1
|
Ghio AJ, Hilborn ED. Cyanobacterial blooms, iron, and environmental pollutants. Biometals 2024; 37:577-586. [PMID: 37910342 PMCID: PMC11209704 DOI: 10.1007/s10534-023-00553-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/14/2023] [Indexed: 11/03/2023]
Abstract
Iron determines the abundance and diversity of life and controls primary production in numerous aqueous environments. Over the past decades, the availability of this metal in natural waters has decreased. Iron deficiency can apply a selective pressure on microbial aquatic communities. Each aquatic organism has their individual requirements for iron and pathways for metal acquisition, despite all having access to the common pool of iron. Cyanobacteria, a photosynthesizing bacterium that can accumulate and form so-called 'algal blooms', have evolved strategies to thrive in such iron-deficient aqueous environments where they can outcompete other organisms in iron acquisition in diverse microbial communities. Metabolic pathways for iron acquisition employed by cyanobacteria allow it to compete successfully for this essential nutrient. By competing more effectively for requisite iron, cyanobacteria can displace other species and grow to dominate the microbial population in a bloom. Aquatic resources are damaged by a diverse number of environmental pollutants that can further decrease metal availability and result in a functional deficiency of available iron. Pollutants can also increase iron demand. A pollutant-exposed microbe is compelled to acquire further metal critical to its survival. Even in pollutant-impacted waters, cyanobacteria enjoy a competitive advantage and cyanobacterial dominance can be the result. We propose that cyanobacteria have a distinct competitive advantage over many other aquatic microbes in polluted, iron-poor environments.
Collapse
Affiliation(s)
- Andrew J Ghio
- US Environmental Protection Agency, Chapel Hill, NC, USA.
- Human Studies Facility, 104 Mason Farm Road, Chapel Hill, NC, 27514, USA.
| | | |
Collapse
|
2
|
Li B, Zhang X, Wu G, Qin B, Tefsen B, Wells M. Toxins from harmful algal blooms: How copper and iron render chalkophore a predictor of microcystin production. WATER RESEARCH 2023; 244:120490. [PMID: 37659180 DOI: 10.1016/j.watres.2023.120490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/17/2023] [Accepted: 08/13/2023] [Indexed: 09/04/2023]
Abstract
Research on harmful algal blooms has focused on macronutrients, yet recent research increasingly indicates that understanding micronutrient roles is also important in the development of effective environmental management interventions. Here, we report results on metallophore production from mesocosms amended with copper and iron (enzymatic co-factors in photosynthetic electron transport) to probe questions of how cyanobacteria navigate the divide between copper nutrition, copper toxicity, and issues with iron bioavailability. These experiments utilized Microcystis, Chlorella and Desmodesmus spp., in mono- and mixed-cultures in lake water from a large, hypereutrophic lake (Taihu, China). To initiate experiments, copper and iron amendments were added to mesocosms containing algae that had been acclimated to achieve a state of copper and iron limitation. Mesocosms were analyzed over time for a range of analytes including algal growth parameters, algal assemblage progression, copper/iron concentrations and biomolecule production of chalkophore, siderophore and total microcystins. Community Trajectory Analysis and other multivariate methods were used for analysis resulting in our findings: 1) Microcystis spp. manage copper/iron requirements though a dynamically phased behavior of chalkophore/siderophore production according to their copper and iron limitation status (chalkophore correlates with Cu concentration, R2 = 0.99, and siderophore correlates with the sum of Cu and Fe concentrations, R2 = 0.98). 2) A strong correlation was observed between the production of chalkophore and the cyanobacterial toxin microcystin (R2 = 0.76)-Chalkophore is a predictor of microcystin production. 3) Based on our results and literature, we posit that Microcystis spp. produces microcystin in response to copper/iron availability to manage photosystem productivity and effect an energy-saving status. Results from this work underscore the importance of micronutrients in influencing harmful algal bloom progression and represents a major advance in understanding the ecological function for the cyanobacterial toxin microcystin as a hallmark of micronutrient limitation stress.
Collapse
Affiliation(s)
- Boling Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215123, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Gongjie Wu
- Department of Biochemistry and Systems Biology, University of Liverpool, Brownlow Hill, Liverpool, L69 7ZX, UK; Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
| | - Boqiang Qin
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Boris Tefsen
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands; Ronin Institute, 127 Haddon Place, Montclair, NJ, 07043, USA.
| | - Mona Wells
- Ronin Institute, 127 Haddon Place, Montclair, NJ, 07043, USA; Meadows Center for Water and the Environment, Texas State University, San Marcos, Texas, 78666, USA.
