1
|
Duval JFL, Maffei L, Delatour E, Zaffino M, Pagnout C. Kinetics of metal detection by luminescence-based whole-cell biosensors: connecting biosensor response to metal bioavailability, speciation and cell metabolism. Phys Chem Chem Phys 2023; 25:30276-30295. [PMID: 37930226 DOI: 10.1039/d3cp04653b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Luminescent whole-cell metal biosensors are genetically engineered cells used for the detection of metals in e.g. aqueous solutions. Herein, we detail the quantitative connections between time-response of luminescent bacterial metal sensors and the bioavailability of free and complexed metal species. To that end, we formulate the biophysicochemical dynamics of metal partitioning at a biosensor/solution interface and integrate the required metabolism contribution to cell response. The formalism explains the ways in which cell signal depends on: coupled Eigen kinetics of metal complexation and diffusion of metal species to/from the interface; kinetics of metal excretion, Michaelis-Menten bioaccumulation and ensuing metal depletion from bulk solution; and kinetics of bioluminescence production following intracellular metal sequestration by regulatory metalloproteins. In turn, an expression is derived for the time-dependent cell signal as a function of interrelated (bioavai)lability of metal species and (thermo)dynamic descriptors of extra/intracellular metal complexation. Quantitative criteria are elaborated to identify scenarios where equilibrium modeling of metal speciation is incorrect, bulk metal depletion is operative, metal biouptake kinetics is governed by metal diffusion, or labile metal complexes fully contribute to cell response. Remarkably, in agreement with experiments, the theory predicts time-shifts of bioluminescence peaks with increasing concentration of biosensor and/or metal ligand in solution. We show that these shifts originate from the crosstalk between activation kinetics of cell photoactivity and speciation-dependent kinetics of bulk metal depletion. Overall, the work paves the way for the elaboration of new strategies to exploit the bioluminescence response of metal lux-biosensors at a dynamic level and evaluate metal bioavailability properties in environmental or biological aqueous samples.
Collapse
Affiliation(s)
| | - Lorenzo Maffei
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Eva Delatour
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Marie Zaffino
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | | |
Collapse
|
2
|
Zhou L, Wu F, Meng Y, Byrne P, Ghomshei M, Abbaspour KC. Modeling transport and fate of heavy metals at the watershed scale: State-of-the-art and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163087. [PMID: 36996980 DOI: 10.1016/j.scitotenv.2023.163087] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 05/13/2023]
Abstract
A predictive understanding of the source-specific (e.g., point and diffuse sources) land-to-river heavy metal (HM) loads and HM dynamics in rivers is essential for mitigating river pollution and developing effective river basin management strategies. Developing such strategies requires adequate monitoring and comprehensive models based on a solid scientific understanding of the watershed system. However, a comprehensive review of existing studies on the watershed-scale HM fate and transport modeling is lacking. In this review, we synthesize the recent developments in the current generation of watershed-scale HM models, which cover a wide range of functionalities, capabilities, and spatial and temporal scales (resolutions). Existing models, constructed at various levels of complexity, have their strengths and weaknesses in supporting diverse intended uses. Additionally, current challenges in the application of watershed HM modeling are covered, including the representation of in-stream processes, organic matter/carbon dynamics and mitigation practices, the issues of model calibration and uncertainty analysis, and the balance between model complexity and available data. Finally, we outline future research requirements regarding modeling, strategic monitoring, and their combined use to enhance model capabilities. In particular, we envisage a flexible framework for future watershed-scale HM models with varying degrees of complexity to accommodate the available data and specific applications.
Collapse
Affiliation(s)
- Lingfeng Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yaobin Meng
- School of National Safety and Emergency Management, Beijing Normal University, Beijing 100875, China
| | - Patrick Byrne
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Mory Ghomshei
- Department of Mining and Mineral Resources Engineering, British Columbia Institute of Technology, Canada
| | | |
Collapse
|
3
|
Sans-Duñó J, Cecilia J, Galceran J, Puy J, Baeyens W, Gao Y. Back Accumulation of Diffusive Gradients in Thin-Films Devices with a Stack of Resin Discs To Assess Availability of Metal Cations to Biota in Natural Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7840-7848. [PMID: 37183959 DOI: 10.1021/acs.est.3c00799] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Determining species, concentrations, and physicochemical parameters in natural waters is key to improve our understanding of the functioning of these ecosystems. Diffusive Gradients in Thin-films (DGT) devices with different thicknesses of the resin or of the diffusive disc can be used to collect independent information on relevant parameters. In particular, DGT devices with a stack of two resin discs offer a simple way to determine dissociation rate constants of metal complexes from the accumulation of the target metal in the back resin disc. In this work, simple approximate expressions for the determination of the dissociation rate constant are reported and applied to a model Ni nitrilotriacetic complex as well as to Zn complexes in the Mediterranean Osor stream. Once the physicochemical parameters are known, one can plot the labile fraction of the metal complexes in terms of the thickness of the diffusion domain. These plots reveal a strong dependence on the nature of complexes as well as on the characteristics of the diffusion domain, and they are of high interest as predictors of availability to biota whose uptake is limited by diffusion.
Collapse
Affiliation(s)
- Jordi Sans-Duñó
- Departament de Química, Universitat de Lleida, and AGROTECNIO-CERCA, Rovira Roure 191, Lleida, Catalonia 25198, Spain
- Analytical, Environmental and Geochemical (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels B-1050, Belgium
| | - Joan Cecilia
- Departament de Matemàtica, Universitat de Lleida, and AGROTECNIO-CERCA, Rovira Roure 191, Lleida, Catalonia 25198, Spain
| | - Josep Galceran
- Departament de Química, Universitat de Lleida, and AGROTECNIO-CERCA, Rovira Roure 191, Lleida, Catalonia 25198, Spain
| | - Jaume Puy
- Departament de Química, Universitat de Lleida, and AGROTECNIO-CERCA, Rovira Roure 191, Lleida, Catalonia 25198, Spain
| | - Willy Baeyens
- Analytical, Environmental and Geochemical (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels B-1050, Belgium
| | - Yue Gao
- Analytical, Environmental and Geochemical (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels B-1050, Belgium
| |
Collapse
|
4
|
Macías M, Jiménez JA, Rodríguez de San Miguel E, Moreira-Santos M. Appraisal on the role of passive sampling for more integrative frameworks on the environmental risk assessment of contaminants. CHEMOSPHERE 2023; 324:138352. [PMID: 36898436 DOI: 10.1016/j.chemosphere.2023.138352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Over time multiple lines of research have been integrated as important components of evidence for assessing the ecological quality status of water bodies within the framework of Environmental Risk Assessment (ERA) approaches. One of the most used integrative approaches is the triad which combines, based on the weight-of-evidence, three lines of research, the chemical (to identify what is causing the effect), the ecological (to identify the effects at the ecosystem level) and the ecotoxicological (to ascertain the causes of ecological damage), with the agreement between the different lines of risk evidence increasing the confidence in the management decisions. Although the triad approach has proven greatly strategic in ERA processes, new assessment (and monitoring) integrative and effective tools are most welcome. In this regard, the present study is an appraisal on the boost that passive sampling, by allowing to increase information reliability, can give within each of the triad lines of evidence, for more integrative ERA frameworks. In parallel to this appraisal, examples of works that used passive samplers within the triad are presented providing support for the use of these devices in a complementary form to generate holistic information for ERA and ease the process of decision-making.
Collapse
Affiliation(s)
- Mariana Macías
- Departamento de Química Analítica, Facultad de Química, UNAM, Ciudad Universitaria, 04510, Cd.Mx., Mexico
| | - Jesús A Jiménez
- Departamento de Química Analítica, Facultad de Química, UNAM, Ciudad Universitaria, 04510, Cd.Mx., Mexico
| | | | - Matilde Moreira-Santos
- CFE-Centre for Functional Ecology - Science for People and the Planet, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| |
Collapse
|
5
|
Pinheiro JP, Rotureau E. Electroanalytical Trace Metal Cations Quantification and Speciation in Freshwaters: Historical Overview, Critical Review of the Last Five Years and Road Map for Developing Dynamic Speciation Field Measurements. Molecules 2023; 28:molecules28062831. [PMID: 36985802 PMCID: PMC10056914 DOI: 10.3390/molecules28062831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
An historical overview covering the field of electroanalytical metal cations speciation in freshwaters is presented here, detailing both the notable experimental and theoretical developments. Then, a critical review of the progress in the last five years is given, underlining in particular the improvements in electrochemical setups and methodologies dedicated to field surveys. Given these recent achievements, a road map to carry out on-site dynamic metal speciation measurements is then proposed, and the key future developments are discussed. This review shows that electroanalytical stripping techniques provide a unique framework for quantitatively assessing metals at trace levels while offering access to both thermodynamic and dynamic features of metal complexation with natural colloidal and particulate ligands.
Collapse
Affiliation(s)
- José Paulo Pinheiro
- Université de Lorraine, CNRS, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), F-54000 Nancy, France
| | - Elise Rotureau
- Université de Lorraine, CNRS, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), F-54000 Nancy, France
| |
Collapse
|
6
|
Price GAV, Stauber JL, Jolley DF, Koppel DJ, Van Genderen EJ, Ryan AC, Holland A. Natural organic matter source, concentration, and pH influences the toxicity of zinc to a freshwater microalga. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120797. [PMID: 36496066 DOI: 10.1016/j.envpol.2022.120797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Zinc is a contaminant of concern in aquatic environments and is a known toxicant to many aquatic organisms. Dissolved organic matter (DOM) is a toxicity modifying factor for zinc and is an important water chemistry parameter. This study investigated the influence of DOM concentration, source, and water pH on the chronic toxicity of zinc to a freshwater microalga, Chlorella sp. The influence of DOM on zinc toxicity was dependent on both concentration and source. In the absence of DOM, the 72-h EC50 was 112 μg Zn.L-1. In the presence of a DOM high in fulvic-like components, zinc toxicity was either slightly decreased (<4-fold increase in EC10s across 15 mg C.L-1 range) or unchanged (minimal difference in EC50s). In the presence of a DOM high in humic-like (aromatic and high molecular weight) components, zinc toxicity was slightly decreased at the EC10 level and strongly increased at the EC50 level. The influence of pH on zinc toxicity was dependent on the source of DOM present in the water. In the presence of DOM high in humic-like components pH did not influence toxicity. In the presence of DOM high in fulvic-like components, pH had a significant effect on EC50 values. Labile zinc (measured by diffusive gradients in thin-films) followed linear relationships with dissolved zinc but could not explain the changes in observed toxicity, with similar DGT-labile zinc relationships shown for the two DOMs despite each DOM influencing toxicity differently. This indicates changes in toxicity may be unrelated to changes in zinc lability. The results suggest that increased toxicity of zinc in the presence of DOM may be due to direct uptake of Zn-DOM complexes. This study highlights the importance of considering DOM source and characteristics when incorporating DOM into water quality guidelines through bioavailability models.
