1
|
Madany P, Olsen D, Makled SO, Cram E, Page S, Bonner H, McLean JE, Stevens D, Li M, Hou L. Innovative multiplex qPCR method for rapid and reliable detection of microcystin-producing genes during harmful algal blooms: Insights from Utah Reservoirs. WATER RESEARCH 2025; 277:123322. [PMID: 39999598 DOI: 10.1016/j.watres.2025.123322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/10/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Cyanobacterial harmful algal blooms (cyanoHABs) have the potential to produce cyanotoxins, which pose significant health risks to both humans and animals. The gold standard methods for monitoring cyanoHABs involve enzyme-linked immunosorbent assay (ELISA), liquid chromatography combined with triple quadrupole mass spectrometry (LC-MS/MS) and manual cell counting under microscopy. However, these techniques, while effective, are costly and time-consuming, which may not be optimal for timely decision-making to safeguard public health. Quantitative polymerase chain reaction (qPCR) offers a complementary approach that serves as an indicator of the potential for toxin production. It provides accurate results with a rapid turnaround time and high throughput capacity, and greater affordability. To assess the reliability of qPCR in predicting toxin production and determining when toxin levels exceed recreational advisory thresholds, we conducted experiments utilizing two DNA extraction methods for qPCR testing: RapidDNA and ClassicDNA. Sampling was conducted across nine water bodies in Utah throughout the recreational season from June 1 to October 31, 2023. We targeted cyanotoxin-encoding genes mainly associated with microcystins, the dominant cyanotoxin reported for these water bodies, for qPCR analysis. Toxin levels were measured using both ELISA and LC-MS/MS with cyanobacteria cell counting conducted as a reference. Out of nine water bodies studied, cyanoHABs were detected in five (i.e., Utah Lake, and Deer Creek, Echo, Schofield, and Pineview Reservoirs). Analysis of the data revealed a significant linear relationship between both the qPCR results of mcyE (associated with microcystin production) obtained from RapidDNA and ClassicDNA methods, and the levels of microcystins measured by ELISA and LC-MS/MS. RapidDNA qPCR methods offer a potential warning tool for indicating toxin production during blooming events, though this method is not suitable for determining risk during the pre-blooming period. Conversely, ClassicDNA methods can be utilized during the pre-blooming period to prepare for potential blooms. These results provide insight into the genetic potential of blooms around the state to produce microcystins. Findings can be implemented in both Recreational Water Quality and Drinking Water programs nationally.
Collapse
Affiliation(s)
- Peerzada Madany
- Department of Civil and Environmental Engineering, Utah State University, Logan, UT 84322, USA; Utah Water Research Laboratory, Utah State University, Logan, UT 84321, USA
| | - Donald Olsen
- Department of Civil and Environmental Engineering, Utah State University, Logan, UT 84322, USA; Utah Water Research Laboratory, Utah State University, Logan, UT 84321, USA
| | | | - Erik Cram
- Central Utah Water Conservancy District, Orem, UT 84097, USA
| | - Sarah Page
- Utah Division of Drinking Water, Salt Lake City, UT 84116, USA
| | - Hannah Bonner
- Utah Division of Water Quality, Salt Lake City, UT 84116, USA
| | - Joan E McLean
- Department of Civil and Environmental Engineering, Utah State University, Logan, UT 84322, USA; Utah Water Research Laboratory, Utah State University, Logan, UT 84321, USA
| | - David Stevens
- Department of Civil and Environmental Engineering, Utah State University, Logan, UT 84322, USA; Utah Water Research Laboratory, Utah State University, Logan, UT 84321, USA
| | - Mingyue Li
- Department of Civil and Environmental Engineering, Utah State University, Logan, UT 84322, USA; Utah Water Research Laboratory, Utah State University, Logan, UT 84321, USA; School of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255049, China
| | - Liyuan Hou
- Department of Civil and Environmental Engineering, Utah State University, Logan, UT 84322, USA; Utah Water Research Laboratory, Utah State University, Logan, UT 84321, USA.
| |
Collapse
|
2
|
Jia J, Chen Q, Zhang J, Qi D. Responses of zooplankton community to anthropogenic organic matters in representative lake in highly urbanized area: Taking lake Taihu as an example. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123944. [PMID: 39742765 DOI: 10.1016/j.jenvman.2024.123944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
Although terrestrial organic matter is known to sustain food chains, its impact on zooplankton communities in lakes within urbanized areas remains unclear. This study analyzed a comprehensive, decade-long dataset (1998-2007) that included COD, BOD, and monthly zooplankton records from Lake Taihu to assess the effects of anthropogenic organic matter. Significant spatial variations in COD and BOD were observed across different areas of Lake Taihu (p < 0.01), with the average COD ranged from 4.1 mg/L to 7.6 mg/L and the average BOD from 1.9 mg/L to 8.6 mg/L. The abundance of zooplankton (1170-5182 individuals/L) showed marked responses to these spatial differences in organic matter, particularly in rotifers (236-1930 individuals/L) and protozoans (674-3180 individuals/L) (p < 0.01). Additionally, zooplankton abundance, along with the abundance and biomass of rotifers and protozoans, exhibited significant positive correlations with COD, BOD, and the BOD/COD ratio (p < 0.01). The ratio of rotifers to zooplankton displayed significant positive correlations with COD, BOD, and the BOD/COD ratio (p < 0.01), while the ratio of protozoans to zooplankton showed significant negative correlations with these parameters (p < 0.01). The findings indicate that organic matters predominantly supports zooplankton growth by fostering the proliferation of rotifers and protozoans. Additionally, organic matters may enhance the proportions of rotifers and protozoans, thereby shifting the whole group to smaller zooplankton community. The BOD/COD ratio also emerged as an important indicator of the influence of organic matters on zooplankton. These results suggest how zooplankton might respond to future environmental changes, including increased inputs of terrestrial organic matters and eutrophication under climate change scenarios.
Collapse
Affiliation(s)
- Junmei Jia
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Qiuwen Chen
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing, 210029, China; CEER, Nanjing Hydraulic Research Institute, Nanjing, 210029, China.
| | - Jianyun Zhang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing, 210029, China; CEER, Nanjing Hydraulic Research Institute, Nanjing, 210029, China
| | - Delin Qi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| |
Collapse
|
3
|
Shi X, Luo X, Jiao JJ, Zuo J, Kuang X, Zhou J. Lacustrine groundwater discharge-derived carbon and nitrogen to regulate biogeochemical processes as revealed by stable isotope signals in a large shallow eutrophic lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176069. [PMID: 39244066 DOI: 10.1016/j.scitotenv.2024.176069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/21/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Eutrophic shallow lakes are hotspots of carbon (C) and nitrogen (N) accumulation and transformation, and are increasingly recognized as important sources of greenhouse gases (GHGs: CO2, CH4 and N2O). Lacustrine groundwater discharge (LGD) is a crucial component of the water budget and terrestrial material delivery for lakes, but its interplays with intrinsic CN biogeochemical processes remain less tackled. In this study, C and N ingredients and multiple stable isotopes (δ2H, δ18O, δ13C, and δ15N) were measured seasonally in groundwater, river water and lake water of a large eutrophic shallow lake in eastern China. The results revealed that groundwater is enriched with various forms of C and N that have similar sources and pathways as surface water in the lake and rivers. The isotope balance model also indicated that LGD derived C and N contribute significantly to lake inventories in addition to river runoff. These allochthonous C and N provide extra substrates for related biogeochemical processes, such as algae proliferation, organic matter degradation, methanogenesis and denitrification. Simultaneously, the excess oxygen consumption leads to depletion and hypoxia in the lake, further facilitating the processes of methanogenesis and denitrification. LGD functions not only as an external source of C and N that directly increases GHG saturations, but also as a mediator of internal CN pathways, which significantly affect hypoxia formation, GHG productions and emissions in the eutrophic lake. This study highlights the unrevealed potential regulation of LGD on biogeochemical processes in the eutrophic lake, and underscores the need for its consideration in environmental and ecological studies of lakes both regionally and globally.
Collapse
Affiliation(s)
- Xiaoyan Shi
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China; Earth and Environment Research Institute, Zhejiang Institution of Research and Innovation, The University of Hong Kong, Hangzhou, China
| | - Xin Luo
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China; Earth and Environment Research Institute, Zhejiang Institution of Research and Innovation, The University of Hong Kong, Hangzhou, China
| | - Jiu Jimmy Jiao
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China; Earth and Environment Research Institute, Zhejiang Institution of Research and Innovation, The University of Hong Kong, Hangzhou, China.
| | - Jinchao Zuo
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China; Earth and Environment Research Institute, Zhejiang Institution of Research and Innovation, The University of Hong Kong, Hangzhou, China
| | - Xingxing Kuang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jiaqing Zhou
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China; Faculty of Engineering, China University of Geosciences, Wuhan, China
| |
Collapse
|
4
|
Schürmann QJF, Visser PM, Sollie S, Kardinaal WEA, Faassen EJ, Lokmani R, van der Oost R, Van de Waal DB. Risk assessment of toxic cyanobacterial blooms in recreational waters: A comparative study of monitoring methods. HARMFUL ALGAE 2024; 138:102683. [PMID: 39244242 DOI: 10.1016/j.hal.2024.102683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 09/09/2024]
Abstract
Toxic cyanobacterial blooms impose a health risk to recreational users, and monitoring of cyanobacteria and associated toxins is required to assess this risk. Traditionally, monitoring for risk assessment is based on cyanobacterial biomass, which assumes that all cyanobacteria potentially produce toxins. While these methods may be cost effective, relatively fast, and more widely accessible, they often lead to an overestimation of the health risk induced by cyanotoxins. Monitoring methods that more directly target toxins, or toxin producing genes, may provide a better risk assessment, yet these methods may be more costly, usually take longer, or are not widely accessible. In this study, we compared six monitoring methods (fluorometry, microscopy, qPCR of 16S and mcyE, ELISA assays, and LC-MS/MS), of which the last three focussed on the most abundant cyanotoxin microcystins, across 11 lakes in the Netherlands during the bathing water season (May-October) of 2019. Results of all monitoring methods significantly correlated with LC-MS/MS obtained microcystin levels (the assumed 'golden standard'), with stronger correlations for methods targeting microcystins (ELISA) and microcystin genes (mcyE). The estimated risk levels differed substantially between methods, with 78 % and 56 % of alert level exceedances in the total number of collected samples for fluorometry and microscopy-based methods, respectively, while this was only 16 % and 6 % when the risk assessment was based on ELISA and LC-MS/MS obtained toxin concentrations, respectively. Integrating our results with earlier findings confirmed a strong association between microcystin concentration and the biovolume of potential microcystin-producing genera. Moreover, using an extended database consisting of 4265 observations from 461 locations across the Netherlands in the bathing water seasons of 2015 - 2019, we showed a strong association between fluorescence and the biovolume of potentially toxin-producing genera. Our results indicate that a two-tiered approach may be an effective risk assessment strategy, with first a biomass-based method (fluorometry, biovolume) until the first alert level is exceeded, after which the risk level can be confirmed or adjusted based on follow-up toxin or toxin gene analyses.
Collapse
Affiliation(s)
- Quirijn J F Schürmann
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, The Netherlands; Waardenburg Ecology, Varkensmarkt 9, 4101 CK, Culemborg, The Netherlands
| | - Petra M Visser
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, The Netherlands
| | - Susan Sollie
- Water consultancy, TAUW, Australiëlaan 5, P.O. Box 3015, 3526 AB, Utrecht, The Netherlands
| | | | - Elisabeth J Faassen
- Wageningen Food Safety Research, Wageningen University and Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands; Aquatic Ecology and Water Quality Management, Wageningen University and Research, Droevendaalsesteeg 3, 6700 AA, Wageningen, The Netherlands
| | - Ridouan Lokmani
- AQUON Wateronderzoek en advies, Voorschoterweg 18H, 2324 AB, Leiden, The Netherlands
| | - Ron van der Oost
- Waternet Institute for the Urban Water Cycle, Korte Ouderkerkerdijk 7, 1096 AC, Amsterdam, The Netherlands
| | - Dedmer B Van de Waal
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, The Netherlands; Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
5
|
Hsu TTD, Acosta Caraballo Y, Wu M. An investigation of cyanobacteria, cyanotoxins and environmental variables in selected drinking water treatment plants in New Jersey. Heliyon 2024; 10:e31350. [PMID: 38828292 PMCID: PMC11140601 DOI: 10.1016/j.heliyon.2024.e31350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
Harmful Algal Blooms (HAB) have the potential to impact human health primarily through their possible cyanotoxins production. While conventional water treatments can result in the removal of unlysed cyanobacterial cells and low levels of cyanotoxins, during severe HAB events, cyanotoxins can break through and can be present in the treated water due to a lack of adequate toxin treatment. The objectives of this study were to assess the HAB conditions in drinking water sources in New Jersey and investigate relationships between environmental variables and cyanobacterial communities in these drinking water sources. Source water samples were collected monthly from May to October 2019 and analyzed for phytoplankton and cyanobacterial cell densities, microcystins, cylindrospermopsin, Microcystis 16S rRNA gene, microcystin-producing mcyB gene, Raphidiopsis raciborskii-specific rpoC1 gene, and cylindrospermopsin-producing pks gene. Water quality parameters included water temperature, pH, dissolved oxygen, specific conductance, fluorescence of phycocyanin and chlorophyll, chlorophyll-a, total suspended solids, total dissolved solids, dissolved organic carbon, total nitrogen, ammonia, and total phosphorus. In addition to source waters, microcystins and cylindrospermopsin were analyzed for treated waters. The results showed all five selected New Jersey source waters had high total phosphorus concentrations that exceeded the established New Jersey Surface Water Quality Standards for lakes and rivers. Commonly found cyanobacteria were identified, such as Microcystis and Dolichospermum. Site E was the site most susceptible to HABs with significantly greater HAB variables, such as extracted phycocyanin, fluorescence of phycocyanin, cyanobacterial cell density, microcystins, and Microcystis 16S rRNA gene. All treated waters were undetected with microcystins, indicating treatment processes were effective at removing toxins from source waters. Results also showed that phycocyanin values had a significantly positive relationship with microcystin concentration, copies of Microcystis 16S rRNA and microcystin-producing mcyB genes, suggesting these values can be used as a proxy for HAB monitoring. This study suggests that drinking water sources in New Jersey are vulnerable to forthcoming HAB. Monitoring and management of source waters is crucial to help safeguard public health.
