1
|
Crilley LR, Ditto JC, Lao M, Zhou Z, Abbatt JPD, Chan AWH, VandenBoer TC. Commercial kitchen operations produce a diverse range of gas-phase reactive nitrogen species. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024. [PMID: 39484695 DOI: 10.1039/d4em00491d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Gas-phase reactive nitrogen species (Nr) are important drivers of indoor air quality. Cooking and cleaning are significant direct sources indoors, whose emissions will vary depending on activity and materials used. Commercial kitchens experience regular high volumes of both cooking and cleaning, making them ideal study locations for exploring emission factors from these sources. Here, we present a total Nr (tNr) budget and contributions of key species NO, NO2, acidic Nr (primarily HONO) and basic Nr (primarily NH3) using novel instrumentation in a commercial kitchen over a two-week period. In general, highest tNr was observed in the morning and driven compositionally by NO, indicative of cooking events in the kitchen. The observed HONO and basic Nr levels were unexpectedly stable throughout the day, despite the dynamic and high air change rate in the kitchen. After summing the measured NOx, HONO and Nr,base fractions, there was on average 5 ppbv of Nr unaccounted for, expected to be dominated by neutral Nr species. Using co-located measurements from a proton transfer reaction mass spectrometer (PTR-MS), we propose the identities for these major Nr species from cooking and cleaning that contributed to Nr,base and the neutral fraction of tNr. When focused specifically on cooking events in the kitchen, a vast array of N-containing species was observed by the PTR-MS. Reproducibly, oxygenated N-containing class ions (C1-12H3-24O1-4N1-3), consistent with the known formulae of amides, were observed during meat cooking and may be good cooking tracers. During cleaning, an unexpectedly high level of chloramines was observed, with monochloramine dominating the profile, as emitted directly from HOCl based cleaners or through surface reactions with reduced-N species. For many species within the tNr budget, including HONO, acetonitrile and basic Nr species, we observed stable levels day and night despite the high air change rate during the day (>27 h-1). The stable levels for these species point to large surface reservoirs which act as a significant indoor source, that will be transported outdoors with ventilation.
Collapse
Affiliation(s)
| | - Jenna C Ditto
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
- Department of Chemistry, University of Toronto, Canada
| | - Melodie Lao
- Department of Chemistry, York University, Canada.
| | - Zilin Zhou
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | | | - Arthur W H Chan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
- Department of Chemistry, University of Toronto, Canada
| | | |
Collapse
|
2
|
Li X, Ye C, Lu K, Xue C, Li X, Zhang Y. Accurately Predicting Spatiotemporal Variations of Near-Surface Nitrous Acid (HONO) Based on a Deep Learning Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13035-13046. [PMID: 38982681 DOI: 10.1021/acs.est.4c02221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Gaseous nitrous acid (HONO) is identified as a critical precursor of hydroxyl radicals (OH), influencing atmospheric oxidation capacity and the formation of secondary pollutants. However, large uncertainties persist regarding its formation and elimination mechanisms, impeding accurate simulation of HONO levels using chemical models. In this study, a deep neural network (DNN) model was established based on routine air quality data (O3, NO2, CO, and PM2.5) and meteorological parameters (temperature, relative humidity, solar zenith angle, and season) collected from four typical megacity clusters in China. The model exhibited robust performance on both the train sets [slope = 1.0, r2 = 0.94, root mean squared error (RMSE) = 0.29 ppbv] and two independent test sets (slope = 1.0, r2 = 0.79, and RMSE = 0.39 ppbv), demonstrated excellent capability in reproducing the spatiotemporal variations of HONO, and outperformed an observation-constrained box model incorporated with newly proposed HONO formation mechanisms. Nitrogen dioxide (NO2) was identified as the most impactful features for HONO prediction using the SHapely Additive exPlanation (SHAP) approach, highlighting the importance of NO2 conversion in HONO formation. The DNN model was further employed to predict the future change of HONO levels in different NOx abatement scenarios, which is expected to decrease 27-44% in summer as the result of 30-50% NOx reduction. These results suggest a dual effect brought by abatement of NOx emissions, leading to not only reduction of O3 and nitrate precursors but also decrease in HONO levels and hence primary radical production rates (PROx). In summary, this study demonstrates the feasibility of using deep learning approach to predict HONO concentrations, offering a promising supplement to traditional chemical models. Additionally, stringent NOx abatement would be beneficial for collaborative alleviation of O3 and secondary PM2.5.
