1
|
Zhang W, Xu L, Zhang H. Recent advances in mass spectrometry techniques for atmospheric chemistry research on molecular-level. MASS SPECTROMETRY REVIEWS 2024; 43:1091-1134. [PMID: 37439762 DOI: 10.1002/mas.21857] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/06/2023] [Accepted: 06/21/2023] [Indexed: 07/14/2023]
Abstract
The Earth's atmosphere is composed of an enormous variety of chemical species associated with trace gases and aerosol particles whose composition and chemistry have critical impacts on the Earth's climate, air quality, and human health. Mass spectrometry analysis as a powerful and popular analytical technique has been widely developed and applied in atmospheric chemistry for decades. Mass spectrometry allows for effective detection, identification, and quantification of a broad range of organic and inorganic chemical species with high sensitivity and resolution. In this review, we summarize recently developed mass spectrometry techniques, methods, and applications in atmospheric chemistry research in the past several years on molecular-level. Specifically, new developments of ion-molecule reactors, various soft ionization methods, and unique coupling with separation techniques are highlighted. The new mass spectrometry applications in laboratory studies and field measurements focused on improving the detection limits for traditional and emerging volatile organic compounds, characterizing multiphase highly oxygenated molecules, and monitoring particle bulk and surface compositions.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Chemistry, University of California, Riverside, California, USA
| | - Lu Xu
- NOAA Chemical Sciences Laboratory, Boulder, Colorado, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Missouri, USA
| | - Haofei Zhang
- Department of Chemistry, University of California, Riverside, California, USA
| |
Collapse
|
2
|
Mabato BG, Li YJ, Huang DD, Chan CK. Aqueous-Phase Photoreactions of Mixed Aromatic Carbonyl Photosensitizers Yield More Oxygenated, Oxidized, and less Light-Absorbing Secondary Organic Aerosol (SOA) than Single Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7924-7936. [PMID: 38652049 PMCID: PMC11080053 DOI: 10.1021/acs.est.3c10199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Aromatic carbonyls have been mainly probed as photosensitizers for aqueous secondary organic aerosol (aqSOA) and light-absorbing organic aerosol (i.e., brown carbon or BrC) formation, but due to their organic nature, they can also undergo oxidation to form aqSOA and BrC. However, photochemical transformations of aromatic carbonyl photosensitizers, particularly in multicomponent systems, are understudied. This study explored aqSOA formation from the irradiation of aromatic carbonyl photosensitizers in mixed and single systems under cloud/fog conditions. Mixed systems consisting of phenolic carbonyls only (VL + ActSyr + SyrAld: vanillin [VL] + acetosyringone [ActSyr] + syringaldehyde [SyrAld]) and another composed of both nonphenolic and phenolic carbonyls (DMB + ActSyr + SyrAld: 3,4-dimethoxybenzaldehyde [DMB], a nonphenolic carbonyl, + ActSyr + SyrAld) were compared to single systems of VL (VL*) and DMB (DMB*), respectively. In mixed systems, the shorter lifetimes of VL and DMB indicate their diminished capacity to trigger the oxidation of other organic compounds (e.g., guaiacol [GUA], a noncarbonyl phenol). In contrast to the slow decay and minimal photoenhancement for DMB*, the rapid photodegradation and significant photoenhancement for VL* indicate efficient direct photosensitized oxidation (i.e., self-photosensitization). Relative to single systems, the increased oxidant availability promoted functionalization in VL + ActSyr + SyrAld and accelerated the conversion of early generation aqSOA in DMB + ActSyr + SyrAld. Moreover, the increased availability of oxidizable substrates countered by stronger oxidative capacity limited the contribution of mixed systems to aqSOA light absorption. This suggests a weaker radiative effect of BrC from mixed photosensitizer systems than BrC from single photosensitizer systems. Furthermore, more oxygenated and oxidized aqSOA was observed with increasing complexity of the reaction systems (e.g., VL* < VL + ActSyr + SyrAld < VL + ActSyr + SyrAld + GUA). This work offers new insights into aqSOA formation by emphasizing the dual role of organic photosensitizers as oxidant sources and oxidizable substrates.