Collapse
Affiliation(s)
- Tsung-Ta David Hsu
- New Jersey Center for Water Science and Technology, Montclair State University, 1 Normal Avenue, Montclair, NJ, 07043, USA
| | - Yaritza Acosta Caraballo
- Environmental Science and Management Program, Montclair State University, 1 Normal Avenue, Montclair, NJ, 07043, USA
| | - Meiyin Wu
- New Jersey Center for Water Science and Technology, Montclair State University, 1 Normal Avenue, Montclair, NJ, 07043, USA
- Environmental Science and Management Program, Montclair State University, 1 Normal Avenue, Montclair, NJ, 07043, USA
- Department of Biology, Montclair State University, 1 Normal Avenue, Montclair, NJ, 07043, USA
| |
Collapse
|
6
|
Wang N, Mark N, Launer N, Hirtler A, Weston C, Cleckner L, Faehndrich C, LaGorga L, Xia L, Pyrek D, Penningroth SM, Richardson RE. Harmful algal blooms in Cayuga lake, NY: From microbiome analysis to eDNA monitoring. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120128. [PMID: 38382427 DOI: 10.1016/j.jenvman.2024.120128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
The global increase in harmful algal blooms (HABs) has become a growing concern over the years, and New York State (NYS) is no exception. The Finger Lakes region in NYS has been identified as a hotspot for HABs, with Cayuga Lake having the highest number of blooms reported. The Cayuga Lake HABs Monitoring Program has been tracking cHABs (dominant bloom taxa, chlorophyll A, and microcystin levels) since 2018. However, limited research has been conducted on the microbiome of HABs in this region. In this study, the microbiome of HABs in the Cayuga Lake was surveyed and compared with non-HAB baseline samples. Using 16S rDNA community analysis, common bloom-forming cyanobacteria, were identified, with Microcystis being the dominant taxa in high toxin blooms. Further, this study evaluated the ability of Microcystis mcyA qPCR to detect elevated levels of potential toxigenic Microcystis in water samples using both benchtop and handheld qPCR devices. The results showed good performance of the qPCR assay as a screening for high toxin versus low/no toxin blooms. Additionally, the handheld qPCR device holds potential for in-field rapid (<1 h) screenings for high toxin blooms. This study provides insights into the microbiome of HABs in Cayuga Lake and offers a potential tool for rapid screening of high toxin blooms.
Collapse
Affiliation(s)
- Nan Wang
- Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Noah Mark
- Community Science Institute, New York State Department of Health-Environmental Laboratory Approval Program ID 11790, Ithaca, NY 14850, USA
| | - Nathaniel Launer
- Community Science Institute, New York State Department of Health-Environmental Laboratory Approval Program ID 11790, Ithaca, NY 14850, USA
| | - Adrianna Hirtler
- Community Science Institute, New York State Department of Health-Environmental Laboratory Approval Program ID 11790, Ithaca, NY 14850, USA
| | - Claire Weston
- Community Science Institute, New York State Department of Health-Environmental Laboratory Approval Program ID 11790, Ithaca, NY 14850, USA
| | - Lisa Cleckner
- Finger Lakes Institute, Hobart and William Smith Colleges, Geneva, NY, USA
| | - Chloe Faehndrich
- Skidmore College, Environmental Studies and Sciences Program, Saratoga Springs, NY, 12866, USA
| | - Lydia LaGorga
- Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Lingzi Xia
- Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Daniel Pyrek
- Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Stephen M Penningroth
- Community Science Institute, New York State Department of Health-Environmental Laboratory Approval Program ID 11790, Ithaca, NY 14850, USA
| | - Ruth E Richardson
- Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
7
|
Liu Q, Zhang H, Zhang Y, Li D, Gao Y, Li H, Duan L, Zhang X, Liu F, Xu J, Xu T, Li H. Heterogeneous bacterial communities affected by phytoplankton community turnover and microcystins in plateau lakes of Southwestern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166303. [PMID: 37586523 DOI: 10.1016/j.scitotenv.2023.166303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Both phytoplankton and bacteria are fundamental organisms with key ecological functions in lake ecosystems. However, the mechanistic interactions through which phytoplankton community change and bacterial communities interact remain poorly understood. Here, the responses of bacterial communities to the community structure, resource-use efficiency (RUE), and community turnover of phytoplankton and microcystins (MCs) were investigated in Lake Dianchi, Lake Xingyun, and Lake Erhai of Southwestern China across two seasons (May and October 2020). Among phytoplankton, Cyanobacteria was the dominant species in all three lakes and attained greater dominance in October than in May due to variation in the RUE of nitrogen and phosphorus and environmental changes. The production of MCs, including MC_LR, MC_RR and MC_YR, was the result of the massive Cyanobacteria. Decreases in diversity and increases in heterogeneity were observed in the bacterial community structure. Nutrient levels, environmental factors and MCs (especially MC_YR) jointly affected the bacterial community in lakes, namely its diversity and community assembly. The cascading effects in lakes mediated by environmental conditions, phytoplankton community composition, RUE, community turnover, and MCs on bacterial communities were revealed in this study. These findings underscore the importance of relating phytoplankton community change and MCs to the bacterial community, which is fundamental for better understanding the lake ecosystem functioning and potential risks of MCs.
Collapse
Affiliation(s)
- Qi Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650500, China
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650500, China; Southwest United Graduate School, Kunming, 650500, Yunnan, China.
| | - Yang Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650500, China
| | - Donglin Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650500, China
| | - Youhong Gao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650500, China
| | - Haoyu Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650500, China
| | - Lizeng Duan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650500, China
| | - Xiaonan Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650500, China
| | - Fengwen Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650500, China
| | - Jing Xu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650500, China
| | - Tianbao Xu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650500, China; Southwest United Graduate School, Kunming, 650500, Yunnan, China
| | - Huayu Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650500, China
| |
Collapse
|
8
|
Khachornsakkul K, Del-Rio-Ruiz R, Creasey H, Widmer G, Sonkusale SR. Gold Nanomaterial-Based Microfluidic Paper Analytical Device for Simultaneous Quantification of Gram-Negative Bacteria and Nitrite Ions in Water Samples. ACS Sens 2023; 8:4364-4373. [PMID: 37997658 DOI: 10.1021/acssensors.3c01769] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
This study presents a rapid microfluidic paper-based analytical device (μPAD) capable of simultaneously monitoring Gram-negative bacteria and nitrite ions (NO2-) for water quality monitoring. We utilize gold nanoparticles (AuNPs) functionalized with polymyxin molecules (AuNPs@polymyxin) to cause color change due to aggregation for the detection of Gram-negative bacteria, and antiaggregation in the presence of o-phenylenediamine (OPD) for NO2- detection. In this study, Escherichia coli (E. coli) serves as the model of a Gram-negative bacterium. Using the developed μPADs, the color changes resulting from aggregation and antiaggregation reactions are measured using a smartphone application. The linear detection ranges from 5.0 × 102 to 5.0 × 105 CFU/mL (R2 = 0.9961) for E. coli and 0.20 to 2.0 μmol/L (R2 = 0.995) for NO2-. The detection limits were determined as 2.0 × 102 CFU/mL for E. coli and 0.18 μmol/L for NO2-. Notably, the newly developed assay exhibited high selectivity with no interference from Gram-positive bacteria. Additionally, we obtained acceptable recovery for monitoring E. coli and NO2- in drinking water samples with no significant difference between our method and a commercial assay by t test validation. The sensor was also employed for assessing the quality of the pond and environmental water source. Notably, this approach can also be applied to human urine samples with satisfactory accuracy. Furthermore, the assay's stability is extended due to its reliance on AuNPs rather than reagents like antibodies and enzymes, reducing costs and ensuring long-term viability. Our cost-effective μPADs therefore provide a real-time analysis of both contaminants, making them suitable for assessing water quality in resource-limited settings.
Collapse
Affiliation(s)
- Kawin Khachornsakkul
- Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Nano Lab, Tufts University, Medford, Massachusetts 02155, United States
| | - Ruben Del-Rio-Ruiz
- Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Nano Lab, Tufts University, Medford, Massachusetts 02155, United States
| | - Hannah Creasey
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts 01536, United States
| | - Giovanni Widmer
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts 01536, United States
| | - Sameer R Sonkusale
- Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Nano Lab, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
9
|
Lyu L, Song K, Wen Z, Liu G, Fang C, Shang Y, Li S, Tao H, Wang X, Li Y, Wang X. Remote estimation of phycocyanin concentration in inland waters based on optical classification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:166363. [PMID: 37598955 DOI: 10.1016/j.scitotenv.2023.166363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
In recent years, under the dual pressure of climate change and human activities, the cyanobacteria blooms in inland waters have become a threat to global aquatic ecosystems and the environment. Phycocyanin (PC), a diagnostic pigment of cyanobacteria, plays an essential role in the detection and early warning of cyanobacterial blooms. In this context, accurate estimation of PC concentration in turbid waters by remote sensing is challenging due to optical complexity and weak optical signal. In this study, we collected a comprehensive dataset of 640 pairs of in situ measured pigment concentration and the Ocean and Land Color Instrument (OLCI) reflectance from 25 lakes and reservoirs in China during 2020-2022. We then developed a framework consisting of the water optical classification algorithm and three candidate algorithms: baseline height, band ratio, and three-band algorithm. The optical classification method used remote sensing reflectance (Rrs) baseline height in three bands: Rrs(560), Rrs(647) and Rrs(709) to classify the samples into five types, each with a specific spectral shape and water quality character. The improvement of PC estimation accuracy for optically classified waters was shown by comparison with unclassified waters with RMSE = 72.6 μg L-1, MAPE = 80.4 %, especially for the samples with low PC concentration. The results show that the band ratio algorithm has a strong universality, which is suitable for medium turbid and clean water. In addition, the three-band algorithm is only suitable for medium turbid water, and the line height algorithm is only suitable for high PC content water. Furthermore, the five distinguished types with significant differences in the value of the PC/Chla ratio well indicated the risk rank assessment of cyanobacteria. In conclusion, the proposed framework in this paper solved the problem of PC estimation accuracy problem in optically complex waters and provided a new strategy for water quality inversion in inland waters.
Collapse
Affiliation(s)
- Lili Lyu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Jilin Jianzhu University, Changchun, China
| | - Kaishan Song
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; School of Environment and Planning, Liaocheng University, Liaocheng 252000, China.
| | - Zhidan Wen
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Ge Liu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Chong Fang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yingxin Shang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Sijia Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Hui Tao
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xiang Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yong Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xiangyu Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; College of Geographical Sciences, Changchun Normal University, Changchun 130102, China
| |
Collapse
|
10
|
Li J, Xian X, Xiao X, Li S, Yu X. Dynamic characteristics of total and microcystin-producing Microcystis in a large deep reservoir. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122256. [PMID: 37506805 DOI: 10.1016/j.envpol.2023.122256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Microcystis, one of the common cyanobacteria, often causes blooms in reservoirs, which has seriously threatened the safety of drinking water worldwide. To identify the growth characteristic of total and microcystin-producing Microcystis in large deep reservoirs, we used Quantitative PCR (qPCR) to measure the cell density of total and microcystin-producing Microcystis and monitored water quality in the water samples collected in Dongzhang Reservoir once a month. Microcystis blooms occurred in Dongzhang Reservoir in April 2017, which was composed of microcystin-producing and non-microcystin-producing Microcystis. Water temperature, dissolved oxygen, pH, and chlorophyll-a showed significant vertical stratification during Microcystis blooms. Total and microcystin-producing Microcystis grew rapidly under the high concentration of total phosphorus and rising water temperatures. Nitrate-nitrogen had a significant linear correlation with the abundance of microcystin-producing Microcystis. Our results indicated that nutrients and water temperature could be key triggers of Microcystis blooms and nitrate-nitrogen potentially regulates the competition between microcystin-producing and non-microcystin-producing Microcystis. This study improves our understanding of the characteristics of Microcystis blooms and the competition between microcystin-producing and non-microcystin-producing Microcystis in large deep reservoirs.
Collapse
Affiliation(s)
- Jingjing Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Xuanxuan Xian
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Xinyan Xiao
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Shuai Li
- Fujian Provincial Investigation, Design & Research Institute of Water Conservancy & Hydropower, No.158 Dongda Road, Gulou District, Fuzhou, 350001, China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
11
|
Abbas M, Alameddine I. Predicting water quality variability in a Mediterranean hypereutrophic monomictic reservoir using Sentinel 2 MSI: the importance of considering model functional form. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:923. [PMID: 37410180 DOI: 10.1007/s10661-023-11456-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 06/01/2023] [Indexed: 07/07/2023]
Abstract
Anthropogenic eutrophication is a global environmental problem threatening the ecological functions of many inland freshwaters and diminishing their abilities to meet their designated uses. Water authorities worldwide are being pressed to improve their abilities to monitor, predict, and manage the incidence of harmful algal blooms (HABs). While most water quality management decisions are still based on conventional monitoring programs that lack the needed spatio-temporal resolution for effective lake/reservoir management, recent advances in remote sensing are providing new opportunities towards better understanding water quality variability in these important freshwater systems. This study assessed the potential of using the Sentinel 2 Multispectral Instrument to predict and assess the spatio-temporal variability in the water quality of the Qaraoun Reservoir, a poorly monitored Mediterranean hypereutrophic monomictic reservoir that is subject to extensive periods of HABs. The work first evaluated the ability to transfer and recalibrate previously developed reservoir-specific Landsat 7 and 8 water quality models when used with Sentinel 2 data. The results showed poor transferability between Landsat and Sentinel 2, with most models experiencing a significant drop in their predictive skill even after recalibration. Sentinel 2 models were then developed for the reservoir based on 153 water quality samples collected over 2 years. The models explored different functional forms, including multiple linear regressions (MLR), multivariate adaptive regression splines (MARS), random forests (RF), and support vector regressions (SVR). The results showed that the RF models outperformed their MLR, MARS, and SVR counterparts with regard to predicting chlorophyll-a, total suspended solids, Secchi disk depth, and phycocyanin. The coefficient of determination (R2) for the RF models varied between 85% for TSS up to 95% for SDD. Moreover, the study explored the potential of quantifying cyanotoxin concentrations indirectly from the Sentinel 2 MSI imagery by benefiting from the strong relationship between cyanotoxin levels and chlorophyll-a concentrations.
