1
|
Palladini J, Terzaghi E, Bagnati R, Passoni A, Davoli E, Maspero A, Palmisano G, Di Guardo A. Environmental fate of sulfonated-PCBs: Soil partitioning properties, bioaccumulation, persistence, and mobility. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131853. [PMID: 37327608 DOI: 10.1016/j.jhazmat.2023.131853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023]
Abstract
Two new classes of PCB metabolites were recently discovered: sulfonated-polychlorinated biphenyls (sulfonated-PCBs) and hydroxy-sulfonated-polychlorinated biphenyls (OH-sulfonated-PCBs). These metabolites, originating from PCB degradation, seem to possess more polar characteristics than their parent compounds. However, no other information, such as their chemical identity (CAS number) or their ecotoxicity or toxicity, is available so far, although more than about one hundred different chemicals were observed in soil samples. In addition, their physico-chemical properties are still uncertain since only estimations are available. Here we show the first evidence on the fate of these new classes of contaminants in the environment, producing results from several experiments, to evaluate sulfonated-PCBs and OH-sulfonated-PCBs soil partition coefficients, degradation in soil after 18 months of rhizoremediation, uptake into plant roots and earthworms, as well as a preliminary analytical method to extract and concentrate these chemicals from water. The results give an overview of the expected environmental fate of these chemicals and open questions for further studies.
Collapse
Affiliation(s)
- Jessica Palladini
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Elisa Terzaghi
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Renzo Bagnati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Alice Passoni
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Enrico Davoli
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Angelo Maspero
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Giovanni Palmisano
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Antonio Di Guardo
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 11, 22100 Como, Italy.
| |
Collapse
|
2
|
Palladini J, Bagnati R, Passoni A, Davoli E, Lanno A, Terzaghi E, Falakdin P, Di Guardo A. Bioaccumulation of PCBs and their hydroxy and sulfonated metabolites in earthworms: Comparing lab and field results. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118507. [PMID: 34800589 DOI: 10.1016/j.envpol.2021.118507] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/08/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Sulfonated and hydroxy-sulfonated PCBs were recently discovered by our group as new PCB soil contaminants, constituting about 1% of their parent compounds in soil. Here we investigate for the first time the bioaccumulation of these metabolites as well as hydroxy-PCBs and native PCBs in earthworms. A sequence of three experiments, at increasing complexity and ecological realism, were performed with four different earthworm species (Eisenia foetida Savigny, Lumbricus terrestris L, Allolobophora chlorotica Savigny and Aporrectodea caliginosa Savigny) exposed to contaminated soils. The first experiment confirmed that when exposing earthworms to soil contaminated with a single hexa-chlorinated congener (PCB 155), no formation of polar metabolites in earthworms could be detected. This allowed to plan the following two experiments, using a soil from a PCB contaminated site and rich in relatively high levels (10-130 μg kg-1) of hydroxy-, sulfonated-, and hydroxy-sulfonated-PCBs. Bioaccumulation factors (BAFs) and bioconcentration factors (BCFs) were then obtained in the second and third experiments, to compare the accumulation behavior of these chemicals in laboratory and natural conditions. Regressions between BAF/BCF and Log Kow/Log D, produced a variety of results, being generally significant between BCF and PCBs and not significant in the other cases. In general, the metabolites accumulated in earthworms with detectable concentrations in their tissues (8-115 μg kg-1), although sulfonated and hydroxy-sulfonated PCBs showed BAF and BCF values lower (up to two orders of magnitude) than those calculated for the parent PCBs, given their lower lipophilicity.
Collapse
Affiliation(s)
- Jessica Palladini
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 11, 21100, Como, Italy
| | - Renzo Bagnati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Alice Passoni
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Enrico Davoli
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Alessia Lanno
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Elisa Terzaghi
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 11, 21100, Como, Italy
| | - Parisa Falakdin
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 11, 21100, Como, Italy
| | - Antonio Di Guardo
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 11, 21100, Como, Italy.
| |
Collapse
|
3
|
Li Y, Bako CM, Saktrakulkla P, Lehmler HJ, Hornbuckle KC, Schnoor JL. Interconversion between methoxylated, hydroxylated and sulfated metabolites of PCB 3 in whole poplar plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147341. [PMID: 33933776 PMCID: PMC8610232 DOI: 10.1016/j.scitotenv.2021.147341] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 05/21/2023]
Abstract
Methoxylated polychlorinated biphenyls (MeO-PCBs) are overlooked metabolites of PCBs. In general, they are more toxic to plants than their parent congeners. However, information on the fate of MeO-PCBs and the relationship between methoxylated, hydroxylated and sulfated metabolites of PCBs in plants is scarce. In this work, poplar plants (Populus deltoides × nigra, DN34) were hydroponically and separately exposed to 4'-methoxy-4-monochlorobiphenyl (4'-MeO-PCB 3) and 4'-PCB 3 sulfate for 10 days to investigate the uptake, translocation and metabolism of MeO-PCBs and the relationship between methoxy-PCBs, hydroxyl-PCBs and PCB sulfates within plants. Results showed that 4'-MeO-PCB 3 and 4'-PCB 3 sulfate were taken up by the roots of poplar plants and translocated from roots to shoots and leaves. 4'-OH-PCB 3 and 4'-PCB 3 sulfate were identified as the hydroxylated metabolite and sulfate metabolite of 4'-MeO-PCB 3 in poplar, respectively. In the backward reaction, 4'-OH-PCB 3 and 4'-MeO-PCB 3 were found as metabolites of 4'-PCB 3 sulfate. For exposure groups, the yields of 4'-OH-PCB 3 produced from 4'-MeO-PCB 3 and 4'-PCB 3 sulfate were 1.29% and 0.13% respectively. The yield of 4'-PCB 3 sulfate which originated from 4'-MeO-PCB 3 in wood and root samples of exposure groups was only 0.02%. Only 0.04% of the initial mass of 4'-PCB 3 sulfate was transformed to 4'-MeO-PCB 3 in the exposure groups. The sulfation yield of 4'-OH-PCB 3 was higher than hydrolysis yield of 4'-PCB 3 sulfate, indicating that formation of PCB sulfates was predominant over the reverse reaction, the formation of hydroxy-PCBs. These results provide new perspective on the transport, metabolism, and fate of MeO-PCBs, and also help to better understand sources of OH-PCBs and PCB sulfates in the environment. This study provides the first evidence of interconversion of sulfate metabolites from methoxy-PCBs and methoxy-PCBs from PCB sulfates.