Collapse
Affiliation(s)
- Beatrix
Rosette Go Mabato
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
| | - Yong Jie Li
- Department
of Civil and Environmental Engineering, and Centre for Regional Ocean,
Faculty of Science and Technology, University
of Macau, Macau 999078, China
| | - Dan Dan Huang
- Shanghai
Academy of Environmental Sciences, Shanghai 200233, China
| | - Chak K. Chan
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
- Division
of Physical Sciences and Engineering, King
Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah 23955-6900, Kingdom
of Saudi Arabia
| |
Collapse
|
3
|
Xiang W, Wang W, Hou C, Fan C, Lei T, Li J, Ge M. Secondary organic aerosols from oxidation of 1-methylnaphthalene: Yield, composition, and volatility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170379. [PMID: 38280593 DOI: 10.1016/j.scitotenv.2024.170379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/21/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
Alkyl-PAHs (APAHs) have been identified worldwide, which could rapidly react with chlorine and OH radicals in the atmosphere. In this study, a comprehensive investigation is conducted for SOA generated by a representative alkyl-naphthalene (1-methyl naphthalene, 1-MN) initiated by Cl, including yield, chemical composition, and volatility of SOA. To better understand 1-MN atmospheric oxidation, reaction mechanisms of 1MN with Cl atoms and OH radicals are proposed and compared under different nitrogen oxides (NOx) conditions. The SOA yields are comparable for Cl-initiated and OH-initiated reactions under high NOx conditions but increased in Cl-initiated reactions under low NOx conditions. The compounds with ten carbons are more abundant in Cl-initiated SOA, while compounds with nine carbons have higher intensity, suggesting that Cl caused ring-retained and alkyl-lost products and OH produces ring-broken and alkyl-retained compounds. The volatility of SOA is remarkably low, and SOA formed from Cl oxidation is slightly higher than that from OH oxidation. These results reveal that 1MN-derived SOA with OH and Cl radicals would have different physical-chemical properties and may play an important role in air quality and health effects.
Collapse
Affiliation(s)
- Wang Xiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Chemistry Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Chemistry Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chunyan Hou
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Chemistry Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - CiCi Fan
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Chemistry Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Lei
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Chemistry Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Junling Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Chemistry Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
El Hajj O, Hartness SW, Vandergrift GW, Park Y, Glenn CK, Anosike A, Webb AR, Dewey NS, Doner AC, Cheng Z, Jatana GS, Moses-DeBusk M, China S, Rotavera B, Saleh R. Alkylperoxy radicals are responsible for the formation of oxygenated primary organic aerosol. SCIENCE ADVANCES 2023; 9:eadj2832. [PMID: 37976350 PMCID: PMC10656070 DOI: 10.1126/sciadv.adj2832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
Organic aerosol (OA) is an air pollutant ubiquitous in urban atmospheres. Urban OA is usually apportioned into primary OA (POA), mostly emitted by mobile sources, and secondary OA (SOA), which forms in the atmosphere due to oxidation of gas-phase precursors from anthropogenic and biogenic sources. By performing coordinated measurements in the particle phase and the gas phase, we show that the alkylperoxy radical chemistry that is responsible for low-temperature ignition also leads to the formation of oxygenated POA (OxyPOA). OxyPOA is distinct from POA emitted during high-temperature ignition and is chemically similar to SOA. We present evidence for the prevalence of OxyPOA in emissions of a spark-ignition engine and a next-generation advanced compression-ignition engine, highlighting the importance of understanding OxyPOA for predicting urban air pollution patterns in current and future atmospheres.