| |
Collapse
|
3
|
Facey JA, Violi JP, King JJ, Sarowar C, Apte SC, Mitrovic SM. The Influence of Micronutrient Trace Metals on Microcystis aeruginosa Growth and Toxin Production. Toxins (Basel) 2022; 14:toxins14110812. [PMID: 36422986 PMCID: PMC9694995 DOI: 10.3390/toxins14110812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Microcystis aeruginosa is a widespread cyanobacteria capable of producing hepatotoxic microcystins. Understanding the environmental factors that influence its growth and toxin production is essential to managing the negative effects on freshwater systems. Some micronutrients are important cofactors in cyanobacterial proteins and can influence cyanobacterial growth when availability is limited. However, micronutrient requirements are often species specific, and can be influenced by substitution between metals or by luxury uptake. In this study, M. aeruginosa was grown in modified growth media that individually excluded some micronutrients (cobalt, copper, iron, manganese, molybdenum) to assess the effect on growth, toxin production, cell morphology and iron accumulation. M. aeruginosa growth was limited when iron, cobalt and manganese were excluded from the growth media, whereas the exclusion of copper and molybdenum had no effect on growth. Intracellular microcystin-LR concentrations were variable and were at times elevated in treatments undergoing growth limitation by cobalt. Intracellular iron was notably higher in treatments grown in cobalt-deplete media compared to other treatments possibly due to inhibition or competition for transporters, or due to irons role in detoxifying reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Jordan A. Facey
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2000, Australia
- Correspondence:
| | - Jake P. Violi
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2000, Australia
| | - Josh J. King
- CSIRO Land and Water, Lucas Heights, Sydney, NSW 2234, Australia
| | - Chowdhury Sarowar
- Prince of Wales Clinical School, University of New South Wales, Kensington, NSW 2052, Australia
| | - Simon C. Apte
- CSIRO Land and Water, Lucas Heights, Sydney, NSW 2234, Australia
| | - Simon M. Mitrovic
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2000, Australia
| |
Collapse
|
4
|
Anam GB, Guda DR, Ahn YH. Impact of melatonin on the hydrogen peroxide treatment efficacy in Microcystis aeruginosa: Cell growth, oxidative stress response, and gene transcription. CHEMOSPHERE 2022; 307:136036. [PMID: 36007744 DOI: 10.1016/j.chemosphere.2022.136036] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/22/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
A study was conducted to determine how melatonin (MLT), a growth regulator, affects Microcystis aeruginosa cell behaviour and how MLT exposed cells respond to hydrogen peroxide (H2O2) treatment. MLT promotes the growth, chl-a content, Fv/Fm values, and microcystins (MCs) production of M. aeruginosa at low concentrations of 1-2.5 μmol/L but suppresses the growth at high concentrations (5-10 μmol/L). The cellular and genetic responses of MLT pre-treated cells to H2O2 treatment were examined further. Further research found that the cells pre-treated with MLT were susceptible to a range of growth-promoting, inhibiting and lethal effects when exposed to higher levels of H2O2. A dose-dependent pattern was observed under conditions of 0.05-0.2 mmol/L H2O2 with 0.5-2.5 μmol/L MLT concentrations to different degrees. High doses of H2O2 (0.2 and 0.3 mmol/L) typically lead to cell lysis and release of MCs in 5.0 and 10 μmol/L MLT pre-treated cells. A decrease in SOD/CAT activities and an increase in MDA levels validated the growth reduction. Furthermore, higher cell lysis and release of intracellular MCs were observed when H2O2 was increased for 5-10 μmol/L MLT pre-treated cells. This led to a higher accumulation of extracellular MCs. The results provide insight into how MLT influences H2O2 damage and assist in identifying situations where H2O2 treatment of cyanobacterial blooms is most appropriate.
Collapse
Affiliation(s)
- Giridhar Babu Anam
- Department of Civil Engineering, Yeungnam University, Gyeongsan, 38541, Gyeongbuk, Republic of Korea
| | - Dinneswara Reddy Guda
- Korea Center for Artificial Photosynthesis and Center for Nanomaterial, Sogang University, Seoul, 121-742, Republic of Korea
| | - Young-Ho Ahn
- Department of Civil Engineering, Yeungnam University, Gyeongsan, 38541, Gyeongbuk, Republic of Korea.
