1
|
Cui L, Li X, Luo Y, Gao X, Wang Y, Lv X, Zhang H, Lei K. A comprehensive review of the effects of salinity, dissolved organic carbon, pH, and temperature on copper biotoxicity: Implications for setting the copper marine water quality criteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169587. [PMID: 38154639 DOI: 10.1016/j.scitotenv.2023.169587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/15/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
In recent years, there has been a growing concern about the ecological hazards associated with copper, which has sparked increased interest in copper water quality criteria (WQC). The crucial factors affecting the bioavailability of copper in seawater are now acknowledged to be salinity, dissolved organic carbon (DOC), pH, and temperature. Research on the influence of these four water quality parameters on copper toxicity is rapidly expanding. However, a comprehensive and clear understanding of the relevant mechanisms is currently lacking, hindering the development of a consistent international method to establish the seawater WQC value for copper. As a response to this knowledge gap, this study presents a comprehensive summary with two key focuses: (1) It meticulously analyzes the effects of salinity, DOC, pH, and temperature on copper toxicity to marine organisms. It takes into account the adaptability of different species to salinity, pH and temperature. (2) Additionally, the study delves into the impact of these four water parameters on the acute toxicity values of copper on marine organisms while also reviewing the methods used in establishing the marine WQC value of copper. The study proposed a two-step process: initially zoning based on the difference of salinity and DOC, followed by the establishment of Cu WQC values for different zones during various seasons, considering the impacts of water quality parameters on copper toxicity. By providing fundamental scientific insights, this research not only enhances our understanding and predictive capabilities concerning water quality parameter-dependent Cu toxicity in marine organisms but also contributes to the development of copper seawater WQC values. Ultimately, this valuable information facilitates more informed decision-making in marine water quality management efforts.
Collapse
Affiliation(s)
- Liang Cui
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Xiaoguang Li
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Yan Luo
- Ningbo Research Institute of Ecological and Environmental Sciences, Ningbo 315012, China
| | - Xiangyun Gao
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Yan Wang
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Xubo Lv
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Hua Zhang
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Kun Lei
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China.
| |
Collapse
|
2
|
Gong J, Li Q. Comparative Transcriptome and WGCNA Analysis Reveal Molecular Responses to Salinity Change in Larvae of the Iwagaki Oyster Crassostrea Nippona. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:1031-1042. [PMID: 37872465 DOI: 10.1007/s10126-023-10257-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
Abstract
The Iwagaki oyster Crassostrea nippona is an important aquaculture species with significant potential for large-scale oyster farming. It is susceptible to the fluctuated salinity in the coastal area. In this study, we compared the transcriptome of Crassostrea nippona larvae under variant conditions with low-salinity stress (28, 20, 15, 10, and 5 practical salinity units (psu)) for 24 h. KEGG enrichment analysis of differentially expressed genes (DEGs) from pairwise comparisons identified several free amino acid metabolism pathway (taurine and hypotaurine, arginine and proline, glycine, and beta-alanine) contributing to the salinity change adaptation and activated "lysosome" and "apoptosis" pathway in response to the low-salinity stress (10 and 5 psu). Trend analysis revealed sustained upregulation of transmembrane transport-related genes (such as SLC family) and downregulation of ribosomal protein synthesis genes faced with decreasing salinities. In addition, 9 biomarkers in response to low-salinity stress were identified through weighted gene co-expression network analysis (WGCNA) and validated by qRT-PCR. Our transcriptome analysis provides a comprehensive view of the molecular mechanisms and regulatory networks underlying the adaptive responses of oyster larvae to hypo-salinity conditions. These findings contribute to our understanding of the complex biological processes involved in oyster resilience and adaptation to changing environmental conditions.
Collapse
Affiliation(s)
- Jianwen Gong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
3
|
Caillon C, Pernet F, Lutier M, Di Poi C. Differential reaction norms to ocean acidification in two oyster species from contrasting habitats. J Exp Biol 2023; 226:jeb246432. [PMID: 37942639 DOI: 10.1242/jeb.246432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Ocean acidification (OA), a consequence of the increase in anthropogenic emissions of carbon dioxide, causes major changes in the chemistry of carbonates in the ocean with deleterious effects on calcifying organisms. The pH/PCO2 range to which species are exposed in nature is important to consider when interpreting the response of coastal organisms to OA. In this context, emerging approaches, which assess the reaction norms of organisms to a wide pH gradient, are improving our understanding of tolerance thresholds and acclimation potential to OA. In this study, we deciphered the reaction norms of two oyster species living in contrasting habitats: the intertidal oyster Crassostrea gigas and the subtidal flat oyster Ostrea edulis, which are two economically and ecologically valuable species in temperate ecosystems. Six-month-old oysters of each species were exposed in common garden tanks for 48 days to a pH gradient ranging from 7.7 to 6.4 (total scale). Both species were tolerant down to a pH of 6.6 with high plasticity in fitness-related traits such as survival and growth. However, oysters underwent remodelling of membrane fatty acids to cope with decreasing pH along with shell bleaching impairing shell integrity and consequently animal fitness. Finally, our work revealed species-specific physiological responses and highlights that intertidal C. gigas seem to have a better acclimation potential to rapid and extreme OA changes than O. edulis. Overall, our study provides important data about the phenotypic plasticity and its limits in two oyster species, which is essential for assessing the challenges posed to marine organisms by OA.
Collapse
Affiliation(s)
- Coline Caillon
- Ifremer, Univ Brest, CNRS, IRD, UMR 6539 LEMAR, 29280 Plouzané, France
| | - Fabrice Pernet
- Ifremer, Univ Brest, CNRS, IRD, UMR 6539 LEMAR, 29280 Plouzané, France
| | - Mathieu Lutier
- Ifremer, Univ Brest, CNRS, IRD, UMR 6539 LEMAR, 29280 Plouzané, France
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Carole Di Poi
- Ifremer, Univ Brest, CNRS, IRD, UMR 6539 LEMAR, 29280 Plouzané, France
| |
Collapse
|
4
|
Rodrigues JA, Silva M, Araújo R, Madureira L, Soares AMVM, Freitas R, Gil AM. The influence of temperature rise on the metabolic response of Ruditapes philippinarum clams to 17-α-ethinylestradiol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162898. [PMID: 36934939 DOI: 10.1016/j.scitotenv.2023.162898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 05/06/2023]
Abstract
Untargeted Nuclear Magnetic Resonance metabolomics was employed to study the effects of warming conditions (17-21 °C) and exposure to 17-α-ethinylestradiol (EE2) on the polar metabolome of Ruditapes philippinarum clams, to identify metabolic markers for monitoring/prediction of deviant environmental conditions. Warming alone triggered changes in alanine/aspartate/glutamate, aromatic amino acids, taurine/hypotaurine and homarine/trigonelline pathways, as well as in energy metabolism, suggesting osmoregulatory adaptations and glycolytic/tricarboxylic acid (TCA) cycle activation, possibly accompanied to some extent by gluconeogenesis to preserve glycogen reserves. At 17 °C, the lowest EE2 concentration (5 ng/L) specifically engaged branched-chain and aromatic amino acids to activate the glycolysis/TCA cycle. Notably, a partial metabolic recovery was observed at 25 ng/L, whereas higher EE2 concentrations (125 and 625 ng/L) again induced significant metabolic disturbances. These included enhanced glycogen biosynthesis and increased lipid reserves, sustained by low-level glutathione-based antioxidative mechanisms that seemed active. At 21 °C, response to EE2 was notably weak at low/intermediate concentrations, becoming particularly significant at the highest EE2 concentration (625 ng/L), suggesting higher protection capacity of Ruditapes philippinarum clams under warming conditions. At 625 ng/L, disturbances in alanine/aspartate/glutamate and taurine/hypotaurine metabolisms were observed, with no evidence of enhanced carbohydrate/protein catabolism. This low energy function profile was accompanied by marked antioxidative mechanisms and choline compounds modulation for cell membrane protection/repair. These results help monitor clams´ response to temperature rise and EE2 exposure, paving the way for future effective guidance and prediction of environmental damaging effects.
Collapse
Affiliation(s)
- João A Rodrigues
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Mónica Silva
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rita Araújo
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Leonor Madureira
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana M Gil
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
5
|
Czaja R, Holmberg R, Pales Espinosa E, Hennen D, Cerrato R, Lwiza K, O'Dwyer J, Beal B, Root K, Zuklie H, Allam B. Behavioral and physiological effects of ocean acidification and warming on larvae of a continental shelf bivalve. MARINE POLLUTION BULLETIN 2023; 192:115048. [PMID: 37236091 DOI: 10.1016/j.marpolbul.2023.115048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/13/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023]
Abstract
The negative impacts of ocean warming and acidification on bivalve fisheries are well documented but few studies investigate parameters relevant to energy budgets and larval dispersal. This study used laboratory experiments to assess developmental, physiological and behavioral responses to projected climate change scenarios using larval Atlantic surfclams Spisula solidissima solidissima, found in northwest Atlantic Ocean continental shelf waters. Ocean warming increased feeding, scope for growth, and biomineralization, but decreased swimming speed and pelagic larval duration. Ocean acidification increased respiration but reduced immune performance and biomineralization. Growth increased under ocean warming only, but decreased under combined ocean warming and acidification. These results suggest that ocean warming increases metabolic activity and affects larval behavior, while ocean acidification negatively impacts development and physiology. Additionally, principal component analysis demonstrated that growth and biomineralization showed similar response profiles, but inverse response profiles to respiration and swimming speed, suggesting alterations in energy allocation under climate change.
Collapse
Affiliation(s)
- Raymond Czaja
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11790-5000, United States
| | - Robert Holmberg
- Downeast Institute, 39 Wildflower Lane, P.O. Box 83, Beals, ME 04611, United States
| | - Emmanuelle Pales Espinosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11790-5000, United States
| | - Daniel Hennen
- Northeast Fisheries Science Center, 166 Water Street Woods Hole, MA 02543-1026, United States
| | - Robert Cerrato
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11790-5000, United States
| | - Kamazima Lwiza
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11790-5000, United States
| | - Jennifer O'Dwyer
- New York State Department of Environmental Conservation, East Setauket, NY 1173, United States
| | - Brian Beal
- Downeast Institute, 39 Wildflower Lane, P.O. Box 83, Beals, ME 04611, United States; University of Maine at Machias, 116 O'Brien Avenue, Machias, ME 04654, United States
| | - Kassandra Root
- Downeast Institute, 39 Wildflower Lane, P.O. Box 83, Beals, ME 04611, United States
| | - Hannah Zuklie
- Downeast Institute, 39 Wildflower Lane, P.O. Box 83, Beals, ME 04611, United States
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11790-5000, United States.
| |
Collapse
|
6
|
Dang X, Lim YK, Li Y, Roberts SB, Li L, Thiyagarajan V. Epigenetic-associated phenotypic plasticity of the ocean acidification-acclimated edible oyster in the mariculture environment. Mol Ecol 2023; 32:412-427. [PMID: 36314404 DOI: 10.1111/mec.16751] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/22/2022]
Abstract
For marine invertebrates with a pelagic-benthic life cycle, larval exposure to ocean acidification (OA) can affect adult performance in response to another environmental stressor. This carry-over effect has the potential to alter phenotypic traits. However, the molecular mechanisms that mediate "OA"-triggered carry-over effects have not been explored despite such information being key to improving species fitness and management strategies for aquafarming. This study integrated the genome-wide DNA methylome and transcriptome to examine epigenetic modification-mediated carry-over OA impacts on phenotypic traits of the ecologically and commercially important oyster species Crassostrea hongkongensis under field conditions. Larvae of C. hongkongensis were exposed to control pH 8.0 and low pH 7.4 conditions, mimicking near future OA scenario in their habitat, before being outplanted as post-metamorphic juveniles at two mariculture field sites with contrasting environmental stressors for 9 months. The larval carry-over OA effect was found to have persistent impacts on the growth and survival trade-off traits on the outplanted juveniles, although the beneficial or adverse effect depended on the environmental conditions at the outplanted sites. Site-specific plasticity was demonstrated with a diverse DNA methylation-associated gene expression profile, with signal transduction and the endocrine system being the most common and highly enriched functions. Highly methylated exons prevailed in the key genes related to general metabolic and endocytic responses and these genes are evolutionarily conserved in various marine invertebrates in response to OA. These results suggest that oysters with prior larval exposure history to OA had the ability to trigger rapid local adaptive responses via epigenetic modification to cope with multiple stressors in the field.
