1
|
Tillman JM, Weckel-Dahman W, Mullins PCL, Phan PV, Doyle E, James NM, Conroy NA, Dunnivant FM. A Study of Headspace Solid-Phase Microextraction in the Analysis of 54 Hydrophobic Pollutants in Remote Alpine Lake Waters with an Emphasis on Analyte Recovery and Storage Time. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1199-1211. [PMID: 36942360 DOI: 10.1002/etc.5616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 03/10/2023] [Accepted: 03/18/2023] [Indexed: 05/27/2023]
Abstract
Commercially available headspace solid-phase microextraction (HS-SPME) fibers have been used for years to extract pesticides and polychlorinated biphenyls from aqueous samples at the expected ultratrace levels (picograms per liter or parts per quadrillion) in alpine lakes. Several variables of the HS-SPME technique have been adequately evaluated, including water temperature, pH, salt content, fiber type and coating thickness, length of fiber-sample exposure, and liquid immersion versus headspace exposure; but surprisingly, analyte recovery as a function of analyte concentration and storage time has not been included in previous studies, which can be important for remote sampling sites. Seven hydrophobic chlorinated pollutants were identified in alpine lake water (out of 54 analyzed); but recovery using the common SPME technique was found to be inconsistent as the analyte concentration decreases, and the recovery trend as a function of concentration varies on a compound-to-compound basis that could result in a large underestimation of analyte concentrations in field samples. Of the 54 compounds surveyed, o,p'-dichlorodiphenyltrichloroethane (DDT), p,p'-DDT, p,p'-dichlorodiphenyldichloroethylene (DDE), o,p'-DDE, chlorthal-dimethyl, endosulfan I, γ-hexachlorocyclohexane, heptachlor, and trans-nonachlor were generally measured at concentrations between 1 and 150 pg/L (parts per quadrillion). No study to date has evaluated this commonly used but unstandardized technique for analyte recovery as a function of analyte concentration or storage time of aqueous samples. Environ Toxicol Chem 2023;42:1199-1211. © 2023 SETAC.
Collapse
Affiliation(s)
- Joseph M Tillman
- Department of Chemistry, Whitman College, Walla Walla, Washington, USA
| | | | - Peter C L Mullins
- Department of Chemistry, Whitman College, Walla Walla, Washington, USA
| | - Phi V Phan
- Department of Chemistry, Whitman College, Walla Walla, Washington, USA
| | - Emily Doyle
- Department of Chemistry, Whitman College, Walla Walla, Washington, USA
| | - Nicole M James
- Department of Chemistry, Whitman College, Walla Walla, Washington, USA
| | | | - Frank M Dunnivant
- Department of Chemistry, Whitman College, Walla Walla, Washington, USA
| |
Collapse
|
2
|
Pu Y, Guo J, Yang H, Zhong L, Tian H, Deng H, Duan X, Liu S, Chen D. Environmentally relevant concentrations of mercury inhibit the growth of juvenile silver carp (Hypophthalmichthys molitrix): Oxidative stress and GH/IGF axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113484. [PMID: 35421826 DOI: 10.1016/j.ecoenv.2022.113484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) is a global environmental contaminant, and excessive mercury levels in water can adversely affect the growth of fish. Silver carp (Hypophthalmichthys molitrix) is one of the important freshwater aquaculture fish in China, and its natural resources have been critically declining. However, the effects of Hg2+ exposure on the growth hormone/insulin-like growth factor (GH/IGF) axis and its toxic mechanism are still unclear. In this study, we systematically evaluated the bioaccumulation, histomorphology, antioxidant status, hormone levels, and GH/IGF axis toxicity of juvenile silver carp after exposure to environmental-related concentrations of Hg2+ (0, 0.05, 0.5, 5, and 50 µg/L) for 28 days. Results showed that the Hg2+ bioaccumulation in the liver increased with a rise in Hg2+ concentration and time of exposure. The body length (BL), body weight (BW), weight growth rate (WGR) and specific growth rate (SGR) all decreased after Hg2+ exposure. The serum levels of growth hormones (GH and IGF) and thyroid hormones (T3 and T4) were significantly decreased, and the expressions of GH/IGF axis-related genes were significantly downregulated after 7, 14, and 28 days of Hg2+ exposure. Correlations between the growth parameters and growth hormones or expression of genes in GH/IGF axis further suggested that environmentally relevant concentrations of Hg2+ could have adverse effects on growth. In addition, with increasing Hg2+ exposure, superoxide activities of dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST)and levels of reduced glutathione (GSH) and malondialdehyde (MDA) were significantly increased, whereas the activity of glutathione peroxidase (GPx) significantly decreased and oxidative stress-related gene significantly changed. Liver lesions were mainly characterized by inflammatory cell infiltration, hepatocyte necrosis and fat vacuolation after exposure to Hg2+. Taken together, the results indicate that Hg2+ exposure leads to growth inhibition and oxidative stress in juvenile silver.
Collapse
Affiliation(s)
- Yan Pu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China; Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China
| | - Jie Guo
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Hao Yang
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China; Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Liqiao Zhong
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China
| | - Huiwu Tian
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China
| | - Huatang Deng
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China
| | - Xinbin Duan
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China
| | - Shaoping Liu
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China
| | - Daqing Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China; Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China.
| |
Collapse
|
3
|
Yang C, Lim W, Song G. Immunotoxicological effects of insecticides in exposed fishes. Comp Biochem Physiol C Toxicol Pharmacol 2021; 247:109064. [PMID: 33905824 DOI: 10.1016/j.cbpc.2021.109064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/11/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023]
Abstract
Biologically active compounds used in agriculture that develop near aquatic environments easily spill into rivers or lakes. As a result, insecticides, herbicides and fungicides are observed worldwide in aquatic environments and accumulated in aquatic organism. Many insecticides, including organochlorine and organophosphate, have long been banned long ago because of their high persistence and non-target toxicity. However, previous studies have shown that persistent pesticides remain in aquatic organisms. The immune system is the first defense mechanism against exposure to persistent organic pollutants or pesticides that have been released into the aquatic environment. Many insecticides have been reported to cause immunotoxicity, which is represented by alteration of phagocytic and lysozyme activity. Recent studies show that immunotoxicity by insecticides exerts a more complex mechanism in fish. Insecticides induce immunotoxic effects, such as the release of inflammatory cytokines from head kidney macrophages and inhibition of immune cell proliferation in fish, which can lead to death in severe cases. Even currently used pesticides, such as pyrethroid, with low bioaccumulation have been shown to induce immunotoxicological effects in fish when exposed continuously. Therefore, this review describes the types and bioaccumulation of insecticides that cause immunotoxicity and detailed immunotoxicological mechanisms in fish tissues.
