The XANES and EXAFS spectra in all of the soils were the same. mu-XRF results indicated that the majority of the Cu particles in the soils were not associated with calcium carbonates, Fe oxides, or Cu sulfates. Principal component analysis and target transform of the XANES and EXAFS spectra suggested that Cu adsorbed on humic acid (HA) was an acceptable match. Thus it appears that Cu in all of the soils is primarily associated with soil organic matter (SOM). Theoretical fitting of the molecular structure in the soil EXAFS spectra revealed that the Cu in the soils existed as Cu atoms bound in a bidentate complex to O or N functional groups.
Collapse
Affiliation(s)
- Daniel G Strawn
- Soil and Land Resources Division, P.O. Box 442339, University of Idaho, Moscow, ID 83844-2339, USA.
| | | |
Collapse
|
27
|
Liu J, Lü X, Xie J, Chu Y, Sun C, Wang Q. Adsorption of lambda-cyhalothrin and cypermethrin on two typical Chinese soils as affected by copper. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2009; 16:414-422. [PMID: 19067015 DOI: 10.1007/s11356-008-0076-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 11/17/2008] [Indexed: 05/27/2023]
Abstract
BACKGROUND, AIM, AND SCOPE Pesticides and heavy metals pollution in soil environment has become a serious problem in many countries including China. Repeated applications of bordeaux mixture (a blend of copper sulfate and calcium hydroxide) and pyrethroid (Pys) insecticides have led to elevated copper (Cu) and Pys concentrations in vineyard surface soils. However, few studies focused on the interaction of Pys and heavy metals in the soil environment. Our previous studies had indicated the combined effect of cypermethrin (CPM) and Cu on soil catalase activity. Also, we had suggested that the addition of Cu could catalyze photo-degradation of CPM and lambda-cyhalothrin (lambda-CHT) in aqueous solution and restrain their degradation in soil. To better understand the potential influence of Cu on the fate of Pys in the soil environment, the aim of the present work was to examine the effect of Cu on the adsorption of lambda-CHT and CPM on two typical Chinese soils with different soil characteristics, which was one of the key processes controlling the fate of Pys, and to provide more information about the potential ecological risk of chemicals on the soil ecosystem. Fourier transform infrared and point charges analysis using the MOPAC program of the Gaussian system were also used to reveal the probable adsorption mechanism of lambda-CHT and CPM on soils. MATERIALS AND METHODS Two vineyard soils with different properties were chosen as experimental samples. They were sampled from 0 to 10 cm, dried, and sieved to 2 mm. Each soil was spiked with copper sulfate solution to obtain the following total soil Cu concentrations: 100, 200, 400, 800, and 1,600 mg.kg(-1). The treated soils were incubated for 2 weeks and then dried at 20 degrees C. For each soil sample and at each soil Cu concentration, the adsorption of lambda-CHT and CPM was measured using a batch equilibrium method. The concentration of lambda-CHT was determined by HPLC, and the amount of lambda-CHT and CPM adsorbed by the soil sample at equilibrium was determined by the difference between the initial and equilibrium concentrations in solution corrected by the blank adsorption measurement. RESULTS Without the addition of Cu, the adsorption of lambda-CHT and CPM on Black soil is greater than that on Red soil, while the adsorption of lambda-CHT on both soils is significantly stronger than that of CPM. As the soil Cu concentration increased from 19 (or 18; background) to 1,600 mg.kg(-1), the adsorption coefficient (K (d)) of lambda-CHT decreased from 12.2 to 5.9 L.kg(-1) for Red soil, and from 26.1 to 16.8 L.kg(-1) for Black soil, whereas the CPM adsorption coefficient in both soils decreased nearly by 100% (K (d) decreased from 9.4 to 0.2 L.kg(-1) for Red soil and from 16.2 to 0.5 L.kg(-1) for Black soil). DISCUSSION Pys adsorption is a surface phenomenon which depends on the surface area and the organic matter content. Thus, the Black soil, having higher organic matter and greater surface area than that of the Red soil, show greater adsorption affinity to lambda-CHT and CPM. In our study, the different adsorption affinity of the two Pys was obtained, which was probably attributed to differences with respect to their physical-chemical properties. Further comparison upon the two Pys was conducted. The point charges of halogen atoms in the lambda-CHT and CPM were calculated, the differences of which probably lead to the fact that lambda-CHT has a stronger binding capacity to soils than CPM. Also, FTIR spectra show that competitive adsorption occurs between CPM