| |
Collapse
|
5
|
Multi-Soil-Layering Technology: A New Approach to Remove Microcystis aeruginosa and Microcystins from Water. WATER 2022. [DOI: 10.3390/w14050686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Eutrophication of surface waters caused by toxic cyanobacteria such as Microcystis aeruginosa leads to the release of secondary metabolites called Microcystins (MCs), which are heptapeptides with adverse effects on soil microbiota, plants, animals, and human health. Therefore, to avoid succumbing to the negative effects of these cyanotoxins, various remediation approaches have been considered. These techniques involve expensive physico-chemical processes because of the specialized equipment and facilities required. Thus, implementing eco-technologies capable of handling this problem has become necessary. Indeed, multi-soil-layering (MSL) technology can essentially meet this requirement. This system requires little space, needs simple maintenance, and has energy-free operation and high durability (20 years). The performance of the system is such that it can remove 1.16 to 4.47 log10 units of fecal contamination from the water, 98% of suspended solids (SS), 92% of biological oxygen demand (BOD), 98% of chemical oxygen demand (COD), 92% of total nitrogen (TN), and 100% of total phosphorus (TP). The only reported use of the system to remove cyanotoxins has shown a 99% removal rate of MC-LR. However, the mechanisms involved in removing this toxin from the water are not fully understood. This paper proposes reviewing the principal methods employed in conventional water treatment and other technologies to eliminate MCs from the water. We also describe the principles of operation of MSL systems and compare the performance of this technology with others, highlighting some advantages of this technology in removing MCs. Overall, the combination of multiple processes (physico-chemical and biological) makes MSL technology a good choice of cyanobacterial contamination treatment system that is applicable in real-life conditions, especially in rural areas.
Collapse
|
6
|
Almuhtaram H, Hofmann R. Evaluation of ultraviolet/peracetic acid to degrade M. aeruginosa and microcystins -LR and -RR. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127357. [PMID: 34687995 DOI: 10.1016/j.jhazmat.2021.127357] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
The reactivity of peracetic acid (PAA) alone, and PAA exposed to ultraviolet radiation (UV), was investigated on Microcystis aeruginosa cells, and on microcystin-LR and -RR. Reaction rates between PAA and MC-LR (k = 3.46 M-1 s-1) and MC-RR (k = 2.67 M-1 s-1) were determined in an unbuffered acidic solution, and they are approximately 35-45 times lower than a previously reported reaction rate between MC-LR and chlorine at pH 6. Peracetic acid reacted with M. aeruginosa cells as a function of PAA and cell concentrations, with 10 mg/L PAA resulting in 1-log reduction of total MC-LR within 15 min. Advanced oxidation by UV/PAA readily degraded MC-LR and MC-RR, outperforming UV/H2O2 at pH 7.7 by > 50% on an equimolar basis. Indirect photolysis at this pH is due to •OH and organic radicals, as determined by trials in the presence of excess tert-butanol to scavenge •OH. The process is less effective when the pH departs from neutral conditions (5.9 or 10.6) due to the decreased effects of both radicals. These findings suggest that PAA alone might be a viable option for cyanobacteria and microcystins control in preoxidation applications and that UV/PAA is an effective process for degrading MC-LR and MC-RR at neutral pH.
Collapse
Affiliation(s)
- Husein Almuhtaram
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada.
| | - Ron Hofmann
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| |
Collapse
|
7
|
Facey JA, Apte SC, Mitrovic SM. A Review of the Effect of Trace Metals on Freshwater Cyanobacterial Growth and Toxin Production. Toxins (Basel) 2019; 11:E643. [PMID: 31694295 PMCID: PMC6891437 DOI: 10.3390/toxins11110643] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 12/21/2022] Open
Abstract
Cyanobacterial blooms are becoming more common in freshwater systems, causing ecological degradation and human health risks through exposure to cyanotoxins. The role of phosphorus and nitrogen in cyanobacterial bloom formation is well documented and these are regularly the focus of management plans. There is also strong evidence that trace metals are required for a wide range of cellular processes, however their importance as a limiting factor of cyanobacterial growth in ecological systems is unclear. Furthermore, some studies have suggested a direct link between cyanotoxin production and some trace metals. This review synthesises current knowledge on the following: (1) the biochemical role of trace metals (particularly iron, cobalt, copper, manganese, molybdenum and zinc), (2) the growth limitation of cyanobacteria by trace metals, (3) the trace metal regulation of the phytoplankton community structure and (4) the role of trace metals in cyanotoxin production. Iron dominated the literature and regularly influenced bloom formation, with 15 of 18 studies indicating limitation or colimitation of cyanobacterial growth. A range of other trace metals were found to have a demonstrated capacity to limit cyanobacterial growth, and these metals require further study. The effect of trace metals on cyanotoxin production is equivocal and highly variable. Better understanding the role of trace metals in cyanobacterial growth and bloom formation is an essential component of freshwater management and a direction for future research.