Collapse
Affiliation(s)
- Gwilym A V Price
- Faculty of Science, University of Technology Sydney Broadway, NSW, 2007, Australia; CSIRO Land and Water, Lucas Heights, NSW, Australia.
| | - Jenny L Stauber
- CSIRO Land and Water, Lucas Heights, NSW, Australia; La Trobe University, School of Agriculture, Biomedicine & Environment, Department of Environment and Genetics, Centre for Freshwater Ecosystems, Albury/Wodonga Campus, Vic, Australia
| | | | - Darren J Koppel
- Australian Institute of Marine Science, Crawley, WA, Australia
| | | | - Adam C Ryan
- International Zinc Association, Durham, NC, USA
| | - Aleicia Holland
- CSIRO Land and Water, Lucas Heights, NSW, Australia; La Trobe University, School of Agriculture, Biomedicine & Environment, Department of Environment and Genetics, Centre for Freshwater Ecosystems, Albury/Wodonga Campus, Vic, Australia
| |
Collapse
|
7
|
Electrostatic effects on ligand-assisted transfer of metals to (bio)accumulating interfaces and metal complexes (bioavai)lability. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Gavrić S, Flanagan K, Österlund H, Blecken GT, Viklander M. Facilitating maintenance of stormwater ponds: comparison of analytical methods for determination of metal pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74877-74893. [PMID: 35650338 PMCID: PMC9550750 DOI: 10.1007/s11356-022-20694-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Stormwater ponds are widely used for controlling runoff quality through the sedimentation of particles and associated pollutants. Their maintenance requires regular removal and disposal of accumulated material. This necessitates an assessment of material hazardousness, including potential hazard due to its contamination by metals. Here we analyze 32 stormwater pond sediment samples from 17 facilities using several chemical analysis methods (total extraction, sequential extraction, diffusive gradients in thin-films DGT, and pore water extraction) in order to consider the complementarity and comparability of the different approaches. No clear relationship was found between analyses that have the potential to measure similar metal fractions (DGT and either fraction 1 of the sequential extraction (adsorbed and exchangeable metals and carbonates) or pore water concentrations). Loss on ignition (LOI) had a significant positive correlation with an indicator of the environmental risk developed in this paper (∑ranks) that incorporates different metals, speciations, and environmental endpoints. Large variations in metal levels were observed between ponds. As clustering was limited between the different analyses, a comprehensive analysis of different parameters is still needed to fully understand metal speciation and bioavailability.
Collapse
Affiliation(s)
- Snežana Gavrić
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden.
| | - Kelsey Flanagan
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden
| | - Heléne Österlund
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden
| | - Godecke-Tobias Blecken
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden
| | - Maria Viklander
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden
| |
Collapse
|
9
|
Sartori Jeunon Gontijo E, Santos Costa Monteiro A, Tonello PS, Roeser HMP, Friese K, Rosa AH. Analyses of colloidal, truly dissolved, and DGT-labile metal species and phosphorus in mining area surrounded by tailing dams using self-organising maps. CHEMOSPHERE 2022; 303:135003. [PMID: 35595112 DOI: 10.1016/j.chemosphere.2022.135003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
The knowledge of size-distribution and lability of metals and nutrients in freshwater systems is important for estimation of the ecological effects of mining. However, it is still limited in several mining areas such as the Quadrilátero Ferrífero (Brazil) which was severely polluted by the collapse of the Fundão tailings dam in November 2015. In this study, results of an investigation from 2014 using a neural network named self-organising map (SO-Map) into the conditions of selected trace metals that are of particular importance to mining areas (Cr, Cu, Co, Mn, Ni, Pb, Zn) are presented. Additionally, P was considered by its high importance as a nutrient and sites later affected by the dam burst were also included by chance. Water samples were collected at six sites in dry and rainy seasons and filtered and ultrafiltered for determination of total dissolved (<0.45 μm) and truly dissolved (<1 kDa) fractions. Diffusive gradients in thin films (DGT) devices were deployed in situ for determination of the DGT-labile fraction. All data were analysed using SO-Map and Spearman's rank correlation. Phosphorus in the Carmo River occurred mainly in the truly dissolved and DGT-labile fractions. The higher amounts of this element in the river water (up to 263 μg L-1 of total P) might be related to untreated sewage discharge. Moreover, the concentrations of other trace metals (Mn, Cu, Co, Ni, Zn) were high, even under the "natural" conditions (before the dam failure) due to natural and anthropogenic factors such as local lithology and mining.
Collapse
Affiliation(s)
- Erik Sartori Jeunon Gontijo
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, 18087-180, Sorocaba, SP, Brazil.
| | - Adnívia Santos Costa Monteiro
- Federal University of Sergipe (UFS), Campus São Cristóvão, Av. Marechal Rondon, s/n, Jardim Rosa Elze, 49100-000, São Cristóvão, SE, Brazil.
| | - Paulo Sérgio Tonello
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, 18087-180, Sorocaba, SP, Brazil.
| | - Hubert Mathias Peter Roeser
- Federal University of Ouro Preto (UFOP), Campus Universitário, Morro do Cruzeiro, 354000-000, Ouro Preto, MG, Brazil.
| | - Kurt Friese
- Department of Lake Research, Helmholtz Centre for Environmental Research - UFZ, Brueckstr. 3a, 39114, Magdeburg, Germany.
| | - André Henrique Rosa
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, 18087-180, Sorocaba, SP, Brazil.
| |
Collapse
|
10
|
Town RM, van Leeuwen HP. Chemodynamic features of nickel(II) and its complexes: Implications for bioavailability in freshwaters. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113840. [PMID: 36068763 DOI: 10.1016/j.ecoenv.2022.113840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/28/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
A robust description of the bioavailability of Ni(II) in freshwaters is fundamental for the setting of environmental quality standards. Current approaches assume that bioavailability is governed by the equilibrium concentration of the free metal ion in the bulk aqueous medium. Such strategies generally have limited predictive value: a suite of empirical fitting parameters is required to deal with variations in water chemistry. Herein we compile data on Ni(II) speciation under typical freshwater conditions and compute the lability of Ni(II) complexes with typical molecular and nanoparticulate components of dissolved organic carbon. In combination with an analysis of the kinetic setting of Ni(II) biouptake by freshwater organisms, we assess the potential contribution from dissociation of Ni(II) complexes to the diffusive supply flux of free Ni2+. The strategy takes into account the absolute and relative magnitudes of the Michaelis-Menten bioaffinity and bioconversion parameters for a range of freshwater organisms, together with dynamic chemical speciation descriptors under environmentally relevant conditions. The results show that the dissociation kinetics of Ni(II) complexes play a crucial role in buffering the free metal ion concentration at the biointerface. Our results highlight the need to couple the timescales of chemical reactivity with those of biouptake to properly identify the bioavailable fraction of Ni(II) in freshwaters.
Collapse
Affiliation(s)
- Raewyn M Town
- ECOSPHERE, Department of Biology, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| | - Herman P van Leeuwen
- ECOSPHERE, Department of Biology, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium; Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| |
Collapse
|
11
|
Ma P, Tian T, Dai Z, Shao T, Zhang W, Liu M. Assessment of Cd bioavailability using chemical extraction methods, DGT, and biological indicators in soils with different aging times. CHEMOSPHERE 2022; 296:133931. [PMID: 35181428 DOI: 10.1016/j.chemosphere.2022.133931] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/27/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Total cadmium (Cd) cannot be used to accurately assess the ecological risk of Cd pollution in soil. Currently there is no universally recognized method to evaluate Cd bioavailability in soil. In this study, chemical extraction methods, diffusive gradients in thin films (DGT) and bioindicator methods were used to evaluate Cd bioavailability in soils with the same properties but different aging times. Results indicate that aging decreased the Cd bioavailability in soil and its toxicity to barley. This was primarily due to a decrease in the proportion of ion-exchangeable Cd. Correlation analyses were conducted on the Cd bioavailable content obtained via the soil extraction methods and the toxicity effect of barley. Results showed that the order of the minimum value of the linear regression determination coefficient (R2) of chemical extraction methods and DGT was as follows: DGT-Cd (0.7385, p < 0.05) > total Cd (0.6931, p < 0.05) > acetic acid-Cd (0.6078) > ion-exchangeable Cd (0.5933) > DTPA-Cd (0.5842) > CaCl2-Cd (0.4980) > water-soluble Cd (0.4602). The order of minimum value of R2 of biological indicators of barley was integrated biomarker response (IBR) (0.8501, p < 0.01) > length (0.6492) > dry weight (0.6320) > fresh weight (0.4980) > Cd concentration (0.4602). The root is more suitable for indicating the plant uptake and accumulation of Cd in soil. Meanwhile, the shoot can effectively evaluate the toxic effect of Cd stress on plants. DGT is more suitable to reflect Cd bioavailability to barley compared to chemical extraction methods, Furthermore, it can be used to evaluate stable polluted soil with longer aging time. In the study of the bioavailability of heavy metals in soil, IBR can be used as a reliable reference index to contribute to the comprehensive evaluation of metal bioavailability in addition to considering plant uptake.
Collapse
Affiliation(s)
- Pan Ma
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| | - Tian Tian
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| | - Zhaoyi Dai
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| | - Tingyu Shao
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| | - Wei Zhang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| | - Mingda Liu
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| |
Collapse
|
12
|
Caetano M, Correia Dos Santos MM, Rosa N, Carvalho I, Rodríguez JG, Belzunce-Segarra MJ, Menchaca I, Larreta J, Sanz MR, Millán-Gabet V, Gonzalez JL, Amouroux I, Guesdon S, Menet-Nédélec F, White B, Regan F, Nolan M, McHugh B, Bersuder P, Bolam T, Robinson CD, Fones GR, Zhang H, Schintu M, Montero N, Marras B. Metals concentrations in transitional and coastal waters by ICPMS and voltammetry analysis of spot samples and passive samplers (DGT). MARINE POLLUTION BULLETIN 2022; 179:113715. [PMID: 35526381 DOI: 10.1016/j.marpolbul.2022.113715] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/23/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
This study investigates the relationships among Ni, Cd and Pb's different chemical forms determined by different methodologies in coastal and transitional waters across a broad geographical scale. Concentrations were measured in spot samples and through passive sampling (DGT). High variability of metal concentrations was found among sampling sites and methodologies due to natural water fluctuations rather than to a given metal or method. Total dissolved metal concentrations in spot samples were lower than the EQS-WFD values. The labile fractions of Cd and Pb, measured in spot samples by Anodic Stripping Voltammetry and by DGT-ICPMS, were highly correlated. Similar labilities were found for Cd, while for Pb, the ASV labile fraction was ≈50% lower. These results reflect the pool of mobile and labile species available towards each technique kinetic window, and they seem not to be affected by discrete sampling flaws.