and Cu for the same adsorption sites, which is responsible for the obtained suppression of CPM adsorption affected by Cu. CONCLUSIONS Lambda-cyhalothrin shows a significantly stronger adsorption than cypermethrin on both soils. This phenomenon may be due to several reasons: (1) lambda-CHT has lower solubility and a higher octanol-water partition coefficient value than CPM; (2) lambda-CHT consists of specific isomers, whereas CPM is mixtures of eight different isomers; (3) the chlorine and fluorine atoms in the lambda-CHT have a negative point charge, whereas the chlorine atoms in the CPM have a positive point charge. As the soil Cu concentrations increased from 19 (or 18) mg.kg(-1) to 1,600 mg.kg(-1), the adsorption coefficient of lambda-CHT and CPM decreased on both soils. This is mainly due to a competition between Cu and Pys for occupying the adsorption sites on soils. The information from this study have important implications for vineyard and orchard soils, which often contain elevated levels of Cu and Pys. These results are also useful in assessing the environmental fate and health effect of lambda-CHT and CPM. RECOMMENDATIONS AND PERSPECTIVES It is important for environmental scientists and engineers to get a better understanding of soil-metal-organic contaminant interactions. However, pesticide adsorption involves complex processes, and shortcomings in understanding them still restrict the ability to predict the fate and behavior of pesticide. Therefore, considerable research should be carried out to understand the mechanism of interaction between Pys and heavy metal on soils clearly.
Collapse
Affiliation(s)
- Jun Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China,
| | | | | | | | | | | |
Collapse
|
28
|
Chen GC, Shan XQ, Wang YS, Wen B, Pei ZG, Xie YN, Liu T, Pignatello JJ. Adsorption of 2,4,6-trichlorophenol by multi-walled carbon nanotubes as affected by Cu(II). WATER RESEARCH 2009; 43:2409-2418. [PMID: 19324390 DOI: 10.1016/j.watres.2009.03.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 02/27/2009] [Accepted: 03/02/2009] [Indexed: 05/27/2023]
Abstract
Adsorption equilibrium of 2,4,6-trichlorophenol (TCP) on multi-walled carbon nanotubes (MWCNTs) was investigated to explore the possibility of using MWCNTs for concentration, detection and removal of TCP from contaminated water. The adsorption of TCP on MWCNTs at pH 4 was nonlinear, reversible and best fit by a Polanyi-Manes model. Oxidation treatment increased surface area and introduced hydrophilic carboxylic groups to the defect sites of MWCNTs, hence increased the sorption of TCP and Cu(II) individually. Cu(II) suppressed the sorption of TCP on oxidized MWCNTs15A, but had little effect on as-grown MWCNTs15. TCP had no influence on Cu(II) sorption to either. The mechanisms of Cu(II) suppression effect on TCP adsorption are ascribed to the formation of surface complexes of Cu(II), which was verified by X-ray absorption spectroscopy. Cu(II) exerts a cross-linking effect of functional groups on adjacent tubes, creating a more tightly knit bundle and suppressing the condensation of TCP in the pore spaces between the tubes. The large hydration sphere around surface complexes of Cu(II) may also intrude or shield hydrophilic sites, leading to the "crowding out" of TCP around the Cu(II)-complexed sites.
Collapse
Affiliation(s)
- Guang-Cai Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Lin SH, Chen CN, Juang RS. Structure and thermal stability of toxic chromium(VI) species doped onto TiO(2) powders through heat treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2009; 90:1950-1955. [PMID: 19157686 DOI: 10.1016/j.jenvman.2008.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 12/01/2008] [Accepted: 12/21/2008] [Indexed: 05/27/2023]
Abstract
Chromium(VI)-containing sorbents in the form of sludge or solid residue from treatment processes are often landfilled or used as fill materials, therefore the long-term stability of metal binding is important. The reduction of Cr(VI)-Cr(III) through heat treatment may be a useful detoxification method. After heating at 500, 900, 1000, and 1100 degrees C for 4h, the transformation of chemical states of chromium on 105 degrees C-dried, 7.9% Cr(VI)-doped TiO(2) powders was studied on the basis of surface area measurements, scanning electron microscopy (SEM) images, X-ray diffraction (XRD), and extended X-ray absorption fine structure (EXAFS) spectra. It was shown that Cr(VI) was reduced to Cr(III) in the Cr(VI)-doped samples after heating within 500-900 degrees C. The present results also suggested that the chromium octahedral was bridged to the titanium tetrahedral and was incorporated in TiO(2) minerals formed after 1000 degrees C treatment.