Collapse
Affiliation(s)
- Mohamad Abbas
- Department of Civil and Environmental Engineering, American University of Beirut, Beirut, Lebanon
| | - Ibrahim Alameddine
- Department of Civil and Environmental Engineering, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
12
|
Wei L, Zhang Y, Zhang Y, Xu X, Zhu L. Unraveling the response of water quality and microbial community to lake water backflowing in one typical estuary of Lake Taihu, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:642. [PMID: 37145346 DOI: 10.1007/s10661-023-11190-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/01/2023] [Indexed: 05/06/2023]
Abstract
To investigate the effect of lake water backflowing on the aquatic ecosystem in the estuary, surface water samples in the backflowing and unbackflowing areas were collected from one typical estuary of Lake Taihu, Xitiaoxi River. 16S rRNA sequencing and redundancy analysis were conducted to quantitatively elucidate the correlation between microbial community and water quality parameters. Results indicated lake water backflowing would affect the relative distribution of nitrogen species and increase the concentration of total nitrogen (TN) and nitrate, especially in the outlets of municipal sewage and agricultural drainage. For backflowing areas, more frequent water exchange could lower the seasonal fluctuation of the abundance and diversity of microbial community. RDA results showed crucial water quality parameters that greatly influence bacterial community were total organic carbon (TOC), total dissolved solids (TDS), salinity (SAL), ammonia, nitrate, TN for backflowing areas, and TOC, TDS, SAL, ammonia, TN without nitrate for unbackflowing areas. Verrucomicrobia, Proteobacteria, Microcystis, and Arcobacter were dominant with 27.7%, 15.7%, 30.5%, and 25.7% contribution to the overall water quality in backflowing areas. Chloroflexi, Verrucomicrobia, Flavobacterium, and Nostocaceae were dominant with 25.0%, 18.4%, 22.3%, and 11.4% contribution to the overall water quality in unbackflowing areas. And lake water backflowing might mainly affect the amino acid and carbohydrate metabolism based on the metabolism function prediction. A better understanding of the spatiotemporal changes in water quality parameters and microbial community was obtained from this research to comprehensively assess the effect of lake water backflowing on the estuarine ecosystem.
Collapse
Affiliation(s)
- Lecheng Wei
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou, 310058, China
| | - Yajie Zhang
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou, 310058, China
| | - Ye Zhang
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou, 310058, China
| | - Xiangyang Xu
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China
- Zhejiang Provincial Engineering Laboratory of Water Pollution Control, 388 Yuhangtang Road, Hangzhou, 310058, China
| | - Liang Zhu
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China.
- Zhejiang Provincial Engineering Laboratory of Water Pollution Control, 388 Yuhangtang Road, Hangzhou, 310058, China.
| |
Collapse
|
13
|
Abbas M, Dia S, Deutsch ES, Alameddine I. Analyzing eutrophication and harmful algal bloom dynamics in a deep Mediterranean hypereutrophic reservoir. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37607-37621. [PMID: 36572773 DOI: 10.1007/s11356-022-24804-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
Excessive point and non-point nutrient loadings accompanied with elevated temperatures have increased the prevalence of harmful algal bloom (HAB). HABs pose significant environmental and public health concerns, particularly for inland freshwater systems. In this study, the eutrophication and HAB dynamics in the Qaraoun Reservoir, a hypereutrophic deep monomictic reservoir suffering from poor water quality, were assessed. The reservoir was mostly phosphorus limited, and large algal particulates dominated light attenuation in the water column. During bloom events, surface chlorophyll-a concentrations increased up to 961.3 µg/L, while surface concentrations of ammonia and ortho-phosphate were rapidly depleted; surface dissolved oxygen reached supersaturation levels and surface pH levels were up to 3 units higher than those measured in the hypolimnion. Meanwhile, measured Microcystin-LR toxin concentrations in the reservoir exceeded the World Health Organization 1 μg/L provisional guideline 45% of the times. Yet, the results showed that most of the toxins were intra-cellular, suggesting that they decayed rapidly when released into the reservoir. Results from a random forests ensemble model indicated that tracking the changes in surface dissolved oxygen levels, ammonium, ortho-phosphate, and pH can be an effective program towards predicting the reservoir's trophic state and algae blooms.
Collapse
Affiliation(s)
- Mohamad Abbas
- Department of Civil and Environmental Engineering, American University of Beirut, Beirut, Lebanon
| | - Sara Dia
- Department of Civil and Environmental Engineering, American University of Beirut, Beirut, Lebanon
- Emlyon Business School, Lyon, France
| | - Eliza S Deutsch
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Ibrahim Alameddine
- Department of Civil and Environmental Engineering, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
14
|
Fu X, Zheng M, Su J, Xi B, Wei D, Wang X. Spatiotemporal patterns and threshold of chlorophyll-a in Lake Taihu based on microcystins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49327-49338. [PMID: 36773259 DOI: 10.1007/s11356-023-25737-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 02/01/2023] [Indexed: 02/12/2023]
Abstract
Chlorophyll-a (Chl-a) is considered as an indicator of phytoplankton biomass dynamically reflecting the growth of algae. Therefore, determination of Chl-a threshold is of vital importance to the health of aquatic ecosystems and drinking water security. This research is aimed to investigate the spatial and temporal distributions of Chl-a and microcystin (MC) concentrations using Geographic Information System (GIS) and identify the Chl-a threshold in Lake Taihu based on available guideline values of MCs. Nearly, the same characteristics of spatiotemporal variation of Chl-a and MCs were observed in Lake Taihu. Overall, the lakewide distributions of Chl-a and MCs were highly variable over time and space. The Chl-a concentration in the winter and spring was relatively low, and gradually increasing in summer and autumn, with the maximum concentration observed in August. But the maximum MCs concentration appeared in October, 2 months lagging behind the Chl-a. The highest annual average Chl-a and MCs concentrations were observed in Zhushan Bay, Meiliang Bay, and Gonghu Bay in northwest of Lake Taihu, following by West Zone and Center Zone. Dongtaihu Bay, East Zone, and South Zone always present good water quality. Referring to the guideline value of MCs, the Chl-a threshold was determined as 10-15 mg·m-3 based on the linear regression correlation between Chl-a and MCs. The establishment of Chl-a threshold is useful for eutrophication control, water quality management, and drinking water utilities in developing water safety plans.
Collapse
Affiliation(s)
- Xuemei Fu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.,School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Mingxia Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jing Su
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Daichun Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaoli Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
15
|
Zhonghua C, Yan Z, Xiaoke Z, Gaoying X, Tao Y. Shift of major driver for chemical weathering from the natural control to human dominance since 1980s in the Taihu watershed, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20558-20569. [PMID: 36255581 DOI: 10.1007/s11356-022-23619-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Anthropogenic acidification has become a concerned problem in the Taihu region; however, how it affected the regional weathering rate, especially at the different sub-watershed levels has hardly been studied. To reveal the impact of human activities on watershed weathering and water chemistry in Taihu sub-watersheds, historical water chemistry data (1950s-1970s) and recent water samples (2018-2021) of the local river systems, as well as sediment samples of Taihu lake were collected and analyzed, and a linear addition mass balance method was used to determine the weathering rate at the sub-watershed level. The results indicated that, compared with 60 years ago, the current weathering rate of carbonates and silicates in the Taoge water system (TG) was the highest, reaching 67.2 and 11.4 t·km-2·a-1, increasing by 4.1 and 2.7-folds, respectively; and meanwhile the carbonate and silicate weathering rates increased by 3.1 and 4.9-folds in the Nanhe water system (NH), and 5.2 and 3.4-folds in the Tiaoxi water system (TX), respectively. The increasing rate was significantly correlated to the atmospheric SO2 concentration in different sub-watersheds and was affected by the sub-watershed lithology, e.g., TX had a higher increase rate of silicate weathering due to the wider distribution of silicates in this sub-watershed than the other two. The sediment evidence of Na/K and Ca/Al on the profile in different lake parts, which was influenced by different influx river systems, confirmed that the overall intensity of watershed weathering was higher in TG than in the TX sub-watershed and was higher in the recent decade than 50-60 years ago. The accelerated weathering rate was found to present a definite consistency with the social and economic development in the watershed. Combined analyses of the accelerated weathering rate in the watershed and sedimentation evidence indicated that the major driving force for the watershed weathering has shifted from carbonic acid under the natural condition to human-induced sulfuric acid since 1980s.
Collapse
Affiliation(s)
- Cheng Zhonghua
- College of Environment Science and Engineering, Yangzhou University, Yangzhou, 225217, China
| | - Zhang Yan
- Tianjin Academy of Eco-Environmental Sciences, Tianjin, 300191, China
| | - Zhuo Xiaoke
- College of Environment Science and Engineering, Yangzhou University, Yangzhou, 225217, China
| | - Xu Gaoying
- College of Environment Science and Engineering, Yangzhou University, Yangzhou, 225217, China
| | - Yu Tao
- College of Environment Science and Engineering, Yangzhou University, Yangzhou, 225217, China.
| |
Collapse
|
16
|
Metagenomics Reveal Microbial Effects of Lotus Root-Fish Co-Culture on Nitrogen Cycling in Aquaculture Pond Sediments. Microorganisms 2022; 10:microorganisms10091740. [PMID: 36144342 PMCID: PMC9501379 DOI: 10.3390/microorganisms10091740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Feed input leads to a large amount of nitrogen-containing sediment accumulating in the substrate in the pond culture process, threatening the safety of aquaculture production. Planting lotus roots (Nelumbo nucifera Gaertn.) in ponds can accelerate the removal of bottom nitrogen, while the role of nitrogen cycle-related microorganisms in the removal is still unclear. In this study, eight yellow catfish (Pelteobagrus fulvidraco) culture ponds with the same basic situation were divided into fishponds with planted lotus roots and ponds with only fish farming. Sediment samples were taken from the fishponds with planted lotus roots and the ponds with only fish farming before and after fish farming, marked as FPB, FPA, FOB, and FOA, respectively, and subjected to physicochemical and metagenomic sequencing analyses. The results show that the contents of NH4+, NO2−, TN, TP, and OM were significantly lower (p < 0.05) in FPA than in FOA. The abundance of metabolic pathways for inorganic nitrogen transformation and ammonia assimilation increased considerably after culture compared to the sediments before culture. A total of eight ammonia production pathways and two ammonia utilization pathways were annotated in the sediments of the experimental ponds, with a very high abundance of ammonia assimilation. Acinetobacter and Pseudomonas (34.67%, 18.02%) were the dominant bacteria in the pond sediments before culture, which changed to Thiobacillus (12.16%) after culture. The FPA had significantly higher relative abundances of Thiobacillus denitrificans and Sulfuricella denitrificans, and the FOA had significantly a higher abundance of Microcystis aeruginosa compared to other samples. The massive growth of Microcystis aeruginosa provided two new inorganic nitrogen metabolic pathways and one organic nitrogen metabolic pathway for FOA. The relative abundances of these three microorganisms were negatively correlated with NH4+ content (p < 0.01) and significantly positively correlated with AP, OM content, and pH value. Compared with ponds with only fish farming, lotus root−fish co-culture can significantly reduce the nitrogen content in sediment, increase the abundance of denitrifying bacteria, and inhibit algae growth. Still, it has little effect on the abundance of nitrogen cycle-related enzymes and genes. In summary, it is shown that, although lotus roots promote the growth of denitrifying microorganisms in the sediment, nitrogen removal relies mainly on nutrient uptake by lotus roots.
Collapse
|
17
|
Revealing Physiochemical Factors and Zooplankton Influencing Microcystis Bloom Toxicity in a Large-Shallow Lake Using Bayesian Machine Learning. Toxins (Basel) 2022; 14:toxins14080530. [PMID: 36006192 PMCID: PMC9413751 DOI: 10.3390/toxins14080530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
Toxic cyanobacterial blooms have become a severe global hazard to human and environmental health. Most studies have focused on the relationships between cyanobacterial composition and cyanotoxins production. Yet, little is known about the environmental conditions influencing the hazard of cyanotoxins. Here, we analysed a unique 22 sites dataset comprising monthly observations of water quality, cyanobacterial genera, zooplankton assemblages, and microcystins (MCs) quota and concentrations in a large-shallow lake. Missing values of MCs were imputed using a non-negative latent factor (NLF) analysis, and the results achieved a promising accuracy. Furthermore, we used the Bayesian additive regression tree (BART) to quantify how Microcystis bloom toxicity responds to relevant physicochemical characteristics and zooplankton assemblages. As expected, the BART model achieved better performance in Microcystis biomass and MCs concentration predictions than some comparative models, including random forest and multiple linear regression. The importance analysis via BART illustrated that the shade index was overall the best predictor of MCs concentrations, implying the predominant effects of light limitations on the MCs content of Microcystis. Variables of greatest significance to the toxicity of Microcystis also included pH and dissolved inorganic nitrogen. However, total phosphorus was found to be a strong predictor of the biomass of total Microcystis and toxic M. aeruginosa. Together with the partial dependence plot, results revealed the positive correlations between protozoa and Microcystis biomass. In contrast, copepods biomass may regulate the MC quota and concentrations. Overall, our observations arouse universal demands for machine-learning strategies to represent nonlinear relationships between harmful algal blooms and environmental covariates.