Collapse
Affiliation(s)
- Changwon Yang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
4
|
LeMoine CMR, Kelleher BM, Lagarde R, Northam C, Elebute OO, Cassone BJ. Transcriptional effects of polyethylene microplastics ingestion in developing zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:591-600. [PMID: 30218869 DOI: 10.1016/j.envpol.2018.08.084] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
Over the last few decades, plastic waste has become an increasing environmental concern as it accumulates in every environment on our planet. Though traditionally seen as a macroscopic problem (i.e., large plastic debris), plastic pollution is also evident at smaller scales. Indeed, the intentional industrial production of small plastic particles and the physical degradation of larger plastic debris have overtime resulted in an increased environmental prevalence of smaller plastic particles, including microplastics. While the effects of these small polymers on marine biota have been an important research focus, recent global surveys indicate that our freshwater lakes and rivers are also plagued by microplastics. However, despite these discoveries we currently have a limited understanding of the impact these particles may have on freshwater animals, particularly on vertebrate species. Thus, the aim of the present study was to assess the impact of high concentrations of microplastics (5 and 20 mg.L-1) on the early life stages in zebrafish, a model freshwater vertebrate model. To do this, we exposed embryonic and larval zebrafish to fluorescently labelled polyethylene microspheres for up to 14 days and assessed their microplastic content, growth, hatching and oxygen consumption rates. We then explored the molecular underpinnings of the microplastic response by RNA sequencing. Over the course of the exposure, we observed a consistent accumulation of microplastics in the gastrointestinal tract of the fish in a concentration dependent manner, but could not detect any detrimental effects of these particles on larval development, growth or metabolism. However, whole animal transcriptomics revealed that microplastics induced a transient and extensive change in larval gene expression within 48 h exposure, which largely disappeared by 14 days. However, as these transcriptional changes occurred during a critical period of larval development, we suggest that an evaluation of the potential long-term impact of these particles is warranted.
Collapse
Affiliation(s)
| | - Bailey M Kelleher
- Department of Biology, Brandon University, Brandon, Manitoba, R7A 6A9, Canada
| | - Raphaël Lagarde
- Department of Biology, Brandon University, Brandon, Manitoba, R7A 6A9, Canada; Hydrô Réunion, Z.I. Les Sables, 97427, Etang Salé, La Réunion, France; ENTROPIE, IRD, Université de La Réunion, CNRS, Laboratoire d'Excellence CORAIL, CS 41095, 2 rue Joseph Wetzell, Parc technologique universitaire, 97495, Sainte Clotilde Cedex, La Réunion, France
| | - Caleb Northam
- Department of Biology, Brandon University, Brandon, Manitoba, R7A 6A9, Canada
| | - Oluwadara O Elebute
- Department of Biology, Brandon University, Brandon, Manitoba, R7A 6A9, Canada
| | - Bryan J Cassone
- Department of Biology, Brandon University, Brandon, Manitoba, R7A 6A9, Canada
| |
Collapse
|
5
|
Chiapella AM, Nielsen-Pincus M, Strecker AL. Public perceptions of mountain lake fisheries management in national parks. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 226:169-179. [PMID: 30119041 DOI: 10.1016/j.jenvman.2018.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
The legacy of fish stocking in mountain lake ecosystems has left behind a challenge for land managers around the globe. In the US and Canada, historically fishless mountain lakes have been stocked with trout for over a century. These non-native trout have cascading ecosystem effects, and can accumulate atmospherically deposited contaminants. While the negative impacts of stocking in these ecosystems have become increasingly apparent, wilderness fishing has garnered cultural value in the angling community. As a result, public lands managers are left with conflicting priorities. National park managers across the western US are actively trying to reconcile the cultural and ecological values of mountain lakes through the development of management plans for mountain lake fisheries. However, visitors' social perceptions, attitudes, and values regarding mountain lake fisheries management have remained unquantified, and thus largely left out of the decision-making process. Our study evaluated the recreation habits, values, and attitudes of national park visitors towards fish stocking and management of mountain lakes of two national parks in the Pacific Northwest. We found that most visitors favor fish removal using a conservation approach, whereby sensitive lakes are restored, while fish populations are maintained in lakes that are more resilient. An important consideration for managers is that many mountain lake anglers consume fish on an annual basis, thus we emphasize the use of outreach and education regarding the accumulation of contaminants in fish tissues. Our findings help elucidate the conflicting views of stakeholders, and we provide recommendations to inform management of mountain lakes fisheries in North America and abroad.
Collapse
Affiliation(s)
- Ariana M Chiapella
- Portland State University, Department of Environmental Science and Management, P.O. Box 751, Portland, OR 97207, USA.