Collapse
Affiliation(s)
- Xuan Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Can Ye
- State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Keding Lu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chaoyang Xue
- Max Planck Institute for Chemistry, Mainz 55128, Germany
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xin Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Ran H, An J, Zhang J, Huang J, Qu Y, Chen Y, Xue C, Mu Y, Liu X. Impact of soil-atmosphere HONO exchange on concentrations of HONO and O 3 in the North China Plain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172336. [PMID: 38614350 DOI: 10.1016/j.scitotenv.2024.172336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
Nitrous acid (HONO) is an important precursor of the hydroxyl radical (OH) and plays a vital role in atmospheric photochemistry and nitrogen cycling. Soil emissions have been considered as a potential source of HONO. Lately, the HONO emission via soil-atmosphere exchange (ESA-exchange) from soil nitrite has been validated and quantified through chamber experiments, but has not been assessed in the real atmosphere. We coupled ESA-exchange and the other seven potential sources of HONO (i.e., traffic, indoor and soil bacterial emissions, heterogeneous reactions on ground and aerosol surfaces, nitrate photolysis, and acid displacement) into the Weather Research and Forecasting model with Chemistry (WRF-Chem), and found that diurnal variations of the soil emission flux at the Wangdu site were well simulated. During the non-fertilization period, ESA-exchange contributed ∼28 % and ∼35 % of nighttime and daytime HONO, respectively, and enhanced the net ozone (O3) production rate by ∼8 % across the North China Plain (NCP). During the preintensive/intensive fertilization period, the maximum ESA-Exchange contributions attained ∼70 %/83 % of simulated HONO in the afternoon across the NCP, definitely asserting its dominance in HONO production. ESA-Exchange enhanced the OH production rate via HONO photolysis by ∼3.5/7.0 times, and exhibited an increase rate of ∼13 %/20 % in the net O3 production rate across the NCP. The total enhanced O3 due to the eight potential HONO sources ranged from ∼2 to 20 ppb, and ESA-exchange produced O3 enhancements of ∼1 to 6 ppb over the three periods. Remarkably, the average contribution of ESA-exchange to the total O3 enhancements remained ∼30 %. This study suggests that ESA-exchange should be included in three-dimensional chemical transport models and more field measurements of soil HONO emission fluxes and soil nitrite levels are urgently required.
Collapse
Affiliation(s)
- Haiyan Ran
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junling An
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jingwei Zhang
- Department of Atmospheric Sciences, Yunnan University, Kunming 650091, China
| | - Junjie Huang
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China
| | - Yu Qu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Chen
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoyang Xue
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yujing Mu
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xingang Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Intercomparison of Ambient Nitrous Acid Measurements in a Shanghai Urban Site. ATMOSPHERE 2022. [DOI: 10.3390/atmos13020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Nitrous acid (HONO) is the major source of OH radicals in polluted regions and plays a key role in the nitrogen cycle of the atmosphere. Therefore, accurate measurements of HONO in the atmosphere is important. Long Path Absorption Photometer (LOPAP) is a common and highly sensitive method used for ambient HONO measurements. Incoherent Broadband Cavity Enhanced Absorption Spectroscopy (IBBCEAS) is a recent alternative for the detection of HONO with high temporal and spatial resolutions, which has shown a detection limit of 0.76 ppbv at a sampling average of 180 s. In this study, LOPAP and IBBCEAS-HONO instruments were deployed in a Shanghai Urban Site (Shanghai Academy of Environmental Sciences) and simultaneously recorded the data from both instruments for a quantitative intercomparison of the measured atmospheric HONO for four days from 30 December 2017–2 January 2018. The HONO concentration measured by IBBCEAS and LOPAP were well matched. The campaign average concentrations measured by IBBCEAS and LOPAP were 1.28 and 1.20 ppbv, respectively. The intercomparison results demonstrated that both the IBBCEAS-HONO instrument and LOPAP-HONO instrument are suitable for ambient monitoring of HONO in a polluted urban environment.
Collapse
|
5
|
Bao F, Cheng Y, Kuhn U, Li G, Wang W, Kratz AM, Weber J, Weber B, Pöschl U, Su H. Key Role of Equilibrium HONO Concentration over Soil in Quantifying Soil-Atmosphere HONO Fluxes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2204-2212. [PMID: 35104400 PMCID: PMC8851686 DOI: 10.1021/acs.est.1c06716] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/22/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Nitrous acid (HONO) is an important component of the global nitrogen cycle and can regulate the atmospheric oxidative capacity. Soil is an important source of HONO. [HONO]*, the equilibrium gas-phase concentration over the aqueous solution of nitrous acid in the soil, has been suggested as a key parameter for quantifying soil fluxes of HONO. However, [HONO]* has not yet been well-validated and quantified. Here, we present a method to retrieve [HONO]* by conducting controlled dynamic chamber experiments with soil samples applied with different HONO concentrations at the chamber inlet. We show a bi-directional soil-atmosphere exchange of HONO and confirm the existence of [HONO]* over soil: when [HONO]* is higher than the atmospheric HONO concentration, HONO will be released from soil; otherwise, HONO will be deposited. We demonstrate that [HONO]* is a soil characteristic, which is independent of HONO concentrations in the chamber but varies with different soil water contents. We illustrate the robustness of using [HONO]* for quantifying soil fluxes of HONO, whereas the laboratory-determined chamber HONO fluxes can largely deviate from those in the real world for the same soil sample. This work advances the understanding of the soil-atmosphere exchange of HONO and the evaluation of its impact on the atmospheric oxidizing capacity.