Collapse
Affiliation(s)
- Jordan A. Facey
- Freshwater and Estuarine Research Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo 2007, Australia
| | | | - Simon M. Mitrovic
- Freshwater and Estuarine Research Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo 2007, Australia
| |
Collapse
|
8
|
Creed IF, Bergström AK, Trick CG, Grimm NB, Hessen DO, Karlsson J, Kidd KA, Kritzberg E, McKnight DM, Freeman EC, Senar OE, Andersson A, Ask J, Berggren M, Cherif M, Giesler R, Hotchkiss ER, Kortelainen P, Palta MM, Vrede T, Weyhenmeyer GA. Global change-driven effects on dissolved organic matter composition: Implications for food webs of northern lakes. GLOBAL CHANGE BIOLOGY 2018; 24:3692-3714. [PMID: 29543363 DOI: 10.1111/gcb.14129] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/05/2018] [Indexed: 05/21/2023]
Abstract
Northern ecosystems are experiencing some of the most dramatic impacts of global change on Earth. Rising temperatures, hydrological intensification, changes in atmospheric acid deposition and associated acidification recovery, and changes in vegetative cover are resulting in fundamental changes in terrestrial-aquatic biogeochemical linkages. The effects of global change are readily observed in alterations in the supply of dissolved organic matter (DOM)-the messenger between terrestrial and lake ecosystems-with potentially profound effects on the structure and function of lakes. Northern terrestrial ecosystems contain substantial stores of organic matter and filter or funnel DOM, affecting the timing and magnitude of DOM delivery to surface waters. This terrestrial DOM is processed in streams, rivers, and lakes, ultimately shifting its composition, stoichiometry, and bioavailability. Here, we explore the potential consequences of these global change-driven effects for lake food webs at northern latitudes. Notably, we provide evidence that increased allochthonous DOM supply to lakes is overwhelming increased autochthonous DOM supply that potentially results from earlier ice-out and a longer growing season. Furthermore, we assess the potential implications of this shift for the nutritional quality of autotrophs in terms of their stoichiometry, fatty acid composition, toxin production, and methylmercury concentration, and therefore, contaminant transfer through the food web. We conclude that global change in northern regions leads not only to reduced primary productivity but also to nutritionally poorer lake food webs, with discernible consequences for the trophic web to fish and humans.
Collapse
Affiliation(s)
- Irena F Creed
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Charles G Trick
- Interfaculty Program on Public Health & Department of Biology, Western University, London, ON, Canada
| | - Nancy B Grimm
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Dag O Hessen
- Section for Aquatic Biology and Toxicology, University of Oslo, Oslo, Norway
| | - Jan Karlsson
- Climate Impacts Research Centre, Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Karen A Kidd
- Department of Biology and Canadian Rivers Institute, University of New Brunswick, Saint John, NB, Canada
| | | | | | - Erika C Freeman
- Department of Geography, Western University, London, ON, Canada
| | - Oscar E Senar
- Department of Geography, Western University, London, ON, Canada
| | - Agneta Andersson
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Jenny Ask
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Martin Berggren
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Mehdi Cherif
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Reiner Giesler
- Climate Impacts Research Centre, Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Erin R Hotchkiss
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | - Monica M Palta
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Tobias Vrede
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gesa A Weyhenmeyer
- Department of Ecology and Genetics, Limnology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Dubrawski KL, Cataldo M, Dubrawski Z, Mazumder A, Wilkinson DP, Mohseni M. In-situ electrochemical Fe(VI) for removal of microcystin-LR from drinking water: comparing dosing of the ferrate ion by electrochemical and chemical means. JOURNAL OF WATER AND HEALTH 2018; 16:414-424. [PMID: 29952330 DOI: 10.2166/wh.2018.187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Harmful algal blooms (HAB) release microtoxins that contaminate drinking water supplies and risk the health of millions annually. Crystalline ferrate(VI) is a powerful oxidant capable of removing algal microtoxins. We investigate in-situ electrochemically produced ferrate from common carbon steel as an on-demand alternative to crystalline ferrate for the removal of microcystin-LR (MC-LR) and compare the removal efficacy for both electrochemical (EC) and chemical dosing methodologies. We report that a very low dose of EC-ferrate in deionized water (0.5 mg FeO42- L-1) oxidizes MC-LR (MC-LR0 = 10 μg L-1) to below the guideline limit (1.0 μg L-1) within 10 minutes' contact time. With bicarbonate or natural organic matter (NOM), doses of 2.0-5.0 mg FeO42- L-1 are required, with lower efficacy of EC-ferrate than crystalline ferrate due to loss of EC-ferrate by water oxidation. To evaluate the EC-ferrate process to concurrently oxidize micropollutants, coagulate NOM, and disinfect drinking water, we spiked NOM-containing real water with MC-LR and Escherichia coli, finding that EC-ferrate is effective at 10.0 mg FeO42- L-1 under normal operation or 2.0 mg FeO42- L-1 if the test water has initial pH optimized. We suggest in-situ EC-ferrate may be appropriate for sporadic HAB events in small water systems as a primary or back-up technology.