| | - Max Nielsen-Pincus
- Portland State University, Department of Environmental Science and Management, P.O. Box 751, Portland, OR 97207, USA
| | - Angela L Strecker
- Portland State University, Department of Environmental Science and Management, P.O. Box 751, Portland, OR 97207, USA
| |
Collapse
|
6
|
Zhang QF, Li YW, Liu ZH, Chen QL. Exposure to mercuric chloride induces developmental damage, oxidative stress and immunotoxicity in zebrafish embryos-larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 181:76-85. [PMID: 27821350 DOI: 10.1016/j.aquatox.2016.10.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/27/2016] [Accepted: 10/30/2016] [Indexed: 06/06/2023]
Abstract
Mercury (Hg) is a widespread environmental pollutant that can produce severe negative effects on fish even at very low concentrations. However, the mechanisms underlying inorganic Hg-induced oxidative stress and immunotoxicity in the early development stage of fish still need to be clarified. In the present study, zebrafish (Danio rerio) embryos were exposed to different concentrations of Hg2+ (0, 1, 4 and 16μg/L; added as mercuric chloride, HgCl2) from 2h post-fertilization (hpf) to 168hpf. Developmental parameters and total Hg accumulation were monitored during the exposure period, and antioxidant status and the mRNA expression of genes related to the innate immune system were examined at 168hpf. The results showed that increasing Hg2+ concentration and time significantly increased total Hg accumulation in zebrafish embryos-larvae. Exposure to 16μg/L Hg2+ caused developmental damage, including increased mortality and malformation, decreased body length, and delayed hatching period. Meanwhile, HgCl2 exposure (especially in the 16μg/L Hg2+ group) induced oxidative stress affecting antioxidant enzyme (CAT, GST and GPX) activities, endogenous GSH and MDA contents, as well as the mRNA levels of genes (cat1, sod1, gstr, gpx1a, nrf2, keap1, hsp70 and mt) encoding antioxidant proteins. Moreover, the transcription levels of several representative genes (il-1β, il-8, il-10, tnfα2, lyz and c3) involved in innate immunity were up-regulated by HgCl2 exposure, suggesting that inorganic Hg had the potential to induce immunotoxicity. Taken together, the present study provides evidence that waterborne HgCl2 exposure can induce developmental impairment, oxidative stress and immunotoxicity in the early development stage of fish, which brings insights into the toxicity mechanisms of inorganic Hg in fish.
Collapse
Affiliation(s)
- Qun-Fang Zhang
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Ying-Wen Li
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Zhi-Hao Liu
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qi-Liang Chen
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
7
|
Zhang QF, Li YW, Liu ZH, Chen QL. Reproductive toxicity of inorganic mercury exposure in adult zebrafish: Histological damage, oxidative stress, and alterations of sex hormone and gene expression in the hypothalamic-pituitary-gonadal axis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:417-424. [PMID: 27391360 DOI: 10.1016/j.aquatox.2016.06.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
Mercury (Hg) is a prominent environmental contaminant that causes a variety of adverse effects on aquatic organisms. However, the mechanisms underlying inorganic Hg-induced reproductive impairment in fish remains largely unknown. In this study, adult zebrafish were exposed to 0 (control), 15 and 30μg Hg/l (added as mercuric chloride, HgCl2) for 30days, and the effects on histological structure, antioxidant status and sex hormone levels in the ovary and testis, as well as the mRNA expression of genes involved in the hypothalamic-pituitary-gonadal (HPG) axis were analyzed. Exposure to Hg caused pathological lesions in zebrafish gonads, and changed the activities and mRNA levels of antioxidant enzymes (catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx)) as well as the content of glutathione (GSH) and malondialdehyde (MDA). In females, although ovarian 17β-estradiol (E2) content remained relatively stable, significant down-regulation of lhβ, gnrh2, gnrh3, lhr and erα were observed. In males, testosterone (T) levels in the testis significantly decreased after Hg exposure, accompanied by down-regulated expression of gnrh2, gnrh3, fshβ and lhβ in the brain as well as fshr, lhr, ar, cyp17 and cyp11b in the testis. Thus, our study indicated that waterborne inorganic Hg exposure caused histological damage and oxidative stress in the gonads of zebrafish, and altered sex hormone levels by disrupting the transcription of related HPG-axis genes, which could subsequently impair the reproduction of fish. Different response of the antioxidant defense system, sex hormone and HPG-axis genes between females and males exposed to inorganic Hg indicated the gender-specific regulatory effect by Hg. To our knowledge, this is the first time to explore the effects and mechanisms of inorganic Hg exposure on reproduction at the histological, enzymatic and molecular levels, which will greatly extend our understanding on the mechanisms underlying of reproductive toxicity of inorganic Hg in fish.
Collapse
Affiliation(s)
- Qun-Fang Zhang
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Ying-Wen Li
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Zhi-Hao Liu
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qi-Liang Chen
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
8
|
Herrmann SJ, Nimmo DR, Carsella JS, Herrmann-Hoesing LM, Turner JA, Gregorich JM, Heuvel BDV, Nehring RB, Foutz HP. Differential Accumulation of Mercury and Selenium in Brown Trout Tissues of a High-Gradient Urbanized Stream in Colorado, USA. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 70:204-218. [PMID: 26608694 DOI: 10.1007/s00244-015-0241-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/08/2015] [Indexed: 06/05/2023]
Abstract
Total mercury (THg) and selenium (Se) were analyzed by Inductively Coupled Plasma Mass Spectrometry in 11 internal and external tissues and stomach contents from 23 brown trout, Salmo trutta, of a 22.9-km reach of a high-gradient stream (upper Fountain Creek) in Colorado, USA, impacted by coal-fired power plants, shale deposits, and urbanization. Trout and water were sampled from four sites ranging from 2335 to 1818 m elevation. Lengths, weights, and ages of fish between pairs of the four sites were not significantly different. The dry weight (dw) to wet weight (ww) conversion factor for each tissue was calculated with egg-ovary highest at 0.379 and epaxial muscle fourth highest at 0.223. THg and Se in stomach contents indicated diet and not ambient water was the major source of Hg and Se bioaccumulated. Mean THg ww in kidney was 40.33 µg/kg, and epaxial muscle second highest at 36.76 µg/kg. None of the tissues exceeded the human critical threshold for Hg. However, all 23 trout had at least one tissue type that exceeded 0.02 mg/kg THg ww for birds, and four trout tissues exceeded 0.1 mg/kg THg ww for mammals, indicating that piscivorous mammals and birds should be monitored. Se concentrations in tissues varied depending on ww or dw listing. Mean Se dw in liver was higher than ovary at the uppermost site and the two lower sites. Liver tissue, in addition to egg-ovary, should be utilized as an indicator tissue for Se toxicity.