Collapse
Affiliation(s)
- Omar El Hajj
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, Athens, GA 30602, USA
| | - Samuel W. Hartness
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, Athens, GA 30602, USA
| | | | - Yensil Park
- Energy and Transportation Science Division, Oak Ridge National Laboratory. Oak Ridge, TN 37831, USA
| | - Chase K. Glenn
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, Athens, GA 30602, USA
| | - Anita Anosike
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, Athens, GA 30602, USA
| | - Annabelle R. Webb
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Nicholas S. Dewey
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Anna C. Doner
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Zezhen Cheng
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Gurneesh S. Jatana
- Energy and Transportation Science Division, Oak Ridge National Laboratory. Oak Ridge, TN 37831, USA
| | - Melanie Moses-DeBusk
- Energy and Transportation Science Division, Oak Ridge National Laboratory. Oak Ridge, TN 37831, USA
| | - Swarup China
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Brandon Rotavera
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Rawad Saleh
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
West CP, Mesa Sanchez D, Morales AC, Hsu YJ, Ryan J, Darmody A, Slipchenko LV, Laskin J, Laskin A. Molecular and Structural Characterization of Isomeric Compounds in Atmospheric Organic Aerosol Using Ion Mobility-Mass Spectrometry. J Phys Chem A 2023; 127:1656-1674. [PMID: 36763810 DOI: 10.1021/acs.jpca.2c06459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Secondary organic aerosol (SOA) formed through multiphase atmospheric chemistry makes up a large fraction of airborne particles. The chemical composition and molecular structures of SOA constituents vary between different emission sources and aging processes in the atmosphere, which complicates their identification. In this work, we employ drift tube ion mobility spectrometry with quadrupole time-of-flight mass spectrometry (IM-MS) detection for rapid gas-phase separation and multidimensional characterization of isomers in two biogenic SOAs produced from ozonolysis of isomeric monoterpenes, d-limonene (LSOA) and α-pinene (PSOA). SOA samples were ionized using electrospray ionization (ESI) and characterized using IM-MS in both positive and negative ionization modes. The IM-derived collision cross sections in nitrogen gas (DTCCSN2 ) for individual SOA components were obtained using multifield and single-field measurements. A novel application of IM multiplexing/high-resolution demultiplexing methodology was employed to increase sensitivity, improve peak shapes, and augment mobility baseline resolution, which revealed several isomeric structures for the measured ions. For LSOA and PSOA samples, we report significant structural differences of the isomer structures. Molecular structural calculations using density functional theory combined with the theoretical modeling of CCS values provide insights into the structural differences between LSOA and PSOA constituents. The average DTCCSN2 values for monomeric SOA components observed as [M + Na]+ ions are 3-6% higher than those of their [M - H]- counterparts. Meanwhile, dimeric and trimeric isomer components in both samples showed an inverse trend with the relevant values of [M - H]- ions being 3-7% higher than their [M + Na]+ counterparts, respectively. The results indicate that the structures of Na+-coordinated oligomeric ions are more compact than those of the corresponding deprotonated species. The coordination with Na+ occurs on the oxygen atoms of the carbonyl groups leading to a compact configuration. Meanwhile, deprotonated molecules have higher DTCCSN2 values due to their elongated structures in the gas phase. Therefore, DTCCSN2 values of isomers in SOA mixtures depend strongly on the mode of ionization in ESI. Additionally, PSOA monomers and dimers exhibit larger DTCCSN2 values (1-4%) than their LSOA counterparts owing to more rigid structures. A cyclobutane ring is present with functional groups pointing in opposite directions in PSOA compounds, as compared to noncyclic flexible LSOA structures, forming more compact ions in the gas phase. Lastly, we investigated the effects of direct photolysis on the chemical transformations of selected individual PSOA components. We use IM-MS to reveal structural changes associated with aerosol aging by photolysis. This study illustrates the detailed molecular and structural descriptors for the detection and annotation of structural isomers in complex SOA mixtures.