Collapse
Affiliation(s)
- Fengxia Bao
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Yafang Cheng
- Department
of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
- Minerva
Research Group, Max Planck Institute for
Chemistry, Mainz 55128, Germany
| | - Uwe Kuhn
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Guo Li
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Wenjie Wang
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Alexandra Maria Kratz
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Jens Weber
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
- Institute
of Biology, University of Graz, Graz 8010, Austria
| | - Bettina Weber
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
- Institute
of Biology, University of Graz, Graz 8010, Austria
| | - Ulrich Pöschl
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Hang Su
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| |
Collapse
|
6
|
Marion A, Morin J, Ormeño E, Dupouyet S, D'Anna B, Boiry S, Wortham H. Nitrous acid production and uptake by Zea mays plants in growth chambers in the presence of nitrogen dioxide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150696. [PMID: 34597576 DOI: 10.1016/j.scitotenv.2021.150696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Nitrous acid (HONO) photolysis is an important atmospheric reaction that leads to the formation of hydroxyl radicals (OH), the main diurnal atmospheric oxidants. The process of HONO formation remains unclear, and comparisons between field measurements and model results have highlighted the presence of unknown HONO sources. HONO production on plant surfaces was recently suggested to contribute to atmospheric HONO formation, but there is limited information on the quantification of HONO production and uptake by plants. To address this gap in the existing knowledge, the current study investigated HONO exchange on living Zea mays plants. Experiments were conducted in growth chambers under controlled experimental conditions (temperature, relative humidity, NO2 mixing ratio, light intensity, CO2 mixing ratio) at temperatures ranging between 283 and 299 K. To investigate the effect of drought on HONO plant-atmosphere exchanges, experiments were carried out on two sets of Zea mays plants exposed to two different water supply conditions during their growth: optimal watering (70% of the field capacity) and water stress (30% of the field capacity). Results indicated that the uptake of HONO by control Zea mays plants increased linearly with ambient temperature, and was correlated with CO2 assimilation for temperatures ranging from 283 to 299 K. At 299 K, HONO production on the leaves offset this uptake and Zea mays plants were a source of HONO, with a net production rate of 27 ± 7 ppt h-1. Deposition velocities were higher for HONO than CO2, suggesting a higher mesophyll resistance for CO2 than HONO. As water stress reduced the stomatal opening, it also decreased plant-atmosphere gas exchange. Thus, climate change, which may limit the availability of water, will have an impact on HONO exchange between plants and the atmosphere.
Collapse
Affiliation(s)
| | - Julien Morin
- Aix Marseille Univ, CNRS, LCE, Marseille, France
| | - Elena Ormeño
- Aix Marseille Univ, Université d'Avignon, IRD, CNRS, IMBE, Marseille, France
| | - Sylvie Dupouyet
- Aix Marseille Univ, Université d'Avignon, IRD, CNRS, IMBE, Marseille, France
| | | | - Séverine Boiry
- Aix Marseille Univ, CEA, CNRS, BIAM, Plateforme PHYTOTEC, Saint Paul-Lez-Durance F-13108, France
| | | |
Collapse
|
7
|
Zhu C, Jagdale G, Gandolfo A, Alanis K, Abney R, Zhou L, Bish D, Raff JD, Baker LA. Surface Charge Measurements with Scanning Ion Conductance Microscopy Provide Insights into Nitrous Acid Speciation at the Kaolin Mineral-Air Interface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12233-12242. [PMID: 34449200 PMCID: PMC9277718 DOI: 10.1021/acs.est.1c03455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Unique surface properties of aluminosilicate clay minerals arise from anisotropic distribution of surface charge across their layered structures. Yet, a molecular-level understanding of clay mineral surfaces has been hampered by the lack of analytical techniques capable of measuring surface charges at the nanoscale. This is important for understanding the reactivity, colloidal stability, and ion-exchange capacity properties of clay minerals, which constitute a major fraction of global soils. In this work, scanning ion conductance microscopy (SICM) is used for the first time to visualize the surface charge and topography of dickite, a well-ordered member of the kaolin subgroup of clay minerals. Dickite displayed a pH-independent negative charge on basal surfaces whereas the positive charge on edges increased from pH 6 to 3. Surface charges responded to malonate addition, which promoted dissolution/precipitation reactions. Results from SICM were used to interpret heterogeneous reactivity studies showing that gas-phase nitrous acid (HONO) is released from the protonation of nitrite at Al-OH2+ groups on dickite edges at pH well above the aqueous pKa of HONO. This study provides nanoscale insights into mineral surface processes that affect environmental processes on the local and global scale.
Collapse
Affiliation(s)
- Cheng Zhu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Gargi Jagdale
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Adrien Gandolfo
- Paul H. O'Neill School of Public & Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
| | - Kristen Alanis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Rebecca Abney
- Paul H. O'Neill School of Public & Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia 30602, United States
| | - Lushan Zhou
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - David Bish
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Jonathan D Raff
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
- Paul H. O'Neill School of Public & Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
| | - Lane A Baker
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| |
Collapse
|
8
|
Diveky ME, Gleichweit MJ, Roy S, Signorell R. Shining New Light on the Kinetics of Water Uptake by Organic Aerosol Particles. J Phys Chem A 2021; 125:3528-3548. [PMID: 33739837 DOI: 10.1021/acs.jpca.1c00202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The uptake of water vapor by various organic aerosols is important in a number of applications ranging from medical delivery of pharmaceutical aerosols to cloud formation in the atmosphere. The coefficient that describes the probability that the impinging gas-phase molecule sticks to the surface of interest is called the mass accommodation coefficient, αM. Despite the importance of this coefficient for the description of water uptake kinetics, accurate values are still lacking for many systems. In this Feature Article, we present various experimental techniques that have been evoked in the literature to study the interfacial transport of water and discuss the corresponding strengths and limitations. This includes our recently developed technique called photothermal single-particle spectroscopy (PSPS). The PSPS technique allows for a retrieval of αM values from three independent, yet simultaneous measurements operating close to equilibrium, providing a robust assessment of interfacial mass transport. We review the currently available data for αM for water on various organics and discuss the few studies that address the temperature and relative humidity dependence of αM for water on organics. The knowledge of the latter, for example, is crucial to assess the water uptake kinetics of organic aerosols in the Earth's atmosphere. Finally, we argue that PSPS might also be a viable method to better restrict the αM value for water on liquid water.