Collapse
Affiliation(s)
- Yanlin Li
- Department of Civil and Environmental Engineering and IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242, United States.
| | - Christian M Bako
- Department of Civil and Environmental Engineering and IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242, United States
| | - Panithi Saktrakulkla
- Department of Civil and Environmental Engineering and IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242, United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA 52242, United States
| | - Keri C Hornbuckle
- Department of Civil and Environmental Engineering and IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242, United States
| | - Jerald L Schnoor
- Department of Civil and Environmental Engineering and IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
4
|
Zhang Q, Kong W, Wei L, Hou X, Ma Q, Liu Y, Luo Y, Liao C, Liu J, Schnoor JL, Jiang G. Compartmentalization and Excretion of 2,4,6-Tribromophenol Sulfation and Glycosylation Conjugates in Rice Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2980-2990. [PMID: 33544574 PMCID: PMC8232829 DOI: 10.1021/acs.est.0c07184] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The most environmentally abundant bromophenol congener, 2,4,6-tribromophenol (2,4,6-TBP, 6.06 μmol/L), was exposed to rice for 5 d both in vivo (intact seedling) and in vitro (suspension cell) to systematically characterize the fate of its sulfation and glycosylation conjugates in rice. The 2,4,6-TBP was rapidly transformed to produce 6 [rice cells (3 h)] and 8 [rice seedlings (24 h)] sulfated and glycosylated conjugates. The predominant sulfation conjugate (TP408, 93.0-96.7%) and glycosylation conjugate (TP490, 77.1-90.2%) were excreted into the hydroponic solution after their formation in rice roots. However, the sulfation and glycosylation conjugates presented different translocation and compartmentalization behaviors during the subsequent Phase III metabolism. Specifically, the sulfated conjugate could be vertically transported into the leaf sheath and leaf, while the glycosylation conjugates were sequestered in cell vacuoles and walls, which resulted in exclusive compartmentalization within the rice roots. These results showed the micromechanisms of the different compartmentalization behaviors of 2,4,6-TBP conjugates in Phase III metabolism. Glycosylation and sulfation of the phenolic hydroxyl groups orchestrated by plant excretion and Phase III metabolism may reduce the accumulation of 2,4,6-TBP and its conjugates in rice plants.
Collapse
Affiliation(s)
- Qing Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
- School of Environment, Beijing Normal University, Beijing 100875, P. R. China
| | - Wenqian Kong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Linfeng Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Xingwang Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Qianchi Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Yadan Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Jerald L Schnoor
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| |
Collapse
|
5
|
Chen W, Yu M, Zhang Q, Hou X, Kong W, Wei L, Mao X, Liu J, Schnoor JL, Jiang G. Metabolism of SCCPs and MCCPs in Suspension Rice Cells Based on Paired Mass Distance (PMD) Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9990-9999. [PMID: 32600037 PMCID: PMC7703871 DOI: 10.1021/acs.est.0c01830] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Short-chain and medium-chain chlorinated paraffins (SCCPs and MCCPs) are mixtures of complex chemical compounds with intensive usage. They are frequently detected in various environmental samples. However, the interaction between CPs and plants, especially the biotransformation behaviors of CPs within plants, is poorly understood. In this study, 1,2,5,6,9,10-hexachlorodecane (CP-4, a typical standard of individual SCCP congeners) and 52%-MCCP (a commercial mixture standard of MCCPs with 52% chlorine content by mass) were selected as representative chemicals to explore the metabolic behaviors of SCCPs and MCCPs using suspension rice cell culture exposure systems. Both 79.53% and 40.70% of CP-4 and 52%-MCCP were metabolized by suspension rice cells, respectively. A complementary suspected screening strategy based on the pair mass distances (PMD) analysis algorithm was used to study the metabolism of CPs mediated by the plant cells. Forty and 25 metabolic products for CP-4 and 52%-MCCP, respectively, were identified, including (multi-) hydroxylation, dechlorination, -HCl- elimination metabolites, (hydroxylation-) sulfation, and glycosylation conjugates. Here, we propose a comprehensive metabolic molecular network and provide insight on degradation pathways of SCCPs and MCCPs in plants for the first time, aiding in further understanding of the transformation behaviors of CPs.