Collapse
|
18
|
Wang Z, Xu Y, Yang J, Li Y, Sun Y, Zhang L, Yang Z. Adverse role of colonial morphology and favorable function of microcystins for Microcystis to compete with Scenedesmus. HARMFUL ALGAE 2022; 117:102293. [PMID: 35944955 DOI: 10.1016/j.hal.2022.102293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
In eutrophic freshwaters, Microcystis usually becomes dominant in phytoplankton communities due to the synergistic effects of its special eco-physiological traits and environmental factors. Colonial morphology can protect Microcystis from zooplankton grazing, which indirectly favors Microcystis to outcompete other phytoplankton, although the colonial form is not conducive to the absorption of nutrients. Moreover, unicellular Microcystis usually has competitive advantages over other phytoplankton due to its efficient absorption capacity for nutrients and releasing microcystins. However, the consequence of direct competition between toxic colonial Microcystis and green algae without external grazing pressure still remained unknown. In this study, the competition between toxic colonial Microcystis aeruginosa and a common green alga Scenedesmus obliquus was explored. Results showed that: (1) colonial M. aeruginosa had a higher requirement for key macro-nutrient phosphorus than S. obliquus, and thus its population declined and was replaced by S. obliquus eventually; (2) microcystins released by colonial M. aeruginosa inhibited the photosynthetic activity and growth of S. obliquus at early stage of the competition; (3) the photosynthetic potential of colonial M. aeruginosa was stimulated in response to the competitive stress from S. obliquus, although the population of colonial M. aeruginosa declined eventually; (4) microcystin production of colonial M. aeruginosa was enhanced by phosphorus limitation due to S. obliquus competition and was positively related to photosynthetic potential of colonial M. aeruginosa. These results indicated that, in the absence of complex natural environment, colonial Microcystis cannot outcompete Scenedesmus in a pure competition, although microcystins can play a favorable role in the competition, which clarified the opposite role of colonies and microcystins in the competition of colonial Microcystis against other phytoplankton.
Collapse
Affiliation(s)
- Zeshuang Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yang Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Jiajun Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yapeng Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
19
|
Buley RP, Gladfelter MF, Fernandez-Figueroa EG, Wilson AE. Can correlational analyses help determine the drivers of microcystin occurrence in freshwater ecosystems? A meta-analysis of microcystin and associated water quality parameters. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:493. [PMID: 35690674 DOI: 10.1007/s10661-022-10114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Microcystin (MC) is a toxic secondary metabolite produced by select cyanobacteria that threatens aquatic and terrestrial organisms over a diverse range of freshwater systems. To assess the relationship between environmental parameters and MC, researchers frequently utilize correlational analyses. This statistical methodology has proved useful when summarizing complex water quality monitoring datasets, but the correlations between select parameters and MC have been documented to vary widely across studies and systems. Such variation within the peer-reviewed literature leaves uncertainty for resource managers when developing a MC monitoring program. The objective of this research is to determine if correlational analyses between environmental parameters and MC are helpful to resource managers desiring to understand the drivers of MC. Environmental (i.e., physical, chemical, and biological) and MC correlation data were retrieved from an estimated 2,643 waterbodies (largely from the north temperate region) and synthesized using a Fisher's z meta-analysis. Common water quality parameters, such as chlorophyll, temperature, and pH, were positively correlated with MC, while transparency was negatively correlated. Interestingly, 12 of the 15 studied nitrogen parameters, including total nitrogen, were not significantly correlated with MC. In contrast, three of the four studied phosphorus parameters, including total phosphorus, were positively related to MC. Results from this synthesis quantitatively reinforces the usefulness of commonly measured environmental parameters to monitor for conditions related to MC occurrence; however, correlational analyses by themselves are often ineffective and considering what role a parameter plays in the ecology of cyanobacterial blooms in addition to MC production is vital.
Collapse
Affiliation(s)
- Riley P Buley
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| | - Matthew F Gladfelter
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | | | - Alan E Wilson
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
20
|
Liu Q, Zhang H, Chang F, Xie P, Zhang Y, Wu H, Zhang X, Peng W, Liu F. eDNA revealed in situ microbial community changes in response to Trapa japonica in Lake Qionghai and Lake Erhai, southwestern China. CHEMOSPHERE 2022; 288:132605. [PMID: 34678346 DOI: 10.1016/j.chemosphere.2021.132605] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Trapa japonica was observed to have inhibiting effects and could be used as a potential environment-friendly control strategy for cyanobacterial blooms in freshwater. However, the changes and effecting mechanisms in eukaryotic and prokaryotic communities by T. japonica are not yet clear. In this study, the effects of T. japonica on microbial communities were assessed in Lake Qionghai and Lake Erhai by 18S rRNA and 16S rRNA amplicon sequencing, respectively. The results showed that T. japonica can improve biodiversity and change the microbial community structures to varying degrees in both lakes. The alpha diversity indexes of microbial communities (e.g., Shannon, Sobs, Ace and Chao 1) were higher in the water inhabited by T. japonica (TJ group) than the water uninhabited by T. japonica (control) (P < 0.05). The PCoA results suggested that the microbial community compositions differed between the two groups (PERMANOVA P = 0.001). In Lake Qionghai, the relative abundances of dominant taxa and nutrients level showed little differences between the two groups. These may result from the homogenous water condition in Lake Qionghai. While the genera Cyanobium_PCC-6307, the majority of Cyanobacteria, decreased significantly in TJ group than control according to 16S rRNA gene sequencing. In Lake Erhai, environmental variables were distinctly affected by T. japonica, which was found to drive Cryptophyceae to become the main taxa through taxonomic analysis of 18S rRNA. Based on 16S rRNA gene sequencing, T. japonica reduced the relative abundance of Cyanobacteria, such as Planktothrix_NIVA-CYA_15 and Cyanobium_PCC-6307, by enriching cyanobactericidal bacteria and growth-inhibiting bacteria (e.g., Limnohabitans and Flavobacterium) and changing environmental parameters. Our results revealed that T. japonica acts in shaping microbial communities in lakes on the community level, shedding new lights on eutrophication mitigation, one of the most serious global ecological problems we are facing.
Collapse
Affiliation(s)
- Qi Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing, 100101, China.
| | - Fengqin Chang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Yun Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Han Wu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Xiaonan Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Wei Peng
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Fengwen Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| |
Collapse
|
21
|
Feist SM, Lance RF. Genetic detection of freshwater harmful algal blooms: A review focused on the use of environmental DNA (eDNA) in Microcystis aeruginosa and Prymnesium parvum. HARMFUL ALGAE 2021; 110:102124. [PMID: 34887004 DOI: 10.1016/j.hal.2021.102124] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Recurrence and severity of harmful algal blooms (HABs) are increasing due to a number of factors, including human practices and climate change. Sensitive and robust methods that allow for early and expedited HAB detection across large landscape scales are needed. Among the suite of HAB detection tools available, a powerful option exists in genetics-based approaches utilizing environmental sampling, also termed environmental DNA (eDNA). Here we provide a detailed methodological review of three HAB eDNA approaches (quantitative PCR, high throughput sequencing, and isothermal amplification). We then summarize and synthesize recently published eDNA applications covering a variety of HAB surveillance and research objectives, all with a specific emphasis in the detection of two widely problematic freshwater species, Microcystis aeruginosa and Prymnesium parvum. In our summary and conclusion we build on this literature by discussing ways in which eDNA methods could be advanced to improve HAB detection. We also discuss ways in which eDNA data could be used to potentially provide novel insight into the ecology, mitigation, and prediction of HABs.
Collapse
Affiliation(s)
- Sheena M Feist
- Environmental Lab, United States Army Corps of Engineers Research and Development Center, Vicksburg, MS, 39180, United States.
| | - Richard F Lance
- Environmental Lab, United States Army Corps of Engineers Research and Development Center, Vicksburg, MS, 39180, United States
| |
Collapse
|
22
|
Zhang Y, Hu M, Shi K, Zhang M, Han T, Lai L, Zhan P. Sensitivity of phytoplankton to climatic factors in a large shallow lake revealed by column-integrated algal biomass from long-term satellite observations. WATER RESEARCH 2021; 207:117786. [PMID: 34731665 DOI: 10.1016/j.watres.2021.117786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
There are some uncertainties of using chlorophyll a (Chla) concentrations in water surface to address phytoplankton dynamics, especially in large shallow lakes, because of the dramatic vertical migration of phytoplankton. The column-integrated algal biomass (CAB) can reflect the whole water column information, so it is considered as a better indicator for phytoplankton total biomass. An algal biomass index (ABI) and an empirical algorithm were proposed previously to measure algal biomass inside and outside euphotic zone from the Moderate Resolution Imaging Spectrometer (MODIS) data. A long-term CAB time series was generated in this study to clarify the temporal and spatial changes in phytoplankton and address its sensitivity to climatic factors in Lake Chaohu, a shallow eutrophic lake in China, from 2000 to 2018. Overall, the CAB for Lake Chaohu showed significant temporal and spatial dynamics. Temporally, the annual average CAB (total CBA within the whole lake) was increased at rate of 0.569 t Chla/y, ranging from 62.06±8.89 t Chla to 76.03±10.01 t Chla during the 19-year period. Seasonal and periodic variations in total CAB presented a bimodal annual cycle every year, the total CAB was highest in summer, followed by that in autumn, and it was the lowest in winter. The pixel-based CAB (total CAB of a unit water column), ranging from 112.42 to 166.85 mg Chla, was the highest in the western segment, especially its northern part, and was the lowest in the central parts of eastern and central segments. The sensitivity of CAB dynamics to climatic conditions was found to vary by region and time scale. Specifically, the change of pixel-based algal biomass was more sensitive to the temperature change on the monthly and annual scales, while wind speed impacted directly on the short-term spatial-temporal redistribution of algal biomass. High temperature and low wind speed could prompt the growth of total CAB for the whole lake, and the hydrodynamic situations affected by wind and so on determined the spatial details. It also indicated that Lake Chaohu may face more severe challenges with the future climatic warming. This study may serve as a reference to support algal bloom forecasting and early warning management for other large eutrophic lakes with similar problems.
Collapse
Affiliation(s)
- Yuchao Zhang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, P.R.China
| | - Minqi Hu
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, P.R.China; University of Chinese Academy of Sciences, Beijing 100049, P.R.China
| | - Kun Shi
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, P.R.China.
| | - Min Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, P.R.China
| | - Tao Han
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, P.R.China
| | - Lai Lai
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, P.R.China; University of Chinese Academy of Sciences, Beijing 100049, P.R.China
| | - Pengfei Zhan
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, P.R.China; University of Chinese Academy of Sciences, Beijing 100049, P.R.China
| |
Collapse
|
23
|
Huo D, Gan N, Geng R, Cao Q, Song L, Yu G, Li R. Cyanobacterial blooms in China: diversity, distribution, and cyanotoxins. HARMFUL ALGAE 2021; 109:102106. [PMID: 34815019 DOI: 10.1016/j.hal.2021.102106] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacterial blooms, which refer to the massive growth of harmful cyanobacteria, have altered the global freshwater ecosystems during the past decades. China has the largest population in the world, and it is suffering from the harmful effect of water eutrophication and cyanobacterial blooms along with rapid development of the economy and society. Research on cyanobacterial blooms and cyanotoxins in China have been overwhelmingly enhanced and emphasized during the past decades. In the present review, the research on cyanobacterial blooms in China is generally introduced, including the history of cyanobacterial bloom studies, the diversity of the bloom-forming cyanobacteria species (BFCS), and cyanotoxin studies in China. Most studies have focused on Microcystis, its blooms, and microcystins. Newly emerging blooms with the dominance of non-Microcystis BFCS have been gradually expanding to wide regions in China. Understanding the basic features of these non-Microcystis BFCS and their blooms, including their diversity, occurrence, physio-ecology, and harmful metabolites, will provide direction on future studies of cyanobacterial blooms in China.
Collapse
Affiliation(s)
- Da Huo
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Nanqin Gan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Ruozhen Geng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 400049, PR China
| | - Qi Cao
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Lirong Song
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Gongliang Yu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Renhui Li
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325000, PR China.
| |
Collapse
|
24
|
Wang S, Ding P, Lu S, Wu P, Wei X, Huang R, Kai T. Cell density-dependent regulation of microcystin synthetase genes (mcy) expression and microcystin-LR production in Microcystis aeruginosa that mimics quorum sensing. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112330. [PMID: 34020285 DOI: 10.1016/j.ecoenv.2021.112330] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
As the secondary metabolites of cyanobacterial harmful algal blooms (Cyano-HABs), microcystins (MCs) were generated under various environmental and cellular conditions. The understanding of the causes of MCs generation is of great interest in the field of water treatment and environmental science. In this work, we studied how Microcystis aeruginosa (FACHB-905) cell densities affect the MCs synthetase genes (mcy) expression, microcystin-LR (MC-LR) and quorum sensing molecules (Acyl-homoserine lactones (AHLs)) production. An electrochemical sensor was developed here for sensitive and quantitative detection of MC-LR that cultured at different cell densities. The results showed that mcy expression and MC-LR concentration started to increase when the cell density reached ca. 22 × 106 cells/mL, and was significantly increased with increasing cell densities. Moreover, the up-regulation of AHLs with increasing cell densities revealed that MC-LR is quorum sensing-mediated. Our results undoubtedly confirmed that MC-LR was produced in a cell density-dependent way that mimics quorum sensing, and the minimum cell density (ca. 22 × 106 cells/mL) that was required to produce MC-LR was provided and offered a reference standard for the prevention and control of MCs pollution in the actual water environment.