Collapse
Affiliation(s)
- Matus E Diveky
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Michael J Gleichweit
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Sandra Roy
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Ruth Signorell
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| |
Collapse
|
9
|
Zhang J, Chen J, Xue C, Chen H, Zhang Q, Liu X, Mu Y, Guo Y, Wang D, Chen Y, Li J, Qu Y, An J. Impacts of six potential HONO sources on HO x budgets and SOA formation during a wintertime heavy haze period in the North China Plain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 681:110-123. [PMID: 31102812 DOI: 10.1016/j.scitotenv.2019.05.100] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
The Weather Research and Forecasting/Chemistry (WRF-Chem) model updated with six potential HONO sources (i.e., traffic, soil, biomass burning and indoor emissions, and heterogeneous reactions on aerosol and ground surfaces) was used to quantify the impact of the six potential HONO sources on the production and loss rates of OH and HO2 radicals and the concentrations of secondary organic aerosol (SOA) in the Beijing-Tianjin-Heibei (BTH) region of China during a winter heavy haze period of Nov. 29-Dec. 3, 2017. The updated WRF-Chem model well simulated the observed HONO concentrations at the Wangdu site, especially in the daytime, and well reproduced the observed diurnal variations of regional-mean O3 in the BTH region. The traffic emission source was an important HONO source during nighttime but not significant during daytime, heterogeneous reactions on ground/aerosol surfaces were important during nighttime and daytime. We found that the six potential HONO sources led to a significant enhancement in the dominant production and loss rates of HOx on the wintertime heavy haze and nonhaze days (particularly on the heavy haze day), an enhancement of 5-25 μg m-3 (75-200%) in the ground SOA in the studied heavy haze event, and an enhancement of 2-15 μg m-3 in the meridional-mean SOA on the heavy haze day, demonstrating that the six potential HONO sources accelerate the HOx cycles and aggravate haze events. HONO was the key precursor of primary OH in the BTH region in the studied wintertime period, and the photolysis of HONO produced a daytime mean OH production rate of 2.59 ppb h-1 on the heavy haze day, much higher than that of 0.58 ppb h-1 on the nonhaze day. Anthropogenic SOA dominated in the BTH region in the studied wintertime period, and its main precursors were xylenes (42%), BIGENE (31%) and toluene (21%).
Collapse
Affiliation(s)
- Jingwei Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianmin Chen
- Environment Research Institute, Shandong University, Ji'nan, Shandong, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, China
| | - Chaoyang Xue
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hui Chen
- Environment Research Institute, Shandong University, Ji'nan, Shandong, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, China
| | - Qiang Zhang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China; Collaborative Innovation Center for Regional Environmental Quality, Beijing, China
| | - Xingang Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yujing Mu
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 36102, China
| | - Yitian Guo
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Danyun Wang
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China; International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Science, Beijing 100029, China
| | - Yong Chen
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China
| | - Jialin Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China
| | - Yu Qu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China.
| | - Junling An
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 36102, China.
| |
Collapse
|
10
|
Microbial mechanisms and ecosystem flux estimation for aerobic NO y emissions from deciduous forest soils. Proc Natl Acad Sci U S A 2019; 116:2138-2145. [PMID: 30659144 DOI: 10.1073/pnas.1814632116] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Reactive nitrogen oxides (NOy; NOy = NO + NO2 + HONO) decrease air quality and impact radiative forcing, yet the factors responsible for their emission from nonpoint sources (i.e., soils) remain poorly understood. We investigated the factors that control the production of aerobic NOy in forest soils using molecular techniques, process-based assays, and inhibitor experiments. We subsequently used these data to identify hotspots for gas emissions across forests of the eastern United States. Here, we show that nitrogen oxide soil emissions are mediated by microbial community structure (e.g., ammonium oxidizer abundances), soil chemical characteristics (pH and C:N), and nitrogen (N) transformation rates (net nitrification). We find that, while nitrification rates are controlled primarily by chemoautotrophic ammonia-oxidizing archaea (AOA), the production of NOy is mediated in large part by chemoautotrophic ammonia-oxidizing bacteria (AOB). Variation in nitrification rates and nitrogen oxide emissions tracked variation in forest communities, as stands dominated by arbuscular mycorrhizal (AM) trees had greater N transformation rates and NOy fluxes than stands dominated by ectomycorrhizal (ECM) trees. Given mapped distributions of AM and ECM trees from 78,000 forest inventory plots, we estimate that broadleaf forests of the Midwest and the eastern United States as well as the Mississippi River corridor may be considered hotspots of biogenic NOy emissions. Together, our results greatly improve our understanding of NOy fluxes from forests, which should lead to improved predictions about the atmospheric consequences of tree species shifts owing to land management and climate change.
