1
|
Liu H, Li Y, Huangfu Z, Lu Q, Yang B, Liu Y. Structure and molecular-level transformation for oxidation of effluent organic matters by manganese oxides. WATER RESEARCH 2024; 262:122082. [PMID: 39018581 DOI: 10.1016/j.watres.2024.122082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
As important organic components in water environments, effluent organic matters (EfOMs) from wastewater treatment plants are widely present in Mn-rich environments or engineered treatment systems. The redox interaction between manganese oxides (MnOx) and EfOMs can lead to their structural changes, which are crucial for ensuring the safety of water environments. Herein, the reactivities of MnOx with EfOMs were evaluated, and it was found that MnOx with high specific surface area, active high-valent manganese content and lattice oxygen content (i.e., amorphous MnO2) possessed stronger oxidizing ability towards EfOMs. Accompanying by EfOMs oxidation, Mn(IV) and Mn(III) were reduced into Mn(II), with Mn(III) as the significant active species. Through molecular-level transformation analysis by ultrahigh mass spectrometry (FT-ICR MS), the highly reactive compounds in EfOMs were clearly determined to be that with more aromatic and unsaturated structures, especially lignin-like compounds (the highest content in EfOMs (over 60 %)). EfOMs were oxidized by amorphous MnO2 into products with lower humification index (0.60 vs. 0.46), smaller apparent molecular weight (386.94 Da vs. 368.68 Da), and higher biodegradability (BOD5/COD: 0.12 vs. 0.78). This finding suggested that redox reactions between MnOx and EfOMs might alter their abiotic and biotic behaviors in receiving water environments.
Collapse
Affiliation(s)
- Hongnan Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yingying Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zizheng Huangfu
- Sinochem Environment Holdings Co., Ltd., Beijing 100071, China
| | - Qi Lu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Baolong Yang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yongze Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
Zeng G, Ping Y, Xu H, Yang Z, Tang C, Yang W, Si M, Arinzechi C, Liu L, He F, Zhang X, Liao Q. Transformation of As and Cd associated with Fe-Mn-modified biochar during simultaneous remediation on the contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47408-47419. [PMID: 38997602 DOI: 10.1007/s11356-024-34384-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Here, Fe- and Mn-modified biochar (BC-Fe-Mn) was applied to simultaneously stabilize As and Cd in the contaminated soil. The removal efficiencies for NaHCO3-extractable As and DTPA-extractable Cd by BC-Fe-Mn were 60.8% and 49.6%, respectively. The speciation analyses showed that the transformation to low-crystallinity Fe-bound (F3) As, Fe-Mn oxide-bound (OX) of Cd, and residual As and Cd was primarily attributed to stabilizing the two metal(loid)s. Moreover, the correlation analyses showed that the increase of As in F3 fraction was significantly and positively associated with the increase of OX fraction Mn (r = 0.64). Similarly, OX fraction Cd was increased notably with increasing OX fraction Fe (r = 0.91) and OX fraction Mn (r = 0.76). In addition, a novel dialysis experiment was performed to separate the reacted BC-Fe-Mn from the soil for intensively investigating the stabilization mechanisms for As and Cd by BC-Fe-Mn. The characteristic crystalline compounds of (Fe0.67Mn0.33)OOH and Fe2O3 on the surface of BC-Fe-Mn were revealed by SEM-EDS and XRD. And FTIR analyses showed that α-FeOOH, R-COOFe/Mn+, and O-H on BC-Fe-Mn potentially served as the reaction sites for As and Cd. A crystalline compound of MnAsO4 was found in the soil treated by BC-Fe-Mn in the dialysis experiment. Thus, our results are beneficial to deeper understand the mechanisms of simultaneous stabilization of As and Cd by BC-Fe-Mn in soil and support the application of the materials on a large scale.
Collapse
Affiliation(s)
- Gai Zeng
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Yang Ping
- POWERCHINA Eco-Environmental Group Co., LTD., Shenzhen, 518102, People's Republic of China
| | - Hao Xu
- POWERCHINA Eco-Environmental Group Co., LTD., Shenzhen, 518102, People's Republic of China
| | - Zhihui Yang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, People's Republic of China
| | - Chongjian Tang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, People's Republic of China
| | - Weichun Yang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, People's Republic of China
| | - Mengying Si
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, People's Republic of China
| | - Chukwuma Arinzechi
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Lin Liu
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Fangshu He
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Xiaoming Zhang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Qi Liao
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China.
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| |
Collapse
|
3
|
Liang M, Guo H, Xiu W. Synergetic effects of Mn(II) production and site availability on arsenite oxidation and arsenate adsorption on birnessite in the presence of low molecular weight organic acids. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133061. [PMID: 38029590 DOI: 10.1016/j.jhazmat.2023.133061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/08/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Manganese oxides and organic acids are key factors affecting arsenic mobility, but As(III) oxidation and adsorption in the coexistence of birnessite and low molecular weight organic acids (LMWOAs) are poorly understood. Herein, As(III) immobilization by birnessite was investigated with/without LMWOAs (including tartaric (TA), malate (MA), and succinic acids (SA) with two, one and zero hydroxyl groups, respectively). In the low-As(III) system with less Mn(II) production, LMWOAs generally inhibited As(III) oxidation. The slower decrease in As(III) concentration in TA-amended batches resulted from stronger bonding interaction between TA and edge sites, evidenced by higher removal of TA than MA and SA in solutions and the higher proportion of shifted C-OH component in solids. In high-As(III) systems with abundant Mn(II) production, higher concentrations of dissolved Mn and Mn(III) in LMWOA-amended batches than in LMWOA-free batches revealed that LMWOA-induced complexing dissolution caused the release of adsorbed Mn(II), which was conducive to As(III) oxidation and As(V) adsorption onto the edge sites. The lowest concentrations of dissolved Mn and Mn(III) in TA-amended batches indicated that the hydroxyl group constrained complexing dissolution. This study reveals that concentrations of produced Mn(II) determined the roles of LMWOAs in As(III) behavior and highlights the impacts of the hydroxyl group on arsenic mobility.
Collapse
Affiliation(s)
- Mengyu Liang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, People's Republic of China; MOE Key Laboratory of Groundwater Circulation & Environment Evolution & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, People's Republic of China; MOE Key Laboratory of Groundwater Circulation & Environment Evolution & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China.
| | - Wei Xiu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, People's Republic of China; Institute of Geosciences, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
| |
Collapse
|
4
|
Li F, Yin H, Zhu T, Zhuang W. Understanding the role of manganese oxides in retaining harmful metals: Insights into oxidation and adsorption mechanisms at microstructure level. ECO-ENVIRONMENT & HEALTH (ONLINE) 2024; 3:89-106. [PMID: 38445215 PMCID: PMC10912526 DOI: 10.1016/j.eehl.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/08/2024] [Indexed: 03/07/2024]
Abstract
The increasing intensity of human activities has led to a critical environmental challenge: widespread metal pollution. Manganese (Mn) oxides have emerged as potentially natural scavengers that perform crucial functions in the biogeochemical cycling of metal elements. Prior reviews have focused on the synthesis, characterization, and adsorption kinetics of Mn oxides, along with the transformation pathways of specific layered Mn oxides. This review conducts a meticulous investigation of the molecular-level adsorption and oxidation mechanisms of Mn oxides on hazardous metals, including adsorption patterns, coordination, adsorption sites, and redox processes. We also provide a comprehensive discussion of both internal factors (surface area, crystallinity, octahedral vacancy content in Mn oxides, and reactant concentration) and external factors (pH, presence of doped or pre-adsorbed metal ions) affecting the adsorption/oxidation of metals by Mn oxides. Additionally, we identify existing gaps in understanding these mechanisms and suggest avenues for future research. Our goal is to enhance knowledge of Mn oxides' regulatory roles in metal element translocation and transformation at the microstructure level, offering a framework for developing effective metal adsorbents and pollution control strategies.
Collapse
Affiliation(s)
- Feng Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
- Institute of Eco-environmental Forensics, Shandong University, Qingdao 266237, China
| | - Hui Yin
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Ministry of Ecology and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Tianqiang Zhu
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
- Institute of Eco-environmental Forensics, Shandong University, Qingdao 266237, China
| | - Wen Zhuang
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
- National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Institute of Eco-environmental Forensics, Shandong University, Qingdao 266237, China
| |
Collapse
|
5
|
Zeng G, Si M, Dong C, Liao Q, He F, Johnson VE, Arinzechi C, Yang W, Yang Z. Adsorption behavior of lead, cadmium, and arsenic on manganese-modified biochar: competition and promotion. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:86. [PMID: 38367055 DOI: 10.1007/s10653-024-01865-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/09/2024] [Indexed: 02/19/2024]
Abstract
Biochar adsorption of heavy metals has been a research hotspot, yet there has been limited reports on the effect of heavy metal interactions on adsorption efficiency in complex systems. In this study, the adsorbent was prepared by pyrolysis of rice straw loaded with manganese (BC-Mn). The interactions of Pb, Cd and As adsorption on BC-Mn were systematically studied. The results of the adsorption isotherms for the binary metal system revealed a competitive adsorption between Pb and Cd, resulting in decreased Pb (from 214.38 mg/g to 148.20 mg/g) and Cd (from 165.73 mg/g to 92.11 mg/g). A notable promotion occurred between As and Cd, showing an increase from 234.93 mg/g to 305.00 mg/g for As and 165.73 mg/g to 313.94 mg/g for Cd. In the ternary metal system, Pb inhibition did not counteract the promotion of Cd and As. Furthermore, the Langmuir isotherm effectively described BC-Mn's adsorption process in monometallic, binary, and ternary metal systems (R2 > 0.9294). Zeta and FTIR analyses revealed simultaneous competition between Pb and Cd for adsorption on BC-Mn's -OH sites. XPS analysis revealed that As adsorption by BC-Mn facilitated the conversion of MnO2 and MnO to MnOOH, resulting in increased hydroxyl radical production on BC-Mn's surface. Simultaneously, Cd combined with the adsorbed As to form ternary Cd-As-Mn complexes, which expedited the removal of Cd. These results help to provide theoretical support as well as technical support for the treatment of Pb-Cd-As contaminated wastewater.
Collapse
Affiliation(s)
- Gai Zeng
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, People's Republic of China
| | - Mengying Si
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, People's Republic of China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, People's Republic of China
| | - Chunhua Dong
- Soil and Fertilizer Institute of Hunan Province, Changsha, 410083, People's Republic of China
| | - Qi Liao
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, People's Republic of China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, People's Republic of China
| | - Fangshu He
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, People's Republic of China
| | - Varney Edwin Johnson
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, People's Republic of China
| | - Chukwuma Arinzechi
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, People's Republic of China
| | - Weichun Yang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, People's Republic of China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, People's Republic of China
| | - Zhihui Yang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, People's Republic of China.
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, People's Republic of China.
| |
Collapse
|
6
|
Zhang Y, Deng Y, Xue J, Cheng Y, Nie Y, Pi K, Du Y, Xie X, Shi J, Wang Y. Unravelling the impacts of soluble Mn(III)-NOM on arsenic immobilization by ferrihydrite or goethite under aquifer conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133640. [PMID: 38309162 DOI: 10.1016/j.jhazmat.2024.133640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
The environmental fate of arsenic (As) relies substantially on its speciation, which occurs frequently coupled to the redox transformation of manganese. While trivalent manganese (Mn(III)), which is known for its high reactivity, is believed to play a role in As mobilization by iron (oxyhydr)oxides in dynamic aquifers, the exact roles and underlying mechanisms are still poorly understood. Using increasingly complex batch experiments that mimick As-affected aquifer conditions in combination with time-resolved characterization, we demonstrate that Mn(III)-NOM complexes play a crucial role in the manganese-mediated immobilization of As(III) by ferrihydrite and goethite. Under anaerobic condition, Mn(III)-fulvic acid (FA) rapidly oxidized 31.8% of aqueous As(III) and bound both As(III) and As(V). Furthermore, Mn(III)-FA exerted significantly different effects on the adsorption of As by ferrihydrite and goethite. Mn(III)-FA increased the adsorption of As by 6-16% due to the higher affinity of oxidation-produced As(V) for ferrihydrite under circumneutral conditions. In contrast, As adsorption by crystalline goethite was eventually inhibited due to the competitive effect of Mn(III)-FA. To summarize, our results reveal that Mn(III)-NOM complexes play dual roles in As retention by iron oxides, depending on the their crystallization. This highlights the importance of Mn(III) for the fate of As particularly in redox fluctuating groundwater environments.