Collapse
Affiliation(s)
- Xin Dang
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Yong-Kian Lim
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China.,School of Applied Science, Temasek Polytechnic, Singapore, Singapore
| | - Yang Li
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Steven B Roberts
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| | - Li Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,The Joint Laboratory for Marine Ecology and Environmental Sciences (JLMEES), Institute of Oceanology, Chinese Acadamy of Sciences, Beijing, China
| | - Vengatesen Thiyagarajan
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China.,The Joint Laboratory for Marine Ecology and Environmental Sciences (JLMEES), The Swire Institute of Marine Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
7
|
Pruett JL, Pandelides AF, Keylon J, Willett KL, Showalter Otts S, Gochfeld DJ. Life‐stage‐dependent effects of multiple flood‐associated stressors on a coastal foundational species. Ecosphere 2022. [DOI: 10.1002/ecs2.4343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Jessica L. Pruett
- National Center for Natural Products Research University of Mississippi, University Mississippi USA
| | - Ann Fairly Pandelides
- Department of BioMolecular Sciences University of Mississippi, University Mississippi USA
| | - Jaycie Keylon
- Department of BioMolecular Sciences University of Mississippi, University Mississippi USA
| | - Kristine L. Willett
- Department of BioMolecular Sciences University of Mississippi, University Mississippi USA
| | | | - Deborah J. Gochfeld
- National Center for Natural Products Research University of Mississippi, University Mississippi USA
- Department of BioMolecular Sciences University of Mississippi, University Mississippi USA
| |
Collapse
|
8
|
Crandall G, Elliott Thompson R, Eudeline B, Vadopalas B, Timmins-Schiffman E, Roberts S. Proteomic response of early juvenile Pacific oysters ( Crassostrea gigas) to temperature. PeerJ 2022; 10:e14158. [PMID: 36262416 PMCID: PMC9575672 DOI: 10.7717/peerj.14158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 09/08/2022] [Indexed: 12/03/2022] Open
Abstract
Pacific oysters (Crassostrea gigas) are a valuable aquaculture product that provides important ecosystem benefits. Among other threats, climate-driven changes in ocean temperature can impact oyster metabolism, survivorship, and immune function. We investigated how elevated temperature impacts larval oysters during settlement (19-33 days post-fertilization), using shotgun proteomics with data-independent acquisition to identify proteins present in the oysters after 2 weeks of exposure to 23 °C or 29 °C. Oysters maintained at elevated temperatures were larger and had a higher settlement rate, with 86% surviving to the end of the experiment; these oysters also had higher abundance trends of proteins related to metabolism and growth. Oysters held at 23 °C were smaller, had a decreased settlement rate, displayed 100% mortality, and had elevated abundance trends of proteins related to immune response. This novel use of proteomics was able to capture characteristic shifts in protein abundance that hint at important differences in the phenotypic response of Pacific oysters to temperature regimes. Additionally, this work has produced a robust proteomic product that will be the basis for future research on bivalve developmental processes.
Collapse
Affiliation(s)
- Grace Crandall
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States
| | | | | | - Brent Vadopalas
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States
| | | | - Steven Roberts
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States
| |
Collapse
|
9
|
Rodriguez-Burgos AM, Briceño-Zuluaga FJ, Ávila Jiménez JL, Hearn A, Peñaherrera-Palma C, Espinoza E, Ketchum J, Klimley P, Steiner T, Arauz R, Joan E. The impact of climate change on the distribution of Sphyrna lewini in the tropical eastern Pacific. MARINE ENVIRONMENTAL RESEARCH 2022; 180:105696. [PMID: 35932509 DOI: 10.1016/j.marenvres.2022.105696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Variability and climate change due to anthropic influence have brought about alterations to marine ecosystems, that, in turn, have affected the physiology and metabolism of ectotherm species, such as the common hammerhead shark (Sphyrna lewini). However, the impact that climate variability may have on this species' distribution, particularly in the Eastern Tropical Pacific Marine Corridor, which is considered an area with great marine biodiversity, is unknown. The purpose of this research was to evaluate the effect of derivate impact of climate change on the oceanographic distribution of the hammerhead shark (Sphyrna lewini) in the Eastern Tropical Pacific Marine Corridor, contrasting the present and future scenarios for 2050. The methodology used was an ecological niche model based on the KUENM R package software that uses the maximum entropy algorithm (MaxEnt). The modelling was made for the year 2050 under RCP2.6 and RCP8.5 scenarios. A total of 952 models were made, out of which only one met the statistical parameters established as optimal, for future scenarios. The environmental suitability for S.lewini shows that this species would migrate to the south in the Chilean Pacific, associated with a possible warming that the equatorial zone will have and the possible cooling that the subtropical zone of the South Pacific will have by 2050, the product of changes in oceanographic dynamics.
Collapse
Affiliation(s)
- Aura María Rodriguez-Burgos
- Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá, Colombia; JEAI-IRD-UMNG: CHARISMA, Cajicá, Colombia.
| | - Francisco Javier Briceño-Zuluaga
- Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá, Colombia; JEAI-IRD-UMNG: CHARISMA, Cajicá, Colombia.
| | | | - Alex Hearn
- Galapagos Science Center, Universidad San Francisco de Quito, Ecuador; MigraMar, Sir Francis Drake Boulevard, Olema, California, USA.
| | | | - Eduardo Espinoza
- MigraMar, Sir Francis Drake Boulevard, Olema, California, USA; Dirección del Parque Nacional Galápagos, Instituto Nacional de Biodiversidad (INABIO), Ecuador.
| | - James Ketchum
- Pelagios Kakunjá, Centro de Investigaciones Biológicas del Noroeste, Mexico.
| | - Peter Klimley
- MigraMar, Sir Francis Drake Boulevard, Olema, California, USA; University of California Davis, USA.
| | | | - Randall Arauz
- MigraMar, Sir Francis Drake Boulevard, Olema, California, USA; Fins Attached, USA.
| | - Elpis Joan
- MigraMar, Sir Francis Drake Boulevard, Olema, California, USA.
| |
Collapse
|
10
|
Marchessaux G, Lüskow F, Bejean M, Pakhomov EA. Increasing Temperature Facilitates Polyp Spreading and Medusa Appearance of the Invasive Hydrozoan Craspedacusta sowerbii. BIOLOGY 2022; 11:biology11081100. [PMID: 35892956 PMCID: PMC9331908 DOI: 10.3390/biology11081100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/05/2022]
Abstract
The freshwater jellyfish Craspedacusta sowerbii is among the most widespread invasive species, observed across a wide temperature range. The aim of this study is to analyze the polyp and medusa stages response to different temperatures by using (i) an experimental study on the polyp colony growth at 19 and 29 °C, and (ii) prediction of the Thermal Habitat Suitability (THS) based on the thermal tolerance of the medusa stage. The total number of polyps and colonies was greater at high temperature. At 19 °C, colonies with 1 to 5 polyps were present, with colonies of 1 to 3 polyps numerically dominating. At 29 °C, colonies were 80% composed of 1- to 2-polyps. Based on the published medusa pulsation rhythm data, a Thermal Performance Curve (TPC) regression was performed and used to monthly predict the THS for current and future (2050 and 2100) scenarios. The southern hemisphere offered optimal conditions (THS > 0.6) year-round. In the northern hemisphere, the optimum period was predicted to be between June and September. The future THS were considerably larger than at present with an increase in optimal THS at higher latitudes (up to 60° N). The combination of experimental and modeling approaches allows to identify the optimal thermal conditions of the polyp and medusa stages and to predict their invasive capacities.
Collapse
Affiliation(s)
- Guillaume Marchessaux
- Department of Earth and Marine Science, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
- Correspondence:
| | - Florian Lüskow
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2039-2207 Main Mall, Vancouver, BC V6T 1Z4, Canada; (F.L.); (E.A.P.)
- Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Mickaël Bejean
- Muséum de Besançon, 99 Rue Des Fusillés, La Citadelle, 25000 Besançon, France;
| | - Evgeny A. Pakhomov
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2039-2207 Main Mall, Vancouver, BC V6T 1Z4, Canada; (F.L.); (E.A.P.)
- Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC V6T 1Z4, Canada
- Hakai Institute, Heriot Bay, BC V0P 1H0, Canada
| |
Collapse
|
11
|
Lutier M, Di Poi C, Gazeau F, Appolis A, Le Luyer J, Pernet F. Revisiting tolerance to ocean acidification: Insights from a new framework combining physiological and molecular tipping points of Pacific oyster. GLOBAL CHANGE BIOLOGY 2022; 28:3333-3348. [PMID: 35092108 DOI: 10.1111/gcb.16101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/02/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Studies on the impact of ocean acidification on marine organisms involve exposing organisms to future acidification scenarios, which has limited relevance for coastal calcifiers living in a mosaic of habitats. Identification of tipping points beyond which detrimental effects are observed is a widely generalizable proxy of acidification susceptibility at the population level. This approach is limited to a handful of studies that focus on only a few macro-physiological traits, thus overlooking the whole organism response. Here we develop a framework to analyze the broad macro-physiological and molecular responses over a wide pH range in juvenile oyster. We identify low tipping points for physiological traits at pH 7.3-6.9 that coincide with a major reshuffling in membrane lipids and transcriptome. In contrast, a drop in pH affects shell parameters above tipping points, likely impacting animal fitness. These findings were made possible by the development of an innovative methodology to synthesize and identify the main patterns of variations in large -omic data sets, fitting them to pH and identifying molecular tipping points. We propose the broad application of our framework to the assessment of effects of global change on other organisms.
Collapse
Affiliation(s)
| | - Carole Di Poi
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France
| | - Frédéric Gazeau
- Laboratoire d'Océanographie de Villefranche, LOV Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | | | - Jérémy Le Luyer
- EIO UPF/IRD/ILM/Ifremer, Labex CORAIL, Unité RMPF, Centre Océanologique du Pacifique, Vairao, French Polynesia
| | | |
Collapse
|
12
|
Lopes J, Coppola F, Soares AMVM, Meucci V, Pretti C, Polese G, Freitas R. How temperature rise will influence the toxic impacts of 17 α-ethinylestradiol in Mytilus galloprovincialis? ENVIRONMENTAL RESEARCH 2022; 204:112279. [PMID: 34699762 DOI: 10.1016/j.envres.2021.112279] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/23/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceutical drugs are Contaminants of Emerging Concern (CECs) and are continuously discharged into the environment. As a result of human and veterinary use, these substances are reaching aquatic coastal systems, with limited information regarding the toxic effects of these compounds towards inhabiting organisms. Among CECs are pharmaceuticals like 17 α-ethinylestradiol (EE2), which is a synthetic hormone with high estrogenic potency. EE2 has been increasingly found in different aquatic systems but few studies addressed its potential toxicity to marine wildlife, in particular to bivalves. Therefore, the aim of the present study was to evaluate the influence of temperature (17 °C-control and 21 °C) on the potential effects of EE2 on the mussel Mytilus galloprovincialis. For this purpose, mussels were exposed to different concentrations of EE2 (5.0; 25.0; 125.0 and 625 ng/L), resembling low to highly polluted sites. Mussels exposed to each concentration were maintained under two temperatures, 17 and 21 °C, which represent actual and predicted warming conditions, respectively. After 28 days, oxidative stress status, metabolism related parameters, neurotoxicity and histopathological alterations were measured. The results obtained clearly showed an interactive effect of increased temperature and EE2, with limited antioxidant and biotransformation capacity when both stressors were acting together, leading to higher cellular damage. The combination of both stressors also enhanced mussels' metabolic capacity and neurotoxic effects. Nevertheless, loss of redox balance was confirmed by the strong decrease of the ratio between reduce glutathione (GSH) and oxidized glutathione (GSSG) in contaminated mussels, regardless the temperature. Histopathological indexes in contaminated mussels were significantly different from the control group, indicating impacts in gills and digestive glands of mussels due to EE2, with higher values observed at 21 °C. Overall, this study demonstrates that of EE2 represents a threat to mussels and predicted warming conditions will enhance the impacts, which in a near future might result in impairments at the population and community levels.
Collapse
Affiliation(s)
- Joel Lopes
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | | | - Carlo Pretti
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy; Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, 80126, Italy
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
13
|
Kavousi J, Roussel S, Martin S, Gaillard F, Badou A, Di Poi C, Huchette S, Dubois P, Auzoux-Bordenave S. Combined effects of ocean warming and acidification on the larval stages of the European abalone Haliotis tuberculata. MARINE POLLUTION BULLETIN 2022; 175:113131. [PMID: 34839953 DOI: 10.1016/j.marpolbul.2021.113131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
This study examined the physiological responses of the larval stages of Haliotis tuberculata, an economically important abalone, to combined temperature (17 °C and 19 °C) and pH (ambient pH and -0.3 units, i.e., +200% increase in seawater acidity) in a full factorial experiment. Tissue organogenesis, shell formation, and shell length significantly declined due to low pH. High temperature significantly increased the proportion of fully shelled larvae at 24 h post-fertilization (hpf), but increased the proportion of unshelled larvae at 72 hpf. Percentage of swimming larvae at 24 hpf, 72 hpf and 96 hpf significantly declined due to high temperature, but not because of low pH. Larval settlement increased under high temperature, but was not affected by low pH. Despite the fact that no interaction between temperature and pH was observed, the results provide additional evidence on the sensitivity of abalone larvae to both low pH and high temperature. This may have negative consequences for the persistence of abalone populations in natural and aquaculture environments in the near future.