Collapse
|
11
|
Collins DB, Hems RF, Zhou S, Wang C, Grignon E, Alavy M, Siegel JA, Abbatt JPD. Evidence for Gas-Surface Equilibrium Control of Indoor Nitrous Acid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12419-12427. [PMID: 30346749 DOI: 10.1021/acs.est.8b04512] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nitrous acid (HONO) is an important component of indoor air as a photolabile precursor to hydroxyl radicals and has direct health effects. HONO concentrations are typically higher indoors than outdoors, although indoor concentrations have proved challenging to predict using box models. In this study, time-resolved measurements of HONO and NO2 in a residence showed that [HONO] varied relatively weakly over contiguous periods of hours, while [NO2] fluctuated in association with changes in outdoor [NO2]. Perturbation experiments were performed in which indoor HONO was depleted or elevated and were interpreted using a two-compartment box model. To reproduce the measurements, [HONO] had to be predicted using persistent source and sink processes that do not directly involve NO2, suggesting that HONO was in equilibrium with indoor surfaces. Production of gas phase HONO directly from conversion of NO2 on surfaces had a weak influence on indoor [HONO] during the time of the perturbations. Highly similar temporal responses of HONO and semivolatile carboxylic acids to ventilation of the residence along with the detection of nitrite on indoor surfaces support the concept that indoor HONO mixing ratios are controlled strongly by gas-surface equilibrium.
Collapse
Affiliation(s)
- Douglas B Collins
- Department of Chemistry , University of Toronto , 80 Street George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Rachel F Hems
- Department of Chemistry , University of Toronto , 80 Street George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Shouming Zhou
- Department of Chemistry , University of Toronto , 80 Street George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Chen Wang
- Department of Chemistry , University of Toronto , 80 Street George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Eloi Grignon
- Department of Chemistry , University of Toronto , 80 Street George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Masih Alavy
- Department of Civil and Mineral Engineering , University of Toronto , 35 Street George Street , Toronto , Ontario M5S 1A4 , Canada
| | - Jeffrey A Siegel
- Department of Civil and Mineral Engineering , University of Toronto , 35 Street George Street , Toronto , Ontario M5S 1A4 , Canada
- Dalla Lana School of Public Health , University of Toronto , 223 College Street , Toronto , Ontario M5T 1R4 , Canada
| | - Jonathan P D Abbatt
- Department of Chemistry , University of Toronto , 80 Street George Street , Toronto , Ontario M5S 3H6 , Canada
| |
Collapse
|
12
|
Gu W, Cheng P, Tang M. Compilation and evaluation of gas phase diffusion coefficients of halogenated organic compounds. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171936. [PMID: 30109048 PMCID: PMC6083652 DOI: 10.1098/rsos.171936] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Organic halogens are of great environmental and climatic concern. In this work, we have compiled their gas phase diffusivities (pressure-normalized diffusion coefficients) in a variety of bath gases experimentally measured by previous studies. It is found that diffusivities estimated using Fuller's semi-empirical method agree very well with measured values for organic halogens. In addition, we find that at a given temperature and pressure, different molecules exhibit very similar mean free paths in the same bath gas, and then propose a method to estimate mean free paths in different bath gases. For example, the pressure-normalized mean free paths are estimated to be 90, 350, 90, 80, 120 nm atm in air (and N2/O2), He, argon, CO2 and CH4, respectively, with estimated errors of around ±25%. A generic method, which requires less input parameter than Fuller's method, is proposed to calculate gas phase diffusivities. We find that gas phase diffusivities in He (and air as well) calculated using our method show fairly good agreement with those measured experimentally and estimated using Fuller's method. Our method is particularly useful for the estimation of gas phase diffusivities when the trace gas contains atoms whose diffusion volumes are not known.
Collapse
Affiliation(s)
- Wenjun Gu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Peng Cheng
- Institute of Mass Spectrometer and Atmospheric Environment and Guangdong Provincial Engineering Research Center for on-line source apportionment system of air pollution, Jinan University, Guangzhou 510632, People's Republic of China
| | - Mingjin Tang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| |
Collapse
|
13
|
Hydroxylamine released by nitrifying microorganisms is a precursor for HONO emission from drying soils. Sci Rep 2018; 8:1877. [PMID: 29382914 PMCID: PMC5790002 DOI: 10.1038/s41598-018-20170-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/15/2018] [Indexed: 11/22/2022] Open
Abstract
Nitrous acid (HONO) is an important precursor of the hydroxyl radical (OH), the atmosphere´s primary oxidant. An unknown strong daytime source of HONO is required to explain measurements in ambient air. Emissions from soils are one of the potential sources. Ammonia-oxidizing bacteria (AOB) have been identified as possible producers of these HONO soil emissions. However, the mechanisms for production and release of HONO in soils are not fully understood. In this study, we used a dynamic soil-chamber system to provide direct evidence that gaseous emissions from nitrifying pure cultures contain hydroxylamine (NH2OH), which is subsequently converted to HONO in a heterogeneous reaction with water vapor on glass bead surfaces. In addition to different AOB species, we found release of HONO also in ammonia-oxidizing archaea (AOA), suggesting that these globally abundant microbes may also contribute to the formation of atmospheric HONO and consequently OH. Since biogenic NH2OH is formed by diverse organisms, such as AOB, AOA, methane-oxidizing bacteria, heterotrophic nitrifiers, and fungi, we argue that HONO emission from soil is not restricted to the nitrifying bacteria, but is also promoted by nitrifying members of the domains Archaea and Eukarya.