Collapse
Affiliation(s)
- S J Herrmann
- Department of Biology, Colorado State University - Pueblo, Pueblo, CO, 81001, USA.
| | - D R Nimmo
- Department of Biology, Colorado State University - Pueblo, Pueblo, CO, 81001, USA
| | - J S Carsella
- Department of Chemistry, Colorado State University - Pueblo, Pueblo, CO, 81001, USA
| | - L M Herrmann-Hoesing
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164, USA
| | - J A Turner
- Department of Biology, Colorado State University - Pueblo, Pueblo, CO, 81001, USA
| | - J M Gregorich
- Department of Biology, Colorado State University - Pueblo, Pueblo, CO, 81001, USA
| | - B D Vanden Heuvel
- Department of Biology, Colorado State University - Pueblo, Pueblo, CO, 81001, USA
| | - R B Nehring
- Division of Colorado Parks and Wildlife, 6060 Broadway, Denver, CO, 80216, USA
| | - H P Foutz
- Division of Colorado Parks and Wildlife, 6060 Broadway, Denver, CO, 80216, USA
| |
Collapse
|
9
|
Du F, Xu G, Nie Z, Xu P, Gu R. Transcriptome analysis gene expression in the liver of Coilia nasus during the stress response. BMC Genomics 2014; 15:558. [PMID: 24996224 PMCID: PMC4094779 DOI: 10.1186/1471-2164-15-558] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 06/26/2014] [Indexed: 12/27/2022] Open
Abstract
Background The estuarine tapertail anchovy (Coilia nasus) is widely distributed in the Yangtze River, the coastal waters of China, Korea, and the Ariake Sound of Japan. It is a commercially important species owing to its nutritional value and delicate flavor. However, Coilia nasus is strongly responsive to stress, this often results in death, which causes huge losses. In this study, we used next-generation sequencing technologies to study changes in gene expression in response to loading stress and the mechanism of death caused by loading stress in Coilia nasus. Results Using next-generation RNA-seq technologies on an Illumina HiSeq 2000 platform, we assembled a de novo transcriptome and tested for differential expression in response to stress. A total of 65,129 unigenes were generated, the mean unigene size and N50 were 607 bp and 813 bp, respectively. Of the assembled unigenes, we identified 2,990 genes that were significantly up-regulated, while 3,416 genes were significantly down-regulated in response to loading stress. Pathway enrichment analysis based on loading stress-responsive unigenes identified significantly stress related pathways. “Metabolism” and “immunity” were the two most frequently represented categories. In the “metabolism” category, “glucose metabolism” and “lipid metabolism” were major subclasses. The transcriptional expression of rate-limiting enzymes in “glucose metabolism” and “lipid metabolism” was detected by RT-qPCR, all were significantly increased after stress. Apoptosis associated proteins tumor necrosis factor alpha (TNF-α), caspase 9, cytochrome c and caspase 3 in the stress group were significantly elevated, moreover, liver injury indicators (Alanine aminotransferase, ALT, and aspartate transaminase, AST) were also significantly elevated, which indicates that loading stress induced liver injury. Conclusion This study provided abundant unigenes that could contribute greatly to the discovery of novel genes in fish. The alterations in predicted gene expression patterns reflected possible responses to stress. Loading stress may induce liver injury through the mitochondrial apoptosis pathway, which was activated by TNF-α. Taken together, our data not only provide information that will aid the identification of novel genes from fish, but also shed new light on the understanding of mechanisms by which physical stressors cause death in fish. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-558) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Ruobo Gu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No, 9 Shanshui East Road, Wuxi, Jiangsu Province, China.
| |
Collapse
|
10
|
Christiansen HE, Mehinto AC, Yu F, Perry RW, Denslow ND, Maule AG, Mesa MG. Correlation of gene expression and contaminant concentrations in wild largescale suckers: a field-based study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 484:379-389. [PMID: 24050789 DOI: 10.1016/j.scitotenv.2013.08.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 06/02/2023]
Abstract
Toxic compounds such as organochlorine pesticides (OCs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ether flame retardants (PBDEs) have been detected in fish, birds, and aquatic mammals that live in the Columbia River or use food resources from within the river. We developed a custom microarray for largescale suckers (Catostomus macrocheilus) and used it to investigate the molecular effects of contaminant exposure on wild fish in the Columbia River. Using Significance Analysis of Microarrays (SAM) we identified 72 probes representing 69 unique genes with expression patterns that correlated with hepatic tissue levels of OCs, PCBs, or PBDEs. These genes were involved in many biological processes previously shown to respond to contaminant exposure, including drug and lipid metabolism, apoptosis, cellular transport, oxidative stress, and cellular chaperone function. The relation between gene expression and contaminant concentration suggests that these genes may respond to environmental contaminant exposure and are promising candidates for further field and laboratory studies to develop biomarkers for monitoring exposure of wild fish to contaminant mixtures found in the Columbia River Basin. The array developed in this study could also be a useful tool for studies involving endangered sucker species and other sucker species used in contaminant research.
Collapse
Affiliation(s)
- Helena E Christiansen
- U.S. Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, 5501 Cook-Underwood Road, Cook, WA 98605, USA.
| | - Alvine C Mehinto
- University of Florida, Center for Environmental and Human Toxicology, Department of Physiological Sciences, 2187 Mowry Road, Gainesville, FL 32611, USA.
| | - Fahong Yu
- Interdisciplinary Center for Biotechnology Research, 2033 Mowry Road, P.O. Box 103622, Gainesville, FL 32610, USA.
| | - Russell W Perry
- U.S. Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, 5501 Cook-Underwood Road, Cook, WA 98605, USA.
| | - Nancy D Denslow
- University of Florida, Center for Environmental and Human Toxicology, Department of Physiological Sciences, 2187 Mowry Road, Gainesville, FL 32611, USA.
| | - Alec G Maule
- U.S. Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, 5501 Cook-Underwood Road, Cook, WA 98605, USA.
| | - Matthew G Mesa
- U.S. Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, 5501 Cook-Underwood Road, Cook, WA 98605, USA.