Collapse
Affiliation(s)
- Yuxi Zhang
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; Geological Survey, China University of Geosciences, Wuhan 430074, PR China
| | - Yamin Deng
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China.
| | - Jiangkai Xue
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yihan Cheng
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yulun Nie
- Faculty of Materials Sciences and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Kunfu Pi
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yao Du
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Xianjun Xie
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Jianbo Shi
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yanxin Wang
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
7
|
Huang Y, Huangfu X, Ma C, Liu Z. Sequestration and oxidation of heavy metals mediated by Mn(II) oxidizing microorganisms in the aquatic environment. CHEMOSPHERE 2023; 329:138594. [PMID: 37030347 DOI: 10.1016/j.chemosphere.2023.138594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
Microorganisms can oxidize Mn(II) to biogenic Mn oxides (BioMnOx), through enzyme-mediated processes and non-enzyme-mediated processes, which are generally considered as the source and sink of heavy metals due to highly reactive to sequestrate and oxidize heavy metals. Hence, the summary of interactions between Mn(II) oxidizing microorganisms (MnOM) and heavy metals is benefit for further work on microbial-mediated self-purification of water bodies. This review comprehensively summarizes the interactions between MnOM and heavy metals. The processes of BioMnOx production by MnOM has been firstly discussed. Moreover, the interactions between BioMnOx and various heavy metals are critically discussed. On the one hand, modes for heavy metals adsorbed on BioMnOx are summarized, such as electrostatic attraction, oxidative precipitation, ion exchange, surface complexation, and autocatalytic oxidation. On the other hand, adsorption and oxidation of representative heavy metals based on BioMnOx/Mn(II) are also discussed. Thirdly, the interactions between MnOM and heavy metals are also focused on. Finally, several perspectives which will contribute to future research are proposed. This review provides insight into the sequestration and oxidation of heavy metals mediated by Mn(II) oxidizing microorganisms. It might be helpful to understand the geochemical fate of heavy metals in the aquatic environment and the process of microbial-mediated water self-purification.
Collapse
Affiliation(s)
- Yuheng Huang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing, 400044, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing, 400044, China.
| | - Chengxue Ma
- State Key Laboratory of Urban Water Resource, and Environment, School of Municipal, and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Ziqiang Liu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
8
|
Bañuelos JL, Borguet E, Brown GE, Cygan RT, DeYoreo JJ, Dove PM, Gaigeot MP, Geiger FM, Gibbs JM, Grassian VH, Ilgen AG, Jun YS, Kabengi N, Katz L, Kubicki JD, Lützenkirchen J, Putnis CV, Remsing RC, Rosso KM, Rother G, Sulpizi M, Villalobos M, Zhang H. Oxide- and Silicate-Water Interfaces and Their Roles in Technology and the Environment. Chem Rev 2023; 123:6413-6544. [PMID: 37186959 DOI: 10.1021/acs.chemrev.2c00130] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Interfacial reactions drive all elemental cycling on Earth and play pivotal roles in human activities such as agriculture, water purification, energy production and storage, environmental contaminant remediation, and nuclear waste repository management. The onset of the 21st century marked the beginning of a more detailed understanding of mineral aqueous interfaces enabled by advances in techniques that use tunable high-flux focused ultrafast laser and X-ray sources to provide near-atomic measurement resolution, as well as by nanofabrication approaches that enable transmission electron microscopy in a liquid cell. This leap into atomic- and nanometer-scale measurements has uncovered scale-dependent phenomena whose reaction thermodynamics, kinetics, and pathways deviate from previous observations made on larger systems. A second key advance is new experimental evidence for what scientists hypothesized but could not test previously, namely, interfacial chemical reactions are frequently driven by "anomalies" or "non-idealities" such as defects, nanoconfinement, and other nontypical chemical structures. Third, progress in computational chemistry has yielded new insights that allow a move beyond simple schematics, leading to a molecular model of these complex interfaces. In combination with surface-sensitive measurements, we have gained knowledge of the interfacial structure and dynamics, including the underlying solid surface and the immediately adjacent water and aqueous ions, enabling a better definition of what constitutes the oxide- and silicate-water interfaces. This critical review discusses how science progresses from understanding ideal solid-water interfaces to more realistic systems, focusing on accomplishments in the last 20 years and identifying challenges and future opportunities for the community to address. We anticipate that the next 20 years will focus on understanding and predicting dynamic transient and reactive structures over greater spatial and temporal ranges as well as systems of greater structural and chemical complexity. Closer collaborations of theoretical and experimental experts across disciplines will continue to be critical to achieving this great aspiration.
Collapse
Affiliation(s)
- José Leobardo Bañuelos
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Eric Borguet
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Gordon E Brown
- Department of Earth and Planetary Sciences, The Stanford Doerr School of Sustainability, Stanford University, Stanford, California 94305, United States
| | - Randall T Cygan
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - James J DeYoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Patricia M Dove
- Department of Geosciences, Department of Chemistry, Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Marie-Pierre Gaigeot
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE UMR8587, 91025 Evry-Courcouronnes, France
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Julianne M Gibbs
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2Canada
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Anastasia G Ilgen
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Young-Shin Jun
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Nadine Kabengi
- Department of Geosciences, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lynn Katz
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James D Kubicki
- Department of Earth, Environmental & Resource Sciences, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Johannes Lützenkirchen
- Karlsruher Institut für Technologie (KIT), Institut für Nukleare Entsorgung─INE, Eggenstein-Leopoldshafen 76344, Germany
| | - Christine V Putnis
- Institute for Mineralogy, University of Münster, Münster D-48149, Germany
| | - Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Kevin M Rosso
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Gernot Rother
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Marialore Sulpizi
- Department of Physics, Ruhr Universität Bochum, NB6, 65, 44780, Bochum, Germany
| | - Mario Villalobos
- Departamento de Ciencias Ambientales y del Suelo, LANGEM, Instituto De Geología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Huichun Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
9
|
Li Y, Yang Y, Wang R, Xu Z, Jin G, Jin C. Catalytic oxidation effect of MnSO 4 on As(III) by air in alkaline solution. J Environ Sci (China) 2023; 126:644-655. [PMID: 36503790 DOI: 10.1016/j.jes.2022.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/17/2023]
Abstract
The catalytic oxidation effect of MnSO4 on As(III) by air in an alkaline solution was investigated. According to the X-ray diffraction (XRD), scanning electron microscope-energy dispersive spectrometer (SEM-EDS) and X-ray photoelectron spectroscopy (XPS) analysis results of the product, it was shown that the introduction of MnSO4 in the form of solution would generate Na0.55Mn2O4·1.5H2O with strong catalytic oxidation ability in the aerobic alkaline solution, whereas the catalytic effect of the other product MnOOH is not satisfactory. Under the optimal reaction conditions of temperature 90°C, As/Mn molar ratio 12.74:1, air flow rate 1.0 L/min, and stirring speed 300 r/min, As(III) can be completely oxidized after 2 hr reaction. The excellent catalytic oxidation ability of MnSO4 on As(III) was mainly attributed to the indirect oxidation of As(III) by the product Na0.55Mn2O4·1.5H2O. This study shows a convenient and efficient process for the oxidation of As(III) in alkali solutions, which has potential application value for the pre-oxidation of arsenic-containing solution or the detoxification of As(III).
Collapse
Affiliation(s)
- Yuhu Li
- Faculty of materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Yudong Yang
- Faculty of materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Ruixiang Wang
- Faculty of materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China.
| | - Zhifeng Xu
- Faculty of materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Guizhong Jin
- Hsikwang Shan Twinkling Star Co. Ltd., Lengshui Jiang 417500, China
| | - Chengyong Jin
- Hsikwang Shan Twinkling Star Co. Ltd., Lengshui Jiang 417500, China
| |
Collapse
|
10
|
Li H, Reinhart B, Moller S, Herndon E. Effects of C/Mn Ratios on the Sorption and Oxidative Degradation of Small Organic Molecules on Mn-Oxides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:741-750. [PMID: 36535081 DOI: 10.1021/acs.est.2c03633] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Manganese (Mn) oxides have a high surface area and redox potential that facilitate sorption and/or oxidation of organic carbon (OC), but their role in regulating soil C storage is relatively unexplored. Small OC compounds with distinct structures were reacted with Mn(III/IV)-oxides to investigate the effects of OC/Mn molar ratios on Mn-OC interaction mechanisms. Dissolved and solid-phase OC and Mn were measured to quantify the OC sorption to and/or the redox reaction with Mn-oxides. Mineral transformation was evaluated using X-ray diffraction and X-ray absorption spectroscopy. Higher OC/Mn ratios resulted in higher sorption and/or redox transformation; however, interaction mechanisms differed at low or high OC/Mn ratios for some OC. Citrate, pyruvate, ascorbate, and catechol induced Mn-oxide dissolution. The average oxidation state of Mn in the solid phase did not change during the reaction with citrate, suggesting ligand-promoted mineral dissolution, but decreased significantly during reactions with the other compounds, suggesting reductive dissolution mechanisms. Phthalate primarily sorbed on Mn-oxides with no detectable formation of redox products. Mn-OC interactions led primarily to C loss through OC oxidation into inorganic C, except phthalate, which was predominantly immobilized in the solid phase. Together, these results provided detailed fundamental insights into reactions happening at organo-mineral interfaces in soils.
Collapse
Affiliation(s)
- Hui Li
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina27695, United States
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Benjamin Reinhart
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois60439, United States
| | - Spencer Moller
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware19716, United States
| | - Elizabeth Herndon
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| |
Collapse
|
11
|
Jain N, Maiti A. Fe-Mn-Al metal oxides/oxyhydroxides as As(III) oxidant under visible light and adsorption of total arsenic in the groundwater environment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
12
|
Zhang S, Li H, Wu Z, Post JE, Lanson B, Liu Y, Hu B, Wang M, Zhang L, Hong M, Liu F, Yin H. Effects of cobalt doping on the reactivity of hausmannite for As(III) oxidation and As(V) adsorption. J Environ Sci (China) 2022; 122:217-226. [PMID: 35717086 DOI: 10.1016/j.jes.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/06/2022] [Accepted: 02/06/2022] [Indexed: 06/15/2023]
Abstract
Hausmannite is a common low valence Mn oxide mineral, with a distorted spinel structure, in surficial sediments. Although natural Mn oxides often contain various impurities of transitional metals (TMs), few studies have addressed the effect and related mechanism of TM doping on the reactivity of hausmannite with metal pollutants. Here, the reactivity of cobalt (Co) doped hausmannite with aqueous As(III) and As(V) was studied. Co doping decreased the point of zero charge of hausmannite and its adsorption capacity for As(V). Despite a reduction of the initial As(III) oxidation rate, Co-doped hausmannite could effectively oxidize As(III) to As(V), followed by the adsorption and fixation of a large amount of As(V) on the mineral surface. Arsenic K-edge EXAFS analysis of the samples after As(V) adsorption and As(III) oxidation revealed that only As(V) was adsorbed on the mineral surface, with an average As-Mn distance of 3.25-3.30 Å, indicating the formation of bidentate binuclear complexes. These results provide new insights into the interaction mechanism between TMs and low valence Mn oxides and their effect on the geochemical behaviors of metal pollutants.
Collapse
Affiliation(s)
- Shuang Zhang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Ministry of Ecology and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Li
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Zhongkuan Wu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jeffrey E Post
- Department of Mineral Sciences, NHB 119, Smithsonian Institution, Washington DC 20013-7012, USA
| | - Bruno Lanson
- Université Grenoble Alpes, Grenoble F-38000, France; CNRS, IRD, University of Savoy Mont Blanc, France; ISTerre, Université Gustave Eiffel, France
| | - Yurong Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Ministry of Ecology and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Biyun Hu
- The Forestry Prospect Design Institute Of Hubei Province, Wuhan 430070, China
| | - Mingxia Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Ministry of Ecology and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Limei Zhang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Ministry of Ecology and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Mei Hong
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Fan Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Ministry of Ecology and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Yin
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Ministry of Ecology and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
13
|
Wang Y, Zhang L, Guo C, Gao Y, Pan S, Liu Y, Li X, Wang Y. Arsenic removal performance and mechanism from water on iron hydroxide nanopetalines. Sci Rep 2022; 12:17264. [PMID: 36241687 PMCID: PMC9568553 DOI: 10.1038/s41598-022-21707-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/30/2022] [Indexed: 01/06/2023] Open
Abstract
Human health has been seriously endangered by arsenic pollution in drinking water. In this paper, iron hydroxide nanopetalines were synthesized through a precipitation method using KBH4 and their performance and mechanism of As(V) and As(III) removal were investigated. The prepared material was characterized by SEM-EDX, XRD, BET, zeta potential and FTIR analyses. Batch experiments indicated that the iron hydroxide nanopetalines exhibited more excellent performance for As(V) and As(III) removal than ferrihydrite. The adsorption processes were very fast in the first stage, followed a relatively slower adsorption rate and reached equilibria after 24 h, and the reaction could be fitted best by the pseudo-second order model, followed by the Elovich model. The adsorption isotherm data followed to the Freundlich model, and the maximal adsorption capacities of As(V) and As(III) calculated by the Langmuir model were 217.76 and 91.74 mg/g at pH 4.0, respectively, whereas these values were 187.84 and 147.06 mg/g at pH 8.0, respectively. Thermodynamic studies indicated that the adsorption process was endothermic and spontaneous. The removal efficiencies of As(V) and As(III) were significantly affected by the solution pH and presence of PO43- and citrate. The reusability experiments showed that more than 67% of the removal efficiency of As(V) could be easily recovered after four cycles. The SEM and XRD analyses indicated that the surface morphology and crystal structure before and after arsenic removal were stable. Based on the analyses of FTIR, XRD and XPS, the predominant adsorption mechanism was the formation of inner-sphere surface complexes by the surface hydroxyl exchange reactions of Fe-OH groups with arsenic species. This research provides a new strategy for the development of arsenic immobilization materials and the results confirm that iron hydroxide nanopetalines could be considered as a promising material for removing arsenic from As-contaminated water for their highly efficient performance and stability.