Collapse
Affiliation(s)
- K L Dubrawski
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada E-mail:
| | - M Cataldo
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada E-mail:
| | - Z Dubrawski
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada E-mail:
| | - A Mazumder
- Water and Aquatic Sciences Research Program, Department of Biology, University of Victoria, Victoria, BC, Canada
| | - D P Wilkinson
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada E-mail:
| | - M Mohseni
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada E-mail:
| |
Collapse
|
10
|
Wang J, Chen Z, Chen H, Wen Y. Effect of hydrogen peroxide on Microcystic aeruginosa: Role of cytochromes P450. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 626:211-218. [PMID: 29335171 DOI: 10.1016/j.scitotenv.2018.01.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 01/03/2018] [Accepted: 01/08/2018] [Indexed: 06/07/2023]
Abstract
Cyanobacterial bloom has been rising as a worldwide issue owing to its adverse effects to water quality and ecological health. To solve this problem, hydrogen peroxide (H2O2) has been considered as a potential algaecide because no by-products are generated after treatment and because it kills cyanobacteria selectively. In addition, cytochromes P450 (CYPs) was reported to be related with H2O2, but the roles of CYPs in the regulation of H2O2 in cyanobacteria have yet to be investigated. In this study, the CYPs suicide inhibitor 1-aminobenzotriazole (ABT) was added to the representative cyanobacteria Microcystis aeruginosa (M. aeruginosa) exposed to H2O2. The results showed that CYPs mediates the effects of H2O2 on M. aeruginosa. To be exact, the addition of ABT induced greater inhibitory effects on the growth and higher reactive oxygen species levels in M. aeruginosa comparing to those treated with H2O2 alone. At the same time, photosynthetic parameters significantly decreased, and the content of extracellular microcystins (MCs) increased but the total MCs decreased due to the combined effect of H2O2 and ABT. ABT also intensified the aggregation of Fe, which might explain the effects on photosynthesis and synthesis of MCs. Furthermore, the transcriptional levels of MCs-synthesis genes (mcyA and mcyD) decreased but MCs-release gene (mcyH) increased, and photosynthetic genes (psaB, psbD1 and rbcL) decreased, which confirmed the effects on the MC production/release and electron transport of photosynthesis, respectively. In summary, this study illuminated the mediation role of CYPs in the adverse effects on M. aeruginosa induced by H2O2, thus providing new theoretical basis for the explanation of H2O2 as potential algaecide.
Collapse
Affiliation(s)
- Jia Wang
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zunwei Chen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Department of Veterinary Integrative Bioscience, Texas A&M University, College Station, TX 77843, United States
| | - Hui Chen
- College of Science and Technology, Ningbo University, Ningbo 315211, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
11
|
Jia Y, Li H, Qu Y, Chen W, Song L. Phytotoxicity, bioaccumulation and potential risks of plant irrigations using cyanobloom-loading freshwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:704-712. [PMID: 29272839 DOI: 10.1016/j.scitotenv.2017.12.164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/12/2017] [Accepted: 12/15/2017] [Indexed: 06/07/2023]
Abstract
The toxicity of cyanotoxins on plant has been reported. However, in eutrophic waters harmful cyanobacteria are associated with other environmental pollutants, such as persistent organic pollutants (POPs) and metals. Information on the phytotoxicity and bioaccumulation of coexisted cyanotoxins and these environmental pollutants is still lacking. In this study, the combined phytotoxicities of three types of cyanobacteria-associated pollutants, i.e., microcystin-LR (MC-LR), cadmium (Cd), 2, 4, 4'-Trichlorobiphenyl (PCB-28) were systematically investigated. After 7-days exposure, strong synergistic effects can be detected when Arabidopsis thaliana seeds and seedlings exposed to binary mixtures of MC-LR+PCB-28 and PCB-28+Cd. The strongest inhibition occurred when A. thaliana exposed to their ternary mixture under both glasshouse and semi-field conditions. Moreover, bioaccumulation of MC-LR, Cd and PCB-28 was enhanced when seedlings exposed to their binary/ternary mixtures, especially when seedlings were treated with higher concentrations of toxicants (MC-LR, 1mgL-1; Cd, 10mgL-1; PCB-28, 1μgL-1). Additionally, pronounced toxic effects could be determined under 7-days after seedlings were irrigated with raw cyanobloom-containing water (collected from Lake Taihu in China)and its dilutions. Seeds production decreased significantly after the continuous irrigation with cyanoblooms-containing water. Collectively, this work will be an informative implication for risks of cyanoblooms and adequate utilization of freshwater containing cyanoblooms for crop irrigation.