| |
Collapse
|
11
|
Jarque S, Bosch C, Casado M, Grimalt JO, Raldúa D, Piña B. Analysis of hepatic deiodinase 2 mRNA levels in natural fish lake populations exposed to different levels of putative thyroid disrupters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 187:210-213. [PMID: 24530182 DOI: 10.1016/j.envpol.2014.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/20/2013] [Accepted: 01/14/2014] [Indexed: 06/03/2023]
Abstract
Hepatic mRNA levels of the dio2 gene (deiodinase 2), implicated in thyroid hormone homeostasis, were analyzed in trout from six remote lakes in the Pyrenees (Spain) and the Tatra Mountains (Slovakia). Highest levels corresponded to fish from the two coldest lakes in Pyrenees, whereas relatively low levels were found in the Tatra lakes. These values correlated with the presence of highly-brominated polybrominated diphenyl ethers (PBDE) congeners in the muscle of the same animals, reflecting the distribution of these compounds across European mountain ranges. In contrast, cyp1a expression levels, diagnostic for the presence of dioxin-like pollutants, mirrored the distribution of semi-volatile organochlorine compounds, indicating the specificity of the two types of biological responses. Exposure to PDBEs is known to increase transcription of dio2 and other thyroid-related genes in laboratory experiments; we propose that our data reflects the same phenomenon in natural populations, driven by anthropogenic pollutants at the environmental concentrations.
Collapse
Affiliation(s)
- Sergio Jarque
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Molecular and Cellular Biology, Jordi Girona, 18, 08034 Barcelona, Spain; Masaryk University, Faculty of Science, RECETOX, Kamenice 5/753, Brno CZ62500, Czech Republic
| | - Carme Bosch
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Molecular and Cellular Biology, Jordi Girona, 18, 08034 Barcelona, Spain
| | - Marta Casado
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Molecular and Cellular Biology, Jordi Girona, 18, 08034 Barcelona, Spain
| | - Joan O Grimalt
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Molecular and Cellular Biology, Jordi Girona, 18, 08034 Barcelona, Spain
| | - Demetrio Raldúa
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Molecular and Cellular Biology, Jordi Girona, 18, 08034 Barcelona, Spain
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Molecular and Cellular Biology, Jordi Girona, 18, 08034 Barcelona, Spain.
| |
Collapse
|
12
|
Functional categorization of transcriptome in the species Symphysodon aequifasciatus Pellegrin 1904 (Perciformes: Cichlidae) exposed to benzo[a]pyrene and phenanthrene. PLoS One 2013; 8:e81083. [PMID: 24312524 PMCID: PMC3849039 DOI: 10.1371/journal.pone.0081083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/09/2013] [Indexed: 01/18/2023] Open
Abstract
This study aims to evaluate the transcriptome alterations, through cDNA libraries, associated with the combined effects of two PAHs, benzo[a]pyrene (0.5 µg/L) and phenanthrene (50 µg/L), present in crude oil, on specimens of Symphysodon aequifasciatus (discus fish) after 48 h of exposure. The cDNA libraries were constructed according to the SOLiD™ SAGE™ protocol for sequencing in the SOLiD v.3 Plus sequencer. The results were analyzed by bioinformatics and differentially expressed genes were categorized using the gene ontology program. The functional categories (terms) found in the gene ontology and the gene network generated using STRING software were used to predict the adverse effects of benzo[a]pyrene and phenanthrene in the liver. In the present study, 27,127 genes (compared to Danio rerio database) were identified. Considering only those genes with a p-value less than or equal to 0.05 and greater than or equal to two-fold change in expression across libraries, we found 804 genes, 438 down-regulated (54%) and 366 up-regulated (46%), in the experimental group compared to the control. Out of this total, 327 genes were successfully categorized, 174 down-regulated and 153 up-regulated, using gene ontology. Using String, the gene network was composed by 199 nodes, 124 of them resulting in 274 interactions. The results showed that even an acute exposure of 48 h caused metabolic change in response to environmental contaminants, resulting in changes of cell integrity, in oxidation-reduction processes, in the immune response and disturbances of intracellular signaling of discus fish. Also the gene network has showed no central interplay cluster, exhibiting instead interconnected clusters interactions and connected sub-networks. These findings highlight that even an acute sublethal exposure of PAHs can cause metabolism changes that may affect survival of discus. Our findings using SOLiD coupled with SAGE-method resulted in a powerful and reliable means for gene expression analysis in discus, a non-model Amazonian fish.
Collapse
|
13
|
Olsvik PA, Lindgren M, Maage A. Mercury contamination in deep-water fish: transcriptional responses in tusk (Brosme brosme) from a fjord gradient. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 144-145:172-185. [PMID: 24184472 DOI: 10.1016/j.aquatox.2013.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 09/19/2013] [Accepted: 10/01/2013] [Indexed: 06/02/2023]
Abstract
Recent findings have shown that deep-water fish from coastal areas may contain elevated levels of mercury (Hg). Tusk (Brosme brosme) was collected from six locations in Hardangerfjord, a fjord system where the inner parts are contaminated by metals due to historic industrial activity. ICPMS was used to determine the accumulated levels of metals (Hg, MeHg, Cd, Pb, As, and Se) in the fish, whereas oxidative status of the liver was assessed by measuring TBARS, vitamin C, vitamin E and catalase activity. To find out whether accumulated Hg triggers toxicologically relevant transcriptional responses and in order to gain genomic knowledge from a non-model species, the liver transcriptome of the gadoid fish was sequenced and assembled, and RNA-seq and RT-qPCR were used to screen for effects of Hg. The results showed high levels of accumulated Hg in tusk liver, probably reflecting an adaptation to deep-water life history, and only a weak declining outward fjord gradient of Hg concentration in tusk liver. MeHg only accounted for about 17% of total Hg in liver, suggesting hepatotoxicity of both inorganic and organic Hg. Pathway analysis suggested an effect of Hg exposure on lipid metabolism and beta-oxidation in liver. Oxidative stress markers glutathione peroxidase 1 and ferritin mRNA, as well as vitamin C and vitamin E (alpha and gamma tocopherol) showed a significant correlation with accumulated levels of Hg. Many transcripts of genes encoding established markers for Hg exposure were co-regulated in the fish. In conclusion, tusk from Hardangerfjord contains high levels of Hg, with possible hepatic effects on lipid metabolism and oxidative stress.