Collapse
Affiliation(s)
- Yulong Wang
- grid.256922.80000 0000 9139 560XNational Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004 China ,grid.256922.80000 0000 9139 560XKey Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004 China ,grid.256922.80000 0000 9139 560XHenan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004 China
| | - Lin Zhang
- grid.256922.80000 0000 9139 560XNational Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004 China ,grid.256922.80000 0000 9139 560XHenan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004 China
| | - Chen Guo
- grid.256922.80000 0000 9139 560XNational Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004 China ,grid.256922.80000 0000 9139 560XHenan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004 China
| | - Yali Gao
- grid.256922.80000 0000 9139 560XNational Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004 China ,grid.256922.80000 0000 9139 560XHenan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004 China
| | - Shanshan Pan
- grid.256922.80000 0000 9139 560XNational Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004 China ,grid.256922.80000 0000 9139 560XHenan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004 China
| | - Yanhong Liu
- grid.256922.80000 0000 9139 560XCollege of Software, Henan University, Kaifeng, 475004 China
| | - Xuhui Li
- grid.256922.80000 0000 9139 560XNational Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004 China ,grid.256922.80000 0000 9139 560XKey Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004 China ,grid.256922.80000 0000 9139 560XHenan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004 China
| | - Yangyang Wang
- grid.256922.80000 0000 9139 560XNational Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004 China ,grid.256922.80000 0000 9139 560XKey Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004 China ,grid.256922.80000 0000 9139 560XHenan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004 China
| |
Collapse
|
14
|
Luo T, Wang R, Chai F, Jiang L, Rao P, Yan L, Hu X, Zhang W, Wei L, Khataee A, Han N. Arsenite (III) removal via manganese-decoration on cellulose nanocrystal -grafted polyethyleneimine nanocomposite. CHEMOSPHERE 2022; 303:134925. [PMID: 35561766 DOI: 10.1016/j.chemosphere.2022.134925] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/26/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
The manganese is successfully induced as a "bridge joint" to fabricate a new adsorbent (CNC-Mn-PEI) connecting cellulose nanocrystal (CNC) and polyethyleneimine (PEI) respectively. It was used to remove As (III) from waste water. It has been proved that the incompact CNC and PEI were successfully connected by Mn ions, which induced the formation of O-Mn-O bonds and the removal efficiency is maintained in the broad pH range of 4-8, even with the influence of NO3- and CO32-. The CNC-Mn-PEI was characterized by Brunauer-Emmett-Telley (BET) method and the results showed that the nanoparticle of the specific surface area was 106.5753 m2/g, it has a significant improvement, compared with CNC-Mn-DW (0.1918 m2/g). The isotherm and kinetic parameters of arsenic removal on CNC-Mn-PEI were well-fitted by the Langmuir and pseudo-second-order models. The maximum adsorption capacities toward As (III) was 78.02 mg/g. After seven regeneration cycles, the removal of As (III) by the adsorbent decreased from 80.78% to 68.2%. Additionally, the hypothetical adsorption mechanism of "bridge joint" effect was established by FTIR and XPS, which provided the three activated sites from CNC-Mn-PEI can improve the arsenic removal efficiency, and providing a new stratagem for the arsenic pollution treatment.
Collapse
Affiliation(s)
- Tingting Luo
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Runkai Wang
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China.
| | - Fei Chai
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Lei Jiang
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Pinhua Rao
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Lili Yan
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Xinjian Hu
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Wei Zhang
- Department of Materials Engineering, KU Leuven, Leuven, 3001, Belgium
| | - Lianghuan Wei
- College of Chemistry and Environmental Science, Kashi University, Kashi, 844000, China
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400, Gebze, Turkey; Department of Material Science and Physical Chemistry of Materials, South Ural State University, 454080 Chelyabinsk, Russian Federation
| | - Ning Han
- Department of Materials Engineering, KU Leuven, Leuven, 3001, Belgium.
| |
Collapse
|
15
|
Abernathy M, Schaefer MV, Ramirez R, Garniwan A, Lee I, Zaera F, Polizzotto ML, Ying SC. Vanadate Retention by Iron and Manganese Oxides. ACS EARTH & SPACE CHEMISTRY 2022; 6:2041-2052. [PMID: 36016759 PMCID: PMC9393891 DOI: 10.1021/acsearthspacechem.2c00116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/04/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Anthropogenic emissions of vanadium (V) into terrestrial and aquatic surface systems now match those of geogenic processes, and yet, the geochemistry of vanadium is poorly described in comparison to other comparable contaminants like arsenic. In oxic systems, V is present as an oxyanion with a +5 formal charge on the V center, typically described as H x VO4 (3-x)-, but also here as V(V). Iron (Fe) and manganese (Mn) (oxy)hydroxides represent key mineral phases in the cycling of V(V) at the solid-solution interface, and yet, fundamental descriptions of these surface-processes are not available. Here, we utilize extended X-ray absorption fine structure (EXAFS) and thermodynamic calculations to compare the surface complexation of V(V) by the common Fe and Mn mineral phases ferrihydrite, hematite, goethite, birnessite, and pyrolusite at pH 7. Inner-sphere V(V) complexes were detected on all phases, with mononuclear V(V) species dominating the adsorbed species distribution. Our results demonstrate that V(V) adsorption is exergonic for a variety of surfaces with differing amounts of terminal -OH groups and metal-O bond saturations, implicating the conjunctive role of varied mineral surfaces in controlling the mobility and fate of V(V) in terrestrial and aquatic systems.
Collapse
Affiliation(s)
- Macon
J. Abernathy
- Stanford
Synchrotron Radiation Lightsource, SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Michael V. Schaefer
- Department
of Earth and Environmental Science, New
Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, United States
| | - Roxana Ramirez
- Environmental
Sciences Department, University of California-Riverside, Riverside, California 92521, United States
| | - Abdi Garniwan
- Environmental
Sciences Department, University of California-Riverside, Riverside, California 92521, United States
| | - Ilkeun Lee
- Department
of Chemistry, University of California-Riverside, Riverside, California 92521, United States
| | - Francisco Zaera
- Department
of Chemistry, University of California-Riverside, Riverside, California 92521, United States
| | - Matthew L. Polizzotto
- Department
of Earth Sciences, University of Oregon, Eugene, Oregon 97403, United States
| | - Samantha C. Ying
- Environmental
Sciences Department, University of California-Riverside, Riverside, California 92521, United States
- Environmental
Toxicology Graduate Program, University
of California-Riverside, Riverside, California 92521, United States
| |
Collapse
|
16
|
Liang M, Guo H, Xiu W. Effects of low molecular weight organic acids with different functional groups on arsenate adsorption on birnessite. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129108. [PMID: 35580501 DOI: 10.1016/j.jhazmat.2022.129108] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
In an aquatic ecosystem, especially constructed wetlands receiving arsenic (As)-containing wastewater, the fate and mobility of As is influenced by manganese (Mn) oxides and organic matter. Although Mn oxides have been extensively investigated for As(V) adsorption, effects of low molecular weight organic acids (LMWOAs) with different functional groups on As(V) adsorption onto birnessite and underlying mechanisms remain elusive. In this study, LMWOAs with two carboxyl groups (including tartaric (TA), malate (MA), and succinic acids (SA) with two, one and zero hydroxyl groups, respectively) were used. Results showed that more As(V) was adsorbed on birnessite with the presence of LMWOA, indicating that the LMWOA promoted As(V) adsorption via birnessite-carboxyl-As(V) ternary complex. Before birnessite dissolution, TA and MA facilitated As(V) adsorption more efficiently than SA, indicating that hydroxyl group enhanced the coordination among carboxyl groups, As(V) and birnessite. However, within high TA/MA batches, As(V) concentrations decreased sharply and then gradually increased, but Mn(II) concentrations continuously increased, showing the initial reductive dissolution of birnessite promoted As adsorption, while further dissolution was conducive to As mobilization. This study identifies the mechanisms of As adsorption in the presence of LMWOAs and highlights the importance of functional groups in As fate and mobility in aqueous environments.
Collapse
Affiliation(s)
- Mengyu Liang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences,Beijing 100083, People's Republic of China; MOE Key Laboratory of Groundwater Circulation & Environment Evolution & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences,Beijing 100083, People's Republic of China; MOE Key Laboratory of Groundwater Circulation & Environment Evolution & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China.
| | - Wei Xiu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences,Beijing 100083, People's Republic of China; Institute of Geosciences, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
| |
Collapse
|
17
|
Li Q, Schild D, Pasturel M, Lützenkirchen J, Hanna K. Alteration of birnessite reactivity in dynamic anoxic/oxic environments. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128739. [PMID: 35366449 DOI: 10.1016/j.jhazmat.2022.128739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/20/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Although the oxidative capacity of manganese oxides has been widely investigated, potential changes of the surface reactivity in dynamic anoxic/oxic environments have been often overlooked. In this study, we showed that the reactivity of layer structured manganese oxide (birnessite) was highly sensitive to variable redox conditions within environmentally relevant ranges of pH (4.0 - 8.0), ionic strength (0-100 mM NaCl) and Mn(II)/MnO2 molar ratio (0-0.58) using ofloxacine (OFL), a typical antibiotic, as a target contaminant. In oxic conditions, OFL removal was enhanced relative to anoxic environments under alkaline conditions. Surface-catalyzed oxidation of Mn(II) enabled the formation of more reactive Mn(III) sites for OFL oxidation. However, an increase in Mn(II)/MnO2 molar ratio suppressed MnO2 reactivity, probably because of competitive binding between Mn(II) and OFL and/or modification in MnO2 surface charge. Monovalent cations (e.g., Na+) may compensate the charge deficiency caused by the presence of Mn(III), and affect the aggregation of MnO2 particles, particularly under oxic conditions. An enhancement in the removal efficiency of OFL was then confirmed in the dynamic two-step anoxic/oxic process, which emulates oscillating redox conditions in environmental settings. These findings call for a thorough examination of the reactivity changes at environmental mineral surfaces (e.g., MnO2) in natural systems that may be subjected to alternation between anaerobic and oxygenated conditions.
Collapse
Affiliation(s)
- Qinzhi Li
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France
| | - Dieter Schild
- Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology (KIT), P.O. 3640, D-76021 Karlsruhe, Germany
| | | | - Johannes Lützenkirchen
- Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology (KIT), P.O. 3640, D-76021 Karlsruhe, Germany
| | - Khalil Hanna
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France; Institut Universitaire de France (IUF), MESRI, 1 rue Descartes, 75231 Paris, France.
| |
Collapse
|
18
|
Jiang L, Wu P, Xu Y, Li Y, Chen M, Ahmed Z, Zhu N. Impacts of ammonium ion on triclinic birnessites towards the transformation of As(III). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 298:118815. [PMID: 35007679 DOI: 10.1016/j.envpol.2022.118815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/20/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Triclinic birnessite (TB), a typical layered Mn oxide which is abundant naturally occurring minerals with a vital impact on the transformation of arsenite (As(III)) by adsorption and oxidation. As one of the most common critical metalloids, ammonium ion (NH4+) universally coexists with birnessite in marine, sediments or groundwater where are contaminated with As(III). In this study, we investigated the impacts of NH4+ on TB towards the transformation of As(III). Compared with the original TB (40.1%), the As(III) removal efficiencies of three different concentration (0.5 M, 1 M and 2 M) NH4+ impressed triclinic birnessite (TB-0.5 N, TB-1N and TB-2N) are increased rapidly in the order of: TB-2N (80.4%) > TB-1N (75.8%) > TB-0.5 N (71.5%). In addition, TB-2N exhibited the highest initial oxidation rate of 0.0031 min-1 which exceeds twice as much as this of TB (0.0014 min-1). And TB-2N could reach the max oxidation efficiency when the As concentration is 0.08 mM. Due to two different mechanisms of As(III) oxidation on birnessites under acidic and alkaline conditions, TB-2N showed a higher removal efficiency than TB at pH 3.0, 5.0, 7.0 and 9.0. Hence, there are two main reasons for the advanced As(III) oxidation capacity of TB-2N. One is the improvement of the average oxidation state of Mn, the other is the increase of oxygen vacancy with the coexistence of NH4+. Moreover, the larger specific surface area of TB-2N also contribute to enhancing As(III) oxidation capacity. This study holds a fundamental understanding of the behavior of triclinic birnessite which is coexisted with ammonium ion towards the transformation of As(III) in the environment.