Collapse
Affiliation(s)
- Yunlu Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Institute of Environmental Research, Department of Ecosystem Analysis, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Huiling Li
- College of Pharmacy, Wuhan University, Wuhan 430071, China
| | - Yueming Qu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Lirong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
12
|
Kim S, Yun YS, Choi YE. Development of waste biomass based sorbent for removal of cyanotoxin microcystin-LR from aqueous phases. BIORESOURCE TECHNOLOGY 2018; 247:690-696. [PMID: 30060401 DOI: 10.1016/j.biortech.2017.09.164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/20/2017] [Accepted: 09/23/2017] [Indexed: 06/08/2023]
Abstract
The purpose of this study was to establish the strategy to remove the cyanotoxin microcystin-LR (MC-LR) from aqueous solution with the use of biosorption strategy. Specifically, we focused on use of industrial waste biomass, Escherichia coli, to make efficient biosorbents for MC-LR through immobilization of the biomass with polysulfone (PS), coating the polysulfone-biomass composite with polyethylenimine (PEI), and decarboxylation of the PEI-coated composite to remove the inhibitory sites. The resulting sorbent is named in this study as decarboxylated PEI-coated polysulfone-biomass composite fiber (DC-PEI-PSBF). Various sorption experiments including isotherm, kinetics and pH effect on sorption capacity were conducted to evaluate the MC-LR adsorption performance of sorbents. As a result, the DC-PEI-PSBF could be suggested as a highly efficient sorbent able to be directly applied for MC-LR removal from aquatic natures.
Collapse
Affiliation(s)
- Sok Kim
- Division of Environmental Science and Ecological Engineering, Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Yeoung-Sang Yun
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonbuk 54896, Republic of Korea
| | - Yoon-E Choi
- Division of Environmental Science and Ecological Engineering, Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
13
|
Dai G, Peng N, Zhong J, Yang P, Zou B, Chen H, Lou Q, Fang Y, Zhang W. Effect of metals on microcystin abundance and environmental fate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 226:154-162. [PMID: 28431314 DOI: 10.1016/j.envpol.2017.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 03/30/2017] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
Metals can react with microcystin (MC), which is released from cyanobacterial blooms through various mechanisms; these reactions may mitigate the environmental and health risks of MCs but may also cause harm to aquatic ecosystems and humans. Several studies were conducted, including laboratory tests, ecological simulations, and a field investigation of Poyang Lake. The laboratory studies showed that Fe3+, Cu2+, and Pb2+ stimulated MC photodegradation under high light intensity at the water-sediment interface, which reduced the MC accumulation in the sediment. In the laboratory studies involving the addition of metal ions to lake sediment containing adsorbed MC, MC biodegradation was inhibited by supplementing with high levels of Fe3+, Cu2+, or Pb2+. Fe3+ and Pb2+ promoted MC accumulation in the hydrophyte Eichhornia crassipes at relatively low concentrations, but this effect decreased with increasing high metal concentrations. An ecological survey in Poyang Lake during the dry season demonstrated that high Fe levels can reduce MC accumulation in the sediment, which could be the result of Fe-mediated photodegradation. The results indicate that metals involved in MC transportation and degradation may play an important role in the environmental fate of MC.
Collapse
Affiliation(s)
- Guofei Dai
- Jiangxi Provincial Key Laboratory of Water Resources and Environment of Poyang Lake, Jiangxi Institute of Water Sciences, Nanchang 330029, PR China.
| | - Ningyan Peng
- College of Life Science, Nanchang University, Nanchang 330031, PR China
| | - Jiayou Zhong
- Jiangxi Provincial Key Laboratory of Water Resources and Environment of Poyang Lake, Jiangxi Institute of Water Sciences, Nanchang 330029, PR China.
| | - Ping Yang
- Jiangxi Provincial Key Laboratory of Water Resources and Environment of Poyang Lake, Jiangxi Institute of Water Sciences, Nanchang 330029, PR China
| | - Binchun Zou
- Jiangxi Provincial Key Laboratory of Water Resources and Environment of Poyang Lake, Jiangxi Institute of Water Sciences, Nanchang 330029, PR China
| | - Hui Chen
- Jiangxi Provincial Key Laboratory of Water Resources and Environment of Poyang Lake, Jiangxi Institute of Water Sciences, Nanchang 330029, PR China
| | - Qian Lou
- Jiangxi Provincial Key Laboratory of Water Resources and Environment of Poyang Lake, Jiangxi Institute of Water Sciences, Nanchang 330029, PR China
| | - Yuanyuan Fang
- Jiangxi Provincial Key Laboratory of Water Resources and Environment of Poyang Lake, Jiangxi Institute of Water Sciences, Nanchang 330029, PR China
| | - Wei Zhang
- Jiangxi Provincial Key Laboratory of Water Resources and Environment of Poyang Lake, Jiangxi Institute of Water Sciences, Nanchang 330029, PR China
| |
Collapse
|
14
|
Narasimha G, Mahesh AG, Manorama SV. Citrate Stabilized Hierarchical SPIO Nanostructures: Synthesis and Application Towards Effective Removal of Toxin, Microcystin
-LR from Water. ChemistrySelect 2017. [DOI: 10.1002/slct.201700664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gundeboina Narasimha
- Nanomaterials Laboratory; Inorganic and Physical Chemistry Division; CSIR- Indian Institute of Chemical Technology; Hyderabad- 500007, T.S. India
- Academy of Scientific and Innovative Research (AcSIR); New Delhi
| | - Adimoolam Ganga Mahesh
- Nanomaterials Laboratory; Inorganic and Physical Chemistry Division; CSIR- Indian Institute of Chemical Technology; Hyderabad- 500007, T.S. India