Collapse
Affiliation(s)
- Su-Hsia Lin
- Department of Chemical and Materials Engineering, Nanya Institute of Technology, Chung-Li, Taiwan
| | | | | |
Collapse
|
30
|
Chen GC, Shan XQ, Wang YS, Pei ZG, Shen XE, Wen B, Owens G. Effects of copper, lead, and cadmium on the sorption and desorption of atrazine onto and from carbon nanotubes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:8297-8302. [PMID: 19068809 DOI: 10.1021/es801376w] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
There are currently few studies on the dual effects of metal ions on the sorption of atrazine and conversely of atrazine on metal adsorption on multiwalled carbon nanotubes (MWCNTs). While a number of sorption models were considered to describe the sorption of atrazine on MWCNTs, the Polanyi-Manes model (PMM) fit the sorption isotherms well with the lowest mean weighted square errors. Atrazine was mainly adsorbed onto the surface and micropores of MWCNTs bundles or aggregates. Hydrogen bonding between azo and amino nitrogen of atrazine and functional groups on MWCNTs also occurred. Oxygenated functionalities, mainly carboxylic groups on MWCNTs surface, decreased the sorption of atrazine. Metal cations Cu2+, Pb2+, and Cd2+ diminished the sorption of atrazine depending on the oxygenated functionalities densities. The mechanisms ascribed were due to the formation of surface or inner-sphere complexes of Cu2+, Pb2+, and Cd2+ through carboxylic groups and hydration, which may occupy part of the surface of MWCNTs-O. The large hydration shell of metal cations may intrude or shield the hydrophobic and hydrophilic sites and indirectly compete with atrazine for surface sites, leading to the inhibition of atrazine adsorption around the metal-complexed moieties.
Collapse
Affiliation(s)
- Guang-Cai Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Pei Z, Shan XQ, Wen B, He B, Liu T, Xie Y, Owens G. Sorption of anionic metsulfuron-methyl and cationic difenzoquat on peat and soil as affected by copper. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:6849-6854. [PMID: 18853799 DOI: 10.1021/es800807m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The effect of cationic copper (Cu2+) on the sorption of anionic metsulfuron-methyl (Me) and cationic difenzoquat (DZ) to peat and soil was studied using a batch equilibration method. The results showed that Cu2+ increased the sorption of Me but diminished the sorption of DZ. The adsorption of Cu2+ on the surface of peat and soil neutralizes the negative charge, making the zeta potential (zeta) of peat and soil less negative, consequently decreasing the repulsion between the surface of peat or soil and Me and increasing the sorption of Me. Cu2+ may additionally form Cu-Me complexes in aqueous solution, which was preferentially sorbed to peat and soil over the anionic Me. In contrast, the decreased negative surface charge of soil and peat does not favor the sorption of cationic DZ. Fourier transform infrared showed that DZ may be sorbed through interaction with -OH or -COOH groups of peat and soil and that surface complexes of Cu2+ may form through these groups. A competitive sorption between Cu2t and DZ for the same sorption sites is indicated, leading to mutual sorption inhibition of both cations.
Collapse
Affiliation(s)
- Zhiguo Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Strawn DG, Baker LL. Speciation of Cu in a contaminated agricultural soil measured by XAFS, micro-XAFS, and micro-XRF. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:37-42. [PMID: 18350872 DOI: 10.1021/es071605z] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Contamination of agricultural soils with Cu as a result of fungicide application and spills threatens environmental quality and reduces soil quality for crop growth. In this paper advanced spectroscopic and microscopic methods were used to elucidate the Cu speciation in a calcareous soil contaminated since the 1940s. Microscopically focused synchrotron-based XRF (micro-SXRF) was used to map the elemental distribution in the soils. Results indicated that most of the Cu was not associated with metal oxides, silicates, phosphates, or carbonates. Bulk and microscopically focused X-absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra indicated thatthe Cu in the soil was predominantly Cu adsorbed on soil organic matter (SOM). Interpretation of the fitting results suggests that the Cu is complexed to SOM via bidentate inner-sphere coordination with carboxyl or amine ligands. Results presented in this paper provide detailed information on the molecular coordination of Cu in a contaminated soil. Such information is critical for understanding the long-term fate and best management practices for Cu in the environment.