Collapse
Affiliation(s)
- Pål A Olsvik
- National Institute of Nutrition and Seafood Research, Nordnesboder 1-2, N-5005 Bergen, Norway.
| | | | | |
Collapse
|
14
|
Asker N, Kristiansson E, Albertsson E, Larsson DGJ, Förlin L. Hepatic transcriptome profiling indicates differential mRNA expression of apoptosis and immune related genes in eelpout (Zoarces viviparus) caught at Göteborg harbor, Sweden. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 130-131:58-67. [PMID: 23340333 DOI: 10.1016/j.aquatox.2012.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 12/12/2012] [Accepted: 12/18/2012] [Indexed: 06/01/2023]
Abstract
The physiology and reproductive performance of eelpout (Zoarces viviparus) have been monitored along the Swedish coast for more than three decades. In this study, transcriptomic profiling was applied for the first time as an exploratory tool to search for new potential candidate biomarkers and to investigate possible stress responses in fish collected from a chronically polluted area. An oligonucleotide microarray with more than 15,000 sequences was used to assess differentially expressed hepatic mRNA levels in female eelpout collected from the contaminated area at Göteborg harbor compared to fish from a national reference site, Fjällbacka. Genes involved in apoptosis and DNA damage (e.g., SMAC/diablo homolog and DDIT4/DNA-damage-inducible protein transcript 4) had higher mRNA expression levels in eelpout from the harbor compared to the reference site, whereas mRNA expression of genes involved in the innate immune system (e.g., complement components and hepcidin) and protein transport/folding (e.g., signal recognition particle and protein disulfide-isomerase) were expressed at lower levels. Gene Ontology enrichment analysis revealed that genes involved biological processes associated with protein folding, immune responses and complement activation were differentially expressed in the harbor eelpout compared to the reference site. The differential mRNA expression of selected genes involved in apoptosis/DNA damage and in the innate immune system was verified by quantitative PCR, using the same fish in addition to eelpout captured four years later. Thus, our approach has identified new potential biomarkers of pollutant exposure and has generated hypotheses on disturbed physiological processes in eelpout. Despite a higher mRNA expression of genes related to apoptosis (e.g., diablo homolog) in eelpout captured in the harbor there were no significant differences in the number of TUNEL-positive apoptotic cells between sites. The mRNA level of genes involved in apoptosis/DNA damage and the status of the innate immune system in fish species captured in polluted environments should be studied in more detail to lay the groundwork for future biomonitoring studies.
Collapse
Affiliation(s)
- Noomi Asker
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|
15
|
Depew DC, Basu N, Burgess NM, Campbell LM, Devlin EW, Drevnick PE, Hammerschmidt CR, Murphy CA, Sandheinrich MB, Wiener JG. Toxicity of dietary methylmercury to fish: derivation of ecologically meaningful threshold concentrations. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:1536-47. [PMID: 22549893 DOI: 10.1002/etc.1859] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/20/2012] [Accepted: 02/10/2012] [Indexed: 05/20/2023]
Abstract
Threshold concentrations associated with adverse effects of dietary exposure to methylmercury (MeHg) were derived from published results of laboratory studies on a variety of fish species. Adverse effects related to mortality were uncommon, whereas adverse effects related to growth occurred only at dietary MeHg concentrations exceeding 2.5 µg g(-1) wet weight. Adverse effects on behavior of fish had a wide range of effective dietary concentrations, but generally occurred above 0.5 µg g(-1) wet weight. In contrast, effects on reproduction and other subclinical endpoints occurred at dietary concentrations that were much lower (<0.2 µg g(-1) wet wt). Field studies generally lack information on dietary MeHg exposure, yet available data indicate that comparable adverse effects have been observed in wild fish in environments corresponding to high and low MeHg contamination of food webs and are in agreement with the threshold concentrations derived here from laboratory studies. These thresholds indicate that while differences in species sensitivity to MeHg exposure appear considerable, chronic dietary exposure to low concentrations of MeHg may have significant adverse effects on wild fish populations but remain little studied compared to concentrations in mammals or birds.
Collapse
Affiliation(s)
- David C Depew
- Department of Biology and School of Environmental Studies, Queen's University, Kingston, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Williams TD, Turan N, Diab AM, Wu H, Mackenzie C, Bartie KL, Hrydziuszko O, Lyons BP, Stentiford GD, Herbert JM, Abraham JK, Katsiadaki I, Leaver MJ, Taggart JB, George SG, Viant MR, Chipman KJ, Falciani F. Towards a system level understanding of non-model organisms sampled from the environment: a network biology approach. PLoS Comput Biol 2011; 7:e1002126. [PMID: 21901081 PMCID: PMC3161900 DOI: 10.1371/journal.pcbi.1002126] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 05/26/2011] [Indexed: 12/11/2022] Open
Abstract
The acquisition and analysis of datasets including multi-level omics and physiology from non-model species, sampled from field populations, is a formidable challenge, which so far has prevented the application of systems biology approaches. If successful, these could contribute enormously to improving our understanding of how populations of living organisms adapt to environmental stressors relating to, for example, pollution and climate. Here we describe the first application of a network inference approach integrating transcriptional, metabolic and phenotypic information representative of wild populations of the European flounder fish, sampled at seven estuarine locations in northern Europe with different degrees and profiles of chemical contaminants. We identified network modules, whose activity was predictive of environmental exposure and represented a link between molecular and morphometric indices. These sub-networks represented both known and candidate novel adverse outcome pathways representative of several aspects of human liver pathophysiology such as liver hyperplasia, fibrosis, and hepatocellular carcinoma. At the molecular level these pathways were linked to TNF alpha, TGF beta, PDGF, AGT and VEGF signalling. More generally, this pioneering study has important implications as it can be applied to model molecular mechanisms of compensatory adaptation to a wide range of scenarios in wild populations.