Collapse
Affiliation(s)
- Weifang Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao Yu
- Department of Environmental Medical and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Qing Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingwang Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310008, China
| | - Wenqian Kong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linfeng Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaowei Mao
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310008, China
| | - Jerald L Schnoor
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310008, China
| |
Collapse
|
6
|
Liu J, Tan Y, Song E, Song Y. A Critical Review of Polychlorinated Biphenyls Metabolism, Metabolites, and Their Correlation with Oxidative Stress. Chem Res Toxicol 2020; 33:2022-2042. [DOI: 10.1021/acs.chemrestox.0c00078] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jing Liu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, People’s Republic of China
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Ya Tan
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Erqun Song
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Yang Song
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| |
Collapse
|
7
|
Bagnati R, Terzaghi E, Passoni A, Davoli E, Fattore E, Maspero A, Palmisano G, Zanardini E, Borin S, Di Guardo A. Identification of Sulfonated and Hydroxy-Sulfonated Polychlorinated Biphenyl (PCB) Metabolites in Soil: New Classes of Intermediate Products of PCB Degradation? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10601-10611. [PMID: 31412202 DOI: 10.1021/acs.est.9b03010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In this paper we describe the identification of two classes of contaminants: sulfonated-PCBs and hydroxy-sulfonated-PCBs. This is the first published report of the detection of these chemicals in soil. They were found, along with hydroxy-PCBs, in soil samples coming from a site historically contaminated by the industrial production of PCBs and in background soils. Sulfonated-PCB levels were approximately 0.4-0.8% of the native PCB levels in soils and about twice the levels of hydroxy-sulfonated-PCBs and hydroxy-PCBs. The identification of sulfonated-PCBs was confirmed by the chemical synthesis of reference standards, obtained through the sulfonation of an industrial mixture of PCBs. We then reviewed the literature to investigate for the potential agents responsible for the sulfonation. Furthermore, we predicted their physicochemical properties and indicate that, given the low pKa of sulfonated- and hydroxy-sulfonated-PCBs, they possess negligible volatility, supporting the case for in situ formation from PCBs. This study shows the need of understanding their origin, their role in the degradation path of PCBs, and their fate, as well as their (still unknown) toxicological and ecotoxicological properties.
Collapse
Affiliation(s)
- Renzo Bagnati
- Department of Environmental Health Sciences , Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS , Via Mario Negri 2 , 20156 Milan , Italy
| | - Elisa Terzaghi
- Department of Science and High Technology , University of Insubria , Via Valleggio 11 , 22100 Como , Italy
| | - Alice Passoni
- Department of Environmental Health Sciences , Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS , Via Mario Negri 2 , 20156 Milan , Italy
| | - Enrico Davoli
- Department of Environmental Health Sciences , Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS , Via Mario Negri 2 , 20156 Milan , Italy
| | - Elena Fattore
- Department of Environmental Health Sciences , Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS , Via Mario Negri 2 , 20156 Milan , Italy
| | - Angelo Maspero
- Department of Science and High Technology , University of Insubria , Via Valleggio 11 , 22100 Como , Italy
| | - Giovanni Palmisano
- Department of Science and High Technology , University of Insubria , Via Valleggio 11 , 22100 Como , Italy
| | - Elisabetta Zanardini
- Department of Science and High Technology , University of Insubria , Via Valleggio 11 , 22100 Como , Italy
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences , University of Milan , Via Celoria 2 , 20133 Milan , Italy
| | - Antonio Di Guardo
- Department of Science and High Technology , University of Insubria , Via Valleggio 11 , 22100 Como , Italy
| |
Collapse
|
8
|
Sun J, Pan L, Tsang DCW, Zhan Y, Zhu L, Li X. Organic contamination and remediation in the agricultural soils of China: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:724-740. [PMID: 29017123 DOI: 10.1016/j.scitotenv.2017.09.271] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 05/21/2023]
Abstract
Soil pollution is a global problem in both developed and developing countries. Countries with rapidly developing economies such as China are faced with significant soil pollution problems due to accelerated industrialization and urbanization over the last decades. This paper provides an overview of published scientific data on soil pollution across China with particular focus on organic contamination in agricultural soils. Based on the related peer-reviewed papers published since 2000 (n=203), we evaluated the priority organic contaminants across China, revealed their spatial and temporal distributions at the national scale, identified their possible sources and fates in soil, assessed their potential environmental risks, and presented the challenges in current remediation technologies regarding the combined organic pollution of agricultural soils. The primary pollutants in Northeast China were polycyclic aromatic hydrocarbons (PAHs) due to intensive fossil fuel combustion. The concentrations of organochlorine pesticides (OCPs) and phthalic acid esters (PAEs) were higher in North and Central China owing to concentrated agricultural activities. The levels of polychlorinated biphenyls (PCBs) were higher in East and South China primarily because of past industrial operations and improper electronic waste processing. The co-existence of organic contaminants was severe in the Yangtze River Delta, Pearl River Delta, and Beijing-Tianjin-Hebei Region, which are the most populated and industrialized regions in China. Integrated biological-chemical remediation technologies, such as surfactant-enhanced bioremediation, have potential uses in the remediation of soil contaminated by multiple contaminants. This critical review highlighted several future research directions including combined pollution, interfacial interactions, food safety, bioavailability, ecological effects, and integrated remediation methods for combined organic pollution in soil.