Collapse
|
33
|
Tsang DCW, Lo IMC, Chan KL. Modeling the transport of metals with rate-limited EDTA-promoted extraction and dissolution during EDTA-flushing of copper-contaminated soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:3660-6. [PMID: 17547193 DOI: 10.1021/es061756m] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
EDTA-flushing of artificially contaminated soils enhanced Cu extraction but also induced mineral dissolution simultaneously. The mobilization and transport of these metal-EDTA complexes was investigated with column experiments. A quantitative transport model was proposed for simulating the experimental breakthrough curves of Cu, Fe, Al, and Ca. The rate-limited EDTA-promoted extraction and dissolution could be described by respective second-order kinetic terms, which were necessary for explaining the time-dependent depletion of extractable metals (sorbed and indigenous) in soils with continuous EDTA-flushing. Simultaneous simulation of extraction of sorbed Cu and dissolution of soil Fe, Al, and Ca is more conceptually accurate than individual modeling of each metal because the latter approach tends to overestimate the concentration of free EDTA during transport and thus underestimate the rate coefficients of EDTA-promoted dissolution. The fitted rate coefficients of Cu were about an order of magnitude larger than those of Fe and Al; these values probably reflect Cu extraction from weakly sorbed fractions and Fe and Al dissolution from amorphous oxides. The apparent retardation of Fe, Al, and Ca transport had to be taken into account by empirical determination, which was attributed to the metal lability in soils and thermodynamics of surface complexation.
Collapse
Affiliation(s)
- Daniel C W Tsang
- Department of Civil Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | | | | |
Collapse
|
34
|
Boudesocque S, Guillon E, Aplincourt M, Marceau E, Stievano L. Sorption of Cu(II) onto vineyard soils: Macroscopic and spectroscopic investigations. J Colloid Interface Sci 2007; 307:40-9. [PMID: 17140594 DOI: 10.1016/j.jcis.2006.10.080] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 10/23/2006] [Accepted: 10/31/2006] [Indexed: 11/22/2022]
Abstract
The sorption of Cu on five vineyard soils was examined via macroscopic and spectroscopic investigations. The composition of the soils was previously determined using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). X-ray absorption spectroscopy (XAS) was employed to determine the metal environment with regard to the identity and interaction of the nearest atomic neighbors, the bond distances, and the coordination numbers. The five soils present similar sorption properties and there is no XAS evidence that the nature of the soil samples affects the local chemical environment of Cu(II). The kinetics of the Cu sorption reactions is rapid, with the equilibrium loading of Cu on the surface achieving approximately 200 mumol g(-1), i.e., 12.7 mg g(-1). The XAS data indicate that Cu is adsorbed in the form of inner-sphere complexes with first shell CuO parameters of four equatorial CuO bonds equal to 1.93 A and two axial CuO bonds at 2.43 A. This is in accordance with a Jahn-Teller distorted octahedron environment around copper. Our results provide evidence of the complexation of Cu(II) onto soil organic matter coated with an inorganic surface (quartz, clay, and goethite).
Collapse
Affiliation(s)
- Stéphanie Boudesocque
- GRECI (Groupe de Recherche en Chimie Inorganique), Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2, France
| | | | | | | | | |
Collapse
|
35
|
Silk WK, Bambic DG, O'Dell RE, Green PG. Seasonal and spatial patterns of metals at a restored copper mine site II. Copper in riparian soils and Bromus carinatus shoots. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2006; 144:783-9. [PMID: 16631289 DOI: 10.1016/j.envpol.2006.02.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 01/30/2006] [Accepted: 02/10/2006] [Indexed: 05/08/2023]
Abstract
Soil and plants were sampled throughout winter and spring near a perennial stream traversing a restored mine site in a winter-rainy climate. Within 1m of an acidic reach of the stream, soil had pH 3-5 and 50-100 microg/g "bioavailable" copper (extractable with 0.01 M CaCl2). Soil 2-3 m from the stream had pH 5-8 and lower (less than 3 microg/g) bioavailable copper. "Oxide-bound" copper (extractable with 2N HCl) was 50-100 microg/g at most locations. Copper concentrations in the shoots of field-collected Bromus carinatus declined from 20 microg/g in winter to 2 microg/g in spring at all sampling sites. A similar temporal pattern was found in plants grown under controlled conditions. Thus B. carinatus has a developmental program for control of shoot copper concentration, causing a seasonally-varying pattern of copper phytoaccumulation over a large range of copper availability in the soil.