Collapse
|
14
|
Scharko NK, Martin ET, Losovyj Y, Peters DG, Raff JD. Evidence for Quinone Redox Chemistry Mediating Daytime and Nighttime NO 2-to-HONO Conversion on Soil Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:9633-9643. [PMID: 28742971 DOI: 10.1021/acs.est.7b01363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Humic acid (HA) is thought to promote NO2 conversion to nitrous acid (HONO) on soil surfaces during the day. However, it has proven difficult to identify the reactive sites in natural HA substrates. The mechanism of NO2 reduction on soil surrogates composed of HA and clay minerals was studied by use of a coated-wall flow reactor and cavity-enhanced spectroscopy. Conversion of NO2 to HONO in the dark was found to be significant and correlated to the abundance of C-O moieties in HA determined from the X-ray photoelectron spectra of the C 1s region. Twice as much HONO was formed when NO2 reacted with HA that was photoreduced by irradiation with UV-visible light compared to the dark reaction; photochemical reactivity was correlated to the abundance of C═O moieties rather than C-O groups. Bulk electrolysis was used to generate HA in a defined reduction state. Electrochemically reduced HA enhanced NO2-to-HONO conversion by a factor of 2 relative to non-reduced HA. Our findings suggest that hydroquinones and benzoquinones, which are interchangeable via redox equilibria, contribute to both thermal and photochemical HONO formation. This conclusion is supported by experiments that studied NO2 reactivity on mineral surfaces coated with the model quinone, juglone. Results provide further evidence that redox-active sites on soil surfaces drive ground-level NO2-to-nitrite conversion in the atmospheric boundary layer throughout the day, while amphoteric mineral surfaces promote the release of nitrite formed as gaseous HONO.
Collapse
Affiliation(s)
- Nicole K Scharko
- School of Public and Environmental Affairs, Indiana University , 1315 East 10th Street, Bloomington, Indiana 47405, United States
| | - Erin T Martin
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Yaroslav Losovyj
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Dennis G Peters
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Jonathan D Raff
- School of Public and Environmental Affairs, Indiana University , 1315 East 10th Street, Bloomington, Indiana 47405, United States
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
15
|
He CF, Wang X, Sun YQ, Pan XM, Tao FM. Theoretical Study of the Gaseous Hydrolysis of NO2 in the Presence of Amines. J Phys Chem A 2016; 121:226-237. [DOI: 10.1021/acs.jpca.6b08305] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chun-Fang He
- Institute of Functional Material Chemistry, National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, 130024 Changchun, People’s Republic of China
| | - Xu Wang
- Institute of Functional Material Chemistry, National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, 130024 Changchun, People’s Republic of China
| | - Yan-Qiu Sun
- Institute of Functional Material Chemistry, National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, 130024 Changchun, People’s Republic of China
| | - Xiu-Mei Pan
- Institute of Functional Material Chemistry, National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, 130024 Changchun, People’s Republic of China
| | - Fu-Ming Tao
- Department
of Chemistry and Biochemistry, California State University, Fullerton, California 92834, United States
| |
Collapse
|
16
|
Han C, Yang W, Wu Q, Yang H, Xue X. Heterogeneous Photochemical Conversion of NO2 to HONO on the Humic Acid Surface under Simulated Sunlight. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:5017-5023. [PMID: 27074517 DOI: 10.1021/acs.est.5b05101] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The poor understanding of HONO sources in the daytime highlights the importance of the heterogeneous photochemical reaction of NO2 with aerosol or soil surfaces. The conversion of NO2 to HONO on humic acid (HA) under simulated sunlight was investigated using a flow tube reactor at ambient pressure. The uptake coefficient (γ) of NO2 linearly increased with irradiation intensity and HA mass in the range of 0-2.0 μg/cm(2), while it decreased with the NO2 concentration. The HONO yield was found to be independent of irradiation intensity, HA mass, and NO2 concentration. The temperature (278-308 K) had little influence on both γ and HONO yield. Additionally, γ increased continuously with relative humidity (RH, 7-70%), and a maximum HONO yield was observed at 40% RH. The heterogeneous photochemical reaction of NO2 with HA was explained by the Langmuir-Hinshelwood mechanism.
Collapse
Affiliation(s)
- Chong Han
- School of Metallurgy, Northeastern University , Shenyang, Liaoning 110819, People's Republic of China
| | - Wangjin Yang
- School of Metallurgy, Northeastern University , Shenyang, Liaoning 110819, People's Republic of China
| | - Qianqian Wu
- School of Metallurgy, Northeastern University , Shenyang, Liaoning 110819, People's Republic of China
| | - He Yang
- School of Metallurgy, Northeastern University , Shenyang, Liaoning 110819, People's Republic of China
| | - Xiangxin Xue
- School of Metallurgy, Northeastern University , Shenyang, Liaoning 110819, People's Republic of China
| |
Collapse
|
17
|
Laufs S, Kleffmann J. Investigations on HONO formation from photolysis of adsorbed HNO3 on quartz glass surfaces. Phys Chem Chem Phys 2016; 18:9616-25. [DOI: 10.1039/c6cp00436a] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
HONO formation by photolysis of HNO3 on clean surfaces is no significant source of HONO and NOx in the atmosphere.