Collapse
Affiliation(s)
- Tim D. Williams
- School of Biosciences, The University of Birmingham, Birmingham, United Kingdom
| | - Nil Turan
- School of Biosciences, The University of Birmingham, Birmingham, United Kingdom
| | - Amer M. Diab
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | - Huifeng Wu
- School of Biosciences, The University of Birmingham, Birmingham, United Kingdom
- Yantai Institute of Coastal Zone Research, Academy of Sciences, Yantai, PR. China
| | - Carolynn Mackenzie
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | - Katie L. Bartie
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | - Olga Hrydziuszko
- School of Biosciences, The University of Birmingham, Birmingham, United Kingdom
| | - Brett P. Lyons
- Cefas, Weymouth Laboratory, Weymouth, Dorset, United Kingdom
| | | | - John M. Herbert
- School of Biosciences, The University of Birmingham, Birmingham, United Kingdom
| | - Joseph K. Abraham
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | | | - Michael J. Leaver
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | - John B. Taggart
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | - Stephen G. George
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | - Mark R. Viant
- School of Biosciences, The University of Birmingham, Birmingham, United Kingdom
| | - Kevin J. Chipman
- School of Biosciences, The University of Birmingham, Birmingham, United Kingdom
| | - Francesco Falciani
- School of Biosciences, The University of Birmingham, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Ings JS, Servos MR, Vijayan MM. Hepatic transcriptomics and protein expression in rainbow trout exposed to municipal wastewater effluent. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:2368-2376. [PMID: 21322548 DOI: 10.1021/es103122g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Municipal wastewater effluents (MWWEs) represent one of the largest point sources of contamination, but few studies have addressed the impact on fish populations. We tested the hypothesis that MWWEs disrupt multiple stress-related pathways by examining expression of genes and proteins in rainbow trout (Oncorhynchus mykiss). A caging study was undertaken by placing juvenile trout for 14 d either at an upstream control or 100%, 50%, and 10% MWWE sites. A custom-made low-density rainbow trout cDNA microarray was utilized for transcriptomics, and select gene expression was confirmed with quantitative real-time PCR. MWWE exposure significantly elevated plasma cortisol, glucose, and vitellogenin levels, and altered the expression of a number of hepatic genes. Notably, expression of stress-related genes, hormone receptors, glucose transporter 2, and genes related to immune function were altered. The gene and protein expression of glucocorticoid receptor, heat shock proteins 70 and 90, and cytochrome P4501A1 were also impacted by MWWE exposure. Our results demonstrate that tertiary-treated MWWEs elicit an organismal and cellular stress response in trout and may lead to an enhanced energy demand in the exposed fish. The disruption in multiple stress-related pathways suggests that tertiary-treated MWWEs exposure may reduce fish performance to subsequent stressors.
Collapse
Affiliation(s)
- Jennifer S Ings
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | | | | |
Collapse
|
18
|
Richter CA, Garcia-Reyero N, Martyniuk C, Knoebl I, Pope M, Wright-Osment MK, Denslow ND, Tillitt DE. Gene expression changes in female zebrafish (Danio rerio) brain in response to acute exposure to methylmercury. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:301-8. [PMID: 21082716 PMCID: PMC3061354 DOI: 10.1002/etc.409] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Methylmercury (MeHg) is a potent neurotoxicant and endocrine disruptor that accumulates in aquatic systems. Previous studies have shown suppression of hormone levels in both male and female fish, suggesting effects on gonadotropin regulation in the brain. The gene expression profile in adult female zebrafish whole brain induced by acute (96 h) MeHg exposure was investigated. Fish were exposed by injection to 0 or 0.5 µg MeHg/g. Gene expression changes in the brain were examined using a 22,000-feature zebrafish microarray. At a significance level of p < 0.01, 79 genes were up-regulated and 76 genes were down-regulated in response to MeHg exposure. Individual genes exhibiting altered expression in response to MeHg exposure implicate effects on glutathione metabolism in the mechanism of MeHg neurotoxicity. Gene ontology (GO) terms significantly enriched among altered genes included protein folding, cell redox homeostasis, and steroid biosynthetic process. The most affected biological functions were related to nervous system development and function, as well as lipid metabolism and molecular transport. These results support the involvement of oxidative stress and effects on protein structure in the mechanism of action of MeHg in the female brain. Future studies will compare the gene expression profile induced in response to MeHg with that induced by other toxicants and will investigate responsive genes as potential biomarkers of MeHg exposure.
Collapse
|
19
|
|
20
|
Jarque S, Gallego E, Bartrons M, Catalan J, Grimalt JO, Piña B. Altitudinal and thermal gradients of hepatic Cyp1A gene expression in natural populations of Salmo trutta from high mountain lakes and their correlation with organohalogen loads. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:1392-1398. [PMID: 20149942 DOI: 10.1016/j.envpol.2010.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 12/23/2009] [Accepted: 01/04/2010] [Indexed: 05/28/2023]
Abstract
The biomarker of xenobiotic exposure cytochrome p450A1 (Cyp1A) was used to analyze the biological response to chemical pollution in Salmo trutta (brown trout) from nine high mountain European lakes in Norway, Tatras, Tyrol, and central Pyrenees. Hepatic Cyp1A mRNA levels correlated both with the reciprocal of absolute annual average air temperatures of the sampled lakes and with muscle concentrations of several hydrophobic organohalogen compounds (OC), including chlorinated polychlorobiphenyls (PCB), DDE, and DDT. The correlation between Cyp1A expression and OC content was observed across the whole temperature range (between -0.7 degrees C and +6.2 degrees C), but also in the absence of any thermal gradient. We concluded that airborne pollutants accumulate in high mountain lake fish at concentrations high enough to increase Cyp1A expression, among other possible effects. As geographical distribution of semi-volatile OC is strongly influenced by air temperatures, future climate modifications will potentially enhance their physiological effects in lake ecosystems.