Collapse
Affiliation(s)
- Christopher P West
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Daniela Mesa Sanchez
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ana C Morales
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yun-Jung Hsu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jackson Ryan
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Andrew Darmody
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Department of Aeronautics and Aerospace Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lyudmila V Slipchenko
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Alexander Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Department of Earth, Atmospheric & Planetary Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
6
|
Deng H, Lakey PSJ, Wang Y, Li P, Xu J, Pang H, Liu J, Xu X, Li X, Wang X, Zhang Y, Shiraiwa M, Gligorovski S. Daytime SO 2 chemistry on ubiquitous urban surfaces as a source of organic sulfur compounds in ambient air. SCIENCE ADVANCES 2022; 8:eabq6830. [PMID: 36170374 PMCID: PMC9519037 DOI: 10.1126/sciadv.abq6830] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/10/2022] [Indexed: 05/11/2023]
Abstract
The reactions of sulfur dioxide (SO2) with surface-bound compounds on atmospheric aerosols lead to the formation of organic sulfur (OS) compounds, thereby affecting the air quality and climate. Here, we show that the heterogeneous reaction of SO2 with authentic urban grime under near-ultraviolet sunlight irradiation leads to a large suite of various organic compounds including OS released in the gas phase. Calculations indicate that at the core area of Guangzhou, building surface uptake of SO2 is 15 times larger than uptake of SO2 on aerosol surfaces, yielding ~20 ng m-3 of OS that represents an important fraction of the observed OS compounds (60 to 200 ng m-3) in ambient aerosols of Chinese megacities. This chemical pathway occurring during daytime can contribute to the observed fraction of OS compounds in aerosols and improve the understanding of haze formation and urban air pollution.
Collapse
Affiliation(s)
- Huifan Deng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pascale S. J. Lakey
- Department of Chemistry, University of California, Irvine, Irvine, CA 92687-2025, USA
| | - Yiqun Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pan Li
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinli Xu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongwei Pang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
| | - Jiangping Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
| | - Xin Xu
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Yuzhong Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, Irvine, CA 92687-2025, USA
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
7
|
Tang S, Li F, Lv J, Liu L, Wu G, Wang Y, Yu W, Wang Y, Jiang G. Unexpected molecular diversity of brown carbon formed by Maillard-like reactions in aqueous aerosols. Chem Sci 2022; 13:8401-8411. [PMID: 35919720 PMCID: PMC9297531 DOI: 10.1039/d2sc02857c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/29/2022] [Indexed: 11/21/2022] Open
Abstract
Atmospheric brown carbon (BrC) exerts a key impact on the global radiative balance due to its light-absorbing properties. Maillard-like reactions between carbonyl and amino compounds have been identified as an important pathway for forming secondary BrC. Although optical properties have been widely studied, the molecular composition of secondary BrC generated in Maillard chemistry remains unclear, resulting in a knowledge gap to understand its formation and light-absorbing mechanism. In this study, a combination of optical spectroscopy, 1H nuclear magnetic resonance (NMR), and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was employed to comprehensively characterize the chemical and light-absorbing characteristics of secondary BrC. The results indicate that both the light-absorbing and molecular characteristics of secondary BrC were highly related to the structures of their precursors. Organic amine precursors consistently result in enhanced light-absorbing capacities of BrC compared to ammonium, but have inconsistent effects on the molecular diversity of BrC. Compared to amino precursors (i.e., glycine, ethylamine, propylamine, and ammonium), carbonyl precursors play a more important role in determining the molecular diversity of BrC. Different from black carbon, the light-absorbing products from Maillard-like reactions are mainly nitrogen-containing heterocycles. Unexpectedly, 35–64% of molecular formulae detected in real atmospheric samples were found in simulated Maillard reaction products, implying a potentially important contribution of Maillard chemistry to the atmospheric organic molecular pool. These results will improve our understanding of the formation and molecular diversity of BrC, and further help to manage emissions of secondary aerosol precursors. We found unexpected molecular diversity of brown carbon formed by Maillard-like reactions in aqueous aerosols, and carbonyl precursors play a more important role in determining the molecular diversity of brown carbon.![]()