Collapse
Affiliation(s)
- Lu Jiang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, PR China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, PR China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, Guangzhou, 510006, PR China.
| | - Yijing Xu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Yihao Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Meiqing Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Zubair Ahmed
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China
| |
Collapse
|
19
|
Jia D, Li Q, Luo T, Monfort O, Mailhot G, Brigante M, Hanna K. Impacts of environmental levels of hydrogen peroxide and oxyanions on the redox activity of MnO 2 particles. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1351-1361. [PMID: 34350930 DOI: 10.1039/d1em00177a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Despite the widespread presence of hydrogen peroxide (H2O2) in surface water and groundwater systems, little is known about the impact of environmental levels of H2O2 on the redox activity of minerals. Here we demonstrate that environmental concentrations of H2O2 can alter the reactivity of birnessite-type manganese oxide, an earth-abundant functional material, and decrease its oxidative activity in natural systems across a wide range of pH values (4-8). The H2O2-induced reductive dissolution generates Mn(II) that will re-bind to MnO2 surfaces, thereby affecting the surface charge of MnO2. Competition of Bisphenol A (BPA), used as a target compound here, and Mn(II) to interact with reactive surface sites may cause suppression of the oxidative ability of MnO2. This suppressive effect becomes more effective in the presence of oxyanions such as phosphate or silicate at concentrations comparable to those encountered in natural waters. Unlike nitrate, adsorption of phosphate or silicate onto birnessite increased in the presence of Mn(II) added or generated through H2O2-induced reduction of MnO2. This suggests that naturally occurring anions and H2O2 may have synergetic effects on the reactivity of birnessite-type manganese oxide at a range of environmentally relevant H2O2 amounts. As layered structure manganese oxides play a key role in the global carbon cycle as well as pollutant dynamics, the impact of environmental levels of hydrogen peroxide (H2O2/MnO2 molar ratio ≤ 0.3) should be considered in environmental fate and transport models.
Collapse
Affiliation(s)
- Daqing Jia
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Qinzhi Li
- Univ. Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR UMR 6226, F-35000 Rennes, France.
| | - Tao Luo
- Univ. Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR UMR 6226, F-35000 Rennes, France.
| | - Olivier Monfort
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Inorganic Chemistry, Ilkovicova 6, Mlynska Dolina, 842 15 Bratislava, Slovakia
| | - Gilles Mailhot
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Marcello Brigante
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Khalil Hanna
- Univ. Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR UMR 6226, F-35000 Rennes, France.
- Institut Universitaire de France (IUF), MESRI, 1 Rue Descartes, 75231 Paris, France
| |
Collapse
|
20
|
Zheng Q, Tu S, Hou J, Ni C, Wang M, Ren L, Wang M, Cao M, Xiong S, Tan W. Insights into the underlying mechanisms of stability working for As(III) removal by Fe-Mn binary oxide as a highly efficient adsorbent. WATER RESEARCH 2021; 203:117558. [PMID: 34425436 DOI: 10.1016/j.watres.2021.117558] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Fe-Mn binary oxide has received increasing interest in treating As(III)-containing polluted groundwater due to its low cost and environmental friendliness. Although the stability of Fe-Mn binary oxide is as important as its adsorption ability, little is known about whether and why Fe-Mn binary oxide is stable during As(III) removal. In this study, five successive cycles were conducted to evaluate the stability of Fe-Mn binary oxide for As(III) removal. As(III) oxidation/adsorption kinetics and the speciation distribution of the released Fe and Mn elements within single Fe oxide, Mn oxide, and Fe-Mn binary oxide were investigated by using characterization techniques of TEM-EDS mapping, selected area electron diffraction (SAED), and XPS combined with a binary component reactor, where Fe and Mn oxides were separated by a semipermeable membrane. The results revealed that Fe-Mn binary oxide could maintain excellent stability, although As(III) oxidation/adsorption behavior was coupled with the release of Fe and Mn ions from its surface. The great stability of Fe-Mn binary oxide for As(III) removal was attributed to the rapid return of aqueous Fe(II) and Mn(II) to the solid surface, which subsequently formed new mineral phases mediated by Fe and Mn oxides, thus considerably decreasing the loss of released Mn(II) and Fe(II).
Collapse
Affiliation(s)
- Qian Zheng
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuxin Tu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingtao Hou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chunlan Ni
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengqing Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Ren
- School of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Mingxia Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Menghua Cao
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuanglian Xiong
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
21
|
Abernathy MJ, Schaefer MV, Vessey CJ, Liu H, Ying SC. Oxidation of V(IV) by Birnessite: Kinetics and Surface Complexation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11703-11712. [PMID: 34488349 DOI: 10.1021/acs.est.1c02464] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Vanadium is a redox-active metal that has been added to the EPA's Contaminant Candidate List with a notification level of 50 μg L-1 due to mounting evidence that VV exposure can lead to adverse health outcomes. Groundwater V concentration exceeds the notification level in many locations, yet geochemical controls on its mobility are poorly understood. Here, we examined the redox interaction between VIV and birnessite (MnO2), a well-characterized oxidant and a scavenger of many trace metals. In our findings, birnessite quickly oxidized sparingly soluble VIV species such as häggite [V2O3(OH)2] into highly mobile and toxic vanadate (HnVO4(3-n)-) in continuously stirred batch reactors under neutral pH conditions. Synchrotron X-ray absorption spectroscopic (XAS) analysis of in situ and ex situ experiments showed that oxidation of VIV occurs in two stages, which are both rapid relative to the measured dissolution rate of the VIV solid. Concomitantly, the reduction of birnessite during VIV oxidation generated soluble MnII, which led to the formation of the MnIII oxyhydroxide feitknechtite (β-MnOOH) upon back-reaction with birnessite. XAS analysis confirmed a bidentate-mononuclear edge-sharing complex formed between VV and birnessite, although retention of VV was minimal relative to the aqueous quantities generated. In summary, we demonstrate that Mn oxides are effective oxidants of VIV in the environment with the potential to increase dissolved V concentrations in aquifers subject to redox oscillations.
Collapse
Affiliation(s)
- Macon J Abernathy
- Environmental Toxicology Program, University of California-Riverside, Riverside, California 92521, United States
| | - Michael V Schaefer
- Department of Environmental Science, University of California-Riverside, Riverside, California 92521, United States
- Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, United States
| | - Colton J Vessey
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Haizhou Liu
- Environmental Toxicology Program, University of California-Riverside, Riverside, California 92521, United States
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, California 92521, United States
| | - Samantha C Ying
- Environmental Toxicology Program, University of California-Riverside, Riverside, California 92521, United States
- Department of Environmental Science, University of California-Riverside, Riverside, California 92521, United States
| |
Collapse
|
22
|
Annaduzzaman M, Rietveld LC, Ghosh D, Hoque BA, van Halem D. Anoxic storage to promote arsenic removal with groundwater-native iron. WATER RESEARCH 2021; 202:117404. [PMID: 34271453 DOI: 10.1016/j.watres.2021.117404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Storage containers are usually used to provide a constant water head in decentralized, community groundwater treatment systems for the removal of iron (Fe) and arsenic (As). However, the commonly practiced aeration prior to storage assists in rapid and complete Fe2+ oxidation, resulting in poor As removal, despite sufficient native-Fe2+ in the source water. In this study, it was found that application of anoxic storage enhanced As removal from groundwater, containing ≥300 µg/L of As(III) and 2.33 mg/L of Fe2+ in an As affected village of Rajshahi district in Bangladesh. Although the oxidation of Fe2+ and As(III) during oxic storage was considerably faster, the As/Fe removal ratio was higher during anoxic storage (61-80±5 µgAs/mgFe) compared to the oxic storage (45±5 µgAs/mgFe). This higher As removal efficacy in anoxic storage containers could not be attributed to the speciation of As, since As(V) concentrations were higher during oxic storage due to more favorable abiotic (As(III) oxidation by O2 and Fenton-like intermediates) and biotic (As(III) oxidizing bacteria, e.g., Sideroxydans, Gallionella, Hydrogenophaga) conditions. The continuous, in-situ hydrous ferric oxide floc formation during flow-through operation, and the favorable lower pH aiding higher sorption capacities for the gradually formed As(V) likely contributed to the improved performance in the anoxic storage containers.
Collapse
Affiliation(s)
- Md Annaduzzaman
- Sanitary Engineering Section, Water Management Department, Delft University of Technology, the Netherlands.
| | - Luuk C Rietveld
- Sanitary Engineering Section, Water Management Department, Delft University of Technology, the Netherlands
| | - Devanita Ghosh
- Laboratory of Biogeochem-mystery, Centre for Earth Sciences, Indian Institute of Science, Bangalore, India
| | - Bilqis A Hoque
- Environment and Population Research Centre, Dhaka, Bangladesh
| | - Doris van Halem
- Sanitary Engineering Section, Water Management Department, Delft University of Technology, the Netherlands
| |
Collapse
|
23
|
Wang Z, Fu Y, Wang L. Abiotic oxidation of arsenite in natural and engineered systems: Mechanisms and related controversies over the last two decades (1999-2020). JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125488. [PMID: 33676246 DOI: 10.1016/j.jhazmat.2021.125488] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Abiotic oxidation of toxic As(III) to As(V) is being deemed as a necessary step for the overall arsenic decontamination in both natural and engineered systems. Direct oxidation of As(III) by chemical oxidants, such as ozone, permanganate, ferrate, chlorine and chloramine, or naturally occurring minerals like Mn, Fe oxides, seems straightforward. Both O2 and H2O2 are ineffective for arsenite oxidation, but they can be activated by reducing substances like Fe2+, Fe0 to increase the oxidation rates. Photo-induced oxidation of As(III) has been demonstrated effective in Fe complexes or minerals, NO3-/NO2-, dissolved organic matter (DOM), peroxygens and TiO2 systems. Although a variety of oxidation methods have been developed over the past two decades, there remain many scientific and technical challenges that must be overcome before the rapid progress in basic knowledge can be translated into environmental benefits. To better understand the trends in the existing data and to identify the knowledge gaps, this review describes in detail the complicated mechanisms for As(III) oxidation by various methods and emphasizes on the conflicting data and explanation. Some prevailing concerns and challenges in the sphere of As(III) oxidation are also pointed out so as to appeal to researchers for further investigations.
Collapse
Affiliation(s)
- Zhaohui Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663N. Zhongshan Road, Shanghai 200062, China.
| | - Yu Fu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Lingli Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
24
|
Stanberry J, Szlamkowicz I, Purdy LR, Anagnostopoulos V. TcO 2 oxidative dissolution by birnessite under anaerobic conditions: a solid-solid redox reaction impacting the environmental mobility of Tc-99. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:844-854. [PMID: 33885702 DOI: 10.1039/d1em00011j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Remediation efforts for the abatement of Tc-99 contamination in the environment have traditionally focused on the reduction of soluble pertechnetate (Tc(vii)O4-) to insoluble, and less mobile, technetium(iv) oxide (TcO2). Effectiveness of the reductive immobilization of Tc-99 depends on the susceptibility of TcO2 to oxidation to TcO4-in situ, as it is subject to dissolution by oxidizing agents, such as oxygen. Manganese minerals can be a liability for the long-term in situ immobilization of Tc-99, even in suboxic and anoxic systems due to their strong oxidizing capacity. This study presents for the first time the oxidative dissolution of TcO2 to pertechnetate by birnessite under anaerobic conditions. Oxidative dissolution of TcO2 was studied as a function of pH and birnessite:TcO2 ratios and in the presence of Ca2+ and Mn2+. As low as 5 mg of birnessite dissolved ∼65% of the original TcO2 in the suspensions and subsequently released TcO4- in the aqueous phase at both pH 6.5 and 8 in the absence of oxygen. On the other hand, the ability of birnessite to sequester calcium and manganese on its surface at pH 6.5 through sorption was shown to inhibit the oxidative capacity of birnessite. Maximum TcO4- release in the aqueous phase by Ca- and Mn-loaded birnessite was ∼50% less compared to pure birnessite, indicating that divalent cations sorb on active centers responsible for birnessite's oxidative capacity and potentially passivate the mineral. In summary, birnessite exerts strong geochemical controls over the mobility of Tc-99 in anoxic systems by oxidatively mobilizing the otherwise insoluble Tc(iv) to Tc(vii) and their presence in natural systems needs to be taken into account when long-term remediation strategies are being designed.