Collapse
Affiliation(s)
- Sebastian Laufs
- Physikalische und Theoretische Chemie/Fakultät für Mathematik und Naturwissenschaften
- Bergische Universität Wuppertal
- 42097 Wuppertal
- Germany
| | - Jörg Kleffmann
- Physikalische und Theoretische Chemie/Fakultät für Mathematik und Naturwissenschaften
- Bergische Universität Wuppertal
- 42097 Wuppertal
- Germany
| |
Collapse
|
18
|
Scharko NK, Schütte UME, Berke AE, Banina L, Peel HR, Donaldson MA, Hemmerich C, White JR, Raff JD. Combined Flux Chamber and Genomics Approach Links Nitrous Acid Emissions to Ammonia Oxidizing Bacteria and Archaea in Urban and Agricultural Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:13825-34. [PMID: 26248160 DOI: 10.1021/acs.est.5b00838] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Nitrous acid (HONO) is a photochemical source of hydroxyl radical and nitric oxide in the atmosphere that stems from abiotic and biogenic processes, including the activity of ammonia-oxidizing soil microbes. HONO fluxes were measured from agricultural and urban soil in mesocosm studies aimed at characterizing biogenic sources and linking them to indigenous microbial consortia. Fluxes of HONO from agricultural and urban soil were suppressed by addition of a nitrification inhibitor and enhanced by amendment with ammonium (NH4(+)), with peaks at 19 and 8 ng m(-2) s(-1), respectively. In addition, both agricultural and urban soils were observed to convert (15)NH4(+) to HO(15)NO. Genomic surveys of soil samples revealed that 1.5-6% of total expressed 16S rRNA sequences detected belonged to known ammonia oxidizing bacteria and archaea. Peak fluxes of HONO were directly related to the abundance of ammonia-oxidizer sequences, which in turn depended on soil pH. Peak HONO fluxes under fertilized conditions are comparable in magnitude to fluxes reported during field campaigns. The results suggest that biogenic HONO emissions will be important in soil environments that exhibit high nitrification rates (e.g., agricultural soil) although the widespread occurrence of ammonia oxidizers implies that biogenic HONO emissions are also possible in the urban and remote environment.
Collapse
Affiliation(s)
- Nicole K Scharko
- School of Public and Environmental Affairs, Indiana University , Bloomington, Indiana 47405-2204, United States
| | - Ursel M E Schütte
- Integrated Program in the Environment, Indiana University , Bloomington, Indiana 47405-2204, United States
| | - Andrew E Berke
- School of Public and Environmental Affairs, Indiana University , Bloomington, Indiana 47405-2204, United States
| | - Lauren Banina
- School of Public and Environmental Affairs, Indiana University , Bloomington, Indiana 47405-2204, United States
| | - Hannah R Peel
- School of Public and Environmental Affairs, Indiana University , Bloomington, Indiana 47405-2204, United States
| | - Melissa A Donaldson
- School of Public and Environmental Affairs, Indiana University , Bloomington, Indiana 47405-2204, United States
| | - Chris Hemmerich
- Center for Genomics and Bioinformatics, Indiana University , Bloomington, Indiana 47405-7005, United States
| | - Jeffrey R White
- School of Public and Environmental Affairs, Indiana University , Bloomington, Indiana 47405-2204, United States
- Integrated Program in the Environment, Indiana University , Bloomington, Indiana 47405-2204, United States
| | - Jonathan D Raff
- School of Public and Environmental Affairs, Indiana University , Bloomington, Indiana 47405-2204, United States
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
19
|
Pusede SE, VandenBoer TC, Murphy JG, Markovic MZ, Young CJ, Veres PR, Roberts JM, Washenfelder RA, Brown SS, Ren X, Tsai C, Stutz J, Brune WH, Browne EC, Wooldridge PJ, Graham AR, Weber R, Goldstein AH, Dusanter S, Griffith SM, Stevens PS, Lefer BL, Cohen RC. An Atmospheric Constraint on the NO2 Dependence of Daytime Near-Surface Nitrous Acid (HONO). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:12774-12781. [PMID: 26436410 DOI: 10.1021/acs.est.5b02511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Recent observations suggest a large and unknown daytime source of nitrous acid (HONO) to the atmosphere. Multiple mechanisms have been proposed, many of which involve chemistry that reduces nitrogen dioxide (NO2) on some time scale. To examine the NO2 dependence of the daytime HONO source, we compare weekday and weekend measurements of NO2 and HONO in two U.S. cities. We find that daytime HONO does not increase proportionally to increases in same-day NO2, i.e., the local NO2 concentration at that time and several hours earlier. We discuss various published HONO formation pathways in the context of this constraint.