Collapse
Affiliation(s)
- Wendy K Silk
- Department of Land, Air, and Water Resources, University of California, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
36
|
Qin F, Wen B, Shan XQ, Xie YN, Liu T, Zhang SZ, Khan SU. Mechanisms of competitive adsorption of Pb, Cu, and Cd on peat. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2006; 144:669-80. [PMID: 16616404 DOI: 10.1016/j.envpol.2005.12.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 12/29/2005] [Indexed: 05/08/2023]
Abstract
Combined use of batch equilibration adsorption and X-ray absorption spectroscopy (XAS) was employed to study the mechanisms of competitive adsorption of Pb, Cu, and Cd on Danish and Heilongjiang peat in single- and multi-solute systems. The adsorption capacity and initial adsorption rate on the same peat in single-solute systems followed the order Pb>Cu>Cd. Both the adsorbed amount of each metal (q'm) and its initial adsorption rate were decreased in multi-solute systems. It was observed that the adsorbed amounts of metals at low-energy adsorption sites (qm,1) decreased pronouncedly compared to those at high-energy adsorption sites (qm,2), indicating that the competitive adsorption of Pb, Cu and Cd occurred mainly at the low-energy adsorption sites. XAS study revealed that both Pb and Cu were coordinated in peat predominantly to carboxylic moieties without excluding the hydroxyl groups, thereby providing an insight into the mechanism of competitive adsorption of Pb and Cu on peat.
Collapse
Affiliation(s)
- Fei Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Tsang DCW, Lo IMC. Competitive Cu and Cd sorption and transport in soils: a combined batch kinetics, column, and sequential extraction study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2006; 40:6655-61. [PMID: 17144292 DOI: 10.1021/es060625i] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The competitive effect influenced the transport behavior of Cu and Cd contrastingly in soils, as illustrated by the experimental findings obtained from column, batch kinetics, and sequential extraction tests. Of particular interest, Cd transport behavior changed from nonequilibrium in a single-metal system to equilibrium in a binary-metal system, whereas Cu exhibited a slightly greater degree of nonequilibrium transport under competition. The equilibrium time of specific sorption (approximately 7 days) was found to be much longer than that of nonspecific sorption (approximately 30 min). While there was a competitive effect on nonspecific sorption for both Cu and Cd, the majority of rate-limited specific sorption of Cd on oxide and organic matter fractions (contributing to approximately 20% of total sorption) was dramatically displaced by Cu. Such a strong suppression of specific sorption of Cd bythe presence of Cu resulted in a shorter equilibrium time of overall sorption, which probably accounts for its equilibrium transport. In contrast, the competitive effect on rate-limited sorption and transport behavior of Cu was less significant. This study demonstrated a correlation between the competitive effect of Cu and Cd on their nonspecific and specific sorption and the corresponding significance of rate-limited sorption and nonequilibrium transport behavior.
Collapse
Affiliation(s)
- Daniel C W Tsang
- Department of Civil Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | |
Collapse
|
38
|
Puzon GJ, Roberts AG, Kramer DM, Xun L. Formation of soluble organo-chromium(III) complexes after chromate reduction in the presence of cellular organics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005; 39:2811-7. [PMID: 15884380 DOI: 10.1021/es048967g] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Microbial reduction of hexavalent chromium [Cr(VI)] to trivalent chromium [Cr(III)] has been investigated as a method for bioremediation of Cr(VI) contaminated environments. The produced Cr(III) is thought to be insoluble Cr(OH)3; however, recent reports suggested a more complex fate of Cr(III). A bacterial enzyme system, using NADH as the reductant, converts Cr(VI)to a soluble NAD+-Cr(III) complex, and cytochrome c-mediated Cr(VI) reduction produces cytochrome c-Cr(III) adducts. In this study, Cr(VI) reduction in the presence of cellular organic metabolites formed both soluble and insoluble organo-Cr(III) end-products. Several soluble end-products were characterized by absorbance spectroscopy and electron paramagnetic resonance spectrometry as organo-Cr(III) complexes, similar to the known ascorbate-Cr(III) complex. The complexes remained soluble and stable upon dialysis against distilled H20 and over a broad pH range. The ready formation of stable organo-Cr(III) complexes suggests that organo-Cr(III) complexes are rather common, likely representing an integral part of the natural cycling of chromium. Thus, organo-Cr(III) complexes may account for the mobile form of Cr(II) detected in the environment.
Collapse
Affiliation(s)
- Geoffrey J Puzon
- School of Molecular Biosciences, Center for Multiphase Environmental Research, and Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | | | | | | |
Collapse
|