Collapse
Affiliation(s)
- Miguel Caetano
- IPMA, Portuguese Institute of Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-165 Lisbon, Portugal.
| | - Margarida M Correia Dos Santos
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
| | - Nuno Rosa
- IPMA, Portuguese Institute of Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-165 Lisbon, Portugal
| | - Inês Carvalho
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - José Germán Rodríguez
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110 Pasaia, Gipuzkoa, Spain
| | - María Jesús Belzunce-Segarra
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110 Pasaia, Gipuzkoa, Spain
| | - Iratxe Menchaca
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110 Pasaia, Gipuzkoa, Spain
| | - Joana Larreta
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110 Pasaia, Gipuzkoa, Spain
| | - Marta Rodrigo Sanz
- ITC, Instituto Tecnológico de Canarias, Playa de Pozo Izquierdo, s/n., CP: 35119, Sta. Lucía, Las Palmas, Spain
| | - Vanessa Millán-Gabet
- ITC, Instituto Tecnológico de Canarias, Playa de Pozo Izquierdo, s/n., CP: 35119, Sta. Lucía, Las Palmas, Spain
| | - Jean-Louis Gonzalez
- Ifremer, LITTORAL unit, Provence-Azur-Corse environmental resources laboratory Zone Portuaire de Brégaillon, CS20330 83507 La Seyne/mer cedex, France
| | - Isabelle Amouroux
- Ifremer, Unit of Biogeochemistry and Ecotoxicology, Chemical Risk assessment, Rue de l'Ile d'Yeu, 44300 Nantes, France
| | - Stephane Guesdon
- Ifremer, LITTORAL unit, Laboratoire Environnement Ressources des Pertuis Charentais, Avenue de Mus de Loup, 17390 La Tremblade, France
| | - Florence Menet-Nédélec
- Ifremer, LITTORAL unit, Laboratoire Environnement Ressources de Normandie, Avenue du Général de Gaulle, 14520 Port-en-Bessin, France
| | - Blánaid White
- DCU Water Institute, Dublin City University, Dublin 9, Ireland
| | - Fiona Regan
- DCU Water Institute, Dublin City University, Dublin 9, Ireland
| | - Martin Nolan
- DCU Water Institute, Dublin City University, Dublin 9, Ireland
| | | | - Philippe Bersuder
- CEFAS, Centre for Environment, Fisheries and Aquaculture Science, Lowestoft Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - Thi Bolam
- CEFAS, Centre for Environment, Fisheries and Aquaculture Science, Lowestoft Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - Craig D Robinson
- MSS, Marine Scotland Science, Marine Laboratory, 365 Victoria Road, Aberdeen AB11 9DB, United Kingdom
| | - Gary R Fones
- University of Portsmouth, School of the Environment Geography and Geosciences, Burnaby Road, Portsmouth PO1 3QL, United Kingdom
| | - Hao Zhang
- Lancaster University, Lancaster Environment Centre, Lancaster LA1 4YQ, United Kingdom
| | - Marco Schintu
- UNICA, Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli studi di Cagliari, 09124 Cagliari, Italy
| | - Natalia Montero
- UNICA, Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli studi di Cagliari, 09124 Cagliari, Italy
| | - Barbara Marras
- UNICA, Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli studi di Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
13
|
Exploiting Catabolite Repression and Stringent Response to Control Delay and Multimodality of Bioluminescence Signal by Metal Whole-Cell Biosensors: Interplay between Metal Bioavailability and Nutritional Medium Conditions. BIOSENSORS 2022; 12:bios12050327. [PMID: 35624628 PMCID: PMC9139025 DOI: 10.3390/bios12050327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/02/2022]
Abstract
The time-dependent response of metal-detecting whole-cell luminescent bacterial sensors is impacted by metal speciation/bioavailability in solution. The comprehensive understanding of such connections requires the consideration of the bacterial energy metabolism at stake and the effects of supplied food on cells’ capability to convert bioaccumulated metals into light. Accordingly, we investigated the time response (48 h assay) of PzntA-luxCDABE Escherichia coli Cd biosensors in media differing with respect to sources of amino acids (tryptone or Lysogeny Broth) and carbon (glucose, xylose and mixtures thereof). We show that the resulting coupling between the stringent cell response and glucose/xylose-mediated catabolite repressions lead to well-defined multimodalities and shapes of the bioluminescence signal over time. Based on a recent theory for the time–response of metal-sensing luminescent bacteria, successful theoretical reconstructions of the bioluminescence signals are reported under all Cd concentrations (0–20 nM) and nutritive conditions examined. This analysis leads to the evaluation of time-dependent cell photoactivity and qualitative information on metal speciation/bioavailability in solution. Biosensor performance and the position, shape, number, and magnitude of detected peaks are discussed in relation to the metabolic pathways operative during the successive light emission modes identified here over time. Altogether, the results clarify the contributions of metal/nutrient bio-availabilities and food quality to cell response typology.
Collapse
|
14
|
Pelcová P, Kopp R, Ridošková A, Grmela J, Štěrbová D. Evaluation of mercury bioavailability and phytoaccumulation by means of a DGT technique and of submerged aquatic plants in an aquatic ecosystem situated in the vicinity of a cinnabar mine. CHEMOSPHERE 2022; 288:132545. [PMID: 34648791 DOI: 10.1016/j.chemosphere.2021.132545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/23/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
The ability of submerged aquatic plants (Elodea canadensis, Myriophyllum spicatum, Ceratophyllum demersum) and a natant plant (Eichhornia crassipes) to bioaccumulate mercury was evaluated in a laboratory experiment as well as in a real aquatic ecosystem situated in the vicinity of a cinnabar mine. Moreover, the ability of the diffusive gradients in the thin films technique (DGT) to predict mercury bioavailability for selected aquatic plants was tested. The submerged plants had sufficient bioaccumulation capacity for long-term phytoaccumulation of mercury in a real aquatic ecosystem. The determined bioaccumulation factor was greater than 1000. On average, the submerged plant leaves accumulated 13 times more mercury than the leaves of the natant aquatic plants. Chlorides at concentrations up to 200 mg/L had no statistically significant effect on mercury accumulation, nevertheless, the presence of humic acid in the water environment resulted in its significant (p < 0.002) decrease. A strong positive correlation (r > 0.66) was determined between mercury concentration in the input parts (leaves and/or roots) of the aquatic plants and the flow of mercury into DGT units.
Collapse
Affiliation(s)
- Pavlína Pelcová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300, Brno, Czech Republic.
| | - Radovan Kopp
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Mendel University in Brno, Zemedelska 1, CZ-61300, Brno, Czech Republic
| | - Andrea Ridošková
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300, Brno, Czech Republic; CEITEC MENDELU, Mendel University in Brno, Zemedelska 1, CZ-61300, Brno, Czech Republic
| | - Jan Grmela
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Mendel University in Brno, Zemedelska 1, CZ-61300, Brno, Czech Republic
| | - Dagmar Štěrbová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300, Brno, Czech Republic
| |
Collapse
|
15
|
Rosales-Segovia K, Sans-Duñó J, Companys E, Puy J, Alcalde B, Anticó E, Fontàs C, Galceran J. Effective concentration signature of Zn in a natural water derived from various speciation techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151201. [PMID: 34699815 DOI: 10.1016/j.scitotenv.2021.151201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/09/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
The uptake of nutrients or toxicants by different organisms in aquatic systems is known to correlate with different fractions of the nutrient's or toxicant's total concentration. These fractions can be provided by different analytical techniques, from which the better correlation is expected to be found for those with a characteristic length comparable to that in the considered organism uptake. An effective concentration signature can be built up with the concentration values associated to the availability (i.e. fluxes in dynamic techniques) of the nutrient or toxicant measured by various analytical techniques with different characteristic lengths. Here, this new representation was obtained for the pool of Zn complexes in the Mediterranean stream Riera d'Osor (Girona, Catalonia, Spain) with a suite of four analytical techniques. Absence of Gradients and Nernstian Equilibrium Stripping (AGNES) and Polymer Inclusion Membrane (PIM) devices provided the free Zn concentration. Linear Anodic Stripping Voltammetry provided a labile fraction (defined here as cLASV, higher than the free concentration), related to the diffusion layer scale. Diffusion Gradients in Thin-films provided higher labile fractions (known as DGT concentrations, cDGT) connected to the different characteristic lengths of different configurations (e.g. one or two resin discs) longer, in any case, than that corresponding to LASV. The combination of the information retrieved by the techniques allowed to quantify lability degrees of the pool of Zn complexes and to build up the effective concentration signature for this water.
Collapse
Affiliation(s)
- Kevin Rosales-Segovia
- Departament de Química. Universitat de Lleida, and AGROTECNIO-CERCA, Rovira Roure 191, 25198 Lleida, Catalonia, Spain
| | - Jordi Sans-Duñó
- Departament de Química. Universitat de Lleida, and AGROTECNIO-CERCA, Rovira Roure 191, 25198 Lleida, Catalonia, Spain
| | - Encarna Companys
- Departament de Química. Universitat de Lleida, and AGROTECNIO-CERCA, Rovira Roure 191, 25198 Lleida, Catalonia, Spain
| | - Jaume Puy
- Departament de Química. Universitat de Lleida, and AGROTECNIO-CERCA, Rovira Roure 191, 25198 Lleida, Catalonia, Spain
| | - Berta Alcalde
- Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Enriqueta Anticó
- Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Clàudia Fontàs
- Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Josep Galceran
- Departament de Química. Universitat de Lleida, and AGROTECNIO-CERCA, Rovira Roure 191, 25198 Lleida, Catalonia, Spain.
| |
Collapse
|
16
|
Paller MH, Knox AS, Blas SA, Harmon SM. Use of diffusive gradients in thin films (DGT) to measure potentially bioavailable metals in southeastern USA blackwater streams. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:61. [PMID: 34993645 DOI: 10.1007/s10661-021-09740-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
We used diffusive gradients in thin films (DGT) to measure potentially bioavailable metals in coastal plain streams in the southeastern USA that exhibited strong to moderate blackwater characteristics. Metals were partitioned into particulate metals, DGT-inert metals (i.e., colloidal and refractory organic complexes not accumulated by DGT), and DGT-labile metals (i.e., free metal ions, small inorganic complexes, and labile organic complexes). We also examined the influence of different DGT deployment times using data collected from the field and a follow-up laboratory study. The DGT-measured fraction of dissolved metals in the streams was 15% for Cd, 21% for Zn, 33% for Cu, 37% for Pb, and 98% for Mn. Metals bound to particulates predominated only for Pb. Most of the Cd, Pb, Zn, and Cu were associated with colloids, refractory organic complexes, or particles. Relatively small amounts were in free ion or labile complexes likely to be bioavailable through respiratory surfaces. Modeled concentrations of free and inorganically bound Cu and Pb were lower than the DGT fraction indicating that DGT accumulated some organically bound Cu and Pb that might not have been bioavailable. DGT-exposure times in excess of 5 days may have contributed to the accumulation of partly labile organic-metal complexes and were associated with substantial biofouling that caused metal uptake by DGT to depart from linearity.
Collapse
Affiliation(s)
| | - Anna S Knox
- Savannah River National Laboratory, Aiken, SC, 29808, USA
| | - Susan A Blas
- ACP Engineering and Technology, Savannah River Site, Aiken, SC, 29808, USA
| | - S Michele Harmon
- Department of Biology and Geology, University of South Carolina at Aiken, 471 University Parkway, Aiken, SC, 29801, USA
| |
Collapse
|
17
|
Kumar R, Goel H, Jha SK, Kant R. Single potential step chronoamperometry for EC′ reaction at rough electrodes: Theory and experiment. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Ji X, Challis JK, Brinkmann M. A critical review of diffusive gradients in thin films technique for measuring organic pollutants: Potential limitations, application to solid phases, and combination with bioassays. CHEMOSPHERE 2022; 287:132352. [PMID: 34826958 DOI: 10.1016/j.chemosphere.2021.132352] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Diffusive gradient in thin films (DGT) for organics has received considerable attention for studying the chemical dynamics of various organic pollutants in the environment. This review investigates current limitations of DGT for organics and identifies several research gaps for future studies. The application of a protective outer filter membrane has been recommended for most DGT applications, however, important questions regarding longer lag times due to significant interaction or adsorption of specific groups of compounds on the outer membrane remain. A modified DGT configuration has been developed that uses the diffusive gel as the outer membrane without the use of an extra filter membrane, however use of this configuration, while largely successful, remains limited. Biofouling has been a concern when using DGT for metals; however, effect on the performance of DGT for organics needs to be systemically studied. Storage stability of compounds on intact DGT samplers has been assessed in select studies and that data is synthesized here. DGT has been used to describe the kinetic desorption of antibiotics from soils and biosolids based on the soil/biosolid physical-chemical characteristics, yet applications remain limited and requires further research before wide-scale adoption is recommended. Finally, DGT for organics has been rarely, albeit successfully, combined with bioassays as well as in vivo bioaccumulation studies in zebrafish. Studies using DGT combined with bioassays to predict the adverse effects of environmental mixtures on aquatic or terrestrial biota are discussed here and should be considered for future research.