Collapse
Affiliation(s)
- Sally E Pusede
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States
| | - Trevor C VandenBoer
- Department of Chemistry, University of Toronto , Toronto, Ontario M5S 3H6, Canada
| | - Jennifer G Murphy
- Department of Chemistry, University of Toronto , Toronto, Ontario M5S 3H6, Canada
| | - Milos Z Markovic
- Department of Chemistry, University of Toronto , Toronto, Ontario M5S 3H6, Canada
| | - Cora J Young
- Earth Systems Research Laboratory, Chemical Sciences Division, National Oceanic and Atmospheric Administration (NOAA) , Boulder, Colorado 80305, United States
- Cooperative Institute for Research in Environmental Science, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | - Patrick R Veres
- Earth Systems Research Laboratory, Chemical Sciences Division, National Oceanic and Atmospheric Administration (NOAA) , Boulder, Colorado 80305, United States
- Cooperative Institute for Research in Environmental Science, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | - James M Roberts
- Earth Systems Research Laboratory, Chemical Sciences Division, National Oceanic and Atmospheric Administration (NOAA) , Boulder, Colorado 80305, United States
| | - Rebecca A Washenfelder
- Earth Systems Research Laboratory, Chemical Sciences Division, National Oceanic and Atmospheric Administration (NOAA) , Boulder, Colorado 80305, United States
- Cooperative Institute for Research in Environmental Science, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | - Steven S Brown
- Earth Systems Research Laboratory, Chemical Sciences Division, National Oceanic and Atmospheric Administration (NOAA) , Boulder, Colorado 80305, United States
- Department of Chemistry and Biochemistry, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | - Xinrong Ren
- Air Resources Laboratory, National Oceanic and Atmospheric Administration , College Park, Maryland 20740, United States
| | - Catalina Tsai
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Jochen Stutz
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - William H Brune
- Department of Meteorology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Eleanor C Browne
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States
| | - Paul J Wooldridge
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States
| | - Ashley R Graham
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States
| | - Robin Weber
- Department of Environmental Science, Policy, and Management, University of California, Berkeley , Berkeley, California 94720, United States
| | - Allen H Goldstein
- Department of Environmental Science, Policy, and Management, University of California, Berkeley , Berkeley, California 94720, United States
- Department of Civil and Environmental Engineering, University of California, Berkeley , Berkeley, California 94720, United States
| | - Sebastien Dusanter
- School of Public and Environmental Affairs, Indiana University , Bloomington, Indiana 47405, United States
| | - Stephen M Griffith
- School of Public and Environmental Affairs, Indiana University , Bloomington, Indiana 47405, United States
| | - Philip S Stevens
- School of Public and Environmental Affairs, Indiana University , Bloomington, Indiana 47405, United States
| | - Barry L Lefer
- Department of Earth and Atmospheric Sciences, University of Houston , Houston, Texas 77004, United States
| | - Ronald C Cohen
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States
- Department of Earth and Planetary Science, University of California, Berkeley , Berkeley, California 94709, United States
| |
Collapse
|
20
|
Soil surface acidity plays a determining role in the atmospheric-terrestrial exchange of nitrous acid. Proc Natl Acad Sci U S A 2014; 111:18472-7. [PMID: 25512517 DOI: 10.1073/pnas.1418545112] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nitrous acid (HONO) is an important hydroxyl (OH) radical source that is formed on both ground and aerosol surfaces in the well-mixed boundary layer. Recent studies report the release of HONO from nonacidic soils, although it is unclear how soil that is more basic than the pKa of HONO (∼ 3) is capable of protonating soil nitrite to serve as an atmospheric HONO source. Here, we used a coated-wall flow tube and chemical ionization mass spectrometry (CIMS) to study the pH dependence of HONO uptake onto agricultural soil and model substrates under atmospherically relevant conditions (1 atm and 30% relative humidity). Experiments measuring the evolution of HONO from pH-adjusted surfaces treated with nitrite and potentiometric titrations of the substrates show, to our knowledge for the first time, that surface acidity rather than bulk aqueous pH determines HONO uptake and desorption efficiency on soil, in a process controlled by amphoteric aluminum and iron (hydr)oxides present. The results have important implications for predicting when soil nitrite, whether microbially derived or atmospherically deposited, will act as a net source or sink of atmospheric HONO. This process represents an unrecognized mechanism of HONO release from soil that will contribute to HONO emissions throughout the day.
Collapse
|
21
|
Pohl J, Saltsman I, Mahammed A, Gross Z, Röder B. Inhibition of green algae growth by corrole-based photosensitizers. J Appl Microbiol 2014; 118:305-12. [DOI: 10.1111/jam.12690] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 10/01/2014] [Accepted: 11/05/2014] [Indexed: 12/18/2022]
Affiliation(s)
- J. Pohl
- Department of Physics; Humboldt - Universität zu Berlin; Berlin Germany
| | - I. Saltsman
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa Israel
| | - A. Mahammed
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa Israel
| | - Z. Gross
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa Israel
| | - B. Röder
- Department of Physics; Humboldt - Universität zu Berlin; Berlin Germany
| |
Collapse
|
22
|
Scharko NK, Berke AE, Raff JD. Release of nitrous acid and nitrogen dioxide from nitrate photolysis in acidic aqueous solutions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:11991-12001. [PMID: 25271384 DOI: 10.1021/es503088x] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nitrate (NO3(-)) is an abundant component of aerosols, boundary layer surface films, and surface water. Photolysis of NO3(-) leads to NO2 and HONO, both of which play important roles in tropospheric ozone and OH production. Field and laboratory studies suggest that NO3¯ photochemistry is a more important source of HONO than once thought, although a mechanistic understanding of the variables controlling this process is lacking. We present results of cavity-enhanced absorption spectroscopy measurements of NO2 and HONO emitted during photodegradation of aqueous NO3(-) under acidic conditions. Nitrous acid is formed in higher quantities at pH 2-4 than expected based on consideration of primary photochemical channels alone. Both experimental and modeled results indicate that the additional HONO is not due to enhanced NO3(-) absorption cross sections or effective quantum yields, but rather to secondary reactions of NO2 in solution. We find that NO2 is more efficiently hydrolyzed in solution when it is generated in situ during NO3(-) photolysis than for the heterogeneous system where mass transfer of gaseous NO2 into bulk solution is prohibitively slow. The presence of nonchromophoric OH scavengers that are naturally present in the environment increases HONO production 4-fold, and therefore play an important role in enhancing daytime HONO formation from NO3(-) photochemistry.
Collapse
Affiliation(s)
- Nicole K Scharko
- School of Public and Environmental Affairs and the Department of Chemistry, Indiana University , Bloomington, Indiana 47405-2204, United States
| | | | | |
Collapse
|