Collapse
Affiliation(s)
- Shanlin Wang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Siyu Lu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Pian Wu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Xiaoqian Wei
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Ruixue Huang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Tianhan Kai
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
25
|
Tian H, Jin J, Chen B, Lefebvre DD, Lougheed SC, Wang Y. Depth-Dependent Spatiotemporal Dynamics of Overwintering Pelagic Microcystis in a Temperate Water Body. Microorganisms 2021; 9:microorganisms9081718. [PMID: 34442797 PMCID: PMC8399979 DOI: 10.3390/microorganisms9081718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/03/2022] Open
Abstract
Cyanobacteria in the genus Microcystis are dominant components of many harmful algal blooms worldwide. Their pelagic–benthic life cycle helps them survive periods of adverse conditions and contributes greatly to their ecological success. Many studies on Microcystis overwintering have focused on benthic colonies and suggest that sediment serves as the major inoculum for subsequent summer blooms. However, the contemporaneous overwintering pelagic population may be important as well but is understudied. In this study, we investigated near-surface and near-bottom pelagic population dynamics of both microcystin-producing Microcystis and total Microcystis over six weeks in winter at Dog Lake (South Frontenac, ON, Canada). We quantified relative Microcystis concentrations using real-time PCR. Our results showed that the spatiotemporal distribution of overwintering pelagic Microcystis was depth dependent. The abundance of near-bottom pelagic Microcystis declined with increased depth with no influence of depth on near-surface Microcystis abundance. In the shallow region of the lake (<10 m), most pelagic Microcystis was found near the lake bottom (>90%). However, the proportion of near-surface Microcystis rose sharply to over 60% as the depth increased to approximately 18 m. The depth-dependent distribution pattern was found to be similar in both microcystin-producing Microcystis and total Microcystis. Our results suggest the top of the water column may be a more significant contributor of Microcystis recruitment inoculum than previously thought and merits more attention in early CHAB characterization and remediation.
Collapse
Affiliation(s)
- Haolun Tian
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada; (H.T.); (J.J.); (D.D.L.); (S.C.L.)
| | - Junjie Jin
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada; (H.T.); (J.J.); (D.D.L.); (S.C.L.)
| | - Bojian Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China;
| | - Daniel D. Lefebvre
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada; (H.T.); (J.J.); (D.D.L.); (S.C.L.)
| | - Stephen C. Lougheed
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada; (H.T.); (J.J.); (D.D.L.); (S.C.L.)
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China;
| | - Yuxiang Wang
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada; (H.T.); (J.J.); (D.D.L.); (S.C.L.)
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China;
- Correspondence:
| |
Collapse
|
26
|
Christensen VG, Stelzer EA, Eikenberry BC, Olds HT, LeDuc JF, Maki RP, Saley AM, Norland J, Khan E. Cyanotoxin mixture models: Relating environmental variables and toxin co-occurrence to human exposure risk. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125560. [PMID: 33773250 DOI: 10.1016/j.jhazmat.2021.125560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/03/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Toxic cyanobacterial blooms, often containing multiple toxins, are a serious public health issue. However, there are no known models that predict a cyanotoxin mixture (anatoxin-a, microcystin, saxitoxin). This paper presents two cyanotoxin mixture models (MIX) and compares them to two microcystin (MC) models from data collected in 2016-2017 from three recurring cyanobacterial bloom locations in Kabetogama Lake, Voyageurs National Park (Minnesota, USA). Models include those using near-real-time environmental variables (readily available) and those using additional comprehensive variables (based on laboratory analyses). Comprehensive models (R2 = 0.87 MC; R2 = 0.86 MIX) explained more variability than the environmental models (R2 = 0.58 MC; R2 = 0.57 MIX). Although neither MIX model was a better fit than the MC models, the MIX models produced no false negatives in the calibration dataset, indicating that all observations above regulatory guidelines were simulated by the MIX models. This is the first known use of Virtual Beach software for a cyanotoxin mixture model, and the methods used in this paper may be applicable to other lakes or beaches.
Collapse
Affiliation(s)
- Victoria G Christensen
- US Geological Survey, Upper Midwest Water Science Center, 2280 Woodale Drive, Mounds View, MN 55112, USA; North Dakota State University, Environmental and Conservation Sciences Program, Fargo, ND 58102, USA.
| | - Erin A Stelzer
- US Geological Survey Ohio Water Microbiology Laboratory, 6460 Busch Blvd STE 100, Columbus, OH, USA
| | - Barbara C Eikenberry
- US Geological Survey, Upper Midwest Water Science Center, 8505 Research Way, Middleton, WI 53562, USA
| | - Hayley T Olds
- US Geological Survey, Upper Midwest Water Science Center, 8505 Research Way, Middleton, WI 53562, USA
| | - Jaime F LeDuc
- Voyageurs National Park, 360 Highway 11 East, International Falls, MN 56649, USA
| | - Ryan P Maki
- Voyageurs National Park, 360 Highway 11 East, International Falls, MN 56649, USA
| | - Alisha M Saley
- Bodega Marine Laboratory, University of California-Davis, 2099 Westshore Road, Bodega Bay, CA 94923, USA
| | - Jack Norland
- North Dakota State University, Environmental and Conservation Sciences Program, Fargo, ND 58102, USA
| | - Eakalak Khan
- University of Nevada, Las Vegas, Department of Civil and Environmental Engineering and Construction, 4505 S Maryland Pkwy, Las Vegas, NV 89154, USA
| |
Collapse
|
27
|
Dick GJ, Duhaime MB, Evans JT, Errera RM, Godwin CM, Kharbush JJ, Nitschky HS, Powers MA, Vanderploeg HA, Schmidt KC, Smith DJ, Yancey CE, Zwiers CC, Denef VJ. The genetic and ecophysiological diversity of Microcystis. Environ Microbiol 2021; 23:7278-7313. [PMID: 34056822 DOI: 10.1111/1462-2920.15615] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 01/30/2023]
Abstract
Microcystis is a cyanobacterium that forms toxic blooms in freshwater ecosystems around the world. Biological variation among taxa within the genus is apparent through genetic and phenotypic differences between strains and via the spatial and temporal distribution of strains in the environment, and this fine-scale diversity exerts strong influence over bloom toxicity. Yet we do not know how varying traits of Microcystis strains govern their environmental distribution, the tradeoffs and links between these traits, or how they are encoded at the genomic level. Here we synthesize current knowledge on the importance of diversity within Microcystis and on the genes and traits that likely underpin ecological differentiation of taxa. We briefly review spatial and environmental patterns of Microcystis diversity in the field and genetic evidence for cohesive groups within Microcystis. We then compile data on strain-level diversity regarding growth responses to environmental conditions and explore evidence for variation of community interactions across Microcystis strains. Potential links and tradeoffs between traits are identified and discussed. The resulting picture, while incomplete, highlights key knowledge gaps that need to be filled to enable new models for predicting strain-level dynamics, which influence the development, toxicity and cosmopolitan nature of Microcystis blooms.
Collapse
Affiliation(s)
- Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Melissa B Duhaime
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jacob T Evans
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Reagan M Errera
- National Oceanographic and Atmospheric Administration Great Lakes Environmental Research Lab, Ann Arbor, MI, USA
| | - Casey M Godwin
- School for Environment and Sustainability, Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, USA
| | - Jenan J Kharbush
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Helena S Nitschky
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - McKenzie A Powers
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Henry A Vanderploeg
- National Oceanographic and Atmospheric Administration Great Lakes Environmental Research Lab, Ann Arbor, MI, USA
| | - Kathryn C Schmidt
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Derek J Smith
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Colleen E Yancey
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Claire C Zwiers
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Vincent J Denef
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
28
|
Smith DJ, Tan JY, Powers MA, Lin XN, Davis TW, Dick GJ. Individual Microcystis colonies harbour distinct bacterial communities that differ by Microcystis oligotype and with time. Environ Microbiol 2021; 23:3020-3036. [PMID: 33830633 DOI: 10.1111/1462-2920.15514] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 03/11/2021] [Accepted: 04/06/2021] [Indexed: 12/31/2022]
Abstract
Interactions between bacteria and phytoplankton in the phycosphere have impacts at the scale of whole ecosystems, including the development of harmful algal blooms. The cyanobacterium Microcystis causes toxic blooms that threaten freshwater ecosystems and human health globally. Microcystis grows in colonies that harbour dense assemblages of other bacteria, yet the taxonomic composition of these phycosphere communities and the nature of their interactions with Microcystis are not well characterized. To identify the taxa and compositional variance within Microcystis phycosphere communities, we performed 16S rRNA V4 region amplicon sequencing on individual Microcystis colonies collected biweekly via high-throughput droplet encapsulation during a western Lake Erie cyanobacterial bloom. The Microcystis phycosphere communities were distinct from microbial communities in whole water and bulk phytoplankton seston in western Lake Erie but lacked 'core' taxa found across all colonies. However, dissimilarity in phycosphere community composition correlated with sampling date and the Microcystis 16S rRNA oligotype. Several taxa in the phycosphere were specific to and conserved with Microcystis of a single oligotype or sampling date. Together, this suggests that physiological differences between Microcystis strains, temporal changes in strain phenotypes, and the composition of seeding communities may impact community composition of the Microcystis phycosphere.
Collapse
Affiliation(s)
- Derek J Smith
- Department of Earth & Environmental Science, The University of Michigan, 1100 N. University Building, 1100 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - James Y Tan
- Department of Chemical Engineering, The University of Michigan, NCRC, 2800 Plymouth Rd., Ann Abor, MI, 48109, USA
| | - McKenzie A Powers
- Department of Earth & Environmental Science, The University of Michigan, 1100 N. University Building, 1100 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Xiaoxia N Lin
- Department of Chemical Engineering, The University of Michigan, NCRC, 2800 Plymouth Rd., Ann Abor, MI, 48109, USA
| | - Timothy W Davis
- Department of Biological Sciences, Bowling Green State University, Life Sciences Building, Corner of N. College Dr and E. Merry Avenue, Bowling Green, OH, 43403, USA
| | - Gregory J Dick
- Department of Earth & Environmental Science, The University of Michigan, 1100 N. University Building, 1100 N. University Avenue, Ann Arbor, MI, 48109, USA
| |
Collapse
|
29
|
Lee S, Kim J, Lee J. Colonization of toxic cyanobacteria on the surface and inside of leafy green: A hidden source of cyanotoxin production and exposure. Food Microbiol 2021; 94:103655. [PMID: 33279080 DOI: 10.1016/j.fm.2020.103655] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 01/06/2023]
Abstract
Cyanobacteria are a threat to the safety of water sources for drinking, recreation, and food production, because some cyanobacteria, such as Microcystis, produce cyanotoxins. However, the colonization of plants by Microcystis and the fate of their toxin, microcystins (MCs), in agricultural environments have not been thoroughly studied. This study examined the colonization of lettuce, as a representative of leafy greens, by Microcystis and its potential impact on food safety and crop health. The surfaces of lettuce leaves were exposed to environmentally relevant concentrations of M. aeruginosa (104, 106, and 108mcyE gene copies/mL) by mimicking contamination scenarios during cultivation, such as spraying irrigation with contaminated water or deposits of airborne Microcystis. Scanning electron microscope (SEM) and droplet digital PCR were used. The results showed that M. aeruginosa colonized the surface of leaves and MCs accumulated in the edible part of the lettuce (>20 μg/kg of lettuce). Crop productivity (length, weight, and number of leaves) was negatively affected. The SEM images provide evidence that M. aeruginosa deposited on the lettuce surface can be internalized via natural opening sites of the leaves and then proliferate within the plants. Our findings imply that toxic cyanobacteria contamination in agricultural environments can be a significant cyanotoxin exposure pathway.
Collapse
Affiliation(s)
- Seungjun Lee
- College of Public Health, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Jinnam Kim
- Department of Biology, Kyungsung University, Busan, South Korea
| | - Jiyoung Lee
- College of Public Health, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH, 43210, USA; Department of Food Science and Technology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
30
|
Zupančič M, Kogovšek P, Šter T, Remec Rekar Š, Cerasino L, Baebler Š, Krivograd Klemenčič A, Eleršek T. Potentially Toxic Planktic and Benthic Cyanobacteria in Slovenian Freshwater Bodies: Detection by Quantitative PCR. Toxins (Basel) 2021; 13:toxins13020133. [PMID: 33670338 PMCID: PMC7917684 DOI: 10.3390/toxins13020133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
Due to increased frequency of cyanobacterial blooms and emerging evidence of cyanotoxicity in biofilm, reliable methods for early cyanotoxin threat detection are of major importance for protection of human, animal and environmental health. To complement the current methods of risk assessment, this study aimed to evaluate selected qPCR assays for detection of potentially toxic cyanobacteria in environmental samples. In the course of one year, 25 plankton and 23 biofilm samples were collected from 15 water bodies in Slovenia. Three different analyses were performed and compared to each other; qPCR targeting mcyE, cyrJ and sxtA genes involved in cyanotoxin production, LC-MS/MS quantifying microcystin, cylindrospermopsin and saxitoxin concentration, and microscopic analyses identifying potentially toxic cyanobacterial taxa. qPCR analyses detected potentially toxic Microcystis in 10 lake plankton samples, and potentially toxic Planktothrix cells in 12 lake plankton and one lake biofilm sample. A positive correlation was observed between numbers of mcyE gene copies and microcystin concentrations. Potential cylindrospermopsin- and saxitoxin-producers were detected in three and seven lake biofilm samples, respectively. The study demonstrated a potential for cyanotoxin production that was left undetected by traditional methods in both plankton and biofilm samples. Thus, the qPCR method could be useful in regular monitoring of water bodies to improve risk assessment and enable timely measures.