Collapse
Affiliation(s)
- Shanshan Tang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Feifei Li
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Liu
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
- Beihang Hangzhou Innovation Institute Yuhang, Hangzhou 310023, China
| | - Guangming Wu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yarui Wang
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanchao Yu
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yawei Wang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Jiang H, Li J, Sun R, Tian C, Tang J, Jiang B, Liao Y, Chen CE, Zhang G. Molecular Dynamics and Light Absorption Properties of Atmospheric Dissolved Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10268-10279. [PMID: 34286571 DOI: 10.1021/acs.est.1c01770] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The light-absorbing organic aerosol referred to as brown carbon (BrC) affects the global radiative balance. The linkages between its molecular composition and light absorption properties and how environmental factors influence BrC composition are not well understood. In this study, atmospheric dissolved organic matter (ADOM) in 55 aerosol samples from Guangzhou was characterized using Fourier transform ion cyclotron resonance mass spectrometry and light absorption measurements. The abundant components in ADOM were aliphatics and peptide-likes (in structure), or nitrogen- and sulfur-containing compounds (in elemental composition). The light absorption properties of ADOM were positively correlated with the levels of unsaturated and aromatic structures. Particularly, 17 nitrogen-containing species, which are identified by a random forest, characterized the variation of BrC absorption well. Aggregated boosted tree model and nonmetric multidimensional scaling analysis show that the BrC composition was largely driven by meteorological conditions and anthropogenic activities, among which biomass burning (BB) and OH radical were the two important factors. BrC compounds often accumulate with elevated BB emissions and related secondary processes, whereas the photolysis/photooxidation of BrC usually occurs under high solar radiance/•OH concentration. This study first illuminated how environmental factors influence BrC at the molecular level and provided clues for the molecular-level research of BrC in the future.
Collapse
Affiliation(s)
- Hongxing Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
| | - Rong Sun
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chongguo Tian
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jiao Tang
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
| | - Bin Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
| | - Yuhong Liao
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
| | - Chang-Er Chen
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
| |
Collapse
|
9
|
Hettiyadura APS, Garcia V, Li C, West CP, Tomlin J, He Q, Rudich Y, Laskin A. Chemical Composition and Molecular-Specific Optical Properties of Atmospheric Brown Carbon Associated with Biomass Burning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2511-2521. [PMID: 33499599 DOI: 10.1021/acs.est.0c05883] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study provides molecular insights into the light absorption properties of biomass burning (BB) brown carbon (BrC) through the chemical characterization of tar condensates generated from heated wood pellets at oxidative and pyrolysis conditions. Both liquid tar condensates separated into "darker oily" and "lighter aqueous" immiscible phases. The molecular composition of these samples was investigated using reversed-phase liquid chromatography coupled with a photodiode array detector and a high-resolution mass spectrometer. The results revealed two sets of BrC chromophores: (1) common to all four samples and (2) specific to the "oily" fractions. The common BrC chromophores consist of polar, monoaromatic species. The oil-specific BrC chromophores include less-polar and nonpolar polyaromatic compounds. The most-light-absorbing pyrolysis oily phase (PO) was aerosolized and size-separated using a cascade impactor to compare the composition and optical properties of the bulk versus the aerosolized BrC. The mass absorption coefficient (MAC300-500 nm) of aerosolized PO increased compared to that of the bulk, due to gas-phase partitioning of more volatile and less absorbing chromophores. The optical properties of the aerosolized PO were consistent with previously reported ambient BB BrC measurements. These results suggest the darkening of atmospheric BrC following non-reactive evaporation that transforms the optical properties and composition of aged BrC aerosols.