Collapse
Affiliation(s)
- Jianteng Sun
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Lili Pan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yu Zhan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
9
|
Sun J, Pan L, Chen J, Li K, Zhu L. Uptake, translocation, and metabolism of hydroxylated and methoxylated polychlorinated biphenyls in maize, wheat, and rice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:12-17. [PMID: 27699658 DOI: 10.1007/s11356-016-7724-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/15/2016] [Indexed: 05/17/2023]
Abstract
Hydroxylated polychlorinated biphenyls (OH-PCBs) have been found in the environment with high toxicity. Recently, methoxylated polychlorinated biphenyls (MeO-PCBs) were identified as new pollutants and detected in sewage sludge. This study presents a detailed investigation on the uptake, translocation, and metabolism of OH-PCBs and MeO-PCBs in typical crops including maize, wheat, and rice. The interconversion between OH-PCBs and MeO-PCBs were observed. Demethylation of MeO-PCBs was favored over methylation of OH-PCBs. The metabolites were mainly generated in the roots and then translocated to the shoots. Analog-specific differences showed that the accumulation amounts of MeO-PCBs were higher than those of OH-PCBs in the crops. The translocation abilities followed this order: 3'-OH-CB-65 > 4'-OH-CB-101 > 3'-MeO-CB-65 > 4'-MeO-CB-101. The conversion rates were generally higher for 4'-OH-CB-101 than 3'-OH-CB-65 and higher for 4'-MeO-CB-101 than 3'-MeO-CB-65. Interspecies variability among the crops was also observed. The amounts of metabolites and acropetal translocation inside the plants were the greatest for maize. However, the concentration of compounds normalized by the mass of corresponding plant tissue was highest in wheat. These findings provide valuable information for a better understanding of the phytoaccumulation and phytotransformation of OH-PCBs and MeO-PCBs.
Collapse
Affiliation(s)
- Jianteng Sun
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Lili Pan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jie Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Kelun Li
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
10
|
Sun J, Pan L, Su Z, Zhan Y, Zhu L. Interconversion between Methoxylated and Hydroxylated Polychlorinated Biphenyls in Rice Plants: An Important but Overlooked Metabolic Pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:3668-3675. [PMID: 26928534 DOI: 10.1021/acs.est.6b00266] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
To date, there is limited knowledge on the methoxylation of polychlorinated biphenyls (PCBs) and the relationship between hydroxylated polychlorinated biphenyls (OH-PCBs) and methoxylated polychlorinated biphenyls (MeO-PCBs) in organisms. In this study, rice (Oryza sativa L.) was chosen as the model organism to determine the metabolism of PCBs in plants. Limited para-substituted 4'-OH-CB-61 (major metabolite) and 4'-MeO-CB-61 (minor metabolite) were found after a 5-day exposure to CB-61, while ortho- and meta-substituted products were not detected. Interconversion between OH-PCBs and MeO-PCBs in organisms was observed for the first time. The demethylation ratio of 4'-MeO-CB-61 was 18 times higher than the methylation ratio of 4'-OH-CB-61, indicating that formation of OH-PCBs was easier than formation of MeO-PCBs. The transformation products were generated in the roots after 24 h of exposure. The results of in vivo and in vitro exposure studies show that the rice itself played a key role in the whole transformation processes, while endophytes were jointly responsible for hydroxylation of PCBs and demethylation of MeO-PCBs. Metabolic pathways of PCBs, OH-PCBs, and MeO-PCBs in intact rice plants are proposed. The findings are important in understanding the fate of PCBs and the source of OH-PCBs in the environment.
Collapse
Affiliation(s)
- Jianteng Sun
- Department of Environmental Science, Zhejiang University , Hangzhou, Zhejiang 310058, China
| | - Lili Pan
- Department of Environmental Science, Zhejiang University , Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control , Hangzhou, Zhejiang 310058, China
| | - Zhenzhu Su
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University , Hangzhou, Zhejiang 310058, China
| | - Yu Zhan
- Department of Environmental Science, Zhejiang University , Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control , Hangzhou, Zhejiang 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University , Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control , Hangzhou, Zhejiang 310058, China
| |
Collapse
|
11
|
Flor S, He X, Lehmler HJ, Ludewig G. Estrogenicity and androgenicity screening of PCB sulfate monoesters in human breast cancer MCF-7 cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:2186-200. [PMID: 26300354 PMCID: PMC4718780 DOI: 10.1007/s11356-015-5142-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 08/03/2015] [Indexed: 04/15/2023]
Abstract
Recent studies identified polychlorinated biphenyl (PCB) sulfate esters as a major product of PCB metabolism. Since hydroxy-PCBs (HO-PCBs), the immediate precursors of PCB sulfates and important contributors to PCB toxicity, were shown to have estrogenic activity, we investigated the estrogenicity/androgenicty of a series of PCB sulfate metabolites. We synthesized the five possible structural sulfate monoester metabolites of PCB 3, a congener shown to be biotransformed to sulfates, a sulfate ester of the paint-specific congener PCB 11, and sulfate monoesters of two HO-PCBs reported to interact with sulfotransferases (PCB 39, no ortho chlorines, and PCB 53, 3 ortho chlorines). We tested these PCB sulfates and 4'-HO-PCB 3 as positive control for estrogenic, androgenic, anti-estrogenic, and anti-androgenic activity in the E- and A-screen with human breast cancer MCF7-derived cells at 100 μM-1 pM concentrations. Only 4'-HO-PCB 3 was highly cytotoxic at 100 μM. We observed structure-activity relationships: compounds with a sulfate group in the chlorine-containing ring of PCB 3 (2PCB 3 and 3PCB 3 sulfate) showed no interaction with the estrogen (ER) and androgen (AR) receptor. The 4'-HO-PCB 3 and its sulfate ester had the highest estrogenic effect, but at 100-fold different concentrations, i.e., 1 and 100 μM, respectively. Four of the PCB sulfates were estrogenic (2'PCB 3, 4'PCB 3, 4'PCB 39, and 4'PCB 53 sulfates; at 100 μM). These sulfates and 3'PCB 3 sulfate also exhibited anti-estrogenic activity, but at nM and pM concentrations. The 4'PCB 3 sulfate (para-para' substituted) had the strongest androgenic activity, followed by 3'PCB 3, 4'PCB 53, 4PCB11, and 4PCB 39 sulfates and the 4'HO-PCB 3. In contrast, anti-androgenicity was only observed with the two compounds that have the sulfate group in ortho- or meta- position in the second ring (2'PCB 3 and 3'PCB 3 sulfate). No dose-response was observed in any screen, but, with exception of estrogenic activity (only seen at 100 μM), endocrine activity was often displayed at several concentrations and even at 1 pM concentration. These data suggest that sulfation of HO-PCBs is indeed reducing their cytotoxicity and estrogenicity, but may produce other endocrine disruptive activities at very low concentrations.