Collapse
Affiliation(s)
- Maša Zupančič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia;
- Jozef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
- Correspondence:
| | - Polona Kogovšek
- Department of Biotechnology and Systems Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (P.K.); (Š.B.)
| | - Tadeja Šter
- Slovenian Environment Agency, 1000 Ljubljana, Slovenia; (T.Š.); (Š.R.R.); (A.K.K.)
| | - Špela Remec Rekar
- Slovenian Environment Agency, 1000 Ljubljana, Slovenia; (T.Š.); (Š.R.R.); (A.K.K.)
| | - Leonardo Cerasino
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy;
| | - Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (P.K.); (Š.B.)
| | | | - Tina Eleršek
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia;
| |
Collapse
|
31
|
Interannual and Spatial Variability of Cyanotoxins in the Prespa Lake Area, Greece. WATER 2021. [DOI: 10.3390/w13030357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Prespa Lakes area in Greece—comprised partly of lake Great and lake Lesser Prespa and the Vromolimni pond—has a global importance for biodiversity. Although the waters show regular cyanobacteria blooms, assessments of water quality threats are limited. Samples collected in 2012 revealed scattered and low microcystin (MC) concentrations in Great Prespa (<0.2 μg MC L−1) whereas considerable spatial heterogeneity in both total chlorophyll (2.4–93 µg L−1) and MC concentrations (0.04–52.4 µg MC L−1) was detected in Lesser Prespa. In 2013, there was far less spatial variability of MC concentrations in Lesser Prespa (0.4–1.53 µg L−1), however in 2014, increased concentrations were detected near the lakeshore (25–861 µg MC L−1). In Vromolimni pond the MC concentrations were on average 26.6 (±6.4) µg MC L−1 in 2012, 2.1 (±0.3) µg MC L−1 in 2013 and 12.7 (±12.5) µg MC L−1 in 2014. In 2013, no anatoxins, saxitoxins, nor cylindrospermopsins were detected in Lesser Prespa and Vromolimni waters. Tissue samples from carps, an otter and Dalmatian Pelicans contained 0.4–1.9 µg MC g−1 dry weight. These results indicate that cyanotoxins could be a threat to the ecosystem functions of particularly Lesser Prespa and Vromolimni.
Collapse
|
32
|
Zhou J, Han X, Qin B, Zhu G. Responses of alkaline phosphatase activity to wind-driven waves in a large, shallow lake: Implications for phosphorus availability and algal blooms. J Environ Sci (China) 2021; 99:143-150. [PMID: 33183691 DOI: 10.1016/j.jes.2020.06.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Phosphorus is a vital nutrient for algal growth, thus, a better understanding of phosphorus availability is essential to mitigate harmful algal blooms in lakes. Wind waves are a ubiquitous characteristic of lake ecosystems. However, its effects on the cycling of organic phosphorus and its usage by phytoplankton remain poorly elucidated in shallow eutrophic lakes. A mesocosm experiment was carried out to investigate the responses of alkaline phosphatase activity fractions to wind waves in large, shallow, eutrophic Lake Taihu. Results showed that wind-driven waves induced the release of alkaline phosphatase and phosphorus from the sediment, and dramatically enhanced phytoplanktonic alkaline phosphatase activity. However, compared to the calm conditions, bacterial and dissolved alkaline phosphatase activity decreased in wind-wave conditions. Consistently, the gene copies of Microcystis phoX increased but bacterial phoX decreased under wind-wave conditions. The ecological effects of these waves on phosphorus and phytoplankton likely accelerated the biogeochemical cycling of phosphorus and promoted phytoplankton production in Lake Taihu. This study provides an improved current understanding of phosphorus availability and the phosphorus strategies of plankton in shallow, eutrophic lakes.
Collapse
Affiliation(s)
- Jian Zhou
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaoxia Han
- Laboratory and Analytical Testing Center, Jiangsu Academy of Environmental Sciences Environmental Technology Co., Ltd, Nanjing 210036, China
| | - Boqiang Qin
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.; School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China..
| | - Guangwei Zhu
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
33
|
Wan X, Steinman AD, Gu Y, Zhu G, Shu X, Xue Q, Zou W, Xie L. Occurrence and risk assessment of microcystin and its relationship with environmental factors in lakes of the eastern plain ecoregion, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:45095-45107. [PMID: 32779064 DOI: 10.1007/s11356-020-10384-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
The frequent occurrence of microcystins (MCs) in freshwater poses serious threats to the drinking water safety and health of human beings. Although MCs have been detected in individual fresh waters in China, little is known about their occurrence over a large geographic scale. An investigation of 30 subtropical lakes in eastern China was performed during summer 2018 to determine the MCs concentrations in water and their possible risk via direct water consumption to humans, and to assess the associated environmental factors. MCs were detected in 28 of 30 lakes, and the highest mean MCs concentrations occurred in Lake Chaohu (26.7 μg/L), followed by Lake Taihu (3.11 μg/L). MC-LR was the primary variant observed in our study, and MCs were mainly produced by Microcystis, Anabaena (Dolicospermum), and Oscillatoria in these lakes. Replete nitrogen and phosphorus concentrations, irradiance, and stable water column conditions were critical for dominance of MC-producing cyanobacteria and high MCs production in our study. Hazard quotients indicated that human health risk of MCs in most lakes was at moderate or low levels except Lakes Chaohu and Taihu. Nutrient control management is recommended to decrease the likelihood of high MCs production. Finally, we recommend the regional scale thresholds of total nitrogen and total phosphorus concentrations of 1.19 mg/L and 7.14 × 10-2 mg/L, respectively, based on the drinking water guideline of MC-LR (1 μg/L) recommended by World Health Organization. These targets for nutrient control will aid water quality managers to reduce human health risks created by exposure to MCs.
Collapse
Affiliation(s)
- Xiang Wan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Alan D Steinman
- Annis Water Resources Institute, Grand Valley State University, 740 West Shoreline Drive, Muskegon, MI, 49441, USA
| | - Yurong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangwei Zhu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Xiubo Shu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Qingju Xue
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Wei Zou
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liqiang Xie
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China.
| |
Collapse
|
34
|
He Y, Ma J, Joseph V, Wei Y, Liu M, Zhang Z, Li G, He Q, Li H. Potassium regulates the growth and toxin biosynthesis of Microcystis aeruginosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115576. [PMID: 32898730 DOI: 10.1016/j.envpol.2020.115576] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 06/24/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
Potassium (K+) is the most abundant cation in phytoplankton cells, but its impact on Microcystis aeruginosa (M. aeruginosa) has not been fully documented. This study presents evidence of how K+ availability affects the growth, oxidative stress and microcystin (MC) production of M. aeruginosa. The iTRAQ-based proteomic analysis revealed that during K+ deficiency, serious oxidative damage occurred and the photosynthesis-associated and ABC transporter-related proteins in M. aeruginosa were substantially downregulated. In the absence of K+, a 69.26% reduction in cell density was shown, and both the photosynthesis and iron uptake were depressed, which triggered a declined production of ATP and expression of MC synthetases genes (mcyA, B and D), and MC exporters (mcyH). Through the impairment of both the MC biosynthesis and MC transportation out of cells, K+ depletion caused an 85.89% reduction of extracellular MC content at the end of the study. However, with increasing in the available K+ concentrations, photosynthesis efficiency, the expression of ABC-transporter proteins, and the transcription of mcy genes displayed slight differences compared with those in the control group. This work represents evidence that K+ availability can regulate the physiological metabolic activity of M. aeruginosa and K+ deficiency leads to depressed growth and MC production in M. aeruginosa.
Collapse
Affiliation(s)
- Yixin He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Jianrong Ma
- CAS Key Laboratory of Reservoir Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Vanderwall Joseph
- Flathead Lake Biological Station, University of Montana, Polson, MT, 59860, USA
| | - Yanyan Wei
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Mengzi Liu
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Zhaoxue Zhang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Guo Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Qiang He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
35
|
Wang Y, Kong X, Peng Z, Zhang H, Liu G, Hu W, Zhou X. Retention of nitrogen and phosphorus in Lake Chaohu, China: implications for eutrophication management. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:41488-41502. [PMID: 32686044 DOI: 10.1007/s11356-020-10024-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Nutrient retention is an important process in lake nutrient cycling of lakes and can mitigate lake eutrophication. However, little is known about temporal lake nutrient retention efficiency and it varies due to changes in hydrological, ecological, and nutrient inputs to lake waters. Quantitative information about seasonal lake N and P retention is critical for developing strategies to reduce eutrophication in lake systems. This study investigated TN and TP retention efficiencies and retention masses using water and mass balance calculations, and statistically analyzed the seasonal variability of nutrient retention in Lake Chaohu, China, from 2014 to 2018. Lake Chaohu experienced large amounts of external loads inputs (23.2 g N m-2 year-1 and 1.3 g P m-2 year-1), and approximately 58% TN and 48% TP were retained annually. The lake acted more as a sink for N than for P. The mean annual TP retention efficiency decreased (P < 0.05) over the study period, indicating that TP retention capacity was gradually exceeded. Seasonal variability of TN and TP retention efficiency was high and ranged from - 18.7 to 144.1% and from - 58.8 to 170.7%, respectively, over the five study years. The internal P loads over the study period were equivalent to roughly 9% of the total external loads. The annual nutrient retention efficiency of TN and TP increased with hydraulic residence time, while water temperature was an essential factor for the contrasting seasonal variation patterns of TN and TP retention efficiencies.
Collapse
Affiliation(s)
- Yanping Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Geographical Science, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Xiangzhen Kong
- Department of Lake Research, Helmholtz Centre for Environmental Research (UFZ), Brückstr. 3a, 39114, Magdeburg, Germany
| | - Zhaoliang Peng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Hui Zhang
- Environmental Monitoring Station, Authority Bureau of Lake Chaohu, Intersection of Bantang Road and Laoshan Road, Hefei, 238000, China
| | - Gang Liu
- Environmental Monitoring Station, Authority Bureau of Lake Chaohu, Intersection of Bantang Road and Laoshan Road, Hefei, 238000, China
| | - Weiping Hu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China.
| | - Xiangqian Zhou
- Department of Aquatic Ecosystems Analysis and Management, Helmholtz Centre for Environmental Research (UFZ), Brückstr. 3a, 39114, Magdeburg, Germany
| |
Collapse
|
36
|
Cao X, Xu X, Bian R, Wang Y, Yu H, Xu Y, Duan G, Bi L, Chen P, Gao S, Wang J, Peng J, Qu J. Sedimentary ancient DNA metabarcoding delineates the contrastingly temporal change of lake cyanobacterial communities. WATER RESEARCH 2020; 183:116077. [PMID: 32693300 DOI: 10.1016/j.watres.2020.116077] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/18/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Harmful cyanobacterial blooms consisting of toxic taxa can produce a wide variety of toxins to threaten water quality, ecosystem functions and services. Of greater concern was the changing patterns of cyanobacterial assemblage were not well understood due to the lack of long-term monitoring data over the temporal scale. Biodiversity change in cyanobacterial community and paleoenvironmental variables over the past 170 years in Lake Chenghai were investigated based on sedimentary ancient DNA metabarcoding and traditional paleolimnological analysis. The results showed species richness and homogenization of cyanobacterial assemblage increased in the most recent decades, which were synchronized with the growth of artificial fertilization and decline in precipitation. Cyanobacterial co-occurrence network analysis revealed more complex interactions and weak community stability after the change point of ∼1987, while the rare cyanobacterial genera such as Anabaena, Planktothrix, Oscillatoria and Microcystis were identified to be keystone taxa affecting cyanobacterial assemblage. Furthermore, an increase of toxin-producing cyanobacterial taxa was significantly and positively associated with TN and TP, as well as TN/IP and TN/TP, which was verified by quantitative real-time PCR of mcyA and rpoC1 genes. Threshold in total nitrogen (TN) concentration should be targeted no more than 0.60 mg/L to alleviate nuisance cyanobacterial blooms in Lake Chenghai. These findings reinforce the comprehensive understanding for the long-term dynamics of cyanobacterial assemblage responding to environmental change, which could contribute to proactively regulate environmental conditions for avoiding undesirable ecological consequences.
Collapse
Affiliation(s)
- Xiaofeng Cao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiaoyan Xu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, 100083, China
| | - Rui Bian
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Yajun Wang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hongwei Yu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yan Xu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Gaoqi Duan
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Lijiao Bi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Pengfei Chen
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shaopeng Gao
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Jianfeng Peng
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
37
|
Huang J, Zhang Y, Arhonditsis GB, Gao J, Chen Q, Peng J. The magnitude and drivers of harmful algal blooms in China's lakes and reservoirs: A national-scale characterization. WATER RESEARCH 2020; 181:115902. [PMID: 32505885 DOI: 10.1016/j.watres.2020.115902] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/25/2020] [Accepted: 04/30/2020] [Indexed: 05/22/2023]
Abstract
Harmful algal blooms (HABs) can have dire repercussions on aquatic wildlife and human health, and may negatively affect recreational uses, aesthetics, taste, and odor in drinking water. The factors that influence the occurrence and magnitude of harmful algal blooms and toxin production remain poorly understood and can vary in space and time. It is within this context that we use machine learning (ML) and two 14-year (2005-2018) data sets on water quality and meteorological conditions of China's lakes and reservoirs to shed light on the magnitude and associated drivers of HAB events. General regression neural network (GRNN) models are developed to predict chlorophyll a concentrations for each lake and reservoir during two study periods (2005-2010 and 2011-2018). The developed models with an acceptable model fit are then analyzed by two indices to determine the areal HAB magnitudes and associated drivers. Our national assessment suggests that HAB magnitudes for China's lakes and reservoirs displayed a decreasing trend from 2006 (1363.3 km2) to 2013 (665.2 km2), and a slightly increasing trend from 2013 to 2018 (775.4 km2). Among the 142 studied lakes and reservoirs, most severe HABs were found in Lakes Taihu, Dianchi and Chaohu with their contribution to the total HAB magnitude varying from 89.2% (2013) to 62.6% (2018). HABs in Lakes Taihu and Chaohu were strongly associated with both total phosphorus and nitrogen concentrations, while our results were inconclusive with respect to the predominant environmental factors shaping the eutrophication phenomena in Lake Dianchi. The present study provides evidence that effective HAB mitigation may require both nitrogen and phosphorus reductions and longer recovery times; especially in view of the current climate-change projections. ML represents a robust strategy to elucidate water quality patterns in lakes, where the available information is sufficient to train the constructed algorithms. Our mapping of HAB magnitudes and associated environmental/meteorological drivers can help managers to delineate hot-spots at a national scale, and comprehensively design the best management practices for mitigating the eutrophication severity in China's lakes and reservoirs.