Collapse
Affiliation(s)
| | | | - Chunlin Li
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | - Quanfu He
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
10
|
Bianco A, Deguillaume L, Vaïtilingom M, Nicol E, Baray JL, Chaumerliac N, Bridoux M. Molecular Characterization of Cloud Water Samples Collected at the Puy de Dôme (France) by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10275-10285. [PMID: 30052429 DOI: 10.1021/acs.est.8b01964] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cloud droplets contain dynamic and complex pools of highly heterogeneous organic matter, resulting from the dissolution of both water-soluble organic carbon in atmospheric aerosol particles and gas-phase soluble species, and are constantly impacted by chemical, photochemical, and biological transformations. Cloud samples from two summer events, characterized by different air masses and physicochemical properties, were collected at the Puy de Dôme station in France, concentrated on a strata-X solid-phase extraction cartridge and directly infused using electrospray ionization in the negative mode coupled with ultrahigh-resolution mass spectrometry. A significantly higher number (n = 5258) of monoisotopic molecular formulas, assigned to CHO, CHNO, CHSO, and CHNSO, were identified in the cloud sample whose air mass had passed over the highly urbanized Paris region (J1) compared to the cloud sample whose air mass had passed over remote areas (n = 2896; J2). Van Krevelen diagrams revealed that lignins/CRAM-like, aliphatics/proteins-like, and lipids-like compounds were the most abundant classes in both samples. Comparison of our results with previously published data sets on atmospheric aqueous media indicated that the average O/C ratios reported in this work (0.37) are similar to those reported for fog water and for biogenic aerosols but are lower than the values measured for aerosols sampled in the atmosphere and for aerosols produced artificially in environmental chambers.
Collapse
Affiliation(s)
- Angelica Bianco
- Laboratoire de Météorologie Physique (LaMP) , Université Clermont Auvergne (UCA) , 63000 Clermont-Ferrand , France
- CEA, DAM, DIF , F-91297 Arpajon , France
| | - Laurent Deguillaume
- Laboratoire de Météorologie Physique (LaMP) , Université Clermont Auvergne (UCA) , 63000 Clermont-Ferrand , France
| | - Mickaël Vaïtilingom
- Laboratoire de Météorologie Physique (LaMP) , Université Clermont Auvergne (UCA) , 63000 Clermont-Ferrand , France
| | - Edith Nicol
- Laboratoire de Chimie Moléculaire (LCM), CNRS, Ecole Polytechnique , Université Paris-Saclay , 91128 Palaiseau , France
| | - Jean-Luc Baray
- Laboratoire de Météorologie Physique (LaMP) , Université Clermont Auvergne (UCA) , 63000 Clermont-Ferrand , France
| | - Nadine Chaumerliac
- Laboratoire de Météorologie Physique (LaMP) , Université Clermont Auvergne (UCA) , 63000 Clermont-Ferrand , France
| | | |
Collapse
|
11
|
Romonosky DE, Li Y, Shiraiwa M, Laskin A, Laskin J, Nizkorodov SA. Aqueous Photochemistry of Secondary Organic Aerosol of α-Pinene and α-Humulene Oxidized with Ozone, Hydroxyl Radical, and Nitrate Radical. J Phys Chem A 2017; 121:1298-1309. [DOI: 10.1021/acs.jpca.6b10900] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dian E. Romonosky
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Ying Li
- National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan
| | - Manabu Shiraiwa
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | | | | | - Sergey A. Nizkorodov
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
12
|
Boone EJ, Laskin A, Laskin J, Wirth C, Shepson PB, Stirm BH, Pratt KA. Aqueous Processing of Atmospheric Organic Particles in Cloud Water Collected via Aircraft Sampling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:8523-30. [PMID: 26068538 DOI: 10.1021/acs.est.5b01639] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cloudwater and below-cloud atmospheric particle samples were collected onboard a research aircraft during the Southern Oxidant and Aerosol Study (SOAS) over a forested region of Alabama in June 2013. The organic molecular composition of the samples was studied to gain insights into the aqueous-phase processing of organic compounds within cloud droplets. High resolution mass spectrometry (HRMS) with nanospray desorption electrospray ionization (nano-DESI) and direct infusion electrospray ionization (ESI) were utilized to compare the organic composition of the particle and cloudwater samples, respectively. Isoprene and monoterpene-derived organosulfates and oligomers were identified in both the particles and cloudwater, showing the significant influence of biogenic volatile organic compound oxidation above the forested region. While the average O:C ratios of the organic compounds were similar between the atmospheric particle and cloudwater samples, the chemical composition of these samples was quite different. Specifically, hydrolysis of organosulfates and formation of nitrogen-containing compounds were observed for the cloudwater when compared to the atmospheric particle samples, demonstrating that cloud processing changes the composition of organic aerosol.