Collapse
Affiliation(s)
- Susanne Flor
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, 100 Oakdale Campus, 214 IREH, Iowa City, IA, 52242-5000, USA
| | - Xianran He
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, 100 Oakdale Campus, 214 IREH, Iowa City, IA, 52242-5000, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, 100 Oakdale Campus, 214 IREH, Iowa City, IA, 52242-5000, USA
| | - Gabriele Ludewig
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, 100 Oakdale Campus, 214 IREH, Iowa City, IA, 52242-5000, USA.
| |
Collapse
|
12
|
Ma C, Zhai G, Wu H, Kania-Korwel I, Lehmler HJ, Schnoor JL. Identification of a novel hydroxylated metabolite of 2,2',3,5',6-pentachlorobiphenyl formed in whole poplar plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:2089-98. [PMID: 26676542 PMCID: PMC4718877 DOI: 10.1007/s11356-015-5939-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 12/07/2015] [Indexed: 05/20/2023]
Abstract
Polychlorinated biphenyls (PCBs) are a group of persistent organic pollutants consisting of 209 congeners. Oxidation of several PCB congeners to hydroxylated PCBs (OH-PCBs) in whole poplar plants has been reported before. Moreover, 2,2',3,5',6-pentachlorobiphenyl (PCB95), as a chiral congener, has been previously shown to be atropselectively taken up and transformed in whole poplar plants. The objective of this study was to determine if PCB95 is atropselectively metabolized to OH-PCBs in whole poplar plants. Two hydroxylated PCB95s were detected by high-performance liquid chromatography-mass spectrometry in the roots of whole poplar plants exposed to racemic PCB95 for 30 days. The major metabolite was confirmed to be 4'-hydroxy-2,2',3,5',6-pentachlorobiphenyl (4'-OH-PCB95) by gas chromatography-mass spectrometry (GC-MS) using an authentic reference standard. Enantioselective analysis showed that 4'-OH-PCB95 was formed atropselectively, with the atropisomer eluting second on the Nucleodex β-PM column (E2-4'-OH-PCB95) being slightly more abundant in the roots of whole poplar plants. Therefore, PCB95 can at least be metabolized into 4'-OH-PCB95 and another unknown hydroxylated PCB95 (as a minor metabolite) in whole poplar plants. Both atropisomers of 4'-OH-PCB95 are formed, but E2-4'-OH-PCB95 has greater atropisomeric enrichment in the roots of whole poplar plants. A comparison with mammalian biotransformation studies indicates a distinctively different metabolite profile of OH-PCB95 metabolites in whole poplar plants. Our observations suggest that biotransformation of chiral PCBs to OH-PCBs by plants may represent an important source of enantiomerically enriched OH-PCBs in the environment.
Collapse
Affiliation(s)
- Cunxian Ma
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA, 52242, USA
| | - Guangshu Zhai
- Department of Civil and Environmental Engineering and IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, IA, 52242, USA
| | - Huimin Wu
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, 52242, USA
| | - Izabela Kania-Korwel
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, 52242, USA
| | - Hans-Joachim Lehmler
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA, 52242, USA
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, 52242, USA
| | - Jerald L Schnoor
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA, 52242, USA.
- Department of Civil and Environmental Engineering and IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, IA, 52242, USA.
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
13
|
Grimm FA, Hu D, Kania-Korwel I, Lehmler HJ, Ludewig G, Hornbuckle KC, Duffel MW, Bergman A, Robertson LW. Metabolism and metabolites of polychlorinated biphenyls. Crit Rev Toxicol 2015; 45:245-72. [PMID: 25629923 PMCID: PMC4383295 DOI: 10.3109/10408444.2014.999365] [Citation(s) in RCA: 284] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 12/11/2014] [Indexed: 11/13/2022]
Abstract
Abstract The metabolism of polychlorinated biphenyls (PCBs) is complex and has an impact on toxicity, and thereby on the assessment of PCB risks. A large number of reactive and stable metabolites are formed in the processes of biotransformation in biota in general, and in humans in particular. The aim of this document is to provide an overview of PCB metabolism, and to identify the metabolites of concern and their occurrence. Emphasis is given to mammalian metabolism of PCBs and their hydroxyl, methylsulfonyl, and sulfated metabolites, especially those that persist in human blood. Potential intracellular targets and health risks are also discussed.