Collapse
Affiliation(s)
- Javid Kavousi
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, Plouzane, France.
| | | | - Sophie Martin
- Sorbonne Université, 4 place Jussieu, Paris 75005, France; UMR 7144 "Adaptation et Diversité en Milieu Marin" (AD2M), CNRS/SU, Station Biologique de Roscoff, Roscoff, Cedex, 29680, France
| | - Fanny Gaillard
- UMR 7144 "Adaptation et Diversité en Milieu Marin" (AD2M), CNRS/SU, Station Biologique de Roscoff, Roscoff, Cedex, 29680, France
| | - Aicha Badou
- Direction Generale Deleguee a la Recherche, l'Expertise, la Valorisation et l'Enseignement (DGD REVE), Muséum National d'Histoire Naturelle, Station marine de Concarneau, Concarneau 29900, France
| | - Carole Di Poi
- Ifremer, LEMAR UMR 6539 UBO/CNRS/IRD/Ifremer, Argenton, France
| | | | - Philippe Dubois
- Laboratoire de Biologie Marine, Université Libre de Bruxelles, CP160/15, 1050, Brussels, Belgium
| | - Stéphanie Auzoux-Bordenave
- Sorbonne Université, 4 place Jussieu, Paris 75005, France; UMR "Biologie des Organismes et Ecosystèmes Aquatiques" (BOREA), MNHN/CNRS/SU/IRD, Muséum National d'Histoire Naturelle, Station Marine de Concarneau, Concarneau 29900, France
| |
Collapse
|
14
|
Cole VJ, Parker LM, Scanes E, Wright J, Barnett L, Ross PM. Climate change alters shellfish reef communities: A temperate mesocosm experiment. MARINE POLLUTION BULLETIN 2021; 173:113113. [PMID: 34768191 DOI: 10.1016/j.marpolbul.2021.113113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Climate change is expected to cause significant changes to rocky shore diversity. This study used outdoor mesocosms to test the predictions that warming and ocean acidification will alter the responses of native Trichomya hirsuta and introduced Mytilus galloprovincialis mussels, and their associated communities of infauna. Experiments consisted of orthogonal combinations of temperature (ambient 22 °C or elevated 25 °C), pCO2 (ambient 400 μatm or elevated 1000 μatm), mussel species (T. hirsuta or M. galloprovincialis), and mussel configuration (native, introduced, or both), with n = 3 replicates. Elevated pCO2 reduced the growth of T. hirsuta but not that of M. galloprovincialis, and warming and pCO2 influenced the infauna that colonised both species of mussels. There was a reduction in infaunal molluscs and an increase in polychaetes; there was, however, no effect on crustaceans. Results from this study suggest that climate-driven changes from one mussel species to another can significantly influence infaunal communities.
Collapse
Affiliation(s)
- Victoria J Cole
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia; NSW Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW 2316, Australia.
| | - Laura M Parker
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia; School of Biological, Earth and Environmental Sciences, University of New South Wales, NSW 2052, Australia
| | - Elliot Scanes
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia; Climate Change Cluster, University of Technology, Sydney, Ultimo 2007, Australia
| | - John Wright
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Lauren Barnett
- School of Science and Health, Western Sydney University, Penrith South DC 1797, Australia
| | - Pauline M Ross
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
15
|
Wu B, Chen X, Yu M, Ren J, Hu J, Shao C, Zhou L, Sun X, Yu T, Zheng Y, Wang Y, Wang Z, Zhang H, Fan G, Liu Z. Chromosome-level genome and population genomic analysis provide insights into the evolution and environmental adaptation of Jinjiang oyster Crassostrea ariakensis. Mol Ecol Resour 2021; 22:1529-1544. [PMID: 34800349 DOI: 10.1111/1755-0998.13556] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/18/2021] [Accepted: 11/02/2021] [Indexed: 01/08/2023]
Abstract
The Jinjiang oyster Crassostrea ariakensis, naturally distributing in estuarine regions with low salinity, is an important economic and ecological species in China. However, studies on its genomics and population genetics remain lacking. Here, we assembled the chromosome-level genome of a female C. ariakensis and re-sequenced 261 individuals from five locations in China representing three typical habitats. The C. ariakensis genome was 662.9 Mb with contig N50 length of 5.9 Mb using PacBio HiFi-CCS long reads, and 99.83% sequences were anchored onto 10 pseudochromosomes using Hi-C data. A total of 26,354 protein-coding genes were predicted. We identified three significantly expanded gene families which are closely associated with osmotic pressure regulation, including CDO, SLC13 and SDR. Population structure analysis revealed that the C. ariakensis from five locations were clustered into three typical groups (northern, southern and Shanghai) (K = 3) and their phylogenetic relationship was consistently correlated to their geographical distribution. Furtherly, the differentiation between northern and southern groups was clearly demonstrated by estimated population differentiation coefficient (FST = 0.1154), and the PSMC distribution showed the two groups of effective population size separated at 0.1 Ma. Meanwhile gene flow from southern to Shanghai was detected. Selective sweep analysis between northern and southern group detected genes associated with heat response and salinity adaptation. This study could provide valuable genomic resources and information for further research on the molecular evolution, genetic breeding, biological function and evolutionary adaptation of C. ariakensis.
Collapse
Affiliation(s)
- Biao Wu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xi Chen
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Mengjun Yu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Jianfeng Ren
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jie Hu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Changwei Shao
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Liqing Zhou
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiujun Sun
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Tao Yu
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China
| | - Yanxin Zheng
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China
| | - Yan Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Zhenyuan Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - He Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Zhihong Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
16
|
Zhang Q, Wang H, Xia X, Bi S, Lin H, Chen J. Elevated temperature enhances the bioavailability of pyrene to Daphnia magna in the presence of dissolved organic matter: Implications for the effect of climate warming. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115349. [PMID: 32791466 DOI: 10.1016/j.envpol.2020.115349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/10/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Dissolved organic matter (DOM) is an essential factor in natural waters to affect the bioavailability of hydrophobic organic compounds (HOCs). Climate warming may influence the partition of HOCs between DOM and water as well as the physiology of organisms. Thus, we hypothesized that elevated temperature might affect the bioavailability of HOCs in the presence of DOM. To test this hypothesis, the effect of temperature on the bioavailability of pyrene to Daphnia magna (D. magna) in water-DOM (fulvic acid) system was investigated. The results showed that, although the concentration of freely dissolved pyrene increased slightly with temperature in the presence of DOM when the level of total dissolved pyrene was kept constant, D. magna immobilization (increased by 50.0-167%) and internal body burden of pyrene (increased by 18.4-41.5%) increased significantly with every 4 °C increase in temperature (16, 20, 24 °C). The main reasonable explanation for this result is that elevated temperature promoted pyrene uptake by D. magna. It was found that the increase percentage of 1-hydroxypyrene (main metabolite of pyrene) concentrations with temperature was higher than that of pyrene concentrations in the body except gut of D. magna. This result indicated that increased temperature might enhance the metabolic rates of D. magna, thus leading to increased uptake rate of freely dissolved and DOM-associated pyrene. This study suggests that elevated temperature might enhance the bioavailability of HOCs in natural waters through influencing both the bioavailable fraction of HOCs and their uptake rates in aquatic organisms, and this should be considered for evaluating their eco-environmental risks under the context of climate warming.
Collapse
Affiliation(s)
- Qianru Zhang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Haotian Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Siqi Bi
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Hui Lin
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Jian Chen
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
17
|
Kumar N, Gupta SK, Chandan NK, Bhushan S, Singh DK, Kumar P, Kumar P, Wakchaure GC, Singh NP. Mitigation potential of selenium nanoparticles and riboflavin against arsenic and elevated temperature stress in Pangasianodon hypophthalmus. Sci Rep 2020; 10:17883. [PMID: 33087779 PMCID: PMC7578828 DOI: 10.1038/s41598-020-74911-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022] Open
Abstract
Climate change impact has disturbed the rainfall pattern worsening the problems of water availability in the aquatic ecosystem of India and other parts of the world. Arsenic pollution, mainly through excessive use of groundwater and other anthropogenic activities, is aggravating in many parts of the world, particularly in South Asia. We evaluated the efficacy of selenium nanoparticles (Se-NPs) and riboflavin (RF) to ameliorate the adverse impacts of elevated temperature and arsenic pollution on growth, anti-oxidative status and immuno-modulation in Pangasianodon hypophthalmus. Se-NPs were synthesized using fish gill employing green synthesis method. Four diets i.e., Se-NPs (0 mg kg-1) + RF (0 mg kg-1); Se-NPs (0.5 mg kg-1) + RF (5 mg kg-1); Se-NPs (0.5 mg kg-1) + RF (10 mg kg-1); and Se-NPs (0.5 mg kg-1) + RF (15 mg kg-1) were given in triplicate in a completely randomized block design. The fish were treated in arsenic (1/10th of LC50, 2.68 mg L-1) and high temperature (34 °C). Supplementation of the Se-NPs and RF in the diets significantly (p < 0.01) enhanced growth performance (weight gain, feed efficiency ratio, protein efficiency ratio, and specific growth rate), anti-oxidative status and immunity of the fish. Nitroblue tetrazolium (NBT), total immunoglobulin, myeloperoxidase and globulin enhanced (p < 0.01) with supplementation (Se-NPs + RF) whereas, albumin and albumin globulin (A:G) ratio (p < 0.01) reduced. Stress biomarkers such as lipid peroxidation in the liver, gill and kidney, blood glucose, heat shock protein 70 in gill and liver as well as serum cortisol reduced (p < 0.01) with supplementation of Se-NPs and RF, whereas, acetylcholine esterase and vitamin C level in both brain and muscle significantly enhanced (p < 0.01) in compared to control and stressors group (As + T) fed with control diet. The fish were treated with pathogenic bacteria after 90 days of experimental trial to observe cumulative mortality and relative survival for a week. The arsenic concentration in experimental water and bioaccumulation in fish tissues was also determined, which indicated that supplementation of Se-NPs and RF significantly reduced (p < 0.01) bioaccumulation. The study concluded that a combination of Se-NPs and RF has the potential to mitigate the stresses of high temperature and As pollution in P. hypophthalmus.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, Maharashtra, 413115, India.
| | - Sanjay Kumar Gupta
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834010, India
| | - Nitish Kumar Chandan
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, 751002, India
| | - Shashi Bhushan
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Dilip Kumar Singh
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Paritosh Kumar
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, Maharashtra, 413115, India
| | - Prem Kumar
- ICAR-Central Institute of Brackishwater Aquaculture, Chennai, Tamil Nadu, 600028, India
| | - Goraksha C Wakchaure
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, Maharashtra, 413115, India
| | - Narendra Pratap Singh
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, Maharashtra, 413115, India
| |
Collapse
|
18
|
Lawlor JA, Arellano SM. Temperature and salinity, not acidification, predict near-future larval growth and larval habitat suitability of Olympia oysters in the Salish Sea. Sci Rep 2020; 10:13787. [PMID: 32796854 PMCID: PMC7429507 DOI: 10.1038/s41598-020-69568-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 07/14/2020] [Indexed: 11/26/2022] Open
Abstract
Most invertebrates in the ocean begin their lives with planktonic larval phases that are critical for dispersal and distribution of these species. Larvae are particularly vulnerable to environmental change, so understanding interactive effects of environmental stressors on larval life is essential in predicting population persistence and vulnerability of species. Here, we use a novel experimental approach to rear larvae under interacting gradients of temperature, salinity, and ocean acidification, then model growth rate and duration of Olympia oyster larvae and predict the suitability of habitats for larval survival. We find that temperature and salinity are closely linked to larval growth and larval habitat suitability, but larvae are tolerant to acidification at this scale. We discover that present conditions in the Salish Sea are actually suboptimal for Olympia oyster larvae from populations in the region, and that larvae from these populations might actually benefit from some degree of global ocean change. Our models predict a vast decrease in mean pelagic larval duration by the year 2095, which has the potential to alter population dynamics for this species in future oceans. Additionally, we find that larval tolerance can explain large-scale biogeographic patterns for this species across its range.
Collapse
Affiliation(s)
- Jake A Lawlor
- Department of Biology, Shannon Point Marine Center, Western Washington University, Anacortes, WA, USA.
| | - Shawn M Arellano
- Department of Biology, Shannon Point Marine Center, Western Washington University, Anacortes, WA, USA
| |
Collapse
|
19
|
Espinel-Velasco N, Agüera A, Lamare M. Sea urchin larvae show resilience to ocean acidification at the time of settlement and metamorphosis. MARINE ENVIRONMENTAL RESEARCH 2020; 159:104977. [PMID: 32662430 DOI: 10.1016/j.marenvres.2020.104977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Extensive research has shown that the early life stages of marine organisms are sensitive to ocean acidification (OA). Less is known, however, on whether larval settlement and metamorphosis may be affected, or by which mechanisms. These are key processes in the life cycle of most marine benthic organisms, since they mark the transition between the free swimming larval stage to benthic life. We investigated whether OA could affect the larval settlement success of the sea urchin Evechinus chloroticus, a key coastal species with ecological, economic and cultural importance in New Zealand. We performed four settlement experiments to test whether reduced seawater pH (ranging from 8.1 to 7.0, at an interval of ~0.2 pH units) alters larval settlement and metamorphosis success. Our results show that settlement success was not significantly reduced when the larvae were exposed to a range of reduced seawater pH treatments (8.1-7.0) at time of settlement (on direct effects). Similarly, when presented with crustose coralline algae (CCA) pre-conditioned in seawater pH of either pH 8.1 or 7.7 for 28 days, larval settlement success remained unaltered (on indirect effects). We conclude that competent larvae in this species are resilient to OA at time of settlement. Further research on a range of taxa that vary in settlement selectivity and behaviour is needed in order to fully understand the effects of OA on the life cycle of marine invertebrates and the consequences it might have for future coastal marine ecosystems.