Collapse
Affiliation(s)
- Jordan Stanberry
- Environmental Radiochemistry Group, Department of Chemistry, University of Central Florida, 4353 Scorpius Str, Orlando, FL 32816, USA.
| | - Ilana Szlamkowicz
- Environmental Radiochemistry Group, Department of Chemistry, University of Central Florida, 4353 Scorpius Str, Orlando, FL 32816, USA.
| | - Lauren R Purdy
- Environmental Radiochemistry Group, Department of Chemistry, University of Central Florida, 4353 Scorpius Str, Orlando, FL 32816, USA.
| | - Vasileios Anagnostopoulos
- Environmental Radiochemistry Group, Department of Chemistry, University of Central Florida, 4353 Scorpius Str, Orlando, FL 32816, USA.
| |
Collapse
|
25
|
Annaduzzaman M, Rietveld LC, Hoque BA, Bari MN, van Halem D. Arsenic removal from iron-containing groundwater by delayed aeration in dual-media sand filters. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:124823. [PMID: 33858074 DOI: 10.1016/j.jhazmat.2020.124823] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/23/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Generally, abstracted groundwater is aerated, leading to iron (Fe2+) oxidation to Fe3+ and precipitation as Fe3+-(hydr)oxide (HFO) flocs. This practice of passive groundwater treatment, however, is not considered a barrier for arsenic (As), as removal efficiencies vary widely (15-95%), depending on Fe/As ratio. This study hypothesizes that full utilization of the adsorption capacity of groundwater native-Fe2+ based HFO flocs is hampered by rapid Fe2+ oxidation-precipitation during aeration before or after storage. Therefore, delaying Fe2+ oxidation by the introduction of an anoxic storage step before aeration-filtration was investigated for As(III) oxidation and removal in Rajshahi (Bangladesh) with natural groundwater containing 329(±0.05) µgAs/L. The results indicated that As(III) oxidation in the oxic storage was higher with complete and rapid Fe2+ oxidation (2±0.01 mg/L) than in the anoxic storage system, where Fe2+ oxidation was partial (1.03±0.32 mg/L), but the oxidized As(V)/Fe removal ratio was comparatively higher for the anoxic storage system. The low pH (6.9) and dissolved oxygen (DO) concentration (0.24 mg/L) in the anoxic storage limited the rapid oxidation of Fe2+ and facilitated more As(V) removal. The groundwater native-Fe2+ (2.33±0.03 mg/L) removed 61% of As in the oxic system (storage-aeration-filtration), whereas 92% As removal was achieved in the anoxic system.
Collapse
Affiliation(s)
- Md Annaduzzaman
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, The Netherlands.
| | - Luuk C Rietveld
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, The Netherlands
| | | | - Md Niamul Bari
- Department of Civil Engineering, Rajshahi University of Engineering and Technology, Bangladesh
| | - Doris van Halem
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, The Netherlands
| |
Collapse
|
26
|
Yu L, Li Y, Ruan Y. Fe-Mn Oxides Based Multifunctional Adsorptive/Electrosensing Nanoplatforms: Dynamic Site Rearrangement for Metal Ion Selectivity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3967-3975. [PMID: 33635053 DOI: 10.1021/acs.est.0c07733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Achieving structural requirements for the exclusive selectivity of adsorbent to a specific metal remains challenging, as certain metal ions show similar adsorptive behaviors and preference toward a given site. We reported the morphology and oxidation state-dependent selectivity manipulating of layered oxides by controlling the dynamic evolution of different adsorptive sites. The computational investigation predicted the site-specific partitioning trends of metal ions at two sites of manganese oxide (MnO2) layers: the lateral edge sites (LESs) and octahedral vacancy sites (OVSs). In contrast to the predominant occupation of the OVSs for other metal ions, the binding of lead (Pb) ions was energetically favored at both the sites. We assembled ultrathin MnO2 nanosheets on the magnetic iron oxides to first enhance the accessibility of the LESs. A sequential ligand-promoted partial reduction of the atomic MnO2 layers induced the edge-to-interlayer migration of Mn atoms to block the nonspecific OVSs and activate the LESs, enabling a superior selectivity to Pb. In addition, the iron oxides helped construct a multifunctional adsorptive/electrosensing platform for Pb regarding their facile magnetic separation and electrochemical activity. Simultaneous selective adsorption and on-site monitoring of Pb(II) were achieved on this nanoplatform, owing to its satisfactory stability and sensitivity without an obvious matrix effect.
Collapse
Affiliation(s)
- Li Yu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, People's Republic of China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Yuchan Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, People's Republic of China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China
| |
Collapse
|
27
|
Yang P, Wen K, Beyer KA, Xu W, Wang Q, Ma D, Wu J, Zhu M. Inhibition of Oxyanions on Redox-driven Transformation of Layered Manganese Oxides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3419-3429. [PMID: 33600156 DOI: 10.1021/acs.est.0c06310] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Layered manganese (Mn) oxides, such as birnessite, can reductively transform into other phases and thereby affect the environmental behavior of Mn oxides. Solution chemistry strongly influences the transformation, but the effects of oxyanions remain unknown. We determined the products and rates of Mn(II)-driven reductive transformation of δ-MnO2, a nanoparticulate hexagonal birnessite, in the presence of phosphate or silicate at pH 6-8 and a wide range of Mn(II)/MnO2 molar ratios. Without the oxyanions, δ-MnO2 transforms into triclinic birnessite (T-bir) and 4 × 4 tunneled Mn oxide (TMO) at low Mn(II)/MnO2 ratios (0.09 and 0.13) and into δ-MnOOH and Mn3O4 with minor poorly crystallized α- and γ-MnOOH at high Mn(II)/MnO2 ratios (0.5 and 1). The presence of phosphate or silicate substantially decreases the rate and extent of the above transformation, probably due to adsorption of the oxyanions on layer edges or the formation of Mn(II,III)-oxyanion ternary complexes on vacancies of δ-MnO2, adversely interfering with electron transfer, Mn(III) distribution, and structural rearrangements. The oxyanions also reduce the crystallinity and particle sizes of the transformation products, ascribed to adsorption of the oxyanions on the products, preventing their further particle growth. This study enriches our understanding of the solution chemistry control on redox-driven transformation of Mn oxides.
Collapse
Affiliation(s)
- Peng Yang
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Ke Wen
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Kevin A Beyer
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Wenqian Xu
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Qian Wang
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Dong Ma
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, Wyoming 82071, United States
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Juan Wu
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, Wyoming 82071, United States
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Mengqiang Zhu
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
28
|
Liu L, Qiao Q, Tan W, Sun X, Liu C, Dang Z, Qiu G. Arsenic detoxification by iron-manganese nodules under electrochemically controlled redox: Mechanism and application. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123912. [PMID: 33264965 DOI: 10.1016/j.jhazmat.2020.123912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 06/12/2023]
Abstract
Iron-manganese binary oxides are characterized by high oxidation and adsorption capability and widely applied to arsenic (As) detoxification in contaminated waters. Despite of their lower preparation cost relative to synthesized iron-manganese binary oxides, the low adsorption capacity of natural iron-manganese oxides largely hinders their application. Here, electrochemically controlled redox was employed to improve the As(III,V) removal performance of iron-manganese nodules in a symmetric electrode system, and the removal mechanism and electrode reusability were also examined. Experimental results showed that both the electrochemical reduction and oxidation of birnessite in iron-manganese nodules contributed much to As(III,V) removal. Higher cell voltage facilitated a higher removal efficiency of total As within 0-1.2 V, which reached 94.7% at 1.2 V for actual As-containing wastewater (4068 μg L-1). The efficiency was obviously higher than that at open circuit (81.4%). Under electrode polarity reversal, the alternating reduction dissolution and oxidation recrystallization of birnessite in iron-manganese nodules promoted their contact with As, enhancing the total As removal efficiency from 75.6% to 91.8% after five times of repeated adsorption. This research clarifies the effect of electrochemical redox on As(III,V) detoxification by iron-manganese oxides, and expands the application of natural iron-manganese nodules in the treatment of As-contaminated wastewaters.
Collapse
Affiliation(s)
- Lihu Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Qi Qiao
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Xuecheng Sun
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, Guizhou Province, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong Province, China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
29
|
Yoshimura Y, Tani S, Fujiwara M, Nakamura M, Sumitani JI, Kawaguchi T. Biogenic manganese oxides combined with 1-hydroxybenzotriazol and an Mn(II)-oxidizing enzyme from Pleosporales sp. Mn1 oxidize 3,4-dimethoxytoluene to yield 3,4-dimethoxybenzaldehyde. J Biosci Bioeng 2021; 131:475-482. [PMID: 33495046 DOI: 10.1016/j.jbiosc.2020.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 12/16/2022]
Abstract
Using soil samples, we screened for microbes that produce biogenic manganese oxides (BMOs) and isolated Mn(II)-oxidizing fungus, namely Pleosporales sp. Mn1 (Mn1). We purified the Mn(II)-oxidizing enzyme from intracellular extracts of Mn1. The enzyme oxidized Mn(II) most effectively at pH 7.0 and 45 °C. The N-terminal amino acid sequence of the purified enzyme possessed homology with multicopper oxidases in fungi. The properties of the enzyme and the effects of the pH and inhibitors on the Mn(II)-oxidization activity suggested that the enzyme is a member of the multicopper oxidase family. The X-ray diffraction pattern of the BMOs produced by Mn1 showed a strong correlation with that of a typical poorly crystalized vernadite (δ-MnO2). Since BMOs are some of the most reactive materials in the environment, we investigated a potential new application of BMOs as oxidation catalysts. We confirmed that BMOs oxidized aromatic methyl groups when combined with the purified enzyme and a mediator, 1-hydroxybenzotriazole (HBT). BMO oxidation of 3,4-dimethoxytoluene achieved a better yield than that of abiotic MnO2 and white-rot fungus laccase under acidic and neutral pH conditions. Under neutral pH, the BMOs oxidized 3,4-dimethoxytoluene to yield 200-fold more 3,4-dimethoxybenzaldehyde than that of abiotic MnO2. This is the first report to reveal that BMOs combined with a Mn(II)-oxidizing enzyme and mediator can oxidize aromatic hydrocarbons to yield corresponding aldehydes.
Collapse
Affiliation(s)
- Yuko Yoshimura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan; Industrial Technology Center of Wakayama Prefecture, 60 Ogura, Wakayama, Wakayama 649-6261, Japan
| | - Shuji Tani
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan
| | - Maki Fujiwara
- Industrial Technology Center of Wakayama Prefecture, 60 Ogura, Wakayama, Wakayama 649-6261, Japan
| | - Makoto Nakamura
- Industrial Technology Center of Wakayama Prefecture, 60 Ogura, Wakayama, Wakayama 649-6261, Japan
| | - Jun-Ichi Sumitani
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan
| | - Takashi Kawaguchi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
30
|
Xu GR, An ZH, Xu K, Liu Q, Das R, Zhao HL. Metal organic framework (MOF)-based micro/nanoscaled materials for heavy metal ions removal: The cutting-edge study on designs, synthesis, and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213554] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
31
|
Jain N, Maiti A. Arsenic adsorbent derived from the ferromanganese slag. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3230-3242. [PMID: 32914302 DOI: 10.1007/s11356-020-10745-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Arsenic-contaminated groundwater has a severe negative impact on the health of living beings. Groundwater majorly contains arsenite (As(III)) as well as arsenate (As(V)). Among these two, the arsenite species are more carcinogenic, mobile, and lethal. Hence, it is more difficult to remove by conventional water treatment methods. Ferromanganese slag, waste generated from steel industries, has been utilized in this study for the development of arsenic adsorbent. A chemical treatment method is applied to the ferromanganese slag to prepare efficient arsenic adsorbent, and it is easy to scale up. An adsorbent with the capacity for simultaneous oxidation of As(III) and adsorption of total arsenic species can be efficient for arsenic decontamination. X-ray photoelectron spectroscopy and X-ray absorption near edge spectra techniques prove the As(III) oxidation capability of the developed material is about 70 ± 5% based on initial As(III) concentration. The adsorbent not only oxidizes the As(III) species but also adsorbs both the arsenic species. The Langmuir isotherm model estimates the maximum adsorption capacities at the equilibrium concentration of 10 μg/L are 1.010 ± 0.004 mg/g and 1.614 ± 0.006 mg/g for As(III) and As(V), respectively. The rate of adsorption of As(III) was higher compared to the As(V), which was confirmed by the pseudo-second-order kinetic model. Therefore, the treated water quality meets the World Health Organization and Indian drinking water standards.