Collapse
Affiliation(s)
- FA Grimm
- Interdisciplinary Graduate Program in Human Toxicology, Department of Pharmaceutical Sciences & Experimental Therapeutics, University of Iowa
| | - D Hu
- Department of Civil and Environmental Engineering, University of Iowa
| | - I Kania-Korwel
- Department of Occupational & Environmental Health, University of Iowa
| | - HJ Lehmler
- Interdisciplinary Graduate Program in Human Toxicology, Department of Occupational & Environmental Health, University of Iowa
| | - G Ludewig
- Interdisciplinary Graduate Program in Human Toxicology, Department of Occupational & Environmental Health, University of Iowa
| | - KC Hornbuckle
- Interdisciplinary Graduate Program in Human Toxicology, Department of Civil and Environmental Engineering, University of Iowa
| | - MW Duffel
- Interdisciplinary Graduate Program in Human Toxicology, Department of Pharmaceutical Sciences & Experimental Therapeutics, University of Iowa
| | - A Bergman
- Swedish Toxicology Sciences Research Center (SWETOX), Forskargatan 20, SE-151 36 Södertälje, SWEDEN
| | - LW Robertson
- Interdisciplinary Graduate Program in Human Toxicology, Department of Occupational & Environmental Health, University of Iowa
| |
Collapse
|
14
|
Wu X, Barnhart C, Lein P, Lehmler HJ. Hepatic metabolism affects the atropselective disposition of 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136) in mice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:616-25. [PMID: 25420130 PMCID: PMC4291784 DOI: 10.1021/es504766p] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
To understand the role of hepatic vs extrahepatic metabolism in the disposition of chiral PCBs, we studied the disposition of 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136) and its hydroxylated metabolites (HO-PCBs) in mice with defective hepatic metabolism due to the liver-specific deletion of cytochrome P450 oxidoreductase (KO mice). Female KO and congenic wild type (WT) mice were treated with racemic PCB 136, and levels and chiral signatures of PCB 136 and HO-PCBs were determined in tissues and excreta 3 days after PCB administration. PCB 136 tissue levels were higher in KO compared to WT mice. Feces was a major route of PCB metabolite excretion, with 2,2',3,3',6,6'-hexachlorobiphenyl-5-ol being the major metabolite recovered from feces. (+)-PCB 136, the second eluting PCB 136 atropisomers, was enriched in all tissues and excreta. The second eluting atropisomers of the HO-PCBs metabolites were enriched in blood and liver; 2,2',3,3',6,6'-hexachlorobiphenyl-5-ol in blood was an exception and displayed an enrichment of the first eluting atropisomers. Fecal HO-PCB levels and chiral signatures changed with time and differed between KO and WT mice, with larger HO-PCB enantiomeric fractions in WT compared to KO mice. Our results demonstrate that hepatic and, possibly, extrahepatic cytochrome P450 (P450) enzymes play a role in the disposition of PCBs.
Collapse
Affiliation(s)
- Xianai Wu
- Department
of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Christopher Barnhart
- Department
of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California 95616, United States
| | - Pamela
J. Lein
- Department
of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California 95616, United States
| | - Hans-Joachim Lehmler
- Department
of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, Iowa 52242, United States
- Phone: 319 335-4310. Fax: 319 335-4290. E-mail: . Corresponding author address:
Department of Occupational and Environmental
Health, The University of Iowa, University of Iowa Research Park,
#221 IREH, Iowa City, IA 52242-5000
| |
Collapse
|
15
|
Classen N, Lin X, Schmidt B. Metabolism of (14)C-labeled polychlorinated biphenyl congeners by wheat cell suspension cultures. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2015; 50:69-80. [PMID: 25587776 DOI: 10.1080/03601234.2015.975579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The metabolism of [UL-(14)C]-2,2',5,5'-tetrachlorobiphenyl ((14)C-PCB-52), [UL-(14)C]-2,2',4,4',5,5'-hexachlorobiphenyl ((14)C-PCB-153, and a congeneric mixture of [UL-(14)C]-labeled polychlorinated biphenyls ((14)C-PCB-Mix) was studied in cell suspension cultures of wheat (Triticum aestivum L. cv. 'Heines Koga II'). About 50% of applied (14)C-PCB-52 (20 μg/assay) was transformed during 96 h of incubation. While 7.6% on non-extractable residues emerged, turnover of (14)C-PCB-52 was mainly due to soluble polar metabolites. These were subjected to chemical glycoside cleavage. In the resulting hydrolysate, four aglycons were identified by GC-EIMS, namely four tetrachloro-hydroxy-biphenyl isomers (C6H6Cl4O, M(+·) at m/z = 306, 308, 310 and 312), and one trichloro-hydroxy-biphenyl (C6H7Cl3O, M(+·) at m/z = 272, 274 and 276). Number and character of hydroxylated products pointed to cytochromes P450 as enzymatic catalysts of hydroxylation. (14)C-PCB-153 was metabolized by wheat to minor degree if at all. Due to GC-EIMS analysis, of (14)C-PCB-Mix consisted of biphenyl, one mono-, four di-, seven tri-, eleven tetra-, and four pentachlorobiphenyls besides traces of further mono- and hexachlorobiphenyls. Among these were PCB-28, PCB-52, PCB 101, and PCB-118 (identified by seven key congeners standard). The mixture resembled industrial products Clophen A30 or Aroclor 1016. Metabolic turnover of applied (14)C-PCB-Mix (15 μg/assay) was 30% after 96 h; 8.4% of non-extractable residues emerged. Using DDE (p,p'-dichlorodiphenyl-dichloroethylene) as internal standard it was demonstrated that biphenyl, one monochloro-, two dichloro-, and one trichlorobiphenyl were completely metabolized to polar products. Partial metabolization occurred with one di-, five tri-, and four tetrachlorobiphenyls. Two tri-, four tetra-, and all pentachlorbiphenyls proved to be stable. Due to strong interference by matrix, evaluation of three congeners was not possible. In addition to wheat, results of similar experiments with cell cultures of other species are briefly mentioned.