Collapse
Affiliation(s)
- Xiaowen Ji
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada
| | | | - Markus Brinkmann
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, Canada; Centre for Hydrology, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
19
|
Tercier-Waeber ML, Confalonieri F, Abdou M, Dutruch L, Bossy C, Fighera M, Bakker E, Graziottin F, van der Wal P, Schäfer J. Advanced multichannel submersible probe for autonomous high-resolution in situ monitoring of the cycling of the potentially bioavailable fraction of a range of trace metals. CHEMOSPHERE 2021; 282:131014. [PMID: 34118619 DOI: 10.1016/j.chemosphere.2021.131014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
We report here on the development and application of a submersible, compact, low power consumption, integrated multichannel trace metal sensing probe (TracMetal). This probe is unique in that it allows high-resolution, simultaneous in-situ measurements of the potentially bioavailable (so-called dynamic) fraction of Hg(II), As(III), Cd(II), Pb(II), Cu(II), Zn(II). The TracMetal incorporates nanostructured Au-plated and Hg-plated gel-integrated microelectrode arrays. In addition to be selective to the fraction of metal potentially bioavailable, they offer protection against fouling and ill-controlled convective interferences. Sensitivities in the low pM for Hg(II) and sub-nM for the other target trace metals is achieved with precision ≤ 12%. The TracMetal is capable of autonomous operation during deployment, with routines for repetitive measurements (1-2 h-1), data storage and management, data computer visualization, and wireless data transfer. The system was successfully applied in the Arcachon Bay, to study the temporal variation of the dynamic fraction of the trace metals targeted. The in situ autonomous TracMetal measurements were combined with in situ measurements of the master bio-physicochemical parameters and sample collection for complementary measurements of the dissolved metal concentrations, organic matter concentrations and proxy for biological activities. The integration of all data revealed that various biotic and abiotic processes control the temporal variation of the dynamic fractions of the target metals (Medyn). The difference in the percentage of the dynamic forms of the metals studied and the short-term processes influencing their variation highlight the TracMetal potentiality as metal bioavailability-assessment sentinel to achieve comprehensive environmental monitoring of dynamic aquatic systems.
Collapse
Affiliation(s)
- Mary-Lou Tercier-Waeber
- University of Geneva, Dept. of Inorganic and Analytical Chemistry, 1211 Geneva 4, Switzerland.
| | | | - Melina Abdou
- University of Geneva, Dept. of Inorganic and Analytical Chemistry, 1211 Geneva 4, Switzerland; University of Bordeaux, UMR CNRS 5805 EPOC, 33615 Pessac, France
| | - Lionel Dutruch
- University of Bordeaux, UMR CNRS 5805 EPOC, 33615 Pessac, France
| | - Cécile Bossy
- University of Bordeaux, UMR CNRS 5805 EPOC, 33615 Pessac, France
| | - Marianna Fighera
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, Switzerland
| | - Eric Bakker
- University of Geneva, Dept. of Inorganic and Analytical Chemistry, 1211 Geneva 4, Switzerland
| | | | - Peter van der Wal
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, Switzerland
| | - Jörg Schäfer
- University of Bordeaux, UMR CNRS 5805 EPOC, 33615 Pessac, France
| |
Collapse
|
20
|
Amato ED, Pfeiffer F, Estoppey N, Subotic D, Herweyers L, Breugelmans T, Weyn M, Du Bois E, Dardenne F, Covaci A, Town RM, Blust R. Field application of a novel active-passive sampling technique for the simultaneous measurement of a wide range of contaminants in water. CHEMOSPHERE 2021; 279:130598. [PMID: 33901895 DOI: 10.1016/j.chemosphere.2021.130598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
A first test of the field capabilities of a novel in situ sampling technique combining active and passive sampling (APS) was conducted in the sea. The proof-of-concept device uses a pump to draw water into a diffusion cell where dissolved target substances are accumulated onto sorbents which are selective for different classes of contaminants (i.e., metal cations, polar and non-polar organic compounds), simultaneously. A controlled laminar flow established in the diffusion cell enables measurements of contaminant concentrations that are fully independent from the hydrodynamic conditions in the bulk solution. APS measurements were consistent with those obtained using conventional passive sampling techniques such as organic diffusive gradients in thin films (o-DGT) and silicone rubber (SR) samplers (generally < 40% difference), taking into account the prevailing hydrodynamic conditions. The use of performance reference compounds (PRC) for hydrophobic contaminants provided additional information. Field measurements of metal ions in seawater showed large variability due to issues related to the device configuration. An improved field set-up deployed in supplementary freshwater mesocosm experiments provided metal speciation data that was consistent with passive sampling measurements (DGT), taking into account the hydrodynamic conditions. Overall, the results indicate that the APS technique provides a promising approach for the determination of a wide range of contaminants simultaneously, and independently from the hydrodynamic conditions in the bulk solution.
Collapse
Affiliation(s)
- Elvio D Amato
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Fabienne Pfeiffer
- School of Criminal Justice, University of Lausanne, Batochime, 1015, Lausanne, Switzerland
| | - Nicolas Estoppey
- School of Criminal Justice, University of Lausanne, Batochime, 1015, Lausanne, Switzerland
| | - Dragan Subotic
- Internet and Data Lab (IDLab), University of Antwerp - Imec, Belgium
| | - Laure Herweyers
- Department of Product Development, Faculty of Design Sciences, University of Antwerp, 2000, Antwerpen, Belgium
| | - Tom Breugelmans
- Research Group Applied Electrochemistry & Catalysis (ELCAT), University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Maarten Weyn
- Internet and Data Lab (IDLab), University of Antwerp - Imec, Belgium
| | - Els Du Bois
- Department of Product Development, Faculty of Design Sciences, University of Antwerp, 2000, Antwerpen, Belgium
| | - Freddy Dardenne
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Raewyn M Town
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Ronny Blust
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| |
Collapse
|
21
|
Sans-Duñó J, Cecilia J, Galceran J, Puy J. Availability of metals to DGT devices with different configurations. The case of sequential Ni complexation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146277. [PMID: 33744567 DOI: 10.1016/j.scitotenv.2021.146277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
The analytical technique DGT (Diffusive Gradients in Thin-films) is able to gain access to a wealth of information by carefully interpreting accumulation data from passive samplers with different configurations (i.e. different thicknesses of its constituent layers). A set of DGT devices were simultaneously deployed in solutions of Ni and nitrilotriacetic acid (NTA) of different concentrations to measure the availability of Ni in these solutions. Accumulations indicate that the availability of Ni depends on both the thickness of the resin and the thickness of the diffusive gel. In both cases, the lability degree increases as the thickness increases. As the formation of successive complexes (such as Ni(NTA)2) proceeds, the availability of the metal decreases, which is quantitatively explained by reducing the formulation to a case with only one complex, but with an effective dissociation rate constant that decreases as the concentration of NTA increases. Simple analytical expressions are reported to quantify the lability degree in the different DGT configurations. These results indicate that a set of different DGT devices can characterize the availability of a cation in a natural sample with uptake processes at different spatial or time scales. Alternatively, and from a more fundamental point of view, information on speciation, mobilities and labilities of the species present in natural samples can be obtained with a set of DGT configurations.
Collapse
Affiliation(s)
- Jordi Sans-Duñó
- Departament de Química, Universitat de Lleida and AGROTECNIO-CERCA, Rovira Roure 191, 25198 Lleida, Spain
| | - Joan Cecilia
- Departament de Matemàtica, Universitat de Lleida and AGROTECNIO-CERCA, Rovira Roure 191, 25198 Lleida, Spain
| | - Josep Galceran
- Departament de Química, Universitat de Lleida and AGROTECNIO-CERCA, Rovira Roure 191, 25198 Lleida, Spain
| | - Jaume Puy
- Departament de Química, Universitat de Lleida and AGROTECNIO-CERCA, Rovira Roure 191, 25198 Lleida, Spain.
| |
Collapse
|
22
|
Rojas-Challa Y, de Gyves J, Ortega-Muñoz R, Montiel-Aguirre F, González-Albarrán R, Rodríguez de San Miguel E. Comparative study of As (V) uptake in aqueous medium by a polymer inclusion membrane-based passive sampling device and two filamentous fungi (Aspergillus niger and Rhizopus sp.). CHEMOSPHERE 2021; 272:129920. [PMID: 33607495 DOI: 10.1016/j.chemosphere.2021.129920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 01/27/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
In this work a polymer inclusion membrane (PIM) is proposed as passive sampler material and compared with two filamentous fungi for As (V) uptake to evaluate its ability as chemical surrogate material for the monitoring of this metalloid in aquatic environments. Results show excellent passive sampling characteristics of the device since a linear uptake profile as a function of time was observed. The correlation coefficients between the PIM passive sampler with Aspergillus niger (r = 0.83) and Rhizopus sp. (r = 0.13) uptake, show that the first species is the best modeled by the PIM, suggesting its potential as a chemical substitute in bioavailability studies.
Collapse
Affiliation(s)
- Yahsé Rojas-Challa
- Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Cd.Mx. 04510, Mexico.
| | - Josefina de Gyves
- Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Cd.Mx. 04510, Mexico
| | - Raquel Ortega-Muñoz
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Cd.Mx. 04510, Mexico
| | - Fernando Montiel-Aguirre
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Cd.Mx. 04510, Mexico
| | - René González-Albarrán
- Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Cd.Mx. 04510, Mexico
| | - Eduardo Rodríguez de San Miguel
- Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Cd.Mx. 04510, Mexico
| |
Collapse
|
23
|
Galceran J, Gao Y, Puy J, Leermakers M, Rey-Castro C, Zhou C, Baeyens W. Speciation of Inorganic Compounds in Aquatic Systems Using Diffusive Gradients in Thin-Films: A Review. Front Chem 2021; 9:624511. [PMID: 33889563 PMCID: PMC8057345 DOI: 10.3389/fchem.2021.624511] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/02/2021] [Indexed: 11/22/2022] Open
Abstract
The speciation of trace metals in an aquatic system involves the determination of free ions, complexes (labile and non-labile), colloids, and the total dissolved concentration. In this paper, we review the integrated assessment of free ions and labile metal complexes using Diffusive Gradients in Thin-films (DGT), a dynamic speciation technique. The device consists of a diffusive hydrogel layer made of polyacrylamide, backed by a layer of resin (usually Chelex-100) for all trace metals except for Hg. The best results for Hg speciation are obtained with agarose as hydrogel and a thiol-based resin. The diffusive domain controls the diffusion flux of the metal ions and complexes to the resin, which strongly binds all free ions. By using DGT devices with different thicknesses of the diffusive or resin gels and exploiting expressions derived from kinetic models, one can determine the labile concentrations, mobilities, and labilities of different species of an element in an aquatic system. This procedure has been applied to the determination of the organic pool of trace metals in freshwaters or to the characterization of organic and inorganic complexes in sea waters. The concentrations that are obtained represent time-weighted averages (TWA) over the deployment period.