Collapse
Affiliation(s)
- Jiacong Huang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing, 210098, China
| | - Yinjun Zhang
- China National Environmental Monitoring Centre, 8(B) Dayangfang Beiyuan Road, Chaoyang District, Beijing, 100012, China
| | - George B Arhonditsis
- Ecological Modelling Laboratory, Department of Physical & Environmental Sciences, University of Toronto, Toronto, ON, M1C 1A4, Canada
| | - Junfeng Gao
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China.
| | - Qiuwen Chen
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing, 210098, China.
| | - Jian Peng
- School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, United Kingdom
| |
Collapse
|
38
|
Effects of Cyanobacteria on Phosphorus Cycling and Other Aquatic Organisms in Simulated Eutrophic Ecosystems. WATER 2020. [DOI: 10.3390/w12082265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cyanobacterial blooms caused by eutrophication in Lake Taihu have led to ecological threats to freshwater ecosystems. A pilot scale experiment was implemented to investigate the relationship between cyanobacteria and other aquatic plants and animals in simulated eutrophic ecosystems under different phosphorus (P) regimes. The results of this study showed that cyanobacteria had two characteristics favorable for bloom formation in eutrophic ecosystems. One is the nutrient absorption. The presence of alkaline phosphatase was beneficial for algal cells in nutrition absorption under low P concentration. Cyanobacteria exhibited a stronger ability to absorb and store P compared to Vallisneria natans, which contributed to the fast growth of algal cells between 0.2 and 0.5 mg·L−1 of P (p < 0.05). However, P loads affected only the maximum biomass, but not the growth phases. The growth cycle of cyanobacteria remained unchanged and was not related to P concentration. P cycling indicated that 43.05–69.90% of the total P existed in the form of sediment, and P content of cyanobacteria showed the highest increase among the organisms. The other is the release of microcystin. Toxic microcystin-LR was released into the water, causing indirectly the growth inhibition of Carassius auratus and Bellamya quadrata and the reduction of microbial diversity. These findings are of importance in exploring the mechanism of cyanobacterial bloom formation and the nutrient management of eutrophic lakes.
Collapse
|
39
|
Francy DS, Brady AMG, Stelzer EA, Cicale JR, Hackney C, Dalby HD, Struffolino P, Dwyer DF. Predicting microcystin concentration action-level exceedances resulting from cyanobacterial blooms in selected lake sites in Ohio. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:513. [PMID: 32666330 PMCID: PMC7360538 DOI: 10.1007/s10661-020-08407-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Cyanobacterial harmful algal blooms and the toxins they produce are a global water-quality problem. Monitoring and prediction tools are needed to quickly predict cyanotoxin action-level exceedances in recreational and drinking waters used by the public. To address this need, data were collected at eight locations in Ohio, USA, to identify factors significantly related to observed concentrations of microcystins (a freshwater cyanotoxin) that could be used in two types of site-specific regression models. Real-time models include easily or continuously-measured factors that do not require that a sample be collected; comprehensive models use a combination of discrete sample-based measurements and real-time factors. The study sites included two recreational sites and six water treatment plant sites. Real-time models commonly included variables such as phycocyanin, pH, specific conductance, and streamflow or gage height. Many real-time factors were averages over time periods antecedent to the time the microcystin sample was collected, including water-quality data compiled from continuous monitors. Comprehensive models were useful at some sites with lagged variables for cyanobacterial toxin genes, dissolved nutrients, and (or) nitrogen to phosphorus ratios. Because models can be used for management decisions, important measures of model performance were sensitivity, specificity, and accuracy of estimates above or below the microcystin concentration threshold standard or action level. Sensitivity is how well the predictive tool correctly predicts exceedance of a threshold, an important measure for water-resource managers. Sensitivities > 90% at four Lake Erie water treatment plants indicated that models with continuous monitor data were especially promising. The planned next steps are to collect more data to build larger site-specific datasets and validate models before they can be used for management decisions.
Collapse
Affiliation(s)
- Donna S Francy
- U.S. Geological Survey, Ohio-Kentucky-Indiana Water Science Center, 6460 Busch Blvd, Columbus, OH, 43229, USA.
| | - Amie M G Brady
- U.S. Geological Survey, Ohio-Kentucky-Indiana Water Science Center, 6460 Busch Blvd, Columbus, OH, 43229, USA
| | - Erin A Stelzer
- U.S. Geological Survey, Ohio-Kentucky-Indiana Water Science Center, 6460 Busch Blvd, Columbus, OH, 43229, USA
| | - Jessica R Cicale
- U.S. Geological Survey, Ohio-Kentucky-Indiana Water Science Center, 6460 Busch Blvd, Columbus, OH, 43229, USA
| | - Courtney Hackney
- U.S. Geological Survey, Ohio-Kentucky-Indiana Water Science Center, 6460 Busch Blvd, Columbus, OH, 43229, USA
| | - Harrison D Dalby
- U.S. Geological Survey, Ohio-Kentucky-Indiana Water Science Center, 6460 Busch Blvd, Columbus, OH, 43229, USA
| | | | - Daryl F Dwyer
- Lake Erie Center, University of Toledo, Oregon, OH, USA
| |
Collapse
|
40
|
Zhao D, Feng L. Assessment of the Number of Valid Observations and Diurnal Changes in Chl-a for GOCI: Highlights for Geostationary Ocean Color Missions. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3377. [PMID: 32549299 PMCID: PMC7349568 DOI: 10.3390/s20123377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 11/25/2022]
Abstract
The first geostationary ocean color satellite mission (geostationary ocean color imager, or GOCI) has provided eight hourly observations per day over the western Pacific region since June 2010. GOCI imagery has been widely used to track the short-term dynamics of coastal and inland waters. Few studies have been performed to comprehensively assess the advantages of GOCI images in obtaining valid observations and estimating diurnal changes within the water column. Using the entire mission dataset between 2011 and 2017, these knowledge gaps were filled by comparing the daily percentages of valid observations (DPVOs) between GOCI and MODIS Aqua (MODISA) and by examining the diurnal changes in Chl-a over the East China Sea. The mean DPVOs of GOCI was 152.6% over the clear open ocean, suggesting that a daily valid coverage could be expected with GOCI. The GOCI DPVOs were ~26 times greater than the MODISA DPVOs; this pronounced difference was caused by the combined effects of their different observational frequencies and the more conservative quality flag system for MODISA. Diurnal changes in the GOCI-derived Chl-a were also found, with generally higher Chl-a in the afternoon than the morning and pronounced heterogeneities in the temporal and spatial domains. However, whether such diurnal changes are due to the real dynamics of the oceanic waters or artifacts of the satellite retrievals remains to be determined. This study provides the first comprehensive quantification of the unparalleled advantages of geostationary ocean color missions over polar orbiters, and the results highlights the importance of geostationary ocean color missions in studying coastal and inland waters.
Collapse
Affiliation(s)
- Dan Zhao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
- Shenzhen Municipal Engineering Lab of Environmental IoT Technologies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lian Feng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
- Shenzhen Municipal Engineering Lab of Environmental IoT Technologies, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
41
|
Duan Z, Tan X, Zhang D, Parajuli K. Development of thermal treatment for the extraction of extracellular polymeric substances from Microcystis: Evaluating extraction efficiency and cell integrity. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
42
|
Panksep K, Tamm M, Mantzouki E, Rantala-Ylinen A, Laugaste R, Sivonen K, Tammeorg O, Kisand V. Using Microcystin Gene Copies to Determine Potentially-Toxic Blooms, Example from a Shallow Eutrophic Lake Peipsi. Toxins (Basel) 2020; 12:E211. [PMID: 32225013 PMCID: PMC7232469 DOI: 10.3390/toxins12040211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 11/16/2022] Open
Abstract
Global warming, paired with eutrophication processes, is shifting phytoplankton communities towards the dominance of bloom-forming and potentially toxic cyanobacteria. The ecosystems of shallow lakes are especially vulnerable to these changes. Traditional monitoring via microscopy is not able to quantify the dynamics of toxin-producing cyanobacteria on a proper spatio-temporal scale. Molecular tools are highly sensitive and can be useful as an early warning tool for lake managers. We quantified the potential microcystin (MC) producers in Lake Peipsi using microscopy and quantitative polymerase chain reaction (qPCR) and analysed the relationship between the abundance of the mcyE genes, MC concentration, MC variants and toxin quota per mcyE gene. We also linked environmental factors to the cyanobacteria community composition. In Lake Peipsi, we found rather moderate MC concentrations, but microcystins and microcystin-producing cyanobacteria were widespread across the lake. Nitrate (NO3-) was a main driver behind the cyanobacterial community at the beginning of the growing season, while in late summer it was primarily associated with the soluble reactive phosphorus (SRP) concentration. A positive relationship was found between the MC quota per mcyE gene and water temperature. The most abundant variant-MC-RR-was associated with MC quota per mcyE gene, while other MC variants did not show any significant impact.
Collapse
Affiliation(s)
- Kristel Panksep
- Chair of Hydrobiology and Fishery, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Marju Tamm
- Chair of Hydrobiology and Fishery, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Evanthia Mantzouki
- Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, 1205 Geneva, Switzerland
| | | | - Reet Laugaste
- Chair of Hydrobiology and Fishery, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Kaarina Sivonen
- Department of Microbiology, University of Helsinki, 00014 Helsinki, Finland
| | - Olga Tammeorg
- Chair of Hydrobiology and Fishery, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
- Ecosystems and Environmental Research Programme, University of Helsinki, 00014 Helsinki, Finland
| | - Veljo Kisand
- Chair of Hydrobiology and Fishery, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| |
Collapse
|
43
|
Liu Q, Zhang Y, Wu H, Liu F, Peng W, Zhang X, Chang F, Xie P, Zhang H. A Review and Perspective of eDNA Application to Eutrophication and HAB Control in Freshwater and Marine Ecosystems. Microorganisms 2020; 8:E417. [PMID: 32188048 PMCID: PMC7143994 DOI: 10.3390/microorganisms8030417] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/03/2020] [Accepted: 03/14/2020] [Indexed: 11/16/2022] Open
Abstract
Changing ecological communities in response to anthropogenic activities and climate change has become a worldwide problem. The eutrophication of waterbodies in freshwater and seawater caused by the effects of human activities and nutrient inputs could result in harmful algae blooms (HABs), decreases water quality, reductions in biodiversity and threats to human health. Rapid and accurate monitoring and assessment of aquatic ecosystems are imperative. Environmental DNA (eDNA) analysis using high-throughput sequencing has been demonstrated to be an effective and sensitive assay for detecting and monitoring single or multiple species in different samples. In this study, we review the potential applications of eDNA approaches in controlling and mitigating eutrophication and HABs in freshwater and marine ecosystems. We use recent studies to highlight how eDNA methods have been shown to be a useful tool for providing comprehensive data in studies of eutrophic freshwater and marine environments. We also provide perspectives on using eDNA techniques to reveal molecular mechanisms in biological processes and mitigate eutrophication and HABs in aquatic ecosystems. Finally, we discuss the feasible applications of eDNA for monitoring biodiversity, surveying species communities and providing instructions for the conservation and management of the environment by integration with traditional methods and other advanced techniques.
Collapse
Affiliation(s)
- Qi Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Q.L.); (Y.Z.); (H.W.); (F.L.); (W.P.); (X.Z.); (F.C.); (P.X.)
| | - Yun Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Q.L.); (Y.Z.); (H.W.); (F.L.); (W.P.); (X.Z.); (F.C.); (P.X.)
| | - Han Wu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Q.L.); (Y.Z.); (H.W.); (F.L.); (W.P.); (X.Z.); (F.C.); (P.X.)
| | - Fengwen Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Q.L.); (Y.Z.); (H.W.); (F.L.); (W.P.); (X.Z.); (F.C.); (P.X.)
| | - Wei Peng
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Q.L.); (Y.Z.); (H.W.); (F.L.); (W.P.); (X.Z.); (F.C.); (P.X.)
| | - Xiaonan Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Q.L.); (Y.Z.); (H.W.); (F.L.); (W.P.); (X.Z.); (F.C.); (P.X.)
| | - Fengqin Chang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Q.L.); (Y.Z.); (H.W.); (F.L.); (W.P.); (X.Z.); (F.C.); (P.X.)
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Q.L.); (Y.Z.); (H.W.); (F.L.); (W.P.); (X.Z.); (F.C.); (P.X.)
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, CAS, Wuhan 430072, China
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Q.L.); (Y.Z.); (H.W.); (F.L.); (W.P.); (X.Z.); (F.C.); (P.X.)
| |
Collapse
|
44
|
Pineda-Mendoza RM, Briones-Roblero CI, Gonzalez-Escobedo R, Rivera-Orduña FN, Martínez-Jerónimo F, Zúñiga G. Seasonal changes in the bacterial community structure of three eutrophicated urban lakes in Mexico city, with emphasis on Microcystis spp. Toxicon 2020; 179:8-20. [PMID: 32142716 DOI: 10.1016/j.toxicon.2020.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/08/2020] [Accepted: 02/26/2020] [Indexed: 10/24/2022]
Abstract
Artificial urban lakes commonly have physicochemical conditions that contribute to rapid anthropogenic eutrophication and development of cyanobacterial blooms. Microcystis is the dominat genus in most freshwater bodies and is one of the main producter of microcystins. Using 454-pyrosequencing we characterized the bacterial community, with special emphasis on Microcystis, in three recreational urban lakes from Mexico City in both wet and dry seasons. We also evaluated some physicochemical parameters that might influence the presence of Microcystis blooms, and we associated the relative abundance of heterotrophic and autotrophic bacterial communities with their possible metabolic capacities. A total of 14 phyla, 18 classes, 39 orders, 53 families and 48 bacterial genera were identified in both seasons in the three urban lakes. Cyanobacteria had the highest relative abundance followed by Proteobacteria and Actinobacteria. Microcystis was the dominant taxon followed by Arthrospira, Planktothrix and Synechococcus. We also found heterotrophic bacteria associated with the blooms, such as Rhodobacter, Pseudomonas, Sphingomonas and, Porphyrobacter. The highest richness, diversity and dominance were registered in the bacterial community of the Virgilio Uribe Olympic Rowing-Canoeing Track in both seasons, and the lowest values were found in the Chapultepec Lake. The canonical correspondence analysis showed that dissolved oxygen and NO3-N concentrations might explain the presence of Microcystis blooms. The metabolic prediction indicated that these communities are involved in photosynthesis, oxidative phosphorylation, methane metabolism, carbon fixation, and nitrogen and sulfur metabolism. The lakes studied had a high prevalence of Microcystis, but average values of microcystins did not exceed the maximum permissible level established by the United States Environmental Protection Agency for recreational and cultural activities. The presence of cyanobacteria and microcystins at low to moderate concentrations in the three lakes could result in ecosystem disruption and increase animal and human health risks.