Collapse
Affiliation(s)
- Nicola Classen
- a Institute of Biology V , RWTH Aachen University , Aachen , Germany
| | | | | |
Collapse
|
16
|
Zhai G, Gutowski SM, Lehmler HJ, Schnoor J. Enantioselective transport and biotransformation of chiral hydroxylated metabolites of polychlorinated biphenyls in whole poplar plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:12213-20. [PMID: 25238141 PMCID: PMC4207536 DOI: 10.1021/es503443e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Hydroxylated metabolites of polychlorinated biphenyls (OH-PCBs) have been found to be ubiquitous in the environment due to the oxidative metabolism of their parent PCBs. With more polarity, OH-PCBs may be more toxic and mobile than their parent compounds. However, the behavior and fate of OH-PCBs have been neglected in the environment because they are not the original contaminants. Some of these hydroxylated metabolites are chiral, and chiral compounds can be used to probe biological metabolic processes. Therefore, chiral OH-PCBs were selected to study their uptake, translocation, transformation, and enantioselectivity in plants in this work. Poplars (Populus deltoides × nigra, DN34), a model plant with complete genomic sequence, were hydroponically exposed to 5-hydroxy-2,2',3,4',6-pentachlorobiphenyl (5-OH-PCB91) and 5-hydroxy-2,2',3,5',6-pentachlorobiphenyl (5-OH-PCB95) for 10 days. Chiral 5-OH-PCB91 and 5-OH-PCB95 were clearly shown to be sorbed, taken up, and translocated in whole poplars, and they were detected in various tissues of whole poplars. However, the enantioselectivity of poplar for 5-OH-PCB91 and 5-OH-PCB95 proved to be quite different. The second-eluting enantiomer of OH-PCB95, separated on a chiral column (Phenomenex Lux Cellulose-1), was enantioselectively removed in whole poplar. Enantiomeric fractions in the middle xylem, top bark, top xylem, and stem, reached 0.803 ± 0.022, 0.643 ± 0.110, 0.835 ± 0.087, and 0.830 ± 0.029, respectively. Therefore, 5-OH-PCB95 was significantly enantioselectively biotransformed inside poplar tissues, in contrast to nearly racemic mixtures of 5-OH-PCB95 remaining in hydroponic solutions. Unlike 5-OH-PCB95, 5-OH-PCB91 remained nearly racemic in most tissues of whole poplars during 10 day exposure, suggesting the enantiomers of 5-OH-PCB91 were equally transported and metabolized in whole poplars. This is the first evidence of enantioselectivity of chiral OH-PCBs and suggests that poplars can enantioselectively biotransform at least one chiral OH-PCB: namely, 5-OH-PCB95.
Collapse
Affiliation(s)
- Guangshu Zhai
- Department
of Civil and Environmental Engineering and IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa 52242, United States
- Phone: +1 319 335 5647; fax: 319 335 5660; e-mail:
| | - Sarah M. Gutowski
- Department
of Civil and Environmental Engineering and IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Hans-Joachim Lehmler
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Jerald
L. Schnoor
- Department
of Civil and Environmental Engineering and IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa 52242, United States
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
17
|
Hirschmann F, Krause F, Papenbrock J. The multi-protein family of sulfotransferases in plants: composition, occurrence, substrate specificity, and functions. FRONTIERS IN PLANT SCIENCE 2014; 5:556. [PMID: 25360143 PMCID: PMC4199319 DOI: 10.3389/fpls.2014.00556] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 09/28/2014] [Indexed: 05/20/2023]
Abstract
All members of the sulfotransferase (SOT, EC 2.8.2.-) protein family transfer a sulfuryl group from the donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to an appropriate hydroxyl group of several classes of substrates. The primary structure of these enzymes is characterized by a histidine residue in the active site, defined PAPS binding sites and a longer SOT domain. Proteins with this SOT domain occur in all organisms from all three domains, usually as a multi-protein family. Arabidopsis thaliana SOTs, the best characterized SOT multi-protein family, contains 21 members. The substrates for several plant enzymes have already been identified, such as glucosinolates, brassinosteroids, jasmonates, flavonoids, and salicylic acid. Much information has been gathered on desulfo-glucosinolate (dsGl) SOTs in A. thaliana. The three cytosolic dsGl SOTs show slightly different expression patterns. The recombinant proteins reveal differences in their affinity to indolic and aliphatic dsGls. Also the respective recombinant dsGl SOTs from different A. thaliana ecotypes differ in their kinetic properties. However, determinants of substrate specificity and the exact reaction mechanism still need to be clarified. Probably, the three-dimensional structures of more plant proteins need to be solved to analyze the mode of action and the responsible amino acids for substrate binding. In addition to A. thaliana, more plant species from several families need to be investigated to fully elucidate the diversity of sulfated molecules and the way of biosynthesis catalyzed by SOT enzymes.