Collapse
Affiliation(s)
- Nishant Jain
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, Uttar Pradesh, 247001, India
| | - Abhijit Maiti
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, Uttar Pradesh, 247001, India.
| |
Collapse
|
32
|
Ying C, Lanson B, Wang C, Wang X, Yin H, Yan Y, Tan W, Liu F, Feng X. Highly enhanced oxidation of arsenite at the surface of birnessite in the presence of pyrophosphate and the underlying reaction mechanisms. WATER RESEARCH 2020; 187:116420. [PMID: 32977187 DOI: 10.1016/j.watres.2020.116420] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Manganese(IV) oxides, and more especially birnessite, rank among the most efficient metal oxides for As(III) oxidation and subsequent sorption, and thus for arsenic immobilization. Efficiency is limited however by the precipitation of low valence Mn (hydr)oxides at the birnessite surface that leads to its passivation. The present work investigates experimentally the influence of chelating agents on this oxidative process. Specifically, the influence of sodium pyrophosphate (PP), an efficient Mn(III) chelating agent, on As(III) oxidation by birnessite was investigated using batch experiments and different arsenic concentrations at circum-neutral pH. In the absence of PP, Mn(II/III) species are continuously generated during As(III) oxidation and adsorbed to the mineral surface. Field emission-scanning electron microscopy, synchrotron-based X-ray diffraction and Fourier transform infrared spectroscopy indicate that manganite is formed, passivating birnessite surface and thus hampering the oxidative process. In the presence of PP, generated Mn(II/III) species form soluble complexes, thus inhibiting surface passivation and promoting As(III) conversion to As(V) with PP. Enhancement of As(III) oxidation by Mn oxides strongly depends on the affinity of the chelating agent for Mn(III) and from the induced stability of Mn(III) complexes. Compared to PP, the positive influence of oxalate, for example, on the oxidative process is more limited. The present study thus provides new insights into the possible optimization of arsenic removal from water using Mn oxides, and on the possible environmental control of arsenic contamination by these ubiquitous nontoxic mineral species.
Collapse
Affiliation(s)
- Chaoyun Ying
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Bruno Lanson
- University Grenoble Alpes, CNRS, University Savoie Mont Blanc, IRD, University Gustave Eiffel, ISTerre, F-38000 Grenoble, France
| | - Cheng Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoming Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Yin
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yupeng Yan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Fan Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xionghan Feng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
33
|
Liang M, Guo H, Xiu W. Arsenite oxidation and arsenic adsorption on birnessite in the absence and the presence of citrate or EDTA. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43769-43785. [PMID: 32740840 DOI: 10.1007/s11356-020-10292-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Birnessite not only oxidizes arsenite into arsenate but also interacts with organic matter in various ways. However, effects of organic matter on interaction between As and birnessite remain unclear. This study investigated effects of citrate and EDTA (3.12 and 2.05 mM, respectively) on oxidation of As(III) (1.07 mM) and adsorption of As(V) (0.67 mM) on birnessite (5.19 mM as Mn) at near-neutral pH. We found that As(V) adsorption on birnessite was enhanced by citrate and EDTA, which resulted from the increase in active adsorption sites via dissolution of birnessite. In comparison with citrate batches, more As was adsorbed on birnessite in EDTA batches, where dissolved Mn was mainly presented as Mn(III)-EDTA complex. Citrate or EDTA-induced dissolution of birnessite did not decrease the As(III) oxidation rate in the initial stage where As(III) oxidation rate was rapid. Afterwards, As(III) oxidation was conspicuously suppressed in citrate-amended batches, which was mainly attributed to the decrease in adsorption sites by adsorption of citrate/Mn(II)-citrate complex. This suppression was enhanced by the increase in concentrations of dissolved Mn(II). Citrate inhibited As adsorption after As(III) oxidation due to the strong competitive adsorption of citrate/Mn(II)-citrate complex. However, the As(III) oxidation rate was increased in EDTA-amended batches in the late stage, which mainly derived from the increase in the active sites via birnessite dissolution. The strong complexation ability of EDTA led to formation of Mn(III)-EDTA complex. Arsenic adsorption was not affected due to the limited competitive adsorption of the complex on the solid. This work reveals the critical role of low molecular weight organic acids in geochemical behaviors of As and Mn in aqueous environment.
Collapse
Affiliation(s)
- Mengyu Liang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, People's Republic of China
- MOE Key Laboratory of Groundwater Circulation & Environment Evolution & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, People's Republic of China.
- MOE Key Laboratory of Groundwater Circulation & Environment Evolution & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China.
| | - Wei Xiu
- Institute of Geosciences, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| |
Collapse
|
34
|
van Genuchten CM, Ahmad A. Groundwater As Removal by As(III), Fe(II), and Mn(II) Co-Oxidation: Contrasting As Removal Pathways with O 2, NaOCl, and KMnO 4. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15454-15464. [PMID: 33174730 DOI: 10.1021/acs.est.0c05424] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Effective arsenic (As) removal from groundwater is a pressing need in view of increasingly stringent As drinking water limits in some US states and European countries. In this study, we compared the addition of weak (O2), intermediate (NaOCl), and strong (KMnO4) groundwater oxidants on the fate of As during As(III), Fe(II), and Mn(II) co-oxidation. Experiments were performed with 50 μg/L As(III), 5 mg/L Fe(II), and 0.5 mg/L Mn(II) in solutions containing relevant groundwater ions, with the reaction products characterized by As K-edge X-ray absorption spectroscopy (XAS). Adding O2 by aeration was the least effective method, unable to decrease As to below 10 μg/L, which was attributed to inefficient As(III) oxidation. Dosing NaOCl (55 μM) consistently removed As to <10 μg/L (and often <5 μg/L). The As K-edge XAS data of the NaOCl samples indicated complete As(III) oxidation and As(V) sorption to coprecipitated hydrous ferric oxide (HFO) in the binuclear, bridging (2C) complex. The most effective As removal was observed with KMnO4 (40 μM), which completely oxidized As(III) and yielded residual As concentrations that were less than (by as much as 50%) or equal to the NaOCl experiments. Furthermore, the average As-metal bond length of the KMnO4 solids (RAs-Fe/Mn = 3.24 ± 0.02 Å) was systematically shorter than the NaOCl solids (RAs-Fe/Mn = 3.29 ± 0.02 Å), consistent with As(V) sorption to both MnO2 and HFO. These findings can be used to optimize groundwater As treatment to meet relevant drinking water guidelines, while considering the As uptake mode and characteristics of the particle suspension (i.e., colloidal stability and filterability).
Collapse
Affiliation(s)
- Case M van Genuchten
- Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, 1350 Copenhagen, Denmark
| | - Arslan Ahmad
- SIBELCO Ankerpoort NV, Op de Bos 300, 6223 EP Maastricht, The Netherlands
- KWR Water Cycle Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, The Netherlands
- Department of Environmental Technology, Wageningen University and Research (WUR), Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
35
|
Rady O, Liu L, Yang X, Tang X, Tan W, Qiu G. Adsorption and catalytic oxidation of arsenite on Fe-Mn nodules in the presence of oxygen. CHEMOSPHERE 2020; 259:127503. [PMID: 32645597 DOI: 10.1016/j.chemosphere.2020.127503] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Fe-Mn nodules affect the speciation, transformation and migration of arsenic (As) via redox and adsorption reactions. However, few studies have been concerned with their interaction in the presence of dissolved oxygen. In this work, the interaction mechanism of As(III) and Fe-Mn nodules was studied in different atmospheres. The influence of pH, dissolved oxygen concentration and chemical composition of nodules on the reaction was also investigated. The results indicated that manganese oxides and iron oxides in nodules respectively contribute to As(III) oxidation and As(III,V) adsorption. Under oxic conditions, Fe-Mn nodules acted as a catalyst to accelerate the oxidation of Mn(II) to Mn(III,V) oxides, which significantly enhanced As(III) oxidation. In the system containing 10 mg L-1 As(III) and 1.0 g L-1 Fe-Mn nodules, the maximum oxidation capacity of As(III) reached 3.22, 3.48 and 3.71 mg g-1, and the corresponding As(III,V) adsorption capacity reached 2.49, 2.40, and 2.39 mg g-1 in nitrogen, air and oxygen atmosphere, respectively. The oxidation capacity of As(III) increased and decreased with increasing dissolved oxygen concentration and pH, respectively. This work clarifies the mechanism of As(III) oxidation by soil Fe-Mn nodules in various systems and contributes to a better understanding of the behaviors and fate of As in environments.
Collapse
Affiliation(s)
- Omar Rady
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China; Soils and Water Department, Faculty of Agriculture, Al-Azhar University, Cairo, 11651, Egypt
| | - Lihu Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Xiong Yang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Xianjin Tang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
36
|
Balgooyen S, Remucal CK, Ginder-Vogel M. Identifying the mechanisms of cation inhibition of phenol oxidation by acid birnessite. JOURNAL OF ENVIRONMENTAL QUALITY 2020; 49:1644-1654. [PMID: 33459423 DOI: 10.1002/jeq2.20144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/31/2020] [Accepted: 08/07/2020] [Indexed: 06/12/2023]
Abstract
Many phenolic compounds found as contaminants in natural waters are susceptible to oxidation by manganese oxides. However, there is often variability between oxidation rates reported in pristine matrices and studies using more environmentally relevant conditions. For example, the presence of cations generally results in slower phenolic oxidation rates. However, the underlying mechanism of cation interference is not well understood. In this study, cation co-solutes inhibit the transformation of four target phenols (bisphenol A, estrone, p-cresol, and triclosan) by acid birnessite. Oxidation rates for these compounds by acid birnessite follow the same trend (Na+ > K+ > Mg2+ > Ca2+) when cations are present as co-solutes. We further demonstrate that the same trend applies to these cations when they are absent from solution but pre-exchanged with the mineral. We analyze valence state, surface area, crystallinity, and zeta potential to characterize changes in oxide structure. The findings of this study show that pre-exchanged cations have a large effect on birnessite reactivity even in the absence of cation co-solutes, indicating that the inhibition of phenolic compound oxidation is not due to competition for surface sites, as previously suggested. Instead, the reaction inhibition is attributed to changes in aggregation and the mineral microstructure.
Collapse
Affiliation(s)
- Sarah Balgooyen
- Environmental Chemistry and Technology Program, Univ. of Wisconsin-Madison, 660 N. Park St., Madison, WI, 53706, USA
| | - Christina K Remucal
- Environmental Chemistry and Technology Program, Univ. of Wisconsin-Madison, 660 N. Park St., Madison, WI, 53706, USA
- Dep. of Civil and Environmental Engineering, Univ. of Wisconsin-Madison, 660 N. Park St., Madison, WI, 53706, USA
| | - Matthew Ginder-Vogel
- Environmental Chemistry and Technology Program, Univ. of Wisconsin-Madison, 660 N. Park St., Madison, WI, 53706, USA
- Dep. of Civil and Environmental Engineering, Univ. of Wisconsin-Madison, 660 N. Park St., Madison, WI, 53706, USA
| |
Collapse
|
37
|
Rathi B, Jamieson J, Sun J, Siade AJ, Zhu M, Cirpka OA, Prommer H. Process-based modeling of arsenic(III) oxidation by manganese oxides under circumneutral pH conditions. WATER RESEARCH 2020; 185:116195. [PMID: 32738605 DOI: 10.1016/j.watres.2020.116195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/05/2020] [Accepted: 07/16/2020] [Indexed: 05/12/2023]
Abstract
Numerous experimental studies have identified a multi-step reaction mechanism to control arsenite (As(III)) oxidation by manganese (Mn) oxides. The studies highlighted the importance of edge sites and intermediate processes, e.g., surface passivation by reaction products. However, the identified reaction mechanism and controlling factors have rarely been evaluated in a quantitative context. In this study, a process-based modeling framework was developed to delineate and quantify the relative contributions and rates of the different processes affecting As(III) oxidation by Mn oxides. The model development and parameterization were constrained by experimental observations from literature studies involving environmentally relevant Mn oxides at circumneutral pH using both batch and stirred-flow reactors. Our modeling results highlight the importance of a transitional phase, solely evident in the stirred-flow experiments, where As(III) oxidation gradually shifts from fast reacting Mn(IV) to slowly reacting Mn(III) edge sites. The relative abundance of these edge sites was the most important factor controlling the oxidation rate, whereas surface passivation restricted oxidation only in the stirred-flow experiment. The Mn(III) edge sites were demonstrated to play a crucial role in the oxidation and therefore in controlling the long-term fate of As. This study provided an improved understanding of Mn oxide reactivity and the significance in the cycling of redox-sensitive metal(loid)s in the environment.