Collapse
Affiliation(s)
| | - Antonio Agüera
- Institute of Marine Research, Austevoll Research Station, Storebø, 5392, Norway
| | - Miles Lamare
- Department of Marine Science, University of Otago, Dunedin, 9054, New Zealand
| |
Collapse
|
20
|
Barnett AF, Gledhill JH, Griffitt RJ, Slattery M, Gochfeld DJ, Willett KL. Combined and independent effects of hypoxia and tributyltin on mRNA expression and physiology of the Eastern oyster (Crassostrea virginica). Sci Rep 2020; 10:10605. [PMID: 32606384 PMCID: PMC7327041 DOI: 10.1038/s41598-020-67650-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/08/2020] [Indexed: 01/11/2023] Open
Abstract
Oyster reefs are vital to estuarine health, but they experience multiple stressors and globally declining populations. This study examined effects of hypoxia and tributyltin (TBT) on adult Eastern oysters (Crassostrea virginica) exposed either in the laboratory or the field following a natural hypoxic event. In the laboratory, oysters were exposed to either hypoxia followed by a recovery period, or to hypoxia combined with TBT. mRNA expression of HIF1-α and Tβ-4 along with hemocyte counts, biomarkers of hypoxic stress and immune health, respectively, were measured. In field-deployed oysters, HIF1-α and Tβ-4 expression increased, while no effect on hemocytes was observed. In contrast, after 6 and 8 days of laboratory-based hypoxia exposure, both Tβ-4 expression and hemocyte counts declined. After 8 days of exposure to hypoxia + TBT, oysters substantially up-regulated HIF1-α and down-regulated Tβ-4, although hemocyte counts were unaffected. Results suggest that hypoxic exposure induces immunosuppression which could increase vulnerability to pathogens.
Collapse
Affiliation(s)
- Ann Fairly Barnett
- Division of Environmental Toxicology, Department of BioMolecular Sciences, University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - James H Gledhill
- Division of Environmental Toxicology, Department of BioMolecular Sciences, University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Robert J Griffitt
- School of Ocean Science and Engineering, University of Southern Mississippi, 703 East Beach Road, Ocean Springs, MS, 39564, USA
| | - Marc Slattery
- Division of Environmental Toxicology, Department of BioMolecular Sciences, University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Deborah J Gochfeld
- Division of Environmental Toxicology, Department of BioMolecular Sciences, University of Mississippi, P.O. Box 1848, University, MS, 38677, USA.,National Center for Natural Products Research, University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Kristine L Willett
- Division of Environmental Toxicology, Department of BioMolecular Sciences, University of Mississippi, P.O. Box 1848, University, MS, 38677, USA.
| |
Collapse
|
21
|
Liu Z, Zhang Y, Zhou Z, Zong Y, Zheng Y, Liu C, Kong N, Gao Q, Wang L, Song L. Metabolomic and transcriptomic profiling reveals the alteration of energy metabolism in oyster larvae during initial shell formation and under experimental ocean acidification. Sci Rep 2020; 10:6111. [PMID: 32273532 PMCID: PMC7145846 DOI: 10.1038/s41598-020-62963-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/23/2020] [Indexed: 11/09/2022] Open
Abstract
Marine bivalves secrete calcified shells to protect their soft bodies from predation and damages, which is of great importance for their survival, and for the safety of the coastal ecosystem. In recent years, larval shell formation of marine bivalves has been severely affected by ocean acidification (OA), and previous study indicated that OA might affect such process by disrupting endogenous energy metabolism. Developmental stages from trochophore to D-shape larvae are extremely important for initial shell formation in oyster since a calcified shell was formed to cover the chitin one. In the present study, metabolomic and transcriptomic approaches were employed to investigate the energy metabolism of oyster larvae during initial shell (prodissoconch I, PDI shell) formation and under experimental OA treatment. Totally 230 chemical compounds were identified from the present dataset, most of which were highly expressed in the “middle” stage (early D-shape larvae) which was critical for PDI shell formation since a calcified shell was formed to cover the chitin one. Several compounds such as glucose, glutarylcarnitine (C5), β-hydroxyisovaleroylcarnitine, 5-methylthioadenosine (MTA), myristoleate (14:1n5) and palmitoleate (16:1n7) were identified, which were involved in energy metabolic processes including amino acid oxidation, glycolysis, pentose phosphate pathway and fatty acid metabolism. In addition, mRNA expressions of genes related to protein metabolism, glycolysis, lipid degradation, calcium transport and organic matrix formation activities were significantly down-regulated upon experimental OA. These results collectively suggested that formation of the initial shell in oyster larvae required endogenous energy coming from amino acid oxidation, glycolysis, pentose phosphate pathway and fatty acid metabolism. These metabolic activities could be severely inhibited by experimental OA, which might alter the allocation of endogenous energy. Insufficient endogenous energy supply then suppressed the mobilization of calcium and resulted in a failure or delay in PDI shell formation.
Collapse
Affiliation(s)
- Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.,Dalian Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Yukun Zhang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.,Dalian Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Zhi Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, China
| | - Yanan Zong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.,Dalian Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Yan Zheng
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.,Dalian Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Chang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.,Dalian Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Ning Kong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.,Dalian Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Qiang Gao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.,Dalian Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China. .,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China. .,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China. .,Dalian Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China. .,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China. .,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China. .,Dalian Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
22
|
Timmins‐Schiffman E, Guzmán JM, Elliott Thompson R, Vadopalas B, Eudeline B, Roberts SB. Dynamic response in the larval geoduck ( Panopea generosa) proteome to elevated pCO 2. Ecol Evol 2020; 10:185-197. [PMID: 31988722 PMCID: PMC6972802 DOI: 10.1002/ece3.5885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/15/2019] [Accepted: 11/10/2019] [Indexed: 12/20/2022] Open
Abstract
Pacific geoducks (Panopea generosa) are clams found along the northeast Pacific coast where they are important components of coastal and estuarine ecosystems and a major aquaculture product. The Pacific coastline, however, is also experiencing rapidly changing ocean habitat, including significant reductions in pH. To better understand the physiological impact of ocean acidification on geoduck clams, we characterized for the first time the proteomic profile of this bivalve during larval development and compared it to that of larvae exposed to low pH conditions. Geoduck larvae were reared at pH 7.5 (ambient) or pH 7.1 in a commercial shellfish hatchery from day 6 to day 19 postfertilization and sampled at six time points for an in-depth proteomics analysis using high-resolution data-dependent analysis. Larvae reared at low pH were smaller than those reared at ambient pH, especially in the prodissoconch II phase of development, and displayed a delay in their competency for settlement. Proteomic profiles revealed that metabolic, cell cycle, and protein turnover pathways differed between the two pH and suggested that differing phenotypic outcomes between pH 7.5 and 7.1 are likely due to environmental disruptions to the timing of physiological events. In summary, ocean acidification results in elevated energetic demand on geoduck larvae, resulting in delayed development and disruptions to normal molecular developmental pathways, such as carbohydrate metabolism, cell growth, and protein synthesis.
Collapse
Affiliation(s)
| | - José M. Guzmán
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWAUSA
| | - Rhonda Elliott Thompson
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWAUSA
- Taylor Shellfish HatcheryQuilceneWAUSA
- Mason County Public HealthSheltonWAUSA
| | | | | | - Steven B. Roberts
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
23
|
Liu X, Li L, Li A, Li Y, Wang W, Zhang G. Transcriptome and Gene Coexpression Network Analyses of Two Wild Populations Provides Insight into the High-Salinity Adaptation Mechanisms of Crassostrea ariakensis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:596-612. [PMID: 31165295 DOI: 10.1007/s10126-019-09896-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
Crassostrea ariakensis naturally distributes in the intertidal and estuary region with relative low salinity ranging from 10 to 25‰. To understand the adaptive capacity of oysters to salinity stress, we conducted transcriptome analysis to investigate the metabolic pathways of salinity stress effectors in oysters from two different geographical sites, namely at salinities of 16, 23, and 30‰. We completed transcriptome sequencing of 18 samples and a total of 52,392 unigenes were obtained after assembly. Differentially expressed gene (DEG) analysis and weighted gene correlation network analysis (WGCNA) were performed using RNA-Seq transcriptomic data from eye-spot larvae at different salinities and from different populations. The results showed that at moderately high salinities (23 and 30‰), genes related to osmotic agents, oxidation-reduction processes, and related regulatory networks of complex transcriptional regulation and signal transduction pathways dominated to counteract the salinity stress. Moreover, there were adaptive differences in salinity response mechanisms, especially at high salinity, in oyster larvae from different populations. These results provide a framework for understanding the interactions of multiple pathways at the system level and for elucidating the complex cellular processes involved in responding to osmotic stress and maintaining growth. Furthermore, the results facilitate further research into the biological processes underlying physiological adaptations to hypertonic stress in marine invertebrates and provide a molecular basis for our subsequent search for high salinity-tolerant populations.
Collapse
Affiliation(s)
- Xingyu Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Beijing, China.
- National & Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| | - Ao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingxiang Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Beijing, China
- National & Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Wei Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Beijing, China
- National & Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Beijing, China
- National & Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
24
|
Di G, Li Y, Zhu G, Guo X, Li H, Huang M, Shen M, Ke C. Effects of acidification on the proteome during early development of Babylonia areolata. FEBS Open Bio 2019; 9:1503-1520. [PMID: 31268628 PMCID: PMC6722889 DOI: 10.1002/2211-5463.12695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/24/2019] [Accepted: 07/02/2019] [Indexed: 11/11/2022] Open
Abstract
Increases in atmospheric CO2 partial pressure have lowered seawater pH in marine ecosystems, a process called ocean acidification (OA). The effects of OA during the critical stages of larval development may have disastrous consequences for some marine species, including Babylonia areolata (Link 1807), a commercially important sea snail in China and South East Asia. To investigate how OA affects the proteome of Babylonia areolata, here we used label-free proteomics to study protein changes in response to acidified (pH 7.6) or ambient seawater (pH 8.1) during three larvae developmental stages of B. areolata, namely, the veliger larvae before attachment (E1), veliger larvae after attachment (E2), and carnivorous juvenile snail (E3). In total, we identified 720 proteins. This result suggested that acidification seriously affects late veliger stage after attachment (E2). Further examination of the roles of differentially expressed proteins, which include glutaredoxin, heat-shock protein 70, thioredoxin, catalase, cytochrome-c-oxidase, peroxiredoxin 6, troponin T, CaM kinase II alpha, proteasome subunit N3 and cathepsin L, will be important for understanding the molecular mechanisms underlying pH reduction.
Collapse
Affiliation(s)
- Guilan Di
- College of FisheriesHenan Normal UniversityXinxiangChina
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
| | - Yanfei Li
- College of FisheriesHenan Normal UniversityXinxiangChina
| | - Guorong Zhu
- College of FisheriesHenan Normal UniversityXinxiangChina
| | - Xiaoyu Guo
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
| | - Hui Li
- College of FisheriesHenan Normal UniversityXinxiangChina
| | - Miaoqin Huang
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
| | - Minghui Shen
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
| |
Collapse
|
25
|
Cardoso PG, Resende-de-Oliveira R, Rocha E. Combined effects of increased temperature and levonorgestrel exposure on zebrafish female liver, using stereology and immunohistochemistry against catalase, CYP1A, HSP90 and vitellogenin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1059-1067. [PMID: 31252103 DOI: 10.1016/j.envpol.2019.06.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/26/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
Climate change and pharmaceuticals contamination constitute two of the most relevant stressors on the aquatic ecosystems, however, there is a huge lack of information regarding the interactive effects of both stressors. For that, a mesocosm experiment was implemented where adult zebrafish were exposed to combined temperature and the progestin levonorgestrel (LNG) for 21 days. Considering that the liver is one of the organs where there is a greater metabolization and accumulation of toxicants, the main objective of this work was to assess the effects of both stressors on the female zebrafish hepatocytes morphology and functioning, through stereological and immunohistochemical techniques. Our results revealed an increase of coefficient of variation of the number distribution of hepatocytes volume (CVN(υ)) for individuals exposed to LNG, which denotes an increase of the hepatocytes size variability and is suggestive of functional impacts. This was corroborated by the signs of increased glycogen content with the exposure to increased LNG concentrations and temperature, indicating modified hepatocyte glycogen metabolism. Such disturbances can be considered indicators that the fish had to deal with impacts caused by the stress factors. Regarding the immunoreactivity, from the four proteins selected (catalase, CYP1A, HSP90 and Vtg), just in two of them (catalase and Vtg) were observed some responses to both stressors. For catalase there was a hormetic response, in which exposure to lower LNG concentrations caused a significant higher positive immunostaining than under higher LNG concentrations. While, for Vtg, significant effects of temperature and LNG existed, in which a decline in Vtg immunostaining was observed with exposure to higher temperature and lower LNG concentrations. These results should be seen as a warning sign about fine impacts of multiple stressors, such as temperature and progestogens, on the structure and functioning of zebrafish liver and potentially in other aquatic organisms, and on their health implications.