Collapse
Affiliation(s)
- Eric J Boone
- †Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Alexander Laskin
- ‡Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Julia Laskin
- §Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | | | | | - Brian H Stirm
- ∇Department of Aviation Technology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kerri A Pratt
- †Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
- ○Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
13
|
Romonosky DE, Laskin A, Laskin J, Nizkorodov SA. High-Resolution Mass Spectrometry and Molecular Characterization of Aqueous Photochemistry Products of Common Types of Secondary Organic Aerosols. J Phys Chem A 2014; 119:2594-606. [DOI: 10.1021/jp509476r] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Dian E. Romonosky
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | | | | | - Sergey A. Nizkorodov
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
14
|
Laskin J, Laskin A, Nizkorodov SA, Roach P, Eckert P, Gilles MK, Wang B, Lee HJJ, Hu Q. Molecular selectivity of brown carbon chromophores. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:12047-12055. [PMID: 25233355 DOI: 10.1021/es503432r] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Complementary methods of high-resolution mass spectrometry and microspectroscopy were utilized for molecular analysis of secondary organic aerosol (SOA) generated from ozonolysis of two structural monoterpene isomers: D-limonene SOA (LSOA) and α-pinene SOA (PSOA). The LSOA compounds readily formed adducts with Na(+) under electrospray ionization conditions, with only a small fraction of compounds detected in the protonated form. In contrast, a significant fraction of PSOA compounds appeared in the protonated form because of their increased molecular rigidity. Laboratory simulated aging of LSOA and PSOA, through conversion of carbonyls into imines mediated by NH3 vapors in humid air, resulted in selective browning of the LSOA sample, while the PSOA sample remained white. Comparative analysis of the reaction products in the aged LSOA and PSOA samples provided insights into chemistry relevant to formation of brown carbon chromophores. A significant fraction of carbonyl-imine conversion products with identical molecular formulas was detected in both samples. This reflects the high level of similarity in the molecular composition of these two closely related SOA materials. Several highly conjugated products were detected exclusively in the brown LSOA sample and were identified as potential chromophores responsible for the observed color change. The majority of the unique products in the aged LSOA sample with the highest number of double bonds contain two nitrogen atoms. We conclude that chromophores characteristic of the carbonyl-imine chemistry in LSOA are highly conjugated oligomers of secondary imines (Schiff bases) present at relatively low concentrations. Formation of this type of conjugated compounds in PSOA is hindered by the structural rigidity of the α-pinene oxidation products. Our results suggest that the overall light-absorbing properties of SOA may be determined by trace amounts of strong brown carbon chromophores.
Collapse
Affiliation(s)
- Julia Laskin
- Physical Sciences Division and ‡Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lee HJJ, Aiona PK, Laskin A, Laskin J, Nizkorodov SA. Effect of solar radiation on the optical properties and molecular composition of laboratory proxies of atmospheric brown carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:10217-26. [PMID: 25102050 DOI: 10.1021/es502515r] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Sources, optical properties, and chemical composition of atmospheric brown carbon (BrC) aerosol are uncertain, making it challenging to estimate its contribution to radiative forcing. Furthermore, optical properties of BrC may change significantly during its atmospheric aging. We examined the effect of photolysis on the molecular composition, mass absorption coefficient, and fluorescence of secondary organic aerosol (SOA) prepared by high-NOx photooxidation of naphthalene (NAP SOA). Our experiments were designed to model photolysis processes of NAP SOA compounds dissolved in cloud or fog droplets. Aqueous solutions of NAP SOA were observed to photobleach (i.e., lose their ability to absorb visible radiation) with an effective half-life of ∼15 h (with sun in its zenith) for the loss of near-UV (300-400 nm) absorbance. The molecular composition of NAP SOA was significantly modified by photolysis, with the average SOA formula changing from C14.1H14.5O5.1N0.085 to C11.8H14.9O4.5N0.023 after 4 h of irradiation. However, the average O/C ratio did not change significantly, suggesting that it is not a good metric for assessing the extent of photolysis-driven aging in NAP SOA (and in BrC in general). In contrast to NAP SOA, the photobleaching of BrC material produced by the reaction of limonene + ozone SOA with ammonia vapor (aged LIM/O3 SOA) was much faster, but it did not result in a significant change in average molecular composition. The characteristic absorbance of the aged LIM/O3 SOA in the 450-600 nm range decayed with an effective half-life of <0.5 h. These results emphasize the highly variable and dynamic nature of different types of atmospheric BrC.