- Academy of Scientific and Innovative Research (AcSIR); New Delhi
| | - Sunkara V. Manorama
- Nanomaterials Laboratory; Inorganic and Physical Chemistry Division; CSIR- Indian Institute of Chemical Technology; Hyderabad- 500007, T.S. India
- Academy of Scientific and Innovative Research (AcSIR); New Delhi
| |
Collapse
|
15
|
Omidi A, Esterhuizen-Londt M, Pflugmacher S. Still challenging: the ecological function of the cyanobacterial toxin microcystin – What we know so far. TOXIN REV 2017. [DOI: 10.1080/15569543.2017.1326059] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Azam Omidi
- Institute of Biotechnology, Chair Ecological Impact Research and Ecotoxicology, Technische Universität Berlin, Berlin, Germany and
| | - Maranda Esterhuizen-Londt
- Institute of Biotechnology, Chair Ecological Impact Research and Ecotoxicology, Technische Universität Berlin, Berlin, Germany and
| | - Stephan Pflugmacher
- Institute of Biotechnology, Chair Ecological Impact Research and Ecotoxicology, Technische Universität Berlin, Berlin, Germany and
- Joint laboratory of Applied Ecotoxicology, Korea Institute of Science and Technology Europe (KIST), Saarbrücken, Germany
| |
Collapse
|
16
|
Ceballos-Laita L, Marcuello C, Lostao A, Calvo-Begueria L, Velazquez-Campoy A, Bes MT, Fillat MF, Peleato ML. Microcystin-LR Binds Iron, and Iron Promotes Self-Assembly. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4841-4850. [PMID: 28368104 DOI: 10.1021/acs.est.6b05939] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The microcystin-producing Microcystis aeruginosa PCC 7806 and its close strain, the nonproducing Microcystis aeruginosa PCC 7005, grow similarly in the presence of 17 μM iron. Under severe iron deficient conditions (0.05 μM), the toxigenic strain grows slightly less than in iron-replete conditions, while the nonproducing microcystin strain is not able to grow. Isothermal titration calorimetry performed at cyanobacterial cytosol or meaningful environmental pHs values shows a microcystin-LR dissociaton constant for Fe2+ and Fe3+ of 2.4 μM. Using atomic force microscopy, 40% of microcystin-LR dimers were observed, and the presence of iron promoted its oligomerization up to six units. Microcystin-LR binds also Mo6+, Cu2+, and Mn2+. Polymeric microcystin binding iron may be related with a toxic cell colony advantage, providing enhanced iron bioavailability and perhaps affecting the structure of the gelatinous sheath. Inside cells, with microcystin implicated in the fitness of the photosynthetic machinery under stress conditions, the toxin would be involved in avoiding metal-dependent Fenton reactions when photooxidation causes disassembly of the iron-rich photosystems. Additionally, it could be hypothesized that polymerization-depolymerization dynamics may be an additional signal that could trigger changes (for example, in the binding of microcystin to proteins).
Collapse
Affiliation(s)
- Laura Ceballos-Laita
- Institute for Biocomputation and Physics of Complex Systems (BIFI)-Joint Unit BIFI-IQFR (CSIC) , Aragón 50018, Spain
| | | | | | - Laura Calvo-Begueria
- Institute for Biocomputation and Physics of Complex Systems (BIFI)-Joint Unit BIFI-IQFR (CSIC) , Aragón 50018, Spain
| | - Adrián Velazquez-Campoy
- Institute for Biocomputation and Physics of Complex Systems (BIFI)-Joint Unit BIFI-IQFR (CSIC) , Aragón 50018, Spain
| | - María Teresa Bes
- Institute for Biocomputation and Physics of Complex Systems (BIFI)-Joint Unit BIFI-IQFR (CSIC) , Aragón 50018, Spain
| | - María F Fillat
- Institute for Biocomputation and Physics of Complex Systems (BIFI)-Joint Unit BIFI-IQFR (CSIC) , Aragón 50018, Spain
| | - María-Luisa Peleato
- Institute for Biocomputation and Physics of Complex Systems (BIFI)-Joint Unit BIFI-IQFR (CSIC) , Aragón 50018, Spain
| |
Collapse
|
17
|
Physiological and Proteomic Responses of Continuous Cultures of Microcystis aeruginosa PCC 7806 to Changes in Iron Bioavailability and Growth Rate. Appl Environ Microbiol 2016; 82:5918-29. [PMID: 27474713 DOI: 10.1128/aem.01207-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/24/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The hepatotoxin microcystin (MCYST) is produced by a variety of freshwater cyanobacterial species, including Microcystis aeruginosa Interestingly, MCYST-producing M. aeruginosa strains have been shown to outcompete their nontoxic counterparts under iron-limiting conditions. However, the reasons for this are unclear. Here we examined the proteomic response of M. aeruginosa PCC 7806 continuous cultures under different iron and growth regimes. Iron limitation was correlated with a global reduction in levels of proteins associated with energy metabolism and photosynthesis. These proteomic changes were consistent with physiological observations, including reduced chlorophyll a content and reduced cell size. While levels of MCYST biosynthesis proteins did not fluctuate during the study period, both intra- and extracellular toxin quotas were significantly higher under iron-limiting conditions. Our results support the hypothesis that intracellular MCYST plays a role in protecting the cell against oxidative stress. Further, we propose that extracellular MCYST may act as a signaling molecule, stimulating MCYST production under conditions of iron limitation and enhancing the fitness of bloom populations. IMPORTANCE Microcystin production in water supply reservoirs is a global public health problem. Understanding the ecophysiology of hepatotoxic cyanobacteria, including their responses to the presence of key micronutrient metals such as iron, is central to managing harmful blooms. To our knowledge, this was the first study to examine proteomic and physiological changes occurring in M. aeruginosa continuous cultures under conditions of iron limitation at different growth rates.