Collapse
Affiliation(s)
- Bhasker Rathi
- Center for Applied Geoscience, University of Tübingen, Tübingen, Germany; School of Earth Sciences, University of Western Australia, Crawley WA 6009, Australia; CSIRO Land and Water, Private Bag No. 5, Wembley WA 6913, Australia
| | - James Jamieson
- School of Earth Sciences, University of Western Australia, Crawley WA 6009, Australia; CSIRO Land and Water, Private Bag No. 5, Wembley WA 6913, Australia
| | - Jing Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; School of Earth Sciences, University of Western Australia, Crawley WA 6009, Australia; CSIRO Land and Water, Private Bag No. 5, Wembley WA 6913, Australia.
| | - Adam J Siade
- School of Earth Sciences, University of Western Australia, Crawley WA 6009, Australia; CSIRO Land and Water, Private Bag No. 5, Wembley WA 6913, Australia; National Centre for Groundwater Research and Training (NCGRT), Australia
| | - Mengqiang Zhu
- Department of Ecosystem Science and Management, University of Wyoming, Laramie WY 82071 United States
| | - Olaf A Cirpka
- Center for Applied Geoscience, University of Tübingen, Tübingen, Germany
| | - Henning Prommer
- School of Earth Sciences, University of Western Australia, Crawley WA 6009, Australia; CSIRO Land and Water, Private Bag No. 5, Wembley WA 6913, Australia; National Centre for Groundwater Research and Training (NCGRT), Australia.
| |
Collapse
|
38
|
Liu W, Li J, Zheng J, Song Y, Shi Z, Lin Z, Chai L. Different Pathways for Cr(III) Oxidation: Implications for Cr(VI) Reoccurrence in Reduced Chromite Ore Processing Residue. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11971-11979. [PMID: 32905702 DOI: 10.1021/acs.est.0c01855] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hexavalent chromium contamination is a global environmental issue and usually reoccurs in alkaline reduced chromite ore processing residues (rCOPR). The oxidation of Cr(III) solids in rCOPR is one possible cause but as yet little studied. Herein, we investigated the oxidation of Cr(OH)3, a typical species of Cr(III) in rCOPR, at alkaline pH (9-11) with δ-MnO2 under oxic/anoxic conditions. Results revealed three pathways for Cr(III) oxidation under oxic conditions: (1) oxidation by oxygen, (2) oxidation by δ-MnO2, and (3) catalytic oxidation by Mn(II). Oxidations in the latter two were efficient, and oxidation via Pathway 3 was continuous and increased dramatically with increasing pH. XANES data indicated feitknechtite (β-MnOOH) and hausmannite (Mn3O4) were the reduction products and catalytic substances. Additionally, a kinetic model was established to describe the relative contributions of each pathway at a specific time. The simulation outcomes showed that Cr(VI) was mainly formed via Pathway 2 (>51%) over a short time frame (10 days), whereas in a longer-term (365 days), Pathway 3 predominated the oxidation (>78%) with an increasing proportion over time. These results suggest Cr(III) solids can be oxidized under alkaline oxic conditions even with a small amount of manganese oxides, providing new perspectives on Cr(VI) reoccurrence in rCOPR and emphasizing the environmental risks of Cr(III) solids in alkaline environments.
Collapse
Affiliation(s)
- Weizhen Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangzhou, Guangdong 510006, P. R. China
| | - Jing Li
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangzhou, Guangdong 510006, P. R. China
| | - Jiayi Zheng
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangzhou, Guangdong 510006, P. R. China
| | - Yao Song
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Zhenqing Shi
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Zhang Lin
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangzhou, Guangdong 510006, P. R. China
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
39
|
Wang Y, Liu H, Wang S, Li X, Wang X, Jia Y. Simultaneous removal and oxidation of arsenic from water by δ-MnO 2 modified activated carbon. J Environ Sci (China) 2020; 94:147-160. [PMID: 32563479 DOI: 10.1016/j.jes.2020.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 06/11/2023]
Abstract
The ubiquitous arsenic in groundwater poses a great risk to human health due to its environmental toxicity and carcinogenicity. In the present work, a new adsorbent, δ-MnO2 modified activated carbon, was prepared, and its performance for the uptake of arsenate and arsenite species from aqueous solutions was investigated by batch experiments. Various techniques, including FESEM-EDX, p-XRD, XPS and BET surface area analysis, were employed to characterize the properties of the adsorbent and the arsenic adsorption mechanisms. The results showed that δ-MnO2 covered on the surface and padded in the pores of the activated carbon. Adsorption kinetic studies revealed that approximately 90.1% and 76.8% of As(III) and As(V), respectively, were removed by the adsorbent in the first 9 hr, and adsorption achieved equilibrium within 48 hr. The maximum adsorption capacities of As(V) and As(III) at pH 4.0 calculated from Langmuir adsorption isotherms were 13.30 and 12.56 mg/g, respectively. The effect of pH on As(V) and As(III) removal was similar, and the removal efficiency significantly reduced with the increase of solution pH. Arsenite oxidation and adsorption kinetics showed that the As(V) concentration in solution due to As(III) oxidation and reductive dissolution of MnO2 increased rapidly during the first 12 min, and then gradually decreased. Based on the XPS analysis, nearly 93.3% of As(III) had been oxidized to As(V) on the adsorbent surface and around 38.9% of Mn(IV) had been reduced to Mn(II) after As(III) adsorption. This approach provides a possible method for the purification of arsenic-contaminated groundwater.
Collapse
Affiliation(s)
- Yulong Wang
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Environment and Planning, Henan University, Kaifeng 475004, China; Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National Demonstration Center for Environmental and Planning, Henan University, Kaifeng 475004, China.
| | - Hupeng Liu
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Environment and Planning, Henan University, Kaifeng 475004, China
| | - Shaofeng Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Xuhui Li
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Environment and Planning, Henan University, Kaifeng 475004, China; National Demonstration Center for Environmental and Planning, Henan University, Kaifeng 475004, China.
| | - Xin Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yongfeng Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
40
|
Pokharel R, Li Q, Zhou L, Hanna K. Water Flow and Dissolved Mn II Alter Transformation of Pipemidic Acid by Manganese Oxide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8051-8060. [PMID: 32470299 DOI: 10.1021/acs.est.0c01474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Manganese oxides have been proposed as promising geomedia to remove trace organic contaminants in both natural soils and artificial infiltration systems. Although MnOx-based redox processes have been largely investigated, little is known on the effects of water flow and dissolved MnII on manganese-mediated redox reactions in saturated porous media. Here, we have demonstrated that the reactive transport of a widely used quinolone antibiotic, pipemidic acid (PIP), in MnO2-coated sand (MCS) columns is altered by the presence of dissolved MnII, generated in situ as reduced ions or present in inflow solution. Decreasing the flow rate or flow interruption facilitated oxidation reactions and generated redox byproducts (MnII and PIPox). However, preloading of MCS columns with dissolved MnII led to suppressed reactivity with PIP. When PIP and MnII are simultaneously injected, competition between PIP and MnII for binding at the edge sites takes place during the initial kinetic phase of reaction, while at a later breakthrough time MnII will occupy both edge and vacancy sites due to the continuous supply of MnII. We also developed a reactive transport model that accounts for adsorption kinetics to predict changes in transport behavior of antibiotics in the presence of different doses of dissolved MnII. This work has strong implications for an accurate assessment of the reactivity of manganese oxides used as engineered geomedia for quinolone remediation and in developing transport models of antibiotics in natural systems.
Collapse
Affiliation(s)
- Rasesh Pokharel
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR6226, F-35000 Rennes, France
| | - Qinzhi Li
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR6226, F-35000 Rennes, France
| | - Lian Zhou
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR6226, F-35000 Rennes, France
| | - Khalil Hanna
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR6226, F-35000 Rennes, France
- Institut Universitaire de France (IUF), MESRI, 1 rue Descartes, 75231 Paris, France
| |
Collapse
|
41
|
Ahmad A, Heijnen L, de Waal L, Battaglia-Brunet F, Oorthuizen W, Pieterse B, Bhattacharya P, van der Wal A. Mobility and redox transformation of arsenic during treatment of artificially recharged groundwater for drinking water production. WATER RESEARCH 2020; 178:115826. [PMID: 32361349 DOI: 10.1016/j.watres.2020.115826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/22/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
In this study we investigate opportunities for reducing arsenic (As) to low levels, below 1 μg/L in produced drinking water from artificially infiltrated groundwater. We observe that rapid sand filtration is the most important treatment step for the oxidation and removal of As at water treatment plants which use artificially recharged groundwater as source. Removal of As is mainly due to As co-precipitation with Fe(III)(oxyhydr)oxides, which shows higher efficiency in rapid sand filter beds compared to aeration and supernatant storage. This is due to an accelerated oxidation of As(III) to As(V) in the filter bed which may be caused by the manganese oxides and/or As(III) oxidizing bacteria, as both are found in the coating of rapid sand filter media grains by chemical analysis and taxonomic profiling of the bacterial communities. Arsenic removal does not take place in treatment steps such as granular activated carbon filtration, ultrafiltration or slow sand filtration, due to a lack of hydrolyzing iron in their influent and a lack of adsorption affinity between As and the filtration surfaces. Further, we found that As reduction to below 1 μg/L can be effectively achieved at water treatment plants either by treating the influent of rapid sand filters by dosing potassium permanganate in combination with ferric chloride or by treating the effluent of rapid sand filters with ferric chloride dosing only. Finally, we observe that reducing the pH is an effective measure for increasing As co-precipitation with Fe(III)(oxyhydr)oxides, but only when the oxidized arsenic, As(V), is the predominant species in water.
Collapse
Affiliation(s)
- Arslan Ahmad
- KWR Water Cycle Research Institute, Groningenhaven 7, 3433, PE, Nieuwegein, the Netherlands; KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE, 100 44, Stockholm, Sweden; Department of Environmental Technology, Wageningen University and Research (WUR), Droevendaalsesteeg 4, 6708, PB, Wageningen, the Netherlands; Evides Water Company N.V., Schaardijk 150, 3063, NH, Rotterdam, the Netherlands.
| | - Leo Heijnen
- KWR Water Cycle Research Institute, Groningenhaven 7, 3433, PE, Nieuwegein, the Netherlands
| | - Luuk de Waal
- KWR Water Cycle Research Institute, Groningenhaven 7, 3433, PE, Nieuwegein, the Netherlands
| | - Fabienne Battaglia-Brunet
- The French Geological Survey (BRGM), 3 Avenue Claude-Guillemin, BP 36009, 45060, Orléans, Cedex 02, France
| | - Wim Oorthuizen
- Dunea Duin & Water N.V., Plein van de Verenigde Naties 11-15, 2719, EG, Zoetermeer, the Netherlands
| | - Brent Pieterse
- Dunea Duin & Water N.V., Plein van de Verenigde Naties 11-15, 2719, EG, Zoetermeer, the Netherlands
| | - Prosun Bhattacharya
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE, 100 44, Stockholm, Sweden
| | - Albert van der Wal
- Department of Environmental Technology, Wageningen University and Research (WUR), Droevendaalsesteeg 4, 6708, PB, Wageningen, the Netherlands; Evides Water Company N.V., Schaardijk 150, 3063, NH, Rotterdam, the Netherlands
| |
Collapse
|
42
|
Qiao Q, Yang X, Liu L, Luo Y, Tan W, Liu C, Dang Z, Qiu G. Electrochemical adsorption of cadmium and arsenic by natural Fe-Mn nodules. JOURNAL OF HAZARDOUS MATERIALS 2020; 390:122165. [PMID: 32006848 DOI: 10.1016/j.jhazmat.2020.122165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Fe-Mn nodules are widely distributed and regarded as excellent adsorbents for heavy metals. Their adsorption-desorption reactions with heavy metal ions are usually accompanied by redox processes. Herein, Fe-Mn nodules were used as adsorbents for Cd(II) and As(III,V) at a constant cell voltage under electrochemically controlled reduction and oxidation, respectively. The results showed that the adsorption performance for Cd(II) and As(III,V) was enhanced respectively due to the decrease and increase of Mn average oxidation state (Mn AOS) in Fe-Mn nodules. High birnessite content and Mn average oxidation state (Mn AOS) improved the adsorption of Cd(II) and As(III,V). The adsorption capacity for Cd(II) and total As increased with increasing voltage. With increasing pH, the adsorption capacity for Cd(II) increased first and then reached equilibrium, and that of total As decreased and then increased. The Cd(II) electrochemical adsorption capacity (129.9 mg g-1) and the removal efficiency for total As at 1.2 V (83.6 %) in As-containing wastewater at an initial concentration of 4.068 mg L-1 were remarkably higher than the corresponding inorganic adsorption performance (9.46 mg g-1 and 70.5 %, respectively). This work may further promote the application of natural Fe-Mn nodules in the adsorption of heavy metals from wastewaters.