Collapse
Affiliation(s)
- P G Cardoso
- Group of Histomorphology, Physiopathology and Applied Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.
| | - R Resende-de-Oliveira
- Group of Histomorphology, Physiopathology and Applied Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, Institute of Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - E Rocha
- Group of Histomorphology, Physiopathology and Applied Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, Institute of Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
26
|
Bogan SN, McMahon JB, Pechenik JA, Pires A. Legacy of Multiple Stressors: Responses of Gastropod Larvae and Juveniles to Ocean Acidification and Nutrition. THE BIOLOGICAL BULLETIN 2019; 236:159-173. [PMID: 31167086 DOI: 10.1086/702993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ocean acidification poses a significant threat to calcifying invertebrates by negatively influencing shell deposition and growth. An organism's performance under ocean acidification is not determined by the susceptibility of one single life-history stage, nor is it solely controlled by the direct physical consequences of ocean acidification. Shell development by one life-history stage is sometimes a function of the pH or pCO2 levels experienced during earlier developmental stages. Furthermore, environmental factors such as access to nutrition can buffer organismal responses of calcifying invertebrates to ocean acidification, or they can function as a co-occurring stressor when access is low. We reared larvae and juveniles of the planktotrophic marine gastropod Crepidula fornicata through combined treatments of nutritional stress and low pH, and we monitored how multiple stressors endured during the larval stage affected juvenile performance. Shell growth responded non-linearly to decreasing pH, significantly declining between pH 7.6 and pH 7.5 in larvae and juveniles. Larval rearing at pH 7.5 reduced juvenile growth as a carryover effect. Larval rearing at pH 7.6 reduced subsequent juvenile growth despite the absence of a negative impact on larval growth, demonstrating a latent effect. Low larval pH magnified the impact of larval nutritional stress on competence for metamorphosis and increased carryover effects of larval nutrition on juvenile growth. Trans-life-cycle effects of larval nutrition were thus modulated by larval exposure to ocean acidification.
Collapse
|
27
|
Effect of CO2–induced ocean acidification on the early development and shell mineralization of the European abalone (Haliotis tuberculata). JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY 2018. [DOI: 10.1016/j.jembe.2018.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
28
|
Campanati C, Dupont S, Williams GA, Thiyagarajan V. Differential sensitivity of larvae to ocean acidification in two interacting mollusc species. MARINE ENVIRONMENTAL RESEARCH 2018; 141:66-74. [PMID: 30115535 DOI: 10.1016/j.marenvres.2018.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 06/08/2023]
Abstract
Anthropogenically-induced ocean acidification (OA) scenarios of decreased pH and altered carbonate chemistry are threatening the fitness of coastal species and hence near-shore ecosystems' biodiversity. Differential tolerances to OA between species at different trophic levels, for example, may alter species interactions and impact community stability. Here we evaluate the effect of OA on the larval stages of the rock oyster, Saccostrea cucullata, a dominant Indo-Pacific ecosystem engineer, and its key predator, the whelk, Reishia clavigera. pH as low as 7.4 had no significant effect on mortality, abnormality or growth of oyster larvae, whereas whelk larvae exposed to pH 7.4 experienced increased mortality (up to ∼30%), abnormalities (up to 60%) and ∼3 times higher metabolic rates compared to controls. Although these impacts' long-term consequences are yet to be investigated, greater vulnerability of whelk larvae to OA could impact predation rates on intertidal rocky shores, and have implications for subsequent community dynamics.
Collapse
Affiliation(s)
- Camilla Campanati
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Sam Dupont
- Department of Biological and Environmental Sciences, University of Gothenburg, The Sven Lovén Centre for Marine Infrastructure, Kristineberg, Fiskebäckskil, 45178, Sweden
| | - Gray A Williams
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Vengatesen Thiyagarajan
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
29
|
Bautista-Chamizo E, Sendra M, Cid Á, Seoane M, Romano de Orte M, Riba I. Will temperature and salinity changes exacerbate the effects of seawater acidification on the marine microalga Phaeodactylum tricornutum? THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:87-94. [PMID: 29626774 DOI: 10.1016/j.scitotenv.2018.03.314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/25/2018] [Accepted: 03/25/2018] [Indexed: 06/08/2023]
Abstract
To evaluate the effects related to the combination of potential future changes in pH, temperature and salinity on microalgae, a laboratory experiment was performed using the marine diatom Phaeodactylum tricornutum. Populations of this species were exposed during 48h to a three-factor experimental design (3×2×2) with two artificial pH values (6, 7.4), two levels of temperature (23°C, 28°C), two levels of salinity (34psu, 40psu) and a control (pH8, Temp 23°C, Sal 34psu). The effects on growth, cell viability, metabolic activity, and inherent cell properties (size, complexity and autofluorescence) of P. tricornutum were studied using flow cytometry. The results showed adverse effects on cultures exposed to pH6 and high temperature and salinity, being the inherent cell properties the most sensitive response. Also, linked effects of these parameters resulted on cell viability and cell size decrease and an increase of cell autofluorescence. The conclusions obtained from this work are useful to address the potential effects of climate change (in terms of changes on pH, salinity and temperature) in microalgae.
Collapse
Affiliation(s)
- Esther Bautista-Chamizo
- Departamento de Química-Física, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Spain.
| | - Marta Sendra
- Departamento de Ecología y Gestión Costera, Instituto de Ciencias Marinas de Andalucía (CSIC), Spain
| | - Ángeles Cid
- Departamento de Biología, Facultad de Ciencias, Universidade da Coruña, Spain
| | - Marta Seoane
- Departamento de Biología, Facultad de Ciencias, Universidade da Coruña, Spain
| | - Manoela Romano de Orte
- Departamento de Ciências do Mar, Campus Baixada Santista, Universidade Federal de São Paulo, Brazil; Department of Global Ecology, Carnegie Institution for Science, Stanford, USA
| | - Inmaculada Riba
- Departamento de Química-Física, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Spain
| |
Collapse
|
30
|
Serra-Compte A, Maulvault AL, Camacho C, Álvarez-Muñoz D, Barceló D, Rodríguez-Mozaz S, Marques A. Effects of water warming and acidification on bioconcentration, metabolization and depuration of pharmaceuticals and endocrine disrupting compounds in marine mussels (Mytilus galloprovincialis). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:824-834. [PMID: 29462777 DOI: 10.1016/j.envpol.2018.02.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/17/2018] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
Warming and acidification are expected impacts of climate change to the marine environment. Besides, organisms that live in coastal areas, such as bivalves, can also be exposed to anthropogenic pollutants like pharmaceuticals (PhACs) and endocrine disrupting compounds (EDCs). In this study, the effects of warming and acidification on the bioconcentration, metabolization and depuration of five PhACs (sotalol, sulfamethoxazole, venlafaxine, carbamazepine and citalopram) and two EDCs (methylparaben and triclosan) were investigated in the mussel species (Mytilus galloprovincialis), under controlled conditions. Mussels were exposed to warming and acidification, as well as to the mixture of contaminants up to 15.7 μg L-1 during 20 days; followed by 20 days of depuration. All contaminants bioconcentrated in mussels with levels ranging from 1.8 μg kg-1 dry weight (dw) for methylparaben to 12889.4 μg kg-1 dw for citalopram. Warming increased the bioconcentration factor (BCF) of sulfamethoxazole and sotalol, whereas acidification increased the BCF of sulfamethoxazole, sotalol and methylparaben. In contrast, acidification decreased triclosan levels, while both stressors decreased venlafaxine and citalopram BCFs. Warming and acidification facilitated the elimination of some of the tested compounds (i.e. sotalol from 50% in control to 60% and 68% of elimination in acidification and warming respectively). However, acidification decreased mussels' capacity to metabolize contaminants (i.e. venlafaxine). This work provides a first insight in the understanding of aquatic organisms' response to emerging contaminants pollution under warming and acidification scenarios.
Collapse
Affiliation(s)
- Albert Serra-Compte
- ICRA-Catalan Institute for Water Research, H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain
| | - Ana Luisa Maulvault
- Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Rua Alfredo Magalhães Ramalho, 1495-006 Lisbon, Portugal
| | - Carolina Camacho
- Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Rua Alfredo Magalhães Ramalho, 1495-006 Lisbon, Portugal
| | - Diana Álvarez-Muñoz
- ICRA-Catalan Institute for Water Research, H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Damià Barceló
- ICRA-Catalan Institute for Water Research, H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Sara Rodríguez-Mozaz
- ICRA-Catalan Institute for Water Research, H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain.
| | - António Marques
- Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Rua Alfredo Magalhães Ramalho, 1495-006 Lisbon, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal
| |
Collapse
|
31
|
Moreira A, Freitas R, Figueira E, Volpi Ghirardini A, Soares AMVM, Radaelli M, Guida M, Libralato G. Combined effects of arsenic, salinity and temperature on Crassostrea gigas embryotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:251-259. [PMID: 28846930 DOI: 10.1016/j.ecoenv.2017.08.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
The combined effects of different salinity and temperature levels on the toxicity of Arsenic (As) were studied on the embryonic development of the oyster Crassostrea gigas. A standardized embryotoxicity test was performed to assess the interactive effects of these stressors, in a full factorial design experiment including a range of salinities (15, 19, 24, 28 and 32), temperatures (16, 20, 24, 28 and 32°C) and As concentrations (100, 300, 600, 1200, 2400µgL-1). The embryotoxicity endpoint was about the determination of normal larvae development rates at various conditions, and median effect concentration (EC50) determination for each As exposure condition. Results showed that toxicity induced by As was characterized by retardation of embryonic development observing toxic effects at lower concentrations than previously reported studies. The presence of As in seawater resulted in a narrower range of tolerance to both salinity and temperature. These findings bring new insights on the impacts of a common contaminant on an important shellfish species having a planktonic early life stage development, with potential implications for population survival and ecosystem functioning in a changing environment.
Collapse
Affiliation(s)
- Anthony Moreira
- Departmento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Departmento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Departmento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Annamaria Volpi Ghirardini
- Department of Environmental Sciences, Informatics and Statistics, University Cà Foscari Venice, Via Torino 155, 30172 Venezia-Mestre, Italy
| | - Amadeu M V M Soares
- Departmento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Marta Radaelli
- Department of Environmental Sciences, Informatics and Statistics, University Cà Foscari Venice, Via Torino 155, 30172 Venezia-Mestre, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Via Cinthia ed. 7, 80126 Naples, Italy
| | - Giovanni Libralato
- Department of Environmental Sciences, Informatics and Statistics, University Cà Foscari Venice, Via Torino 155, 30172 Venezia-Mestre, Italy; Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Via Cinthia ed. 7, 80126 Naples, Italy.
| |
Collapse
|
32
|
Pecquet A, Dorey N, Chan KYK. Ocean acidification increases larval swimming speed and has limited effects on spawning and settlement of a robust fouling bryozoan, Bugula neritina. MARINE POLLUTION BULLETIN 2017; 124:903-910. [PMID: 28341296 DOI: 10.1016/j.marpolbul.2017.02.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/17/2017] [Accepted: 02/22/2017] [Indexed: 06/06/2023]
Abstract
Few studies to date have investigated the effects of ocean acidification on non-reef forming marine invertebrates with non-feeding larvae. Here, we exposed adults of the bryozoan Bugula neritina and their larvae to lowered pH. We monitored spawning, larval swimming, settlement, and post-settlement individual sizes at two pHs (7.9 vs. 7.6) and settlement dynamics alone over a broader pH range (8.0 down to 6.5). Our results show that spawning was not affected by adult exposure (48h at pH7.6), larvae swam 32% faster and the newly-settled individuals grew significantly larger (5%) at pH7.6 than in the control. Although larvae required more time to settle when pH was lowered, reduced pH was not lethal, even down to pH6.5. Overall, this fouling species appeared to be robust to acidification, and yet, indirect effects such as prolonging the pelagic larval duration could increase predation risk, and might negatively impact population dynamics.
Collapse
Affiliation(s)
- Antoine Pecquet
- Science and Technology Faculty, University of La Rochelle, France; Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Narimane Dorey
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Kit Yu Karen Chan
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
| |
Collapse
|
33
|
Allen R, Foggo A, Fabricius K, Balistreri A, Hall-Spencer JM. Tropical CO 2 seeps reveal the impact of ocean acidification on coral reef invertebrate recruitment. MARINE POLLUTION BULLETIN 2017; 124:607-613. [PMID: 28040252 DOI: 10.1016/j.marpolbul.2016.12.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/30/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
Rising atmospheric CO2 concentrations are causing ocean acidification by reducing seawater pH and carbonate saturation levels. Laboratory studies have demonstrated that many larval and juvenile marine invertebrates are vulnerable to these changes in surface ocean chemistry, but challenges remain in predicting effects at community and ecosystem levels. We investigated the effect of ocean acidification on invertebrate recruitment at two coral reef CO2 seeps in Papua New Guinea. Invertebrate communities differed significantly between 'reference' (median pH7.97, 8.00), 'high CO2' (median pH7.77, 7.79), and 'extreme CO2' (median pH7.32, 7.68) conditions at each reef. There were also significant reductions in calcifying taxa, copepods and amphipods as CO2 levels increased. The observed shifts in recruitment were comparable to those previously described in the Mediterranean, revealing an ecological mechanism by which shallow coastal systems are affected by near-future levels of ocean acidification.