Collapse
Affiliation(s)
- Sergio Jarque
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034-Barcelona, Catalonia, Spain
| | | | | | | | | | | |
Collapse
|
21
|
Aluru N, Vijayan MM. Stress transcriptomics in fish: a role for genomic cortisol signaling. Gen Comp Endocrinol 2009; 164:142-50. [PMID: 19341738 DOI: 10.1016/j.ygcen.2009.03.020] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 03/09/2009] [Accepted: 03/23/2009] [Indexed: 01/17/2023]
Abstract
The physiological responses to stressors, including hormonal profiles and associated tissue responsiveness have been extensively studied in teleosts, but the molecular mechanisms associated with this adaptive response are not well understood. The advent of cDNA microarray technology has transformed the field of functional genomics by revealing global gene expression changes in response to stressor exposures even in non-mammalian vertebrates, including fish. A unifying response in studies related to stressor exposure is activation of the hypothalamus-pituitary-interrenal (HPI) axis in fish, leading to cortisol release into the circulation. Here we will discuss the implications of some of the gene expression changes observed in response to acute stress in fish, while highlighting a role for cortisol in this adaptive stress response. As liver is a key organ for metabolic adjustments to stressors and also is a major target for cortisol action, the genomic studies pertaining to stress and glucocorticoid regulation have focused mainly on this tissue. The studies have identified several genes that are altered transiently after an acute stressor exposure in fish. A number of these stress-responsive genes were also modulated by glucocorticoid receptor activation, suggesting that elevation in cortisol levels during stressor exposure may be a key signal for target tissue molecular programming, essential for stress adaptation. The identification of regulatory gene networks that are stress activated, and modulated by cortisol, both in hepatic and extra-hepatic tissues, including gonads, brain, immune cells and gills, will provide a mechanistic framework to characterize the multifaceted role of cortisol during stress adaptation.
Collapse
|
22
|
Aluru N, Vijayan MM. Brain transcriptomics in response to beta-naphthoflavone treatment in rainbow trout: the role of aryl hydrocarbon receptor signaling. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2008; 87:1-12. [PMID: 18282621 DOI: 10.1016/j.aquatox.2007.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 12/17/2007] [Accepted: 12/26/2007] [Indexed: 05/25/2023]
Abstract
Polychlorinated biphenyls (PCBs) exposure disrupts steroid production in teleostean fishes. While this suppression of plasma steroid levels is thought to involve aryl hydrocarbon receptor (AhR) signaling, the target tissues impacted and the molecular mechanisms involved have rarely been addressed. We tested the hypothesis that AhR activation downregulates genes involved in neuroendocrine function, including the control of brain-pituitary-interrenal (BPI) and -gonadal (BPG) axes in rainbow trout. To elucidate receptor-specific signaling, we utilized a pharmacological approach using beta-naphthoflavone (BNF) and resveratrol (RVT) as AhR agonist and antagonist, respectively. The gene expression pattern in the brain was analysed using a low-density targeted trout cDNA array enriched with genes encoding proteins involved in endocrine signaling, stress response and metabolic adjustments. Upregulation of AhR and CYP1A1 gene expression with BNF and the inhibition of this response by RVT confirmed AhR-dependent signaling. RVT by itself impacted only a few genes, while BNF treatment significantly modulated the transcript level of 49 genes, many of which are involved in the neuroendocrine control of stress and reproduction. Of these, only 27% of the BNF-mediated transcriptional response was blocked by RVT, suggesting molecular regulation of neuroendocrine pathways that are also AhR-independent. Gene expression pattern for select genes seen with the microarray analysis was also confirmed using quantitative real-time PCR. Overall, our results reveal for the first time that BNF disrupts several key genes involved in the neuroendocrine control of stress and sex steroid biosynthesis, while the mode of action involves both AhR-dependent and -independent pathways in trout.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Department of Biology, University of Waterloo, 200 University Avenue West, Ontario, Canada N2L 3G1
| | | |
Collapse
|
23
|
Ackerman LK, Schwindt AR, Simonich SL, Koch DC, Blett TF, Schreck CB, Kent ML, Landers DH. Atmospherically deposited PBDEs, pesticides, PCBs, and PAHs in western U.S. National Park fish: concentrations and consumption guidelines. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:2334-41. [PMID: 18504962 PMCID: PMC4145840 DOI: 10.1021/es702348j] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Concentrations of polybrominated diphenyl ethers (PBDEs), pesticides, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons were measured in 136 fish from 14 remote lakes in 8 western U.S. National Parks/Preserves between 2003 and 2005 and compared to human and wildlife contaminant health thresholds. A sensitive (median detection limit--18 pg/g wet weight), efficient (61% recovery at 8 ng/g), reproducible (4.1% relative standard deviation (RSD)), and accurate (7% deviation from standard reference material (SRM)) analytical method was developed and validated for these analyses. Concentrations of PCBs, hexachlorobenzene, hexachlorocyclohexanes, DDTs, and chlordanes in western U.S. fish were comparable to or lower than mountain fish recently collected from Europe, Canada, and Asia. Dieldrin and PBDE concentrations were higher than recent measurements in mountain fish and Pacific Ocean salmon. Concentrations of most contaminants in western U.S. fish were 1-6 orders of magnitude below calculated recreational fishing contaminant health thresholds. However, lake average contaminant concentrations in fish exceeded subsistence fishing cancer thresholds in 8 of 14 lakes and wildlife contaminant health thresholds for piscivorous birds in 1 of 14 lakes. These results indicate that atmospherically deposited organic contaminants can accumulate in high elevation fish, reaching concentrations relevant to human and wildlife health.
Collapse
Affiliation(s)
- Luke K. Ackerman
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331
| | - Adam R. Schwindt
- Center for Fish Disease Research-Department of Microbiology; Oregon State University, Corvallis, Oregon 97331
| | - Staci L. Simonich
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331
- Corresponding author: phone +5417379194; fax +5417370497;
| | - Dan C. Koch
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331
| | | | - Carl B. Schreck
- Oregon Cooperative Fish and Wildlife Research Unit-US Geological Survey, Oregon State University, Corvallis, Oregon 97331
- Department of Fisheries & Wildlife, Oregon State University, Corvallis, Oregon 97331
| | - Michael L. Kent
- Center for Fish Disease Research-Department of Microbiology; Oregon State University, Corvallis, Oregon 97331
| | - Dixon H. Landers
- United States Environmental Protection Agency, Corvallis, OR 97335
| |
Collapse
|