Collapse
Affiliation(s)
- Rosa María Pineda-Mendoza
- Departamento de Zoología. Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Ciudad de México, Mexico
| | - Carlos Iván Briones-Roblero
- Departamento de Zoología. Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Ciudad de México, Mexico
| | - Roman Gonzalez-Escobedo
- Departamento de Zoología. Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Ciudad de México, Mexico
| | - Flor N Rivera-Orduña
- Departamento de Microbiología. Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Ciudad de México, Mexico
| | - Fernando Martínez-Jerónimo
- Departamento de Zoología. Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Ciudad de México, Mexico
| | - Gerardo Zúñiga
- Departamento de Zoología. Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Ciudad de México, Mexico.
| |
Collapse
|
45
|
Liu L, Dong Y, Kong M, Zhou J, Zhao H, Tang Z, Zhang M, Wang Z. Insights into the long-term pollution trends and sources contributions in Lake Taihu, China using multi-statistic analyses models. CHEMOSPHERE 2020; 242:125272. [PMID: 31896182 DOI: 10.1016/j.chemosphere.2019.125272] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 05/25/2023]
Abstract
Eutrophication pollution seriously threatens the sustainable development of Lake Taihu, China. In order to identify the primary parameters of water quality and the potential pollution sources, the water quality dataset of Lake Taihu (2010-2014) was analyzed with the water quality index (WQI) and multivariate statistical analysis methods. Principle component analysis/factor analysis (PCA/FA) and correlation analysis screened out five significant water quality indicators, i.e. potassium permanganate index (CODMn), total nitrogen (TN), total phosphorus (TP), chloride ion (Cl-) and dissolved oxygen (DO), to represent the whole datasets and evaluate the water quality with WQI. Since northwestern of Lake Taihu was the most heavily polluted area, the parameters of the water quality were analyzed to further explore the potential sources and their contributions. Five potential pollution sources of northwestern lake were identified, and the contribution rate of each pollution source was calculated by the absolute principal component score-multiple linear regression (APCS-MLR) and positive matrix factorization (PMF) models. In brief, the PMF model was more suitable for pollution source apportionment of the northwestern lake, and the contribution rate was ranked as agricultural non-point source pollution (26.6%) > domestic sewage discharge (23.5%) > industrial wastewater discharge and atmospheric deposition (20.6%) > phytoplankton growth (16.0%) > rainfall or wind disturbance (13.4%). This study might provide useful information for the optimization of water quality management and pollution control strategies of Lake Taihu.
Collapse
Affiliation(s)
- Lili Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Yongcheng Dong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ming Kong
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing, 210042, China
| | - Jian Zhou
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Hanbin Zhao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhou Tang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Meng Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhiping Wang
- School of Environment Science and Technology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
46
|
Liu L, Dong Y, Kong M, Zhou J, Zhao H, Wang Y, Zhang M, Wang Z. Towards the comprehensive water quality control in Lake Taihu: Correlating chlorphyll a and water quality parameters with generalized additive model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135993. [PMID: 31841908 DOI: 10.1016/j.scitotenv.2019.135993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
In this study, the generalized additive model (GAM) was used to analyze seasonal monitoring data from Lake Taihu, collected from 2010 to 2014, with the aim to explore the correlation between chlorophyll a (Chla) and other water quality parameters. The selected optimal multivariable GAM could effectively explain the concentration variation of Chla occurring during each season, and the interpretation degree followed the order: summer > autumn > spring > winter. The fitting results indicated that the concentration variation of Chla could reflect that of biochemical oxygen demand and chemical oxygen demand in all seasons. In addition, the total phosphorus showed strong ability to explain the concentration change of Chla in spring and summer, as the growth of algae would be affected when the concentration of phosphorus shifted high or low. Nitrogen showed strong ability to explain the variations in Chla concentration in autumn. The conclusions of the optimal multivariable GAM could provide decision basis for the eutrophication control. In other words, the prevention of eutrophication outbreaks could be carried out via the targeted control of key water pollutants. According to these results, the concentration of Chla was higher in northern and western lake during summer and autumn, the management should focus on nutrient input of adjacent rivers.
Collapse
Affiliation(s)
- Lili Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yongcheng Dong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ming Kong
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China
| | - Jian Zhou
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hanbin Zhao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yupeng Wang
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai 200092, China
| | - Meng Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Zhiping Wang
- School of Environment Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
47
|
Duan Z, Tan X, Parajuli K, Zhang D, Wang Y. Characterization of Microcystis morphotypes: Implications for colony formation and intraspecific variation. HARMFUL ALGAE 2019; 90:101701. [PMID: 31806163 DOI: 10.1016/j.hal.2019.101701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/20/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
Groundworks on Microcystis colony formation and morphological variation are critical to understanding the whole eco-cycle of Microcystis blooms. In this study, we tested the cell adhesion effect, an important pathway for colony formation, among Microcystis colonies of different morphotypes, and examined the potential linkage between cell properties and morphological plasticity. Results showed that cell adhesion significantly contributed to the aggregation of Microcystis colonies, but such adhesion only occurred in colonies belonging to the same morphotype. This suggests that Microcystis cannot form large colonies through a direct adhesion effect among different morphotypes, possibly due to substantial differences in the chemical structures and compositions of their extracellular polymeric substances (EPS). Cell functional features also varied substantially with morphotypes, implying high intraspecific variation in competitive and defensive strategies of Microcystis. Our results offer new insights into colony formation of Microcystis and substantiate the importance of fundamental chemical characteristics of EPS in determining the morphological plasticity.
Collapse
Affiliation(s)
- Zhipeng Duan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, Netherlands.
| | - Xiao Tan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Keshab Parajuli
- School of Population and Global Health, Faculty of Medicine, Denistry and Health Sciences, The University of Melbourne, VIC 3010, Australia
| | - Danfeng Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yi Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
48
|
Zhou Y, Xu X, Han R, Li L, Feng Y, Yeerken S, Song K, Wang Q. Suspended particles potentially enhance nitrous oxide (N 2O) emissions in the oxic estuarine waters of eutrophic lakes: Field and experimental evidence. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1225-1234. [PMID: 31252120 DOI: 10.1016/j.envpol.2019.06.076] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
Estuaries are considered hot spots for the production and emissions of nitrous oxide (N2O) and easily occur suspended particles (SPS), however, current understanding about the role of SPS in the N2O emissions from the oxic estuarine waters of lacustrine ecosystems is still limited. In this study, field investigations were performed in the estuaries of hypereutrophic Taihu Lake, and laboratory simulations were simultaneously conducted to ascertain the characteristics of N2O emissions with different SPS concentrations. The results showed that the N2O emission fluxes ranged from 9.75 to 118.38 μg m-2 h-1, indicating a high spatial heterogeneity for the N2O emissions from the estuaries of Taihu Lake. Although the dissolved oxygen (DO) concentrations were up to 7.85 mg L-1 in the estuarine waters, from where the N2O emissions fluxes were approximately three times that of the lake regions. Multiple regression model selected the total nitrogen (TN), SPS, and DO concentrations as the crucial factors influencing the N2O emission fluxes. Particularly for SPS, the simulation results showed that the N2O concentrations increased gradually with the increase in the SPS concentrations of an oxic water column containing 4 mg L-1 of NO3--N, indicating that a high SPS concentration can accelerate the N2O emissions. It was related to the change of denitrifying bacteria population in the SPS, as evidenced by its significantly positive correlation with N2O emissions (p < 0.01). Our findings will draw attentions to the role of SPS playing in the N2O productions and emissions in eutrophic lakes, and its effect on nitrogen cycle should be considered in the future study.
Collapse
Affiliation(s)
- Yiwen Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, 210023 Nanjing, China
| | - Ruiming Han
- School of Environment, Nanjing Normal University, 210023 Nanjing, China
| | - Lu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yu Feng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Environment, Nanjing Normal University, 210023 Nanjing, China
| | - Senbati Yeerken
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
49
|
Xiao X, Li C, Huang H, Lee YP. Inhibition effect of natural flavonoids on red tide alga Phaeocystis globosa and its quantitative structure-activity relationship. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:23763-23776. [PMID: 31209750 DOI: 10.1007/s11356-019-05482-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 04/01/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
Red tides that occur off coasts have become a worldwide phenomenon over the past decades. In order to mitigate the damage of the red tides on the aquatic ecosystems, it is crucial to develop a method for predicting algicidal activities that requires less labor and time, and most importantly, this method can quickly screen potential algicides to control red tides. In this study, we have investigated the algicidal activity of 19 natural flavonoids against a typical red tide alga, Phaeocystis globosa. Our results indicate that after 5 days of flavonoid exposure, the half inhibition concentrations (IC50) ranged from 0.068 to 3.065 mg L-1, which showed the strong algicidal activities of the flavonoids. Furthermore, quantitative structure activity relationship (QSAR) model has been carried out between negative scale logarithm (pIC50) of the flavonoids and the corresponding molecular descriptors. The developed model was validated, both internally and externally, which displayed statistical robustness (R2 = 0.867, p = 0.0002, Q2LOO = 0.825, RMSEC = 0.182, Q2extF3 = 0.896, RMSEP = 0.161, CCC = 0.935). This indicates that the developed model was obtained successfully with satisfactory predictability and robustness for the future rapid screening of natural flavonoids with high inhibition activity on the red tide alga growth. Moreover, the main descriptors in the QSAR model were the molar refractivity, partition coefficient, lowest unoccupied molecular orbital, and highest occupied molecular orbital, illustrating that the molecular electro-chemical characteristics are significant in the algicidal actions of the flavonoids. Graphical abstract Red tides frequently occur worldwide and have become a global environment problem. Flavonoids showed great potential in allelopathic control of the excessive growth of red tide algae. In this study, the algicidal activity of 19 natural flavonoids was investigated on a typical red tide organism Phaeocystis globosa. Futhermore, we applied the quantitative structure-activity relationship (QSAR) model to the experimental data. The model between molecular descriptors of flavonoids and their antialgal activity displays statistical robustness, and 4 of 45 selected molecular descriptors were obtained by regression of training set. The numbers in the figure represent the half inhibition concentration (IC50) of flavonoids. Our results show that the algicidal activity of flavonoids is closely related to molar refraction, partition coefficient, lowest unoccupied molecular orbital, and highest occupied molecular orbital. The QSAR model can efficaciously predict the algicidal activity and provide insights into the inhibitory mechanisms of flavonoids.
Collapse
Affiliation(s)
- Xi Xiao
- Ocean College, Zhejiang University, Zhou Shan, 316021, People's Republic of China
- Key Laboratory of Integrated Marine Monitoring and Applied Technologies for Harmful Algal Blooms, S.O.A., MATHAB, Shanghai, People's Republic of China
- Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, MNR, Hangzhou, 310012, China
| | - Chao Li
- Ocean College, Zhejiang University, Zhou Shan, 316021, People's Republic of China
| | - Haomin Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310012, People's Republic of China.
| | - Ying Ping Lee
- Ocean College, Zhejiang University, Zhou Shan, 316021, People's Republic of China
| |
Collapse
|
50
|
Shan K, Song L, Chen W, Li L, Liu L, Wu Y, Jia Y, Zhou Q, Peng L. Analysis of environmental drivers influencing interspecific variations and associations among bloom-forming cyanobacteria in large, shallow eutrophic lakes. HARMFUL ALGAE 2019; 84:84-94. [PMID: 31128816 DOI: 10.1016/j.hal.2019.02.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/27/2019] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
Non-diazotrophic Microcystis and filamentous N2-fixing Aphanizomenon and Dolichospermum (formerly Anabaena) co-occur or successively dominate freshwaters globally. Previous studies indicate that dual nitrogen (N) and phosphorus (P) reduction is needed to control cyanobacterial blooms; however, N limitation may cause replacement of non-N2-fixing by N2-fixing taxa. To evaluate potentially counterproductive scenarios, the effects of temperature, nutrients, and zooplankton on the spatio-temporal variations of cyanobacteria were investigated in three large, shallow eutrophic lakes in China. The results illustrate that the community composition of cyanobacteria is primarily driven by physical factors and the zooplankton community, and their interactions. Niche differentiation between Microcystis and two N2-fixing taxa in Lake Taihu and Lake Chaohu was observed, whereas small temperature fluctuations in Lake Dianchi supported co-dominance. Through structural equation modelling, predictor variables were aggregated into 'composites' representing their combined effects on species-specific biomass. The model results showed that Microcystis biomass was affected by water temperature and P concentrations across the studied lakes. The biomass of two filamentous taxa, by contrast, exhibited lake-specific responses. Understanding of driving forces of the succession and competition among bloom-forming cyanobacteria will help to guide lake restoration in the context of climate warming and N:P stoichiometry imbalances.
Collapse
Affiliation(s)
- Kun Shan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Big Data Mining and Applications Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing, 400714, China.
| | - Lirong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wei Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Liming Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yanlong Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yunlu Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Qichao Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Liang Peng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|