Collapse
Affiliation(s)
- Ro Allen
- Marine Biology and Ecology Research Centre, Plymouth University, Plymouth PL4 8AA, UK
| | - Andrew Foggo
- Marine Biology and Ecology Research Centre, Plymouth University, Plymouth PL4 8AA, UK
| | - Katharina Fabricius
- Australian Institute of Marine Science, PMB 3, Townsville, Qld 4810, Australia
| | - Annalisa Balistreri
- Dipartimento di Scienze della Terra e del Mare, CoNiSMa, Università di Palermo, Via Archirafi 28, 90123 Palermo, Italy
| | - Jason M Hall-Spencer
- Marine Biology and Ecology Research Centre, Plymouth University, Plymouth PL4 8AA, UK; Shimoda Marine Research Centre, Tsukuba University, Shimoda City, Shizuoka 415-0025, Japan.
| |
Collapse
|
34
|
Cardoso PG, Rodrigues D, Madureira TV, Oliveira N, Rocha MJ, Rocha E. Warming modulates the effects of the endocrine disruptor progestin levonorgestrel on the zebrafish fitness, ovary maturation kinetics and reproduction success. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:300-311. [PMID: 28601762 DOI: 10.1016/j.envpol.2017.05.090] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
Interactive effects between multiple stressors, namely climate drivers (e.g., temperature) and chemical pollution (e.g., endocrine disruptors) are poorly studied. Here, it was for the first time evaluated the combinatory effects of temperature and a synthetic progestin, levonorgestrel (LNG), on the fitness and reproductive-related endpoints of zebrafish (Danio rerio). A multi-factorial design was implemented by manipulating both temperature [setting as baseline an ambient temperature of 27 °C, against warming (+3 °C)] and LNG levels (10 ngL-1 and 1000 ngL-1). Groups of males and females were exposed sub-acutely, for 21-days. Increased temperature caused an overall decrease in the females' gonadosomatic index (GSI), during the pre-reproduction phase, LNG did not affect GSI. In addition, fecundity (number of ovulated eggs) was negatively affected by both temperature and LNG, being the effect of the latter more intense. Fish exposed to the highest LNG concentration (at both temperatures) did not reproduce, but also in those exposed to the lowest dose of progestin at a higher temperature, a complete reproductive failure occurred. These results reflect what was observed in the stereological analysis of the ovary maturation stages prior to reproduction. Accordingly, the higher the LNG concentration, the lower the degree of maturation of the ovary. This was exacerbated by the higher temperature. As to embryonated eggs, they hatched significantly faster at higher temperatures, but exposure to 10 ngL-1 of LNG (at 27 °C) reduced significantly the hatching rate, comparing to control. Further, the recrudescence of the ovary 48 h after spawning seems to be not affected by both stressors. Our data suggest that in a future scenario of global warming and synthetic hormones exposure, the reproduction of fish species, such as the zebrafish, can be endangered, which can put at risk their success, and consequently affect the structure and functioning of associated aquatic ecosystems.
Collapse
Affiliation(s)
- P G Cardoso
- Group of Histomorphology, Physiopathology and Applied Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.
| | - D Rodrigues
- Group of Histomorphology, Physiopathology and Applied Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, Institute of Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - T V Madureira
- Group of Histomorphology, Physiopathology and Applied Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, Institute of Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - N Oliveira
- Group of Histomorphology, Physiopathology and Applied Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - M J Rocha
- Group of Histomorphology, Physiopathology and Applied Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, Institute of Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - E Rocha
- Group of Histomorphology, Physiopathology and Applied Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, Institute of Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
35
|
Parker LM, Scanes E, O'Connor WA, Coleman RA, Byrne M, Pörtner HO, Ross PM. Ocean acidification narrows the acute thermal and salinity tolerance of the Sydney rock oyster Saccostrea glomerata. MARINE POLLUTION BULLETIN 2017; 122:263-271. [PMID: 28733041 DOI: 10.1016/j.marpolbul.2017.06.052] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/18/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Coastal and estuarine environments are characterised by acute changes in temperature and salinity. Organisms living within these environments are adapted to withstand such changes, yet near-future ocean acidification (OA) may challenge their physiological capacity to respond. We tested the impact of CO2-induced OA on the acute thermal and salinity tolerance, energy metabolism and acid-base regulation capacity of the oyster Saccostrea glomerata. Adult S. glomerata were acclimated to three CO2 levels (ambient 380μatm, moderate 856μatm, high 1500μatm) for 5weeks (24°C, salinity 34.6) before being exposed to a series of acute temperature (15-33°C) and salinity (34.2-20) treatments. Oysters acclimated to elevated CO2 showed a significant metabolic depression and extracellular acidosis with acute exposure to elevated temperature and reduced salinity, especially at the highest CO2 of 1500μatm. Our results suggest that the acute thermal and salinity tolerance of S. glomerata and thus its distribution will reduce as OA continues to worsen.
Collapse
Affiliation(s)
- Laura M Parker
- Centre for the Ecological Impacts for Coastal Cities, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Elliot Scanes
- Centre for the Ecological Impacts for Coastal Cities, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Wayne A O'Connor
- Port Stephens Fisheries Institute, NSW Department of Primary Industries, Taylors Beach, NSW 2316, Australia
| | - Ross A Coleman
- Centre for the Ecological Impacts for Coastal Cities, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Maria Byrne
- Centre for the Ecological Impacts for Coastal Cities, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; School of Medical Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Hans-O Pörtner
- Alfred Wegener Institute for Polar and Marine Research, Hermann von Helmholtz Association of National Research Centres e. V. (HGF), Am Handelshafen 12, Bremerhaven, Germany
| | - Pauline M Ross
- Centre for the Ecological Impacts for Coastal Cities, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
36
|
Li S, Liu C, Zhan A, Xie L, Zhang R. Influencing Mechanism of Ocean Acidification on Byssus Performance in the Pearl Oyster Pinctada fucata. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7696-7706. [PMID: 28605591 DOI: 10.1021/acs.est.7b02132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The byssus is an important adhesive structure by which bivalves robustly adhere to underwater substrates. It is susceptible to carbon dioxide-driven ocean acidification (OA). Previous investigations have documented significant adverse effects of OA on the performance of byssal threads, but the mechanisms remain largely unknown. In this study, multiple approaches were employed to reveal the underlying mechanisms for the effects of OA on byssus production and mechanical properties in the pearl oyster Pinctada fucata. The results showed that OA altered the abundance and secondary structure of byssal proteins and affected the contents of metal ions in distal threads, which together reduced the byssus diameter and amplified byssus nanocavity, causing reductions in mechanical properties (strength and extensibility). Expression analysis of key foot protein genes further confirmed changes in byssal protein abundance. Moreover, comparative transcriptome analysis revealed enrichment of ion transportation- and apoptosis-related categories, up-regulation of apoptosis-related pathways, and down-regulation of the "extracellular matrix-receptor interaction" pathway, which may influence foot locomotion physiology, leading to a decrease in byssus production. This study provides mechanistic insight into the effects of OA on pearl oyster byssus, which should broaden our overall understanding of the impacts of OA on marine ecosystem.
Collapse
Affiliation(s)
- Shiguo Li
- Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University , Beijing 100084, China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Chuang Liu
- Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University , Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Liping Xie
- Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Rongqing Zhang
- Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University , Beijing 100084, China
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University , Jiaxing 314006, China
| |
Collapse
|
37
|
Scanes E, Parker LM, O'Connor WA, Stapp LS, Ross PM. Intertidal oysters reach their physiological limit in a future high-CO2 world. J Exp Biol 2017; 220:765-774. [DOI: 10.1242/jeb.151365] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/05/2016] [Indexed: 01/09/2023]
Abstract
ABSTRACT
Sessile marine molluscs living in the intertidal zone experience periods of internal acidosis when exposed to air (emersion) during low tide. Relative to other marine organisms, molluscs have been identified as vulnerable to future ocean acidification; however, paradoxically it has also been shown that molluscs exposed to high CO2 environments are more resilient compared with those molluscs naive to CO2 exposure. Two competing hypotheses were tested using a novel experimental design incorporating tidal simulations to predict the future intertidal limit of oysters in a high-CO2 world; either high-shore oysters will be more tolerant of elevated PCO2 because of their regular acidosis, or elevated PCO2 will cause high-shore oysters to reach their limit. Sydney rock oysters, Saccostrea glomerata, were collected from the high-intertidal and subtidal areas of the shore and exposed in an orthogonal design to either an intertidal or a subtidal treatment at ambient or elevated PCO2, and physiological variables were measured. The combined treatment of tidal emersion and elevated PCO2 interacted synergistically to reduce the haemolymph pH (pHe) of oysters, and increase the PCO2 in the haemolymph (Pe,CO2) and standard metabolic rate. Oysters in the intertidal treatment also had lower condition and growth. Oysters showed a high degree of plasticity, and little evidence was found that intertidal oysters were more resilient than subtidal oysters. It is concluded that in a high-CO2 world the upper vertical limit of oyster distribution on the shore may be reduced. These results suggest that previous studies on intertidal organisms that lacked tidal simulations may have underestimated the effects of elevated PCO2.
Collapse
Affiliation(s)
- Elliot Scanes
- School of Science and Health, Western Sydney University, Penrith, NSW 2750, Australia
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Laura M. Parker
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Wayne A. O'Connor
- Department of Primary Industries, Port Stephens Fisheries Research Institute, Taylors Beach Road, Taylors Beach, NSW 2316, Australia
| | - Laura S. Stapp
- Integrative Ecophysiology, Alfred Wegener Institute Helmholtz Institute for Polar and Marine Research, Am Handelshafen 12, Bremerhaven D-27570, Germany
| | - Pauline M. Ross
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
38
|
Gamain P, Gonzalez P, Cachot J, Clérandeau C, Mazzella N, Gourves PY, Morin B. Combined effects of temperature and copper and S-metolachlor on embryo-larval development of the Pacific oyster, Crassostrea gigas. MARINE POLLUTION BULLETIN 2017; 115:201-210. [PMID: 27986302 DOI: 10.1016/j.marpolbul.2016.12.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/28/2016] [Accepted: 12/06/2016] [Indexed: 06/06/2023]
Abstract
This study evaluates the combined effects of two contaminants (copper and a herbicide S-metolachlor) and temperature on the early life stages of the Pacific oyster Crasssotrea gigas, which is native to Arcachon Bay (southwest France). The responses of D-larvae, obtained from wild and cultivated oysters, were investigated for one year during the oyster breeding period at different sampling sites and compared with the response of D-larvae from a commercial hatchery. Embryotoxicity was measured by considering the percentage of abnormal D-shaped larvae. Normal development of embryos occurred only from 22°C to 26°C. There were synergistic effects of copper at low and high temperatures. Native oysters appear particularly sensitive to an increase in water temperature, suggesting a future increase in the percentage of larval abnormalities as a result of global climate change. Hatchery oysters represent a good alternative model for studying the effects of both pollutants and climate change stressors.
Collapse
Affiliation(s)
| | | | - Jérôme Cachot
- Univ. Bordeaux, EPOC, UMR 5805, F-33400 Talence, France
| | | | - Nicolas Mazzella
- IRSTEA, URBEX (Water Research Unit), 50 avenue de Verdun, Gazinet, 33612 Cestas Cedex, France
| | | | | |
Collapse
|
39
|
Parker LM, O'Connor WA, Byrne M, Coleman RA, Virtue P, Dove M, Gibbs M, Spohr L, Scanes E, Ross PM. Adult exposure to ocean acidification is maladaptive for larvae of the Sydney rock oyster Saccostrea glomerata in the presence of multiple stressors. Biol Lett 2017; 13:rsbl.2016.0798. [PMID: 28202683 DOI: 10.1098/rsbl.2016.0798] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 01/23/2017] [Indexed: 11/12/2022] Open
Abstract
Parental effects passed from adults to their offspring have been identified as a source of rapid acclimation that may allow marine populations to persist as our surface oceans continue to decrease in pH. Little is known, however, whether parental effects are beneficial for offspring in the presence of multiple stressors. We exposed adults of the oyster Saccostrea glomerata to elevated CO2 and examined the impacts of elevated CO2 (control = 392; 856 µatm) combined with elevated temperature (control = 24; 28°C), reduced salinity (control = 35; 25) and reduced food concentration (control = full; half diet) on their larvae. Adult exposure to elevated CO2 had a positive impact on larvae reared at elevated CO2 as a sole stressor, which were 8% larger and developed faster at elevated CO2 compared with larvae from adults exposed to ambient CO2 These larvae, however, had significantly reduced survival in all multistressor treatments. This was particularly evident for larvae reared at elevated CO2 combined with elevated temperature or reduced food concentration, with no larvae surviving in some treatment combinations. Larvae from CO2-exposed adults had a higher standard metabolic rate. Our results provide evidence that parental exposure to ocean acidification may be maladaptive when larvae experience multiple stressors.