Collapse
Affiliation(s)
| | | | - Jutta Papenbrock
- Institute of Botany, Leibniz University HannoverHannover, Germany
| |
Collapse
|
18
|
Dhakal K, Uwimana E, Adamcakova-Dodd A, Thorne PS, Lehmler HJ, Robertson LW. Disposition of phenolic and sulfated metabolites after inhalation exposure to 4-chlorobiphenyl (PCB3) in female rats. Chem Res Toxicol 2014; 27:1411-20. [PMID: 24988477 PMCID: PMC4137987 DOI: 10.1021/tx500150h] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PCBs, such as PCB3, are air contaminants in buildings and outdoors. Metabolites of PCB3 are potential endocrine disrupting chemicals and genotoxic agents. We studied the disposition of phenolic and sulfated metabolites after acute nose-only inhalation exposure to airborne PCB3 for 2 h in female rats. Inhalation exposure was carried out in three groups. In the first group, rats exposed to an estimated dose of 26 μg/rat were euthanized at 0, 1, 2, and 4 h after exposure. Highest concentrations of phenols and sulfates were observed at 0 h, and the values were 7 ± 1 and 560 ± 60 ng/mL in serum, 213 ± 120 and 842 ± 80 ng/g in liver, 31 ± 27 and 22 ± 7 ng/g in lung, and 27 ± 6 and 3 ± 0 ng/g in brain, respectively. First-order serum clearance half-lives of 0.5 h for phenols and 1 h for sulfates were estimated. In the second group, rats exposed to an estimated dose of 35 μg/rat were transferred to metabolism cages immediately after exposure for the collection of urine and feces over 24 h. Approximately 45 ± 5% of the dose was recovered from urine and consisted mostly of sulfates; the 18 ± 5% of the dose recovered from feces was exclusively phenols. Unchanged PCB3 was detected in both urine and feces but accounted for only 5 ± 3% of the dose. Peak excretion of metabolites in both urine and feces occurred within 18 h postexposure. In the third group, three bile-cannulated rats exposed to an estimated dose of 277 μg/rat were used for bile collection. Bile was collected for 4 h immediately after 2 h exposure. Biliary metabolites consisted mostly of sulfates, some glucuronides, and lower amounts of the free phenols. Control rats in each group were exposed to clean air. Clinical serum chemistry values, serum T4 level, and urinary 8-hydroxy-2'-deoxyguanosine were similar in treated and control rats. These data show that PCB3 is rapidly metabolized to phenols and conjugated to sulfates after inhalation and that both of these metabolites are distributed to liver, lungs, and brain. The sulfates elaborated into bile are either reabsorbed or hydrolyzed in the intestine and excreted in the feces as phenols.
Collapse
Affiliation(s)
- Kiran Dhakal
- Interdisciplinary Graduate Program in Human Toxicology and ‡Department of Occupational and Environmental Health, The University of Iowa , Iowa City, Iowa 52242-5000, United States
| | | | | | | | | | | |
Collapse
|
19
|
Zhai G, Lehmler HJ, Schnoor JL. Inhibition of cytochromes P450 and the hydroxylation of 4-monochlorobiphenyl in whole poplar. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:6829-35. [PMID: 23320482 PMCID: PMC3652898 DOI: 10.1021/es304298m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cytochromes P450 (CYPs) are potential enzymes responsible for hydroxylation of many xenobiotics and endogenous chemicals in living organisms. It has been found that 4-monochlorobiphenyl (PCB3), mainly an airborne pollutant, can be metabolized to hydroxylated transformation products (OH-PCB3s) in whole poplars. However, the enzymes involved in the hydroxylation of PCB3 in whole poplars have not been identified. Therefore, two CYP suicide inhibitors, 1-aminobenzotriazole (ABT) and 17-octadecynoic acid (ODYA), were selected to probe the hydroxylation reaction of PCB3 in whole poplars in this work. Poplars (Populus deltoides × nigra, DN34) were exposed to PCB3 with or without inhibitor for 11 days. Results showed both ABT and ODYA can decrease the concentrations and yields of five OH-PCB3s in different poplar parts via the inhibition of CYPs. Furthermore, both ABT and ODYA demonstrated a dose-dependent relationship to the formation of OH-PCB3s in whole poplars. The higher the inhibitor concentrations, the lower the total yields of OH-PCB3s. For ABT spiked-additions, the total mass yield of five OH-PCB3s was inhibited by a factor of 1.6 times at an ABT concentration of 2.5 mg L(-1), 4.0 times at 12.5 mg L(-1), and 7.0 times at 25 mg L(-1). For the inhibitor ODYA, the total mass of five OH-PCB3s was reduced by 2.1 times compared to the control at an ODYA concentration of 2.5 mg L(-1). All results pointed to the conclusion that CYP enzymes were the agents which metabolized PCB3 to OH-PCB3s in whole poplars because suicide CYP inhibitors ABT and ODYA both led to sharp decreases of OH-PCB3s formation in whole poplars. A dose-response curve for each of the suicide inhibitors was developed.
Collapse
Affiliation(s)
- Guangshu Zhai
- Department of Civil and Environmental Engineering and IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa 52242, United States.
| | | | | |
Collapse
|
20
|
Lehmler HJ, He X, Duffel MW, Parkin S. 3,4',5-Trichloro-biphenyl-4-yl 2,2,2-trichloro-ethyl sulfate. Acta Crystallogr Sect E Struct Rep Online 2013; 69:o620. [PMID: 23634142 PMCID: PMC3629655 DOI: 10.1107/s1600536813007976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 03/22/2013] [Indexed: 11/11/2022]
Abstract
Crystals of the title compound, C14H8Cl6O4S, are twinned by inversion, with unequal components [0.85 (3):0.15 (3)]. The asymmetric unit contains two independent mol-ecules that are related by a pseudo-inversion center. The Car-O [1.393 (9) and 1.397 (9) Å] and ester S-O bond lengths [1.600 (5) and 1.590 (5) Å] of both mol-ecules are comparable to the structurally related 2,3,5,5-trichloro-biphenyl-4-yl 2,2,2-trichloro-ethyl sulfate. The dihedral angles between the benzene rings in the two mol-ecules are 37.8 (2) and 35.0 (2)°.
Collapse
Affiliation(s)
- Hans-Joachim Lehmler
- The University of Iowa, Department of Occupational and Environmental Health, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|