Collapse
Affiliation(s)
- Josep Galceran
- Departament de Química, Universitat de Lleida and AGROTECNIO-CERCA, Lleida, Spain
| | - Yue Gao
- Analytical, Environmental and Geo-Chemistry Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jaume Puy
- Departament de Química, Universitat de Lleida and AGROTECNIO-CERCA, Lleida, Spain
| | - Martine Leermakers
- Analytical, Environmental and Geo-Chemistry Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Carlos Rey-Castro
- Departament de Química, Universitat de Lleida and AGROTECNIO-CERCA, Lleida, Spain
| | - Chunyang Zhou
- Analytical, Environmental and Geo-Chemistry Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Willy Baeyens
- Analytical, Environmental and Geo-Chemistry Department, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
24
|
Koppel DJ, Av Price G, Brown KE, Adams MS, King CK, Gore DB, Jolley DF. Assessing metal contaminants in Antarctic soils using diffusive gradients in thin-films. CHEMOSPHERE 2021; 269:128675. [PMID: 33657749 DOI: 10.1016/j.chemosphere.2020.128675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/08/2020] [Accepted: 10/16/2020] [Indexed: 06/12/2023]
Abstract
Metal contaminants in Antarctic soils are typically found around research stations which are concentrated in ice-free coastal areas. The risk of these contaminants to the Antarctic environment is not well understood, given Antarctica's unique organisms and climate. This study assessed the use of diffusive gradients in thin-films (DGT), a passive sampler that measures fluxes of labile metals from soils to porewaters, in Antarctic soils. DGT-labile measurements were compared to three chemical extractants of increasing strength including high-purity water, dilute acid (1 M HCl), and concentrated acids (3:1 v/v HNO3:HCl), to understand differences in contaminant geochemistry that may affect environmental risk. One site had high lead concentrations measured with dilute (114 ± 4 mg kg-1) and concentrated (150 ± 10 mg kg-1) acids, while DGT-labile concentrations were below the method detection limit (0.5 μg L-1), indicating that the lead species has low solubility or lability. Another site had low concentrations of zinc measured by dilute (36.2 ± 0.5 mg kg-1) or concentrated (76 ± 6 mg kg-1) acid extracts, but had high DGT-labile concentrations (350 ± 80 μg L-1). This reflects an active source of zinc supplied from soil to pore water over time. Copper was found to be acid extractable, water-soluble, and DGT-labile, with DGT-labile concentrations of up to 12 μg L-1. Despite the soil and metal-specific geochemical differences, any of the extracts could be used with statistical clustering techniques to identify differences in sites with elevated metal concentrations. This study shows that the DGT-method can identify contaminated sites comparably to chemical extracts but provides environmentally relevant measurements of metal contaminant lability in Antarctic soils.
Collapse
Affiliation(s)
- Darren J Koppel
- Faculty of Science, University of Technology Sydney, NSW, Australia; Faculty of Science Medicine and Health, University of Wollongong, NSW, Australia; CSIRO Land and Water, Lucas Heights, NSW, Australia.
| | - Gwilym Av Price
- Faculty of Science, University of Technology Sydney, NSW, Australia; CSIRO Land and Water, Lucas Heights, NSW, Australia
| | - Kathryn E Brown
- Australian Antarctic Division, Kingston, Tasmania, Australia
| | | | | | - Damian B Gore
- Department of Earth and Environmental Sciences, Macquarie University, NSW, Australia
| | - Dianne F Jolley
- Faculty of Science Medicine and Health, University of Wollongong, NSW, Australia; CSIRO Land and Water, Lucas Heights, NSW, Australia
| |
Collapse
|
25
|
Duval JFL, van Leeuwen HP, Norde W, Town RM. Chemodynamic features of nanoparticles: Application to understanding the dynamic life cycle of SARS-CoV-2 in aerosols and aqueous biointerfacial zones. Adv Colloid Interface Sci 2021; 290:102400. [PMID: 33713994 PMCID: PMC7931671 DOI: 10.1016/j.cis.2021.102400] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/23/2022]
Abstract
We review concepts involved in describing the chemodynamic features of nanoparticles and apply the framework to gain physicochemical insights into interactions between SARS-CoV-2 virions and airborne particulate matter (PM). Our analysis is highly pertinent given that the World Health Organisation acknowledges that SARS-CoV-2 may be transmitted by respiratory droplets, and the US Center for Disease Control and Prevention recognises that airborne transmission of SARS-CoV-2 can occur. In our theoretical treatment, the virion is assimilated to a core-shell nanoparticle, and contributions of various interaction energies to the virion-PM association (electrostatic, hydrophobic, London-van der Waals, etc.) are generically included. We review the limited available literature on the physicochemical features of the SARS-CoV-2 virion and identify knowledge gaps. Despite the lack of quantitative data, our conceptual framework qualitatively predicts that virion-PM entities are largely able to maintain equilibrium on the timescale of their diffusion towards the host cell surface. Comparison of the relevant mass transport coefficients reveals that virion biointernalization demand by alveolar host cells may be greater than the diffusive supply. Under such conditions both the free and PM-sorbed virions may contribute to the transmitted dose. This result points to the potential for PM to serve as a shuttle for delivery of virions to host cell targets. Thus, our critical review reveals that the chemodynamics of virion-PM interactions may play a crucial role in the transmission of COVID-19, and provides a sound basis for explaining reported correlations between episodes of air pollution and outbreaks of COVID-19.
Collapse
Affiliation(s)
| | - Herman P van Leeuwen
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands
| | - Willem Norde
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands
| | - Raewyn M Town
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands; Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium..
| |
Collapse
|
26
|
Tercier-Waeber ML, Abdou M, Fighera M, Kowal J, Bakker E, van der Wal P. In Situ Voltammetric Sensor of Potentially Bioavailable Inorganic Mercury in Marine Aquatic Systems Based on Gel-Integrated Nanostructured Gold-Based Microelectrode Arrays. ACS Sens 2021; 6:925-937. [PMID: 33599131 DOI: 10.1021/acssensors.0c02111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The development and field validation of newly designed nanostructured gold-plated gel-integrated microelectrode (Au-GIME) arrays applied to the direct in situ square wave anodic stripping voltammetry (SWASV) quantification of the potentially bioavailable inorganic mercury (Hg(II)) species in the coastal area are presented. The Au-GIME consists of arrays of 100-500 interconnected iridium (Ir)-based microdisks that are electroplated with renewable Au nanoparticles (AuNPs) or Au nanofilaments (AuNFs) and covered with an agarose gel. The gel protects the sensor surface from fouling and ensures that mass transport of analytes toward the sensor surface is by pure diffusion only and therefore independent of the ill-controlled convective conditions of the media. The responses of these sensors to direct SWASV measurements of inorganic Hg(II) at near-neutral pH were investigated first in synthetic media and then in UV-irradiated marine samples. The analytical responses were found to be correlated to the number of interconnected microelectrodes and the morphology of the nanostructured Au deposits and independent of the media composition for chloride concentration ≥0.2 M (salinity S ≥ 13) and pH ranging from 7 to 8.5. The AuNF-GIMEs have detection and quantification limits at a low pM level, fulfilling the requirement of sentinel tools for real-time monitoring of the dynamic fraction of Hg(II) in coastal area. The AuNF-GIMEs were incorporated in an in-house advanced multichannel sensing probe for remote in situ high-resolution trace metal monitoring. Field evaluation and validation were successfully performed as a part of a field study in Arcachon Bay (France), from which environmental data are presented. This work marks the first time that an autonomous electrochemical sensing probe successfully measures Hg(II) and its hourly temporal variation in situ without chemical modification of the sample.
Collapse
Affiliation(s)
- Mary-Lou Tercier-Waeber
- Department of Inorganic and Analytical Chemistry, University of Geneva, 1211 Geneva 4, Switzerland
| | - Melina Abdou
- Department of Inorganic and Analytical Chemistry, University of Geneva, 1211 Geneva 4, Switzerland
| | - Marianna Fighera
- Ecole Polytechnique Fédérale de Lausanne (EPFL), 2002 Neuchâtel 2, Switzerland
| | - Justyna Kowal
- Department of Inorganic and Analytical Chemistry, University of Geneva, 1211 Geneva 4, Switzerland
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry, University of Geneva, 1211 Geneva 4, Switzerland
| | - Peter van der Wal
- Ecole Polytechnique Fédérale de Lausanne (EPFL), 2002 Neuchâtel 2, Switzerland
| |
Collapse
|
27
|
Jiang Z, Tian Z, Zhang C, Li D, Wu R, Tian N, Xing L, Ma L. Recent Advances in Speciation Analyses of Tobacco and Other Important Economic Crops. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411017999201201115234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Speciation analysis is defined as the analytical activities of identifying and/or measuring the
quantities of one or more individual chemical species in a sample. The knowledge of elemental species provides more
complete information about mobility, bioavailability and the impact of elements on ecological systems or biological
organisms. It is no longer sufficient to quantitate the total elemental content of samples to define toxicity or essentiality.
Thus speciation analysis is of vital importance and generally offers a better understanding of a specific element.
Discussion:
Thorough speciation scheme consisting of sampling, sample preparation, species analysis and evaluation
were described. Special emphasis is placed on recent speciation analysis approaches including both direct and coupling
methods. A current summary of advantages and limitations of the various methods as well as an illustrative method
comparison are presented. Certain elements and species of interest are briefly mentioned and practical examples of
speciation applications in tobacco and other important economic crops are also discussed.
Aim/Conclusion:
This review aims to offer comprehensive knowledge about elemental speciation and provide readers
with valuable information. Many strategies have been developed for the determination of multiple elemental species in
tobacco and other important economic crops. Nevertheless, it is an eternal pursuit to establish speciation methods which
can balance accuracy, agility as well as universality.
Collapse
Affiliation(s)
- Zhiping Jiang
- Tianjin Workstation, Technical Center, Shanghai Tobacco Group Co., Ltd, China
| | - Zhizhang Tian
- Tianjin Workstation, Technical Center, Shanghai Tobacco Group Co., Ltd, China
| | - Chuntao Zhang
- Tianjin Workstation, Technical Center, Shanghai Tobacco Group Co., Ltd, China
| | - Dengke Li
- Tianjin Workstation, Technical Center, Shanghai Tobacco Group Co., Ltd, China
| | - Ruoxin Wu
- Tianjin Workstation, Technical Center, Shanghai Tobacco Group Co., Ltd, China
| | - Nan Tian
- Tianjin Workstation, Technical Center, Shanghai Tobacco Group Co., Ltd, China
| | - Lixia Xing
- Tianjin Workstation, Technical Center, Shanghai Tobacco Group Co., Ltd, China
| | - Lichao Ma
- Tianjin Workstation, Technical Center, Shanghai Tobacco Group Co., Ltd, China
| |
Collapse
|
28
|
Evaluating the Performance of a Diffusive Gradient in Thin Film Embedded with Montmorillonite for the Determination of Labile Cd, Pb, Mn, and Zn in Natural River Water. J CHEM-NY 2020. [DOI: 10.1155/2020/1483909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Montmorillonite (MMT), a natural clay mineral with high ion-exchange capacity and trace metal adsorbability, has been demonstrated to be a suitable binding phase in the diffusive gradient in thin film (DGT) technique for the determination of labile trace metals in synthetic water samples. However, in situ working performance of DGT-MMT with natural river water has not yet been investigated. The present study examined the performance of a DGT containing montmorillonite (MMT) for the in situ isolation and determination of labile Cd, Pb, Mn, and Zn fractions in Lach Tray River water, North Vietnam. The repeatability and accuracy of the DGT-MMT probe were assessed on the basis of seven measurement replicates performed on Cd2+, Pb2+, Mn2+, and Zn2+ standard solutions. Then, the DGT-MMT probes were deployed in Lach Tray River water at different sampling sites to determine the labile metal fractions present in river water. By comparing the total and dissolved metal concentrations in the river water, the distributions of the four tested trace metals were constructed. The proportions of the dissolved fractions of Cd, Pb, Mn, and Zn were 46.7–73.7%, 38.5–63.9%, 36.4–41.6%, and 49.8–67.7%, respectively. The results also showed that the high accuracy and reproducibility of the DGT-MMT data were comparable with measurements obtained by the commonly used DGT-Chelex-100 method. In comparison with the data obtained from anodic stripping voltammetry (ASV), a traditional technique for the determination of non-in situ speciation of trace metals, labile metal concentrations measured by DGT-MMT were in similar ranges. These findings indicate that naturally available montmorillonite can be used as an alternative binding material in DGT probes for the in situ determination of labile metal concentrations in natural watercourses.