Collapse
|
18
|
Orihel DM, Schindler DW, Ballard NC, Wilson LR, Vinebrooke RD. Experimental iron amendment suppresses toxic cyanobacteria in a hypereutrophic lake. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2016; 26:1517-1534. [PMID: 27755758 DOI: 10.1890/15-1928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/06/2015] [Indexed: 05/03/2023]
Abstract
The effects of reducing nutrient inputs to lakes and reservoirs are often delayed by hysteresis resulting from internal phosphorus (P) loading from sediments. Consequently, controlling harmful algal blooms (HABs) in many eutrophic ecosystems requires additional management to improve water quality. We manipulated iron (Fe) concentrations in a hypereutrophic lake to determine if Fe amendment would suppress HABs by inhibiting P release from sediments. Our experiment consisted of 15 in situ mesocosms, 12 of which each received a different dose of Fe (ranging from 2 to 225 g/m2 ); the remaining three were unmanipulated to serve as controls. Iron amendment decreased P accumulation in porewaters and the flux of P from sediments, which significantly lowered P concentrations in the water column. Iron exerted significant dose-dependent negative effects on the biomass of phytoplankton and periphyton, and reduced the dominance of cyanobacteria. Even at the lowest doses, Fe appeared to reduce the toxicity of cyanobacterial blooms, as measured by concentrations of hepatotoxic microcystins. Overall, our findings highlight the potential for Fe treatment as an effective strategy for minimizing HABs in eutrophic lakes and reservoirs. More broadly, our study reinforces the importance of Fe in regulating the trophic state of freshwaters, and the sensitivity of certain ecosystems to changes in Fe supply. Finally, we hypothesize that decreases in natural Fe supplies to lakes associated with anthropogenic activities may worsen outbreaks of toxic cyanobacteria.
Collapse
Affiliation(s)
- Diane M Orihel
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta T6G 2E9, Canada
| | - David W Schindler
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta T6G 2E9, Canada
| | - Nathaniel C Ballard
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta T6G 2E9, Canada
| | - Lindsey R Wilson
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta T6G 2E9, Canada
| | - Rolf D Vinebrooke
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
19
|
Qi Y, Bortoli S, Volmer DA. Detailed study of cyanobacterial microcystins using high performance tandem mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1253-1262. [PMID: 24781456 DOI: 10.1007/s13361-014-0893-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 03/12/2014] [Accepted: 03/16/2014] [Indexed: 06/03/2023]
Abstract
Microcystins (MC) are a large group of toxic cyclic peptides, produced by cyanobacteria in eutrophic water systems. Identification of MC variants mostly relies on liquid chromatography (LC) combined with collision-induced dissociation (CID) mass spectrometry. Deviations from the essential amino acid complement are a common feature of these natural products, which makes the CID analysis more difficult and not always successful. Here, both CID and electron capture dissociation (ECD) were applied in combination with ultra-high resolution Fourier transform ion cyclotron resonance mass spectrometry to study a cyanobacteria strain isolated from the Salto Grande Reservoir in Sao Paulo State, Brazil, without prior LC separation. CID was shown to be an effective dissociation technique for quickly identifying the MC variants, even those that have previously been difficult to characterize by CID. Moreover, ECD provided even more detailed and complementary information, which enabled us to precisely locate metal binding sites of MCs for the first time. This additional information will be important for environmental chemists to study MC accumulation and production in ecosystems.
Collapse
Affiliation(s)
- Yulin Qi
- Institute of Bioanalytical Chemistry, Saarland University, Campus B2.2, 66123, Saarbrücken, Germany
| | | | | |
Collapse
|