Collapse
Affiliation(s)
- Laura M Parker
- Centre for the Ecological Impacts for Coastal Cities, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Wayne A O'Connor
- Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, New South Wales 2316, Australia
| | - Maria Byrne
- Centre for the Ecological Impacts for Coastal Cities, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, 2006, Australia.,School of Medical Science, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Ross A Coleman
- Centre for the Ecological Impacts for Coastal Cities, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Patti Virtue
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tasmania 7001, Australia
| | - Michael Dove
- Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, New South Wales 2316, Australia
| | - Mitchell Gibbs
- Centre for the Ecological Impacts for Coastal Cities, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Lorraine Spohr
- Central Coast Primary Industries Centre, NSW Department of Primary Industries, Ourimbah, New South Wales, 2258, Australia
| | - Elliot Scanes
- Centre for the Ecological Impacts for Coastal Cities, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Pauline M Ross
- Centre for the Ecological Impacts for Coastal Cities, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
40
|
Szalaj D, De Orte MR, Goulding TA, Medeiros ID, DelValls TA, Cesar A. The effects of ocean acidification and a carbon dioxide capture and storage leak on the early life stages of the marine mussel Perna perna (Linneaus, 1758) and metal bioavailability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:765-781. [PMID: 27752956 DOI: 10.1007/s11356-016-7863-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/06/2016] [Indexed: 06/06/2023]
Abstract
The study assesses the effects of carbon dioxide capture and storage (CCS) leaks and ocean acidification (OA) on the metal bioavailability and reproduction of the mytilid Perna perna. In laboratory-scale experiments, CCS leakage scenarios (pH 7.0, 6.5, 6.0) and one OA (pH 7.6) scenario were tested using metal-contaminated sediment elutriates and seawater from Santos Bay. The OA treatment did not have an effect on fertilisation, while significant effects were observed in larval-development bioassays where only 16 to 27 % of larva developed normally. In treatments that simulated CO2 leaks, when compared with control, fertilisation success gradually decreased and no larva developed to the D-shaped stage. A fall in pH increased the bioavailability of metals to marine mussels. Larva shell size was significantly affected by both elutriates when compared with seawater; moreover, a significant difference occurred at pH 6.5 between elutriates in the fertilisation bioassay.
Collapse
Affiliation(s)
- D Szalaj
- Departamento de Ciências do Mar. Instituto do Mar, Campus Baixada Santista, Universidade Federal de São Paulo, Av. Alm. Sandanha da Gama, 89-Ponta da Praia/SP CEP, Santos, SP, 11030-400, Brazil.
- Faculdade de Ciências, Instituto Dom Luiz, Universidade de Lisboa, 1749-016, Campo Grande, Lisboa, Portugal.
| | - M R De Orte
- Departamento de Ciências do Mar. Instituto do Mar, Campus Baixada Santista, Universidade Federal de São Paulo, Av. Alm. Sandanha da Gama, 89-Ponta da Praia/SP CEP, Santos, SP, 11030-400, Brazil
| | - T A Goulding
- Departamento de Química-Física, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, UNESCO/UNITWIN Wicop, Polígono Río San Pedro s/n, 11510, Cádiz, Puerto Real, Spain
| | - I D Medeiros
- Departamento de Ciências do Mar. Instituto do Mar, Campus Baixada Santista, Universidade Federal de São Paulo, Av. Alm. Sandanha da Gama, 89-Ponta da Praia/SP CEP, Santos, SP, 11030-400, Brazil
| | - T A DelValls
- Departamento de Química-Física, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, UNESCO/UNITWIN Wicop, Polígono Río San Pedro s/n, 11510, Cádiz, Puerto Real, Spain
| | - A Cesar
- Departamento de Ciências do Mar. Instituto do Mar, Campus Baixada Santista, Universidade Federal de São Paulo, Av. Alm. Sandanha da Gama, 89-Ponta da Praia/SP CEP, Santos, SP, 11030-400, Brazil
| |
Collapse
|
41
|
Dineshram R, Quan Q, Sharma R, Chandramouli K, Yalamanchili HK, Chu I, Thiyagarajan V. Comparative and quantitative proteomics reveal the adaptive strategies of oyster larvae to ocean acidification. Proteomics 2016; 15:4120-34. [PMID: 26507238 DOI: 10.1002/pmic.201500198] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 10/08/2015] [Accepted: 10/15/2015] [Indexed: 01/01/2023]
Abstract
Decreasing pH due to anthropogenic CO2 inputs, called ocean acidification (OA), can make coastal environments unfavorable for oysters. This is a serious socioeconomical issue for China which supplies >70% of the world's edible oysters. Here, we present an iTRAQ-based protein profiling approach for the detection and quantification of proteome changes under OA in the early life stage of a commercially important oyster, Crassostrea hongkongensis. Availability of complete genome sequence for the pacific oyster (Crassostrea gigas) enabled us to confidently quantify over 1500 proteins in larval oysters. Over 7% of the proteome was altered in response to OA at pHNBS 7.6. Analysis of differentially expressed proteins and their associated functional pathways showed an upregulation of proteins involved in calcification, metabolic processes, and oxidative stress, each of which may be important in physiological adaptation of this species to OA. The downregulation of cytoskeletal and signal transduction proteins, on the other hand, might have impaired cellular dynamics and organelle development under OA. However, there were no significant detrimental effects in developmental processes such as metamorphic success. Implications of the differentially expressed proteins and metabolic pathways in the development of OA resistance in oyster larvae are discussed. The MS proteomics data have been deposited to the ProteomeXchange with identifiers PXD002138 (http://proteomecentral.proteomexchange.org/dataset/PXD002138).
Collapse
Affiliation(s)
- R Dineshram
- The Swire Institute of Marine Sciences and School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Q Quan
- Department of Chemistry, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Rakesh Sharma
- Department of Biochemistry, L.K.S Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Kondethimmanahalli Chandramouli
- Biological, Environmental Sciences & Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | | | - Ivan Chu
- Department of Chemistry, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Vengatesen Thiyagarajan
- The Swire Institute of Marine Sciences and School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| |
Collapse
|
42
|
Dineshram R, Chandramouli K, Ko GWK, Zhang H, Qian PY, Ravasi T, Thiyagarajan V. Quantitative analysis of oyster larval proteome provides new insights into the effects of multiple climate change stressors. GLOBAL CHANGE BIOLOGY 2016; 22:2054-2068. [PMID: 26990129 DOI: 10.1111/gcb.13249] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 06/05/2023]
Abstract
The metamorphosis of planktonic larvae of the Pacific oyster (Crassostrea gigas) underpins their complex life-history strategy by switching on the molecular machinery required for sessile life and building calcite shells. Metamorphosis becomes a survival bottleneck, which will be pressured by different anthropogenically induced climate change-related variables. Therefore, it is important to understand how metamorphosing larvae interact with emerging climate change stressors. To predict how larvae might be affected in a future ocean, we examined changes in the proteome of metamorphosing larvae under multiple stressors: decreased pH (pH 7.4), increased temperature (30 °C), and reduced salinity (15 psu). Quantitative protein expression profiling using iTRAQ-LC-MS/MS identified more than 1300 proteins. Decreased pH had a negative effect on metamorphosis by down-regulating several proteins involved in energy production, metabolism, and protein synthesis. However, warming switched on these down-regulated pathways at pH 7.4. Under multiple stressors, cell signaling, energy production, growth, and developmental pathways were up-regulated, although metamorphosis was still reduced. Despite the lack of lethal effects, significant physiological responses to both individual and interacting climate change related stressors were observed at proteome level. The metamorphosing larvae of the C. gigas population in the Yellow Sea appear to have adequate phenotypic plasticity at the proteome level to survive in future coastal oceans, but with developmental and physiological costs.
Collapse
Affiliation(s)
- Ramadoss Dineshram
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong Island, Hong Kong SAR, China
| | - Kondethimmanahalli Chandramouli
- Division of Biological, Environmental Sciences & Engineering, Division of Applied Mathematics and Computer Sciences and KAUST Environmental Epigenetic Program (KEEP), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ginger Wai Kuen Ko
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong Island, Hong Kong SAR, China
| | - Huoming Zhang
- Division of Biological, Environmental Sciences & Engineering, Division of Applied Mathematics and Computer Sciences and KAUST Environmental Epigenetic Program (KEEP), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Pei-Yuan Qian
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Timothy Ravasi
- Division of Biological, Environmental Sciences & Engineering, Division of Applied Mathematics and Computer Sciences and KAUST Environmental Epigenetic Program (KEEP), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Vengatesen Thiyagarajan
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong Island, Hong Kong SAR, China
| |
Collapse
|
43
|
Liu FJ, Li SX, Huang BQ, Zheng FY, Huang XG. Effect of excessive CO2 on physiological functions in coastal diatom. Sci Rep 2016; 6:21694. [PMID: 26875452 PMCID: PMC4753682 DOI: 10.1038/srep21694] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 01/28/2016] [Indexed: 11/29/2022] Open
Abstract
Rising dissolution of anthropogenic CO2 in seawater may directly/indirectly cause ocean acidification and desalination. However, little is known about coastal physiological functions sensitivity to these processes. Here we show some links between ocean acidification/desalination and physiological functions in Thalassiosira weissflogii. Cell density (CD), protein, chlorophyll a (Chl a), malonaldehyde (MDA), superoxide dismutase (SOD), and carbonic anhydrase (CAs) were determined for the assessment of algal biomass, nutritional value, photosynthesis and respiration, lipid peroxidation, antioxidant capacity, and carbon sequestration ability. The influence of pH on the algal Chl a and MDA were extremely significant (P < 0.01). Salinity (S) on cell density and acidity (pH) on protein was significant (0.01 < P < 0.05). Additionally, a significant negative-correlation was observed between cell density and CAs. CAs and SOD had negatively correlations with CD, Chl a, protein, and MDA under pH or S influence, but positive correlation between themselves. Coastal physiological functions were affected by increasing order was acidification < acidification + desalination < desalination for Chl a and protein, desalination < acidification + desalination < acidification for SOD and CAs. Thus, the ongoing excessive CO2-driven ocean acidification and desalination should be of high attention when assessing the risks of climate change on coastal phytoplankton.
Collapse
Affiliation(s)
- Feng-Jiao Liu
- Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, China, 363000.,College of the Environment &Ecology, Xiamen University, 361005, China
| | - Shun-Xing Li
- Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, China, 363000
| | - Bang-Qin Huang
- College of the Environment &Ecology, Xiamen University, 361005, China
| | - Feng-Ying Zheng
- Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, China, 363000
| | - Xu-Guang Huang
- Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, China, 363000
| |
Collapse
|
44
|
Li S, Huang J, Liu C, Liu Y, Zheng G, Xie L, Zhang R. Interactive Effects of Seawater Acidification and Elevated Temperature on the Transcriptome and Biomineralization in the Pearl Oyster Pinctada fucata. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1157-1165. [PMID: 26727167 DOI: 10.1021/acs.est.5b05107] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Interactive effects of ocean acidification and ocean warming on marine calcifiers vary among species, but little is known about the underlying mechanisms. The present study investigated the combined effects of seawater acidification and elevated temperature (ambient condition: pH 8.1 × 23 °C, stress conditions: pH 7.8 × 23 °C, pH 8.1 × 28 °C, and pH 7.8 × 28 °C, exposure time: two months) on the transcriptome and biomineralization of the pearl oyster Pinctada fucata, which is an important marine calcifier. Transcriptome analyses indicated that P. fucata implemented a compensatory acid-base mechanism, metabolic depression and positive physiological responses to mitigate the effects of seawater acidification alone. These responses were energy-expensive processes, leading to decreases in the net calcification rate, shell surface calcium and carbon content, and changes in the shell ultrastructure. Elevated temperature (28 °C) within the thermal window of P. fucata did not induce significant enrichment of the sequenced genes and conversely facilitated calcification, which was detected to alleviate the negative effects of seawater acidification on biomineralization and the shell ultrastructure. Overall, this study will help elucidate the mechanisms by which pearl oysters respond to changing seawater conditions and predict the effects of global climate change on pearl aquaculture.
Collapse
Affiliation(s)
- Shiguo Li
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Jingliang Huang
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Chuang Liu
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Yangjia Liu
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Guilan Zheng
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Liping Xie
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Rongqing Zhang
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| |
Collapse
|
45
|
Harney E, Artigaud S, Le Souchu P, Miner P, Corporeau C, Essid H, Pichereau V, Nunes FLD. Non-additive effects of ocean acidification in combination with warming on the larval proteome of the Pacific oyster, Crassostrea gigas. J Proteomics 2015; 135:151-161. [PMID: 26657130 DOI: 10.1016/j.jprot.2015.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/26/2015] [Accepted: 12/01/2015] [Indexed: 11/17/2022]
Abstract
UNLABELLED Increasing atmospheric carbon dioxide results in ocean acidification and warming, significantly impacting marine invertebrate larvae development. We investigated how ocean acidification in combination with warming affected D-veliger larvae of the Pacific oyster Crassostrea gigas. Larvae were reared for 40h under either control (pH8.1, 20 °C), acidified (pH7.9, 20 °C), warm (pH8.1, 22 °C) or warm acidified (pH7.9, 22 °C) conditions. Larvae in acidified conditions were significantly smaller than in the control, but warm acidified conditions mitigated negative effects on size, and increased calcification. A proteomic approach employing two-dimensional electrophoresis (2-DE) was used to quantify proteins and relate their abundance to phenotypic traits. In total 12 differentially abundant spots were identified by nano-liquid chromatography-tandem mass spectrometry. These proteins had roles in metabolism, intra- and extra-cellular matrix formations, stress response, and as molecular chaperones. Seven spots responded to reduced pH, four to increased temperature, and six to acidification and warming. Reduced abundance of proteins such as ATP synthase and GAPDH, and increased abundance of superoxide dismutase, occurred when both pH and temperature changes were imposed, suggesting altered metabolism and enhanced oxidative stress. These results identify key proteins that may be involved in the acclimation of C. gigas larvae to ocean acidification and warming. SIGNIFICANCE Increasing atmospheric CO2 raises sea surface temperatures and results in ocean acidification, two climatic variables known to impact marine organisms. Larvae of calcifying species may be particularly at risk to such changing environmental conditions. The Pacific oyster Crassostrea gigas is ecologically and commercially important, and understanding its ability to acclimate to climate change will help to predict how aquaculture of this species is likely to be impacted. Modest, yet realistic changes in pH and/or temperature may be more informative of how populations will respond to contemporary climate change. We showed that concurrent acidification and warming mitigates the negative effects of pH alone on size of larvae, but proteomic analysis reveals altered patterns of metabolism and an increase in oxidative stress suggesting non-additive effects of the interaction between pH and temperature on protein abundance. Thus, even small changes in climate may influence development, with potential consequences later in life.