Collapse
|
29
|
Town RM, Duval JFL, van Leeuwen HP. Electrochemical activity of various types of aqueous In(III) species at a mercury electrode. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04607-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Abstract
The mechanisms of soil Cd and Pb alterations and distribution following biochar (BC; 0 to 40 t ha−1) amendments applied (in either 2009 [long-term] or in 2016 [short-term]) to a contaminated rice paddy soil, and subsequent plant Cd and Pb tissue distribution over time was investigated. Water-soluble Cd and Pb concentrations decreased by 6.7–76.0% (short-term) and 10.3–88.1% (long-term) with biochar application compared to the control. The soil exchangeable metal fractions (i.e., considered more available) decreased, and the residual metal fractions (i.e., considered less available) increased with short- and long-term biochar amendments, the latter likely a function of biochar increasing pH and forcing Cd and Pb to form crystal mineral lattice associations. Biochar application reduced Cd (16.1–84.1%) and Pb (4.1–40.0%) transfer from root to rice grain, with rice Cd and Pb concentrations lowered to nearly Chinese national food safety standards. Concomitantly, soil organic matter (SOM), pH and soil water content increased by 3.9–49.3%, 0.05–0.35 pH units, and 3.8–77.4%, respectively, with increasing biochar application rate. Following biochar applications, soil microbial diversity (Shannon index) also increased (0.8–46.2%) and soil enzymatic activities were enhanced. Biochar appears to play a pivotal role in forcing Cd and Pb sequestration in contaminated paddy soils, reducing heavy metal transfer to rice grain, and potentially leading to reduced heavy metal consumption by humans.
Collapse
|
31
|
Cindrić AM, Marcinek S, Garnier C, Salaün P, Cukrov N, Oursel B, Lenoble V, Omanović D. Evaluation of diffusive gradients in thin films (DGT) technique for speciation of trace metals in estuarine waters - A multimethodological approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137784. [PMID: 32172124 DOI: 10.1016/j.scitotenv.2020.137784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
Understanding the potential bioavailability of trace metals (TM) in marine systems is of prime importance to implement adapted regulations and efficiently protect our coastal and estuarine waters. In this study Diffusive Gradients in Thin films (DGT) technique with two different pore size was used to evaluate the potentially bioavailable fractions (DGT-labile) of Cd, Co, Cu, Ni, Pb and Zn at various depths of a highly stratified estuary (the Krka River estuary, Croatia) both in winter and summer. DGT-labile concentrations were compared to (1) total dissolved concentrations, (2) concentrations of labile species measured by anodic stripping voltammetry (ASV-labile) for Cu and (3) concentrations derived by chemical speciation modelling. High correlation between dissolved and DGT-labile concentrations was found for all metals, except for Zn where contamination problems prevented reliable conclusions. Percentages of DGT-labile fractions over total dissolved concentrations were (AVG ± SD): 92 ± 3%, 64 ± 2%, 23 ± 5%, 61 ± 3% and 57 ± 6% for Cd, Pb, Cu, Ni and Co, respectively. No significant difference was found between trace metal concentrations measured with an open pore and restricted pore devices, implying the predominance of kinetically labile metal complexes smaller than 1 nm. For Cu, ASV-labile and DGT labile concentrations were highly correlated (0.97) with ASV-labile concentration being around 35% lower than that of the DGT-labile. Modelling of chemical speciation reliably predicted dynamic (free, inorganic and part of organic complexes) concentration of Cd, whereas dynamic concentrations of Cu and Pb were underestimated by 32% and 65%, respectively. In view of the relative simplicity of DGT devices, they are well suited for the monitoring effort of coastal waters, informing on potentially bioavailable concentrations of TM and thereby, helping to achieve good environmental status of coastal waters, as stipulated within the EU Water Framework Directive.
Collapse
Affiliation(s)
- Ana-Marija Cindrić
- Ruđer Bošković Institute, Center for Marine and Environmental Research, Bijenička 54, Zagreb, Croatia
| | - Saša Marcinek
- Ruđer Bošković Institute, Center for Marine and Environmental Research, Bijenička 54, Zagreb, Croatia
| | - Cédric Garnier
- Université de Toulon, Aix Marseille Université, CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, La Garde, France
| | - Pascal Salaün
- Department of Earth and Ocean Sciences, University of Liverpool, Brownlow Street, Liverpool L69 3GP, UK
| | - Neven Cukrov
- Ruđer Bošković Institute, Center for Marine and Environmental Research, Bijenička 54, Zagreb, Croatia
| | - Benjamin Oursel
- Université de Toulon, Aix Marseille Université, CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, La Garde, France
| | - Véronique Lenoble
- Université de Toulon, Aix Marseille Université, CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, La Garde, France
| | - Dario Omanović
- Ruđer Bošković Institute, Center for Marine and Environmental Research, Bijenička 54, Zagreb, Croatia.
| |
Collapse
|
32
|
Zheng X, Liu Y, Huang J, Du Z, Zhouyang S, Wang Y, Zheng Y, Li Q, Shen X. The influence of variables on the bioavailability of heavy metals during the anaerobic digestion of swine manure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110457. [PMID: 32182529 DOI: 10.1016/j.ecoenv.2020.110457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
The speciation of heavy metals, besides the total concentrations, urgently need to be considered when assessing the eco-toxicity and the bioavailability of heavy metals in environment. This paper aims to investigate the distribution and chemical speciation (e.g. the acid extractable fraction (F1), the reducible fraction (F2), the oxidizable fraction (F3), and the residual fraction (F4)) of heavy metals during the anaerobic digestion process of swine manure. The majority of six heavy metals from the manure was located in biogas residue in the order of decreasing concentration Zn > Cu > Ni > As > Pb > Cd. The transformation of heavy metals among four fractions was observed during the digestion process, and the change of bioavailable fraction of Zn, Cu, Ni, Cd, As and Pb were 9.71%, -6.04%, -19.24%, 13.62%, -16.48% and -7.22%, respectively. The heat map of correlation coefficients and the stepwise linear regressions model were established to describe the correlation between the bioavailability of the metals and the given digestion variables to predict the influence of the selected variables on the bioavailability of heavy metals. The variations of heavy metal bioavailable fractions are attributed to three key digestion variables, NH4+-N concentration, CH4% in biogas daily yield and pH. These results provide a new perspective for analysis and control of heavy metals during the anaerobic digestion process.
Collapse
Affiliation(s)
- Xiarong Zheng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, No. 422, Southern Siming Road, Xiamen, 361005, PR China
| | - Yuanqiong Liu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, No. 422, Southern Siming Road, Xiamen, 361005, PR China
| | - Jiaming Huang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, No. 422, Southern Siming Road, Xiamen, 361005, PR China
| | - Zhongyi Du
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, No. 422, Southern Siming Road, Xiamen, 361005, PR China
| | - Siyu Zhouyang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, No. 422, Southern Siming Road, Xiamen, 361005, PR China
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, No. 422, Southern Siming Road, Xiamen, 361005, PR China
| | - Yanmei Zheng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, No. 422, Southern Siming Road, Xiamen, 361005, PR China.
| | - Qingbiao Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, No. 422, Southern Siming Road, Xiamen, 361005, PR China
| | - Xiaolong Shen
- Department of Civil, Environmental and Construction Engineering, Texas Tech University, Lubbock, 79401, USA.
| |
Collapse
|
33
|
Fan W, Zhang Y, Liu S, Li X, Li J. Alleviation of copper toxicity in Daphnia magna by hydrogen nanobubble water. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122155. [PMID: 32004833 DOI: 10.1016/j.jhazmat.2020.122155] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/27/2019] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
As a novel antioxidant, hydrogen water has been widely used to alleviate oxidative stress in plants as well as in the medical field. However, the function of hydrogen water in environmental toxicology remains unknown. In this study, combining nanobubbles (NBs) and hydrogen water, we investigate the effect and mechanism of hydrogen NB water on copper induced acute toxicity to water fleas (Daphnia magna). The 24-h lethal Cu concentrations at which 50 % of the population die were 84 μg/L in hydrogen NB water and 45 μg/L in control water, confirming that hydrogen NB water effectively alleviated acute Cu toxicity in D. magna. The results were consistent with a significant reduction of Cu uptake and decrease of Cu accumulation in D. magna. As confirmed in fluorescence spectrophotometry and high-content screening system analysis, the hydrogen NB water also significantly reduced the oxidative damage and improved Cu tolerance in D. magna. From the results, it can be inferred that hydrogen NB water alleviates Cu stress in D. magna by depressing Cu bioaccumulation and reducing oxidative stress. The results provide basic data of hydrogen NB water for environmental toxicologists, and also a reference for the application of hydrogen NB water in the environment.
Collapse
Affiliation(s)
- Wenhong Fan
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing, 10191, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China
| | - You Zhang
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing, 10191, China
| | - Shu Liu
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing, 10191, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China.
| | - Xiaomin Li
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing, 10191, China
| | - Jiayao Li
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing, 10191, China
| |
Collapse
|
34
|
Pilehvar A, Cordery KI, Town RM, Blust R. The synergistic toxicity of Cd(II) and Cu(II) to zebrafish (Danio rerio): Effect of water hardness. CHEMOSPHERE 2020; 247:125942. [PMID: 32069721 DOI: 10.1016/j.chemosphere.2020.125942] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
We have evaluated the interactive toxicity of Cu(II) and Cd(II) in water with different hardness levels using adult zebrafish (Danio rerio). Zebrafish were exposed to Cd(II) (0.2-22 μM) or Cu(II) (0.1-8 μM) in single or binary exposures in very soft, moderately hard or very hard water. The whole body burdens of Cd(II) and Cu(II) reflect the net effect of biouptake and elimination, mortality was the indicator of toxicity, and whole body major ion content was measured to assess ion regulatory functions. Cu(II) was found to be more toxic than Cd(II) for zebrafish, and Cu(II) and Cd(II) exhibited a significant synergistic effect. The toxicity of metal ions increased upon decreasing the ionic strength of the exposure medium, probably due to elevated competition between metal ions with other cations in hard water and increased activity of Ca2+ pathways in soft water treatments. Whole body metal accumulation and the accumulation rate of both Cu and Cd increased as the metal ion concentration in the exposure medium increased. Nevertheless, neither parameter explained the observed synergistic effect on mortality. Finally, we observed a significant loss of whole body Na+ in fish which died during the metal exposure compared to surviving fish, irrespective of exposure conditions. Such an effect was not observed for other major cations (K+, Ca2+ and Mg2+). This observation suggests that, under the applied exposure conditions, survival was correlated to the capacity of the organism to maintain Na+ homeostasis.
Collapse
Affiliation(s)
- Ali Pilehvar
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Katherine I Cordery
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Raewyn M Town
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Ronny Blust
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| |
Collapse
|
35
|
González-Albarrán R, de Gyves J, Rodríguez de San Miguel E. Influence of some physicochemical parameters on the passive sampling of copper (II) from aqueous medium using a polymer inclusion membrane device. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113474. [PMID: 31859125 DOI: 10.1016/j.envpol.2019.113474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/02/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Recently polymer inclusion membranes (PIMs) have been proposed as materials for passive sampling, nonetheless a theoretical base to describe the mass transfer process through those materials, under such conditions of monitoring, has not been elucidated. Under the assumption that: (i) the transport of the metal ion occurs at steady state conditions, (ii) the concentration gradients are linear, and (iii) the kinetics of the chemical reactions in the extraction process on the membrane are elemental; an equation for the passive sampling of copper (II) using a PIM system containing Kelex-100 as carrier is derived. The prediction capacity of this sampler under different conditions of temperature, metal concentration, flow velocity, ionic strength and pH is analyzed as well. Among the dependencies of the PIM on the physicochemical conditions, effects of concentration, temperature and flow velocity tend to increment copper (II) flux across the membrane, being the parameter temperature the one with the most pronounced effect at T ≥ 30 °C. Ionic strength had no great effect on passive sampler response, however the sampler is dependent on the acidity of the medium. The comparable metal ion concentrations estimated from the PIM sampler to those obtained by direct measurements of the sampling medium suggest that PIMs can be robust materials when used as passive sampler devices.