Collapse
Affiliation(s)
- Hyun Ji Julie Lee
- Department of Chemistry, University of California , Irvine, California 92697, United States
| | | | | | | | | |
Collapse
|
16
|
Heath BS, Marshall MJ, Laskin J. The characterization of living bacterial colonies using nanospray desorption electrospray ionization mass spectrometry. Methods Mol Biol 2014; 1151:199-208. [PMID: 24838888 DOI: 10.1007/978-1-4939-0554-6_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nanospray desorption electrospray ionization (nano-DESI) coupled with high-resolution mass spectrometry (MS) and tandem mass spectrometry (MS/MS) enable detailed molecular characterization of living bacterial colonies directly from nutrient agar. The ability to detect molecular signatures of living microbial communities is important for investigating metabolic exchange between species without affecting the viability of the colonies. We describe the protocol for bacterial growth, sample preparation, ambient profiling, and data analysis of microbial communities using nano-DESI MS.
Collapse
Affiliation(s)
- Brandi S Heath
- Physical Sciences Division, Pacific Northwest National Laboratory, 999, MSIN K8-88, Richland, WA, 99352, USA
| | | | | |
Collapse
|
17
|
Lin P, Yu JZ, Engling G, Kalberer M. Organosulfates in humic-like substance fraction isolated from aerosols at seven locations in East Asia: a study by ultra-high-resolution mass spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:13118-13127. [PMID: 23153227 DOI: 10.1021/es303570v] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Humic-like substances (HULIS) in ambient aerosols collected at seven locations in East Asia were analyzed using electrospray ionization (ESI) coupled with an ultra-high-resolution mass spectrometer (UHRMS). Locations included a 3 km high mountaintop site in Taiwan, rural, suburban, and urban locations in the Pearl River Delta (PRD), South China, and in Taiwan. Organosulfates (OS) in the HULIS fraction were tentatively identified through accurate mass measurements and MS/MS spectra interpretation. In the two mountaintop samples collected in regional background atmosphere, little OS were detected, while a few hundred OS formulas were identified in the six samples taken in Taiwan and PRD. Many of the OS ions were among the most intense peaks in the negative ESI-UHRMS spectra, and their elemental formulas were identical to OS derived from biogenic volatile organic compounds (BVOCs) (e.g., monoterpenes) that have been identified in chamber studies. With OS having less than 6 carbon atoms too hydrophilic to be effectively retained in the HULIS fraction, OS containing 10 carbon atoms were the most abundant, indicating monoterpenes as important precursors of OS in the HULIS fraction. Clear spatial variation in abundance of OS was found among different atmospheric environments, with enhanced coupling of BVOCs with anthropogenic acidic aerosols observed in the PRD samples over the Taiwan samples. The double bond equivalent (DBE) values indicate the majority of OS (>90%) in the HULIS fraction are aliphatic. The elemental compositions of OS compounds containing N atoms (defined as CHONS) indicate that they are probably nitrooxy OS. Some insights into OS formation mechanisms are also gained through examining the presence/absence of perceived reactant-product formula pairs in the mass spectra. The results suggest the dominant epoxide intermediate pathway for formation of OS compounds without N atoms (defined as CHOS) and confirm the more readily hydrolyzed characteristics of the --ONO₂ group than the --OSO₃ group. There is a lack of evidence for the epoxide pathway to account for the formation of OS in the CHONS subgroup.
Collapse
Affiliation(s)
- Peng Lin
- Department of Chemistry, Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | |
Collapse
|