Collapse
Affiliation(s)
- Ewan Harney
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Institut Universitaire Européen de la Mer, University of Brest (UBO), Université Européenne de Bretagne (UEB), Place Nicolas Copernic, 29280 Plouzané, France.
| | - Sébastien Artigaud
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Institut Universitaire Européen de la Mer, University of Brest (UBO), Université Européenne de Bretagne (UEB), Place Nicolas Copernic, 29280 Plouzané, France
| | - Pierrick Le Souchu
- Ifremer, Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Centre Bretagne Z.I. Pointe du Diable, 29280 Plouzané, France
| | - Philippe Miner
- Ifremer, Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Centre Bretagne Z.I. Pointe du Diable, 29280 Plouzané, France
| | - Charlotte Corporeau
- Ifremer, Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Centre Bretagne Z.I. Pointe du Diable, 29280 Plouzané, France
| | - Hafida Essid
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Institut Universitaire Européen de la Mer, University of Brest (UBO), Université Européenne de Bretagne (UEB), Place Nicolas Copernic, 29280 Plouzané, France
| | - Vianney Pichereau
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Institut Universitaire Européen de la Mer, University of Brest (UBO), Université Européenne de Bretagne (UEB), Place Nicolas Copernic, 29280 Plouzané, France
| | - Flavia L D Nunes
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Institut Universitaire Européen de la Mer, University of Brest (UBO), Université Européenne de Bretagne (UEB), Place Nicolas Copernic, 29280 Plouzané, France
| |
Collapse
|
46
|
Havird JC, Vaught RC, Weese DA, Santos SR. Reproduction and development in Halocaridina rubra Holthuis, 1963 (Crustacea: Atyidae) clarifies larval ecology in the Hawaiian anchialine ecosystem. THE BIOLOGICAL BULLETIN 2015; 229:134-142. [PMID: 26504154 DOI: 10.1086/bblv229n2p134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Larvae in aquatic habitats often develop in environments different from those they inhabit as adults. Shrimp in the Atyidae exemplify this trend, as larvae of many species require salt or brackish water for development, while adults are freshwater-adapted. An exception within the Atyidae family is the "anchialine clade," which are euryhaline as adults and endemic to habitats with subterranean fresh and marine water influences. Although the Hawaiian anchialine atyid Halocaridina rubra is a strong osmoregulator, its larvae have never been observed in nature. Moreover, larval development in anchialine species is poorly studied. Here, reproductive trends in laboratory colonies over a 5-y period are presented from seven genetic lineages and one mixed population of H. rubra; larval survivorship under varying salinities is also discussed. The presence and number of larvae differed significantly among lineages, with the mixed population being the most prolific. Statistical differences in reproduction attributable to seasonality also were identified. Larval survivorship was lowest (12% settlement rate) at a salinity approaching fresh water and significantly higher in brackish and seawater (88% and 72%, respectively). Correlated with this finding, identifiable gills capable of ion transport did not develop until metamorphosis into juveniles. Thus, early life stages of H. rubra are apparently excluded from surface waters, which are characterized by lower and fluctuating salinities. Instead, these stages are restricted to the subterranean (where there is higher and more stable salinity) portion of Hawaii's anchialine habitats due to their inability to tolerate low salinities. Taken together, these data contribute to the understudied area of larval ecology in the anchialine ecosystem.
Collapse
Affiliation(s)
- Justin C Havird
- Department of Biological Sciences and Molette Laboratory for Climate Change and Environmental Studies, Auburn University, 101 Rouse Life Sciences Bldg., Auburn, Alabama 36849
| | - Rebecca C Vaught
- Department of Biological Sciences and Molette Laboratory for Climate Change and Environmental Studies, Auburn University, 101 Rouse Life Sciences Bldg., Auburn, Alabama 36849
| | - David A Weese
- Department of Biological Sciences and Molette Laboratory for Climate Change and Environmental Studies, Auburn University, 101 Rouse Life Sciences Bldg., Auburn, Alabama 36849
| | - Scott R Santos
- Department of Biological Sciences and Molette Laboratory for Climate Change and Environmental Studies, Auburn University, 101 Rouse Life Sciences Bldg., Auburn, Alabama 36849
| |
Collapse
|
47
|
Li S, Liu C, Huang J, Liu Y, Zheng G, Xie L, Zhang R. Interactive effects of seawater acidification and elevated temperature on biomineralization and amino acid metabolism in the mussel Mytilus edulis. ACTA ACUST UNITED AC 2015; 218:3623-31. [PMID: 26417015 DOI: 10.1242/jeb.126748] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 09/10/2015] [Indexed: 12/20/2022]
Abstract
Seawater acidification and warming resulting from anthropogenic production of carbon dioxide are increasing threats to marine ecosystems. Previous studies have documented the effects of either seawater acidification or warming on marine calcifiers; however, the combined effects of these stressors are poorly understood. In our study, we examined the interactive effects of elevated carbon dioxide partial pressure (P(CO2)) and temperature on biomineralization and amino acid content in an ecologically and economically important mussel, Mytilus edulis. Adult M. edulis were reared at different combinations of P(CO2) (pH 8.1 and 7.8) and temperature (19, 22 and 25°C) for 2 months. The results indicated that elevated P(CO2) significantly decreased the net calcification rate, the calcium content and the Ca/Mg ratio of the shells, induced the differential expression of biomineralization-related genes, modified shell ultrastructure and altered amino acid content, implying significant effects of seawater acidification on biomineralization and amino acid metabolism. Notably, elevated temperature enhanced the effects of seawater acidification on these parameters. The shell breaking force significantly decreased under elevated P(CO2), but the effect was not exacerbated by elevated temperature. The results suggest that the interactive effects of seawater acidification and elevated temperature on mussels are likely to have ecological and functional implications. This study is therefore helpful for better understanding the underlying effects of changing marine environments on mussels and other marine calcifiers.
Collapse
Affiliation(s)
- Shiguo Li
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chuang Liu
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jingliang Huang
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yangjia Liu
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guilan Zheng
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Liping Xie
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rongqing Zhang
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
48
|
Gattuso JP, Magnan A, Billé R, Cheung WWL, Howes EL, Joos F, Allemand D, Bopp L, Cooley SR, Eakin CM, Hoegh-Guldberg O, Kelly RP, Pörtner HO, Rogers AD, Baxter JM, Laffoley D, Osborn D, Rankovic A, Rochette J, Sumaila UR, Treyer S, Turley C. OCEANOGRAPHY. Contrasting futures for ocean and society from different anthropogenic CO₂ emissions scenarios. Science 2015; 349:aac4722. [PMID: 26138982 DOI: 10.1126/science.aac4722] [Citation(s) in RCA: 404] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ocean moderates anthropogenic climate change at the cost of profound alterations of its physics, chemistry, ecology, and services. Here, we evaluate and compare the risks of impacts on marine and coastal ecosystems—and the goods and services they provide—for growing cumulative carbon emissions under two contrasting emissions scenarios. The current emissions trajectory would rapidly and significantly alter many ecosystems and the associated services on which humans heavily depend. A reduced emissions scenario—consistent with the Copenhagen Accord's goal of a global temperature increase of less than 2°C—is much more favorable to the ocean but still substantially alters important marine ecosystems and associated goods and services. The management options to address ocean impacts narrow as the ocean warms and acidifies. Consequently, any new climate regime that fails to minimize ocean impacts would be incomplete and inadequate.
Collapse
Affiliation(s)
- J-P Gattuso
- Laboratoire d'Océanographie de Villefranche, CNRS-Institut National des Sciences de l'Univers, F-06230 Villefranche-sur-mer, France. Sorbonne Universités, Université Pierre et Marie Curie, Univ Paris 06, Observatoire Océanologique, F-06230 Villefranche-sur-mer, France. Institute for Sustainable Development and International Relations, Sciences Po, 27 rue Saint Guillaume, F-75007 Paris, France.
| | - A Magnan
- Institute for Sustainable Development and International Relations, Sciences Po, 27 rue Saint Guillaume, F-75007 Paris, France
| | - R Billé
- Secretariat of the Pacific Community, B.P. D5, 98848 Noumea Cedex, New Caledonia
| | - W W L Cheung
- Nippon Foundation-UBC Nereus Program, University of British Columbia (UBC), Vancouver, BC V6T 1Z4, Canada
| | - E L Howes
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, D-27570, Bremenrhaven, Germany
| | - F Joos
- Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - D Allemand
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, MC-98000 Monaco, Principality of Monaco. Institut Pierre Simon Laplace/Laboratoire des Science du Climat et de l'Environnement, UMR8212, CNRS-Commissariat à l'Énergie Atomique et aux Énergies Alternatives-Université de Versailles Saint-Quentin-en-Yvelines, Gif sur Yvette, France
| | - L Bopp
- Ocean Conservancy, 1300 19th Street NW, 8th Floor, Washington, DC 20036, USA
| | - S R Cooley
- Coral Reef Watch, National Oceanic and Atmospheric Administration, College Park, MD 20740, USA
| | - C M Eakin
- Global Change Institute and Australian Research Council Centre for Excellence in Coral Reef Studies, University of Queensland, Building 20, St Lucia, 4072 Queensland, Australia
| | - O Hoegh-Guldberg
- School of Marine and Environmental Affairs, University of Washington, 3707 Brooklyn Avenue NE, Seattle, WA 98105, USA
| | - R P Kelly
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - H-O Pörtner
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, D-27570, Bremenrhaven, Germany
| | - A D Rogers
- Scottish Natural Heritage, 231 Corstorphine Road, Edinburgh EH12 7AT, Scotland
| | - J M Baxter
- IUCN, Rue Mauverney 28, CH-1196 Gland, Switzerland
| | - D Laffoley
- Environment Laboratories, International Atomic Energy Agency, 4a Quai Antoine 1er, MC-98000 Monaco, Principality of Monaco
| | - D Osborn
- Program on Science, Technology, and Society, John F. Kennedy School of Government, Harvard University, 79 John F. Kennedy Street, Cambridge, MA 02138, USA
| | - A Rankovic
- Institute for Sustainable Development and International Relations, Sciences Po, 27 rue Saint Guillaume, F-75007 Paris, France. Fisheries Economics Research Unit, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - J Rochette
- Institute for Sustainable Development and International Relations, Sciences Po, 27 rue Saint Guillaume, F-75007 Paris, France
| | - U R Sumaila
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK
| | - S Treyer
- Institute for Sustainable Development and International Relations, Sciences Po, 27 rue Saint Guillaume, F-75007 Paris, France
| | - C Turley
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK
| |
Collapse
|
49
|
Zhang Y, Sun J, Mu H, Li J, Zhang Y, Xu F, Xiang Z, Qian PY, Qiu JW, Yu Z. Proteomic basis of stress responses in the gills of the pacific oyster Crassostrea gigas. J Proteome Res 2014; 14:304-17. [PMID: 25389644 DOI: 10.1021/pr500940s] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Pacific oyster Crassostrea gigas is one of the dominant sessile inhabitants of the estuarine intertidal zone, which is a physically harsh environment due to the presence of a number of stressors. Oysters have adapted to highly dynamic and stressful environments, but the molecular mechanisms underlying such stress adaptation are largely unknown. In the present study, we examined the proteomic responses in the gills of C. gigas exposed to three stressors (high temperature, low salinity, and aerial exposure) they often encounter in the field. We quantitatively compared the gill proteome profiles using iTRAQ-coupled 2-D LC-MS/MS. There were 3165 identified proteins among which 2379 proteins could be quantified. Heat shock, hyposalinity, and aerial exposure resulted in 50, 15, and 33 differentially expressed gill proteins, respectively. Venn diagram analysis revealed substantial different responses to the three stressors. Only xanthine dehydrogenase/oxidase showed a similar expression pattern across the three stress treatments, suggesting that reduction of ROS accumulation may be a conserved response to these stressors. Heat shock caused significant overexpression of molecular chaperones and production of S-adenosyl-l-methionine, indicating their crucial protective roles against protein denature. In addition, heat shock also activated immune responses, Ca(2+) binding protein expression. By contrast, hyposalinity and aerial exposure resulted in the up-regulation of 3-demethylubiquinone-9 3-methyltransferase, indicating that increase in ubiquinone synthesis may contribute to withstanding both the osmotic and desiccation stress. Strikingly, the majority of desiccation-responsive proteins, including those involved in metabolism, ion transportation, immune responses, DNA duplication, and protein synthesis, were down-regulated, indicating conservation of energy as an important strategy to cope with desiccation stress. There was a high consistency between the expression levels determined by iTRAQ and Western blotting, highlighting the high reproducibility of our proteomic approach and its great value in revealing molecular mechanisms of stress responses.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|