Collapse
Affiliation(s)
- René González-Albarrán
- Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, CdMx, Mexico
| | - Josefina de Gyves
- Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, CdMx, Mexico
| | - Eduardo Rodríguez de San Miguel
- Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, CdMx, Mexico.
| |
Collapse
|
36
|
Chennuri K, Chakraborty P, Jayachandran S, Mohakud SK, Ishita I, Ramteke D, Padalkar PP, Babu PC, Babu KR. Operationally defined mercury (Hg) species can delineate Hg bioaccumulation in mangrove sediment systems: A case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:134842. [PMID: 31734484 DOI: 10.1016/j.scitotenv.2019.134842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 09/26/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the linkage between mercury (Hg) speciation in the surficial sediments from a mangrove ecosystem of the Zuari Estuary, west coast of India, with Hg bioaccumulation in gastropods collected from the same area. Multiple operationally defined protocols and methods were used for determination of Hg speciation study in the mangrove sediments. Moderately low concentrations of Hg were observed in the sediments, ranging from 37.3 ± 1.9 to 79.6 ± 4.0 µg/kg. Geochemical fractionation showed that a significant part of sedimentary Hg was present within the structure of the sediment (residual fraction) and not bioavailable. Non-residual Hg was primarily associated with oxidizable (sedimentary organic matter (SOM) or sulfide) binding phase of the sediments, and ranged from 9.2 ± 0.3 to 78.5 ± 3.9 µg/kg. Concentration of methylmercury (MeHg) (a neurotoxin) in the sediments varied from 1.7 ± 0.1 to 4.4 ± 0.1 µg/kg. l-Cysteine, a suitable complexing ligand, extractable Hg concentration in the sediments ranged from 4.3 ± 0.1 to 15.9 ± 0.3 µg/kg. Statistical analysis suggested that MeHg was adsorbed on Fe/Mn oxyhydroxide phases in the sediments. l-Cysteine was found to extract sedimentary MeHg and thermodynamically less stable Hg-SOM complexes from the sediments. Concentrations of bioaccumulated Hg in soft tissues of the gastropod, Pirenella cingulata, ranged from 57.6 ± 4.4 to 224.4 ± 7.2 µg/kg. Positive correlations existed between the concentration of bioaccumulated Hg in the gastropods and the concentrations of Hg associated with the oxidizable phase, sedimentary MeHg and l-Cysteine extracted Hg in the sediments. This study indicated that operationally defined Hg species can be useful in estimating bioavailable Hg to obligatory deposit feeder in tropical mangrove systems.
Collapse
Affiliation(s)
- Kartheek Chennuri
- Geological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India
| | - Parthasarathi Chakraborty
- Geological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India; Centre for Oceans, Rivers, Atmosphere and Land Sciences, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.
| | - Saranya Jayachandran
- Centre for Oceans, Rivers, Atmosphere and Land Sciences, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Sandip Kumar Mohakud
- Geological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India
| | - Ishita Ishita
- Geological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India
| | - Darwin Ramteke
- Geological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India
| | - Prasad Pramod Padalkar
- Centre for Oceans, Rivers, Atmosphere and Land Sciences, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Prakash C Babu
- Geological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India
| | - Korupolu Raghu Babu
- Department of Engineering Chemistry, Andhra University, Visakhapatnam, Andhra Pradesh 530003, India
| |
Collapse
|
37
|
Paller MH, Harmon SM, Knox AS, Kuhne WW, Halverson NV. Assessing effects of dissolved organic carbon and water hardness on metal toxicity to Ceriodaphnia dubia using diffusive gradients in thin films (DGT). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134107. [PMID: 31476512 DOI: 10.1016/j.scitotenv.2019.134107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/15/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
We evaluated the ability of diffusive gradients in thin films (DGT) to assess the effects of water hardness and dissolved organic carbon (DOC consisting of humic acids) on Cu and Zn toxicity (i.e., 48 h LC50s) to Ceriodaphnia dubia. When DOC was high, Cu concentrations measured by DGT (DGT Cu) were significantly lower than Cu concentrations in water (dissolved Cu), and DGT LC50s were significantly lower than LC50s based on dissolved concentrations. When DOC was low, differences between dissolved Cu and DGT Cu were small, as were differences between dissolved LC50s and DGT LC50s. Differences between DGT and dissolved measurements of Zn were small compared with the differences observed for Cu, and DGT Zn LC50s were relatively similar to dissolved Zn LC50s. Humic acids formed strong organic-Cu complexes that were both inaccessible for biological uptake and excluded by DGT, which selected for free or weakly bound Cu. In contrast, Zn did not form strong complexes with DOC that greatly affected either toxicity or the measurement of Zn by DGT. The effects of hardness on DGT measurements of Cu and Zn were smaller and more complex than the effects of DOC. Large, statistically significant differences between DGT measurements of Cu in low and high DOC water accurately reflected the strong effects of DOC on Cu toxicity. However, the effects of DOC were inconsistent for Zn, and DGT provided less information about the toxic fraction of this metal.
Collapse
Affiliation(s)
- Michael H Paller
- Savannah River National Laboratory, Aiken, SC 29808, United States.
| | - S Michele Harmon
- Department of Biology & Geology, University of South Carolina, Aiken, SC 29801, United States.
| | - Anna Sophia Knox
- Savannah River National Laboratory, Aiken, SC 29808, United States.
| | - Wendy W Kuhne
- Savannah River National Laboratory, Aiken, SC 29808, United States.
| | | |
Collapse
|
38
|
Amato ED, Nguyen DT, Subotic D, Hereijgers J, Breugelmans T, Weyn M, Dardenne F, Bervoets L, Covaci A, Town RM, Blust R. Characterization of the accumulation of metals and organic contaminants on a novel active-passive sampling device under controlled water flow conditions. CHEMOSPHERE 2019; 236:124400. [PMID: 31545200 DOI: 10.1016/j.chemosphere.2019.124400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Recently, a new sampling device combining active and passive sampling (APS) was developed for the measurement of time-averaged concentrations of metal species and both polar and non-polar organic contaminants in water. By coupling a diffusion cell (loaded with a set of sorbents selective for different substances) with a small pump and a flow meter, the APS device is able to perform in situ measurements that are independent of the hydrodynamic conditions in the exposure medium. In the present study, the diffusion layer thickness (δ) at the sorbent/solution interface within the diffusion cell was characterised under controlled flow conditions. Laboratory tests indicated that, in the range of flow rates investigated, the average diffusion layer thickness (δ¯) varied from ∼60 to ∼110 μm, depending on the type of substance measured and the position of the sorbent with respect to the flow direction. Due to its ability to maintain an approximately constant δ¯, good to excellent agreement was found between measurements performed with the APS device in non-complexing media and concentrations measured in discrete water samples for all the substances investigated. These results suggest that the APS device could overcome issues affecting the quantitative interpretation of measurements by conventional passive sampling devices and serve as a useful tool for simultaneously monitoring a wide range of contaminants in water.
Collapse
Affiliation(s)
- Elvio D Amato
- Systemic, Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Dung T Nguyen
- Systemic, Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Dragan Subotic
- Internet and Data Lab (IDLab), University of Antwerp - imec, Belgium
| | - Jonas Hereijgers
- Research Group Applied Electrochemistry & Catalysis (ELCAT), University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Tom Breugelmans
- Research Group Applied Electrochemistry & Catalysis (ELCAT), University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Maarten Weyn
- Internet and Data Lab (IDLab), University of Antwerp - imec, Belgium
| | - Freddy Dardenne
- Systemic, Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Lieven Bervoets
- Systemic, Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Raewyn M Town
- Systemic, Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Ronny Blust
- Systemic, Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| |
Collapse
|
39
|
Jeong H, Lee J, Choi JY, Kim KT, Kim ES, Sun C, Park JK, Ra K. Study on Dissolved and Particulate Heavy Metals in Stream Water and Stormwater Runoff from Suyeong Watershed in Busan Special Management Area, Korea. ACTA ACUST UNITED AC 2019. [DOI: 10.7846/jkosmee.2019.22.4.203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
Stripping chronopotentiometry at scanned deposition potential (SSCP): An effective methodology for dynamic speciation analysis of nanoparticulate metal complexes. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Kampers LFC, van Heck RGA, Donati S, Saccenti E, Volkers RJM, Schaap PJ, Suarez-Diez M, Nikel PI, Martins Dos Santos VAP. In silico-guided engineering of Pseudomonas putida towards growth under micro-oxic conditions. Microb Cell Fact 2019; 18:179. [PMID: 31640713 PMCID: PMC6805499 DOI: 10.1186/s12934-019-1227-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/09/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Pseudomonas putida is a metabolically versatile, genetically accessible, and stress-robust species with outstanding potential to be used as a workhorse for industrial applications. While industry recognises the importance of robustness under micro-oxic conditions for a stable production process, the obligate aerobic nature of P. putida, attributed to its inability to produce sufficient ATP and maintain its redox balance without molecular oxygen, severely limits its use for biotechnology applications. RESULTS Here, a combination of genome-scale metabolic modelling and comparative genomics is used to pinpoint essential [Formula: see text]-dependent processes. These explain the inability of the strain to grow under anoxic conditions: a deficient ATP generation and an inability to synthesize essential metabolites. Based on this, several P. putida recombinant strains were constructed harbouring acetate kinase from Escherichia coli for ATP production, and a class I dihydroorotate dehydrogenase and a class III anaerobic ribonucleotide triphosphate reductase from Lactobacillus lactis for the synthesis of essential metabolites. Initial computational designs were fine-tuned by means of adaptive laboratory evolution. CONCLUSIONS We demonstrated the value of combining in silico approaches, experimental validation and adaptive laboratory evolution for microbial design by making the strictly aerobic Pseudomonas putida able to grow under micro-oxic conditions.
Collapse
Affiliation(s)
- Linde F C Kampers
- Systems and Synthetic Biology, Wageningen University and Research Centre, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Ruben G A van Heck
- Systems and Synthetic Biology, Wageningen University and Research Centre, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Stefano Donati
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 16, 35043, Marburg, Germany
| | - Edoardo Saccenti
- Systems and Synthetic Biology, Wageningen University and Research Centre, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Rita J M Volkers
- Systems and Synthetic Biology, Wageningen University and Research Centre, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Peter J Schaap
- Systems and Synthetic Biology, Wageningen University and Research Centre, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Maria Suarez-Diez
- Systems and Synthetic Biology, Wageningen University and Research Centre, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Kgs Lyngby, Denmark
| | - Vitor A P Martins Dos Santos
- Systems and Synthetic Biology, Wageningen University and Research Centre, Stippeneng 4, 6708 WE, Wageningen, The Netherlands. .,LifeGlimmer GmbH, Berlin, Germany.
| |
Collapse
|
42
|
Town RM, van Leeuwen HP, Duval JFL. Rigorous Physicochemical Framework for Metal Ion Binding by Aqueous Nanoparticulate Humic Substances: Implications for Speciation Modeling by the NICA-Donnan and WHAM Codes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8516-8532. [PMID: 31291104 DOI: 10.1021/acs.est.9b00624] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Latest knowledge on the reactivity of charged nanoparticulate complexants toward aqueous metal ions is discussed in mechanistic detail. We present a rigorous generic description of electrostatic and chemical contributions to metal ion binding by nanoparticulate complexants, and their dependence on particle size, particle type (i.e., reactive sites distributed within the particle body or confined to the surface), ionic strength of the aqueous medium, and the nature of the metal ion. For the example case of soft environmental particles such as fulvic and humic acids, practical strategies are delineated for determining intraparticulate metal ion speciation, and for evaluating intrinsic chemical binding affinities and heterogeneity. The results are compared with those obtained by popular codes for equilibrium speciation modeling (namely NICA-Donnan and WHAM). Physicochemical analysis of the discrepancies generated by these codes reveals the a priori hypotheses adopted therein and the inappropriateness of some of their key parameters. The significance of the characteristic time scales governing the formation and dissociation rates of metal-nanoparticle complexes in defining the relaxation properties and the complete equilibration of the metal-nanoparticulate complex dispersion is described. The dynamic features of nanoparticulate complexes are also discussed in the context of predictions of the labilities and bioavailabilities of the metal species.