Collapse
Affiliation(s)
- Qi Qiao
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Xiong Yang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Lihu Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Yao Luo
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
43
|
Ploychompoo S, Chen J, Luo H, Liang Q. Fast and efficient aqueous arsenic removal by functionalized MIL-100(Fe)/rGO/δ-MnO 2 ternary composites: Adsorption performance and mechanism. J Environ Sci (China) 2020; 91:22-34. [PMID: 32172971 DOI: 10.1016/j.jes.2019.12.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/25/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
Because of its significant toxicological effects on the environment and human health, arsenic (As) is a major global issue. In this study, an Fe-based metal-organic framework (MOF) (Materials of Institut Lavoisier: MIL-100 (Fe)) which was impregnated with reduced graphene oxide (rGO) by using a simple hydrothermal method and coated with birnessite-type manganese oxide (δ-MnO2) using the one-pot reaction process (MIL-100(Fe)/rGO/δ-MnO2 nanocomposites) was synthesized and applied successfully in As removal. The removal efficiency was rapid, the equilibrium was achieved in 40 min and 120 min for As(III) and As(V), respectively, at a level of 5 mg/L. The maximum adsorption capacities of As(III) and As(V) at pH 2 were 192.67 mg/g and 162.07 mg/g, respectively. The adsorbent revealed high stability in pH range 2-9 and saturated adsorbent can be fully regenerated at least five runs. The adsorption process can be described by the pseudo-second-order kinetic model and Langmuir monolayer adsorption. The adsorption mechanisms consisted of electrostatic interaction, oxidation and inner sphere surface complexation.
Collapse
Affiliation(s)
- Sittipranee Ploychompoo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, Guangzhou 510006, China
| | - Jingda Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, Guangzhou 510006, China
| | - Hanjin Luo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, Guangzhou 510006, China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou 510006, China.
| | - Qianwei Liang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, Guangzhou 510006, China
| |
Collapse
|
44
|
You Y, Liang Y, Peng S, Lan S, Lu G, Feng X, Shi Z. Modeling coupled kinetics of arsenic adsorption/desorption and oxidation in ferrihydrite-Mn(II)/manganese (oxyhydr)oxides systems. CHEMOSPHERE 2020; 244:125517. [PMID: 32050332 DOI: 10.1016/j.chemosphere.2019.125517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
The speciation and mobility of As are controlled by both Fe and Mn (oxyhydr)oxides through a series of surface complexation and redox reactions occurring in the environment, which is also complicated by the solution chemistry conditions. However, there is still a lack of quantitative tools for predicting the coupled kinetic processes of As reactions with Fe and Mn (oxyhydr)oxides. In this study, we developed a quantitative model for the coupled kinetics of As adsorption/desorption and oxidation in ferrihydrite-Mn (oxyhydr)oxides and ferrihydrite-Mn(II)-O2 systems. This model also accounted for the variations in solution chemistry conditions and binding site heterogeneity. Our model suggested that Mn (oxyhydr)oxide and ferrihydrite mainly served as an oxidant and an adsorbent, respectively, when they coexisted. Among the three types of binding sites of ferrihydrite, the adsorbed As(V) was mainly distributed on the nonprotonated bidentate sites. Our model quantitatively showed that the oxidation rates of different reaction systems varied significantly. The rates of As(III) oxidation were enhanced with higher pH values and higher molar ratios of Mn(II)/As(III) in the ferrihydrite-Mn(II)-O2 system. This study provides a modeling framework for predicting the kinetic behavior of As when multiple adsorption/desorption and oxidation reactions are coupled in the environment.
Collapse
Affiliation(s)
- Yajie You
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Yuzhen Liang
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Shimeng Peng
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Shuai Lan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River) Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Xionghan Feng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River) Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhenqing Shi
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China.
| |
Collapse
|
45
|
Using Complementary Methods of Synchrotron Radiation Powder Diffraction and Pair Distribution Function to Refine Crystal Structures with High Quality Parameters—A Review. MINERALS 2020. [DOI: 10.3390/min10020124] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Determination of the atomic-scale structures of certain fine-grained minerals using single-crystal X-ray diffraction (XRD) has been challenging because they commonly occur as submicron and nanocrystals in the geological environment. Synchrotron powder diffraction and scattering techniques are useful complementary methods for studying this type of minerals. In this review, we discussed three example studies investigated by combined methods of synchrotron radiation XRD and pair distribution function (PDF) techniques: (1) low-temperature cristobalite; (2) kaolinite; and (3) vernadite. Powder XRD is useful to determine the average structure including unit-cell parameters, fractional atomic coordinates, occupancies and isotropic atomic displacement parameters. X-ray/Neutron PDF methods are sensitive to study the local structure with anisotropic atomic displacement parameters (ADP). The results and case studies suggest that the crystal structure and high-quality ADP values can be obtained using the combined methods. The method can be useful to characterize crystals and minerals that are not suitable for single-crystal XRD.
Collapse
|
46
|
Grangeon S, Bataillard P, Coussy S. The Nature of Manganese Oxides in Soils and Their Role as Scavengers of Trace Elements: Implication for Soil Remediation. ENVIRONMENTAL SOIL REMEDIATION AND REHABILITATION 2020. [DOI: 10.1007/978-3-030-40348-5_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
47
|
Shi Z. Quantifying the Coupled Kinetic Reactions of Metals/Metalloids on Iron and Manganese Oxides. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 103:763-765. [PMID: 31628499 DOI: 10.1007/s00128-019-02733-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Quantifying the coupled kinetic reactions of metals/metalloids on iron and manganese oxides is essential for predicting the fate of contaminants in the environment. In this perspective, a few key issues related to developing the quantitative models for the coupled kinetic reactions of metal and metalloids are discussed, including adsorption/desorption processes, redox reactions, and mineral dissolution/transformation. Future research areas are also briefly discussed.
Collapse
Affiliation(s)
- Zhenqing Shi
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China.
| |
Collapse
|
48
|
He Z, Wei Z, Zhang Q, Zou J, Pan X. Metal oxyanion removal from wastewater using manganese-oxidizing aerobic granular sludge. CHEMOSPHERE 2019; 236:124353. [PMID: 31319307 DOI: 10.1016/j.chemosphere.2019.124353] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/06/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
As, Sb, and Cr are redox-sensitive and toxic heavy metal(loid)s, and redox reactions are usually involved in the treatment of substrates containing these elements. In this study, manganese-oxidizing aerobic granular sludge (Mn-AGS) was obtained by continuously adding Mn(II) to the sludge in a sequencing batch reactor (SBR). Morphological observations, and analyses of extracellular polymeric substances (EPS), Mn valence-states, and microbial communities were performed on the resulting sludge. After 50 days of cultivation, biogenic Mn(III,IV) oxides (bio-MnOx) accumulated up to approximately 25 mg Mn/g suspended solids (SS). X-ray photoelectron spectroscopy (XPS) revealed that the percentage of Mn(III,IV) was 87.6%. The protein (PN) component in EPS increased from 80.3 to 87.8 mg/g volatile suspended solids (VSS) during cultivation, which might be favorable for sludge granulation and heavy metal(loid) removal. Batch experiments showed that Mn-AGS was better at oxidizing As(III)/Sb(III) into less toxic As(V)/Sb(V) than traditional AGS. Remarkably, the results indicated that Mn-AGS did not oxidize Cr(III) but was able to reduce Cr(VI) into relatively harmless Cr(III). This work provided a new promising method with which to treat As(III), Sb(III), and Cr(VI) in wastewaters.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Zhen Wei
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Qingying Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jinte Zou
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
| |
Collapse
|
49
|
Wick S, Peña J, Voegelin A. Thallium Sorption onto Manganese Oxides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13168-13178. [PMID: 31674774 DOI: 10.1021/acs.est.9b04454] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The sorption of thallium (Tl) onto manganese (Mn) oxides critically influences its environmental fate and geochemical cycling and is also of interest in water treatment. Combined quantitative and mechanistic understanding of Tl sorption onto Mn oxides, however, is limited. We investigated the uptake of dissolved Tl(I) by environmentally relevant phyllo- and tectomanganates and used X-ray absorption spectroscopy to determine the oxidation state and local coordination of sorbed Tl. We show that extremely strong sorption of Tl onto vacancy-containing layered δ-MnO2 at low dissolved Tl(I) concentrations (log Kd ≥ 7.4 for ≤10-8 M Tl(I); Kd in (L/kg)) is due to oxidative uptake of Tl and that less specific nonoxidative Tl uptake only becomes dominant at very high Tl(I) concentrations (>10-6 M). Partial reduction of δ-MnO2 induces phase changes that result in inhibited oxidative Tl uptake and lower Tl sorption affinity (log Kd 6.2-6.4 at 10-8 M Tl(I)) and capacity. Triclinic birnessite, which features no vacancy sites, and todorokite, a 3 × 3 tectomanganate, bind Tl with lower sorption affinity than δ-MnO2, mainly as hydrated Tl+ in interlayers (triclinic birnessite; log Kd 5.5 at 10-8 M Tl(I)) or tunnels (todorokite). In cryptomelane, a 2 × 2 tectomanganate, dehydrated Tl+ replaces structural K+. The new quantitative and mechanistic insights from this study contribute to an improved understanding of the uptake of Tl by key Mn oxides and its relevance in natural and engineered systems.
Collapse
Affiliation(s)
- Silvan Wick
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , Üeberlandstrasse 133 , CH-8600 Dübendorf , Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics , ETH Zürich , CH-8092 Zürich , Switzerland
| | - Jasquelin Peña
- Institute of Earth Surface Dynamics, Faculty of Geosciences and Environment , University of Lausanne , CH-1015 Lausanne , Switzerland
| | - Andreas Voegelin
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , Üeberlandstrasse 133 , CH-8600 Dübendorf , Switzerland
| |
Collapse
|
50
|
Lee S, Xu H, Xu W, Sun X. The structure and crystal chemistry of vernadite in ferromanganese crusts. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2019; 75:591-598. [PMID: 32830716 DOI: 10.1107/s2052520619006528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 05/07/2019] [Indexed: 06/11/2023]
Abstract
The structure and crystal chemistry of vernadite in ferromanganese crusts from the Magellan Seamount in the north-west Pacific Ocean have been investigated using synchrotron X-ray diffraction (XRD), X-ray pair distribution function (PDF) and high-resolution transmission electron microscopy (TEM). XRD patterns of vernadite mainly show two strong diffraction peaks at 2.42-2.43 Å and 1.41 Å without or with a broad (001) diffraction peak, indicating thin layer nanophases along the c-direction. TEM images show flat and curved sheet-like nanocrystals with (001) layer thickness of ∼7.2 Å and ∼9.6 Å, and their interstratified structure. PDF patterns of the vernadite are similar to those from synthetic δ-MnO2 and defective birnessite, suggesting a phyllomanganate framework. Combined XRD/PDF patterns suggest that vernadite in the outer part is associated with a higher density interlayer species at triple-edge sharing sites. The proportion of the 10 Å phase increases from the outer (young) part to the inner (old) part of the Mn crusts due to aging and sorption of Mn, Co and Ni from ambient seawater. This study suggests that this combined method of synchrotron radiation XRD/PDF and high-resolution TEM is a powerful tool to determine atomic structures of poorly crystallized nano-minerals. The mixture model of vernadite structure will help to understand the partitioning and distribution of trace elements in the ferromanganese crusts.
Collapse
Affiliation(s)
- Seungyeol Lee
- NASA Astrobiology Institute, Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Huifang Xu
- NASA Astrobiology Institute, Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Wenqian Xu
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Xiaoming Sun
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|