Collapse
Affiliation(s)
- Raewyn M Town
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology , University of Antwerp , Groenenborgerlaan 171 , 2020 Antwerp , Belgium
- Physical Chemistry and Soft Matter , Wageningen University & Research , Stippeneng 4 , 6708 WE Wageningen , The Netherlands
| | - Herman P van Leeuwen
- Physical Chemistry and Soft Matter , Wageningen University & Research , Stippeneng 4 , 6708 WE Wageningen , The Netherlands
| | - Jérôme F L Duval
- CNRS - Université de Lorraine , Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), UMR 7360 CNRS , 15 avenue du Charmois , 54500 Vandoeuvre-les-Nancy , France
| |
Collapse
|
43
|
Gao Y, Zhou C, Gaulier C, Bratkic A, Galceran J, Puy J, Zhang H, Leermakers M, Baeyens W. Labile trace metal concentration measurements in marine environments: From coastal to open ocean areas. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Time weighted average concentrations measured with Diffusive Gradients in Thin films (DGT). Anal Chim Acta 2019; 1060:114-124. [DOI: 10.1016/j.aca.2019.01.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/04/2019] [Accepted: 01/31/2019] [Indexed: 11/22/2022]
|
45
|
Duval JFL, Pagnout C. Decoding the Time-Dependent Response of Bioluminescent Metal-Detecting Whole-Cell Bacterial Sensors. ACS Sens 2019; 4:1373-1383. [PMID: 30964651 DOI: 10.1021/acssensors.9b00349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The signal produced by aqueous dispersions of bioluminescent, metal-responsive whole-cell bacterial sensors is indicative of the concentration of bioavailable metal ions in solution. The conventional calibration-based strategy followed for measuring this concentration is however inadequate to provide any quantitative prediction of the cell response over time as a function of, e.g., their growth features, their defining metal accumulation properties, or the physicochemical medium composition. Such an evaluation is still critically needed for assessing on a mechanistic level the performance of biosensors in terms of metal bioavailability and toxicity monitoring. Herein we report a comprehensive formalism unraveling how the dependence of bioluminescence on time is governed by the dynamics of metal biouptake, by the activation kinetics of lux-based reporter gene, and by the ensuing rate of luciferase production, the kinetics of light emission, and quenching. It is shown that the bioluminescence signal corresponds to the convolution product between two time-dependent functions, one detailing the dynamic interplay of the above micro- and nanoscale processes, and the other pertaining to the change in concentration of photoactive cell sensors over time. Numerical computations illustrate how the shape and magnitude of the bioluminescence peak(s) are intimately connected to the dependence of the photoactive cell concentration on time and to the magnitudes of Deborah numbers that compare the relevant time scales of the biointerfacial and intracellular events controlling light emission. Explicit analytical expressions are further derived for practical situations where bioluminescence is proportional to the concentration of metal ions in solution. The theory is further quantitatively supported by experiments performed on luminescent cadmium-responsive lux-based Escherichia coli biosensors.
Collapse
Affiliation(s)
- Jérôme F. L. Duval
- Université de Lorraine, CNRS, LIEC (Laboratoire Interdisciplinaire
des Environnements Continentaux), UMR 7360, Vandoeuvre-lès-Nancy F-54501, France
| | - Christophe Pagnout
- Université de Lorraine, CNRS, LIEC, UMR 7360, Campus
Bridoux, Metz F-57070, France
| |
Collapse
|
46
|
Chen L, Tian X, Xia D, Nie Y, Lu L, Yang C, Zhou Z. Novel Colorimetric Method for Simultaneous Detection and Identification of Multimetal Ions in Water: Sensitivity, Selectivity, and Recognition Mechanism. ACS OMEGA 2019; 4:5915-5922. [PMID: 31459740 PMCID: PMC6648319 DOI: 10.1021/acsomega.9b00312] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Accurate recognition and speciation analysis of heavy-metal ions in complex hydrological environments is always a serious challenge. In this work, we proposed a small-molecule-based ultrasensitive colorimetric detection strategy and successfully applied it to the accurate detection of Fe2+, Fe3+, Co2+, and Hg2+ in groundwater through the specific recognition of multiple ligands of different metal ions. The detection limits for Hg2+, Co2+, Fe2+, and Fe3+ are calculated to be 6.51, 0.34, 0.49, and 1.01 ppb, respectively, which are far below the drinking water standards and superior to most of the reported colorimetric sensors. Remarkably, the speciation analysis of Fe2+/Fe3+ also has been successfully realized by a one-step method without complex pretreatment. The speciation and concentration of Fe2+ and Fe3+ in actual water samples can be accurately identified and monitored. In addition, as an attempt of visual onsite detection, we have developed a simple test strip, which has been applied to visual monitoring of four metal ions with the detection limit estimated by the naked eye to be as low as ppb level. This proposed colorimetric method realizes the rapid, sensitive, and portable multiple metal ions recognition and Fe2+/Fe3+ speciation analysis, displaying great potential for onsite rapid water quality analysis.
Collapse
Affiliation(s)
- Linfeng Chen
- Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Xike Tian
- Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Dasha Xia
- School
of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Yulun Nie
- Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Liqiang Lu
- Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Chao Yang
- Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Zhaoxin Zhou
- Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| |
Collapse
|
47
|
Liu JF, Zhao YJ, Song ZT, Zhou QW, Liu XW, Fan HT. Characterization of the dissociation kinetics of Cd and Ni in soils based on diffusive gradients in thin films technique. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:446-452. [PMID: 30292111 DOI: 10.1016/j.ecoenv.2018.09.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
A new theoretical method was established for the combinatorial calculation of the dissociation rate constant (K-1) of the metal-organic complexes (MLs), the concentration of free ionic soil metals (CM), the labile concentration of soil metal-organic complexes (CML) based on diffusive gradients in thin-films (DGT) technique with a range of diffusive layer thicknesses (0.053-0.173 mm) in soils. The fitting results agreed well with the determined values. The values of K-1, CML and CM were calculated without other morphological analysis software and the fitting results agreed well with the determined values with some advantages such as the use of fewer hypothetical parameters, ease of calculation, the full embodiment of the contribution of MLs to the labile content. According to the results of model fitting, cation exchange capacity and soil organic matter were found to be the key environmental factors for K-1 values of Cd and Ni, respectively. The labile contents of Cd and Ni in soil were closely related with pH, soil organic matter and the total contents of heavy metals.
Collapse
Affiliation(s)
- Jia-Feng Liu
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture, Tianjin 300191, China; College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| | - Yu-Jie Zhao
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture, Tianjin 300191, China.
| | - Zhi-Ting Song
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture, Tianjin 300191, China
| | - Qi-Wen Zhou
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture, Tianjin 300191, China
| | - Xiao-Wei Liu
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture, Tianjin 300191, China.
| | - Hong-Tao Fan
- College of Chemistry Chemical Engineering, and Environmental Engineering, Liaoning University of Petroleum & Chemical Technology, Fushun 113001, China.
| |
Collapse
|
48
|
Comparison of different speciation techniques to measure Zn availability in hydroponic media. Anal Chim Acta 2018; 1035:32-43. [DOI: 10.1016/j.aca.2018.06.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/06/2018] [Accepted: 06/25/2018] [Indexed: 11/22/2022]
|
49
|
Amato ED, Covaci A, Town RM, Hereijgers J, Bellekens B, Giacometti V, Breugelmans T, Weyn M, Dardenne F, Bervoets L, Blust R. A novel active-passive sampling approach for measuring time-averaged concentrations of pollutants in water. CHEMOSPHERE 2018; 209:363-372. [PMID: 29935465 DOI: 10.1016/j.chemosphere.2018.06.079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Passive sampling with in situ devices offers several advantages over traditional sampling methods (i.e., discrete spot sampling), however, data interpretation from conventional passive samplers is hampered by difficulties in estimating the thickness of the diffusion layer at the sampler/medium interface (δ), often leading to inaccurate determinations of target analyte concentrations. In this study, the performance of a novel device combining active and passive sampling was investigated in the laboratory. The active-passive sampling (APS) device is comprised of a diffusion cell fitted with a pump and a flowmeter. Three receiving phases traditionally used in passive sampling devices (i.e., chelex resin, Oasis HLB, and silicone rubber), were incorporated in the diffusion cell and allowed the simultaneous accumulation of cationic metals, polar, and non-polar organic compounds, respectively. The flow within the diffusion cell was accurately controlled and monitored, and, combined with diffusion coefficients measurements, enabled the average δ to be estimated. Strong agreement between APS and time-averaged total concentrations measured in discrete water samples was found for most of the substances investigated. Accuracies for metals ranged between 87 and 116%, except Cu and Pb (∼50%), whilst accuracies between 64 and 101%, and 92 and 151% were achieved for polar and non-polar organic compounds, respectively. These results indicate that, via a well-defined in situ preconcentration step, the proposed APS approach shows promise for monitoring the concentration of a range of pollutants in water.
Collapse
Affiliation(s)
- Elvio D Amato
- Systemic, Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Raewyn M Town
- Systemic, Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Jonas Hereijgers
- Research Group Advanced Reactor Technology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Ben Bellekens
- Internet and Data Lab (IDLab), University of Antwerp-imec, Belgium
| | - Valentina Giacometti
- Centre for Cancer Research & Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK
| | - Tom Breugelmans
- Research Group Advanced Reactor Technology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Maarten Weyn
- Internet and Data Lab (IDLab), University of Antwerp-imec, Belgium
| | - Freddy Dardenne
- Systemic, Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Lieven Bervoets
- Systemic, Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Ronny Blust
- Systemic, Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| |
Collapse
|
50
|
Moyson S, Town RM, Joosen S, Husson SJ, Blust R. The interplay between chemical speciation and physiology determines the bioaccumulation and toxicity of Cu(II) and Cd(II) toCaenorhabditis elegans. J Appl Toxicol 2018; 39:282-293. [DOI: 10.1002/jat.3718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Sofie Moyson
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology; University of Antwerp; Groenenborgerlaan 171 BE-2020 Antwerp Belgium
| | - Raewyn M. Town
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology; University of Antwerp; Groenenborgerlaan 171 BE-2020 Antwerp Belgium
| | - Steven Joosen
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology; University of Antwerp; Groenenborgerlaan 171 BE-2020 Antwerp Belgium
| | - Steven J. Husson
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology; University of Antwerp; Groenenborgerlaan 171 BE-2020 Antwerp Belgium
| | - Ronny Blust
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology; University of Antwerp; Groenenborgerlaan 171 BE-2020 Antwerp Belgium
| |
Collapse
|