1
|
Mukherjee A, Hartikainen A, Joutsensaari J, Basnet S, Mesceriakovas A, Ihalainen M, Yli-Pirilä P, Leskinen J, Somero M, Louhisalmi J, Fang Z, Kalberer M, Rudich Y, Tissari J, Czech H, Zimmermann R, Sippula O. Black carbon and particle lung-deposited surface area in residential wood combustion emissions: Effects of an electrostatic precipitator and photochemical aging. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175840. [PMID: 39214360 DOI: 10.1016/j.scitotenv.2024.175840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Residential wood combustion (RWC) remains a significant global source of particulate matter (PM) emissions with adverse impacts on regional air quality, climate, and human health. The lung-deposited surface area (LDSA) and equivalent black carbon (eBC) concentrations have emerged as important metrics to assess particulate pollution. In this study we estimated combustion phase-dependent emission factors of LDSA for alveolar, tracheobronchial, and head-airway regions of human lungs and explored the relationships between eBC and LDSA in fresh and photochemically aged RWC emissions. Photochemical aging was simulated in an oxidative flow reactor at OH• exposures equivalent to 1.4 or 3.4 days in the atmosphere. Further, the efficiency of a small-scale electrostatic precipitator (ESP) for reducing LDSA and eBC from the wood stove was determined. For fresh emission eBC correlated extremely well with LDSA, but the correlation decreased after aging. Soot-dominated flaming phase showed the highest eBC dependency of LDSA whereas for ignition and char burning phases non-BC particles contributed strongly the LDSA. Deposition to the alveolar region contributed around 60 % of the total lung-deposition. The ESP was found as an effective method to mitigate particulate mass, LDSA, as well as eBC emissions from wood stoves, as they were reduced on average by 72%, 71%, and 69%, respectively. The reduction efficiencies, however, consistently dropped over the span of an experiment, especially for eBC. Further, the ESP was found to increase the sub-30 nm ultrafine particle number emissions, with implications for LDSA. The results of this study can be used for assessing the contribution of RWC to LDSA concentrations in ambient air.
Collapse
Affiliation(s)
- A Mukherjee
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio 70210, Finland.
| | - A Hartikainen
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio 70210, Finland.
| | - J Joutsensaari
- Department of Technical Physics, University of Eastern Finland, Kuopio 70210, Finland
| | - S Basnet
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio 70210, Finland
| | - A Mesceriakovas
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio 70210, Finland
| | - M Ihalainen
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio 70210, Finland
| | - P Yli-Pirilä
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio 70210, Finland
| | - J Leskinen
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio 70210, Finland
| | - M Somero
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio 70210, Finland
| | - J Louhisalmi
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio 70210, Finland
| | - Z Fang
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - M Kalberer
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Y Rudich
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - J Tissari
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio 70210, Finland
| | - H Czech
- Group of Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg 85764, Germany; Department of Technical and Analytical Chemistry, University of Rostock, Rostock 18056, Germany
| | - R Zimmermann
- Group of Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg 85764, Germany; Department of Technical and Analytical Chemistry, University of Rostock, Rostock 18056, Germany
| | - O Sippula
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio 70210, Finland; Department of Chemistry, University of Eastern Finland, Joensuu 80101, Finland.
| |
Collapse
|
2
|
Mentes D, Jordán A, Farkas L, Muránszky G, Fiser B, Viskolcz B, Póliska C. Evaluating emissions and air quality implications of residential waste incineration. Sci Rep 2024; 14:21314. [PMID: 39266580 PMCID: PMC11393318 DOI: 10.1038/s41598-024-72173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024] Open
Abstract
In Europe mainly at winter season the PM levels exceed air quality limits, which correlated with the operation of solid-fired boilers. More and more people are returning to using these devices due to energy shortage caused by the pandemic and regional conflicts. In addition, the phenomena of co-burning fuels and municipal waste in residential boilers in primarily fuel poverty households increases further the amount of pollutants in the atmosphere. This study aims to correlate the quantity and quality of air pollutants with the type of fuel (wood and wastes) burned. Combustion experiments were conducted using oak fuel mixed with three waste groups: (1) plastics (PP, HDPE, PET); (2) textiles (polyester-PES, cotton-COT); and (3) papers (cardboard-CARD, glossy coated paper-GCP, 84C/PAP). The addition of waste to wood fuel altered the morphology of emitted particles. While waste burning doesn't always increase particle quantity, it significantly raises PAH concentrations. A strong relationship exists between waste type, particle morphology, and PAH quality, where with lower molecular weight PAHs linked to tar agglomerates and higher ones to soot agglomerates with inorganic crystals.
Collapse
Affiliation(s)
- Dóra Mentes
- Institute of Energy and Quality, University of Miskolc, 3515, Miskolc, Miskolc-Egyetemváros, Hungary.
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515, Miskolc-Egyetemváros, Hungary.
- Institute of Chemistry, University of Miskolc, 3515, Miskolc, Miskolc-Egyetemváros, Hungary.
| | - Anikó Jordán
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515, Miskolc-Egyetemváros, Hungary
- Institute of Chemistry, University of Miskolc, 3515, Miskolc, Miskolc-Egyetemváros, Hungary
| | - László Farkas
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515, Miskolc-Egyetemváros, Hungary
| | - Gábor Muránszky
- Institute of Chemistry, University of Miskolc, 3515, Miskolc, Miskolc-Egyetemváros, Hungary
| | - Béla Fiser
- Institute of Chemistry, University of Miskolc, 3515, Miskolc, Miskolc-Egyetemváros, Hungary.
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Lodz, Poland.
- Ferenc Rakoczi II Transcarpathian Hungarian College of Higher Education, Beregszász, 90200, Transcarpathia, Ukraine.
| | - Béla Viskolcz
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515, Miskolc-Egyetemváros, Hungary
- Institute of Chemistry, University of Miskolc, 3515, Miskolc, Miskolc-Egyetemváros, Hungary
| | - Csaba Póliska
- Institute of Energy and Quality, University of Miskolc, 3515, Miskolc, Miskolc-Egyetemváros, Hungary
| |
Collapse
|
3
|
Xie T, Cao L, Zheng J, Xuan P, Huang X. Characterization of size-resolved effective density of atmospheric particles in an urban atmosphere in Southern China. J Environ Sci (China) 2024; 141:194-204. [PMID: 38408820 DOI: 10.1016/j.jes.2023.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 02/28/2024]
Abstract
Effective density (ρeff) is one of the most important physical properties of atmospheric particles, providing important references in exploring the emissions and aging processes of fresh particles. In this study, a combined system of differential mobility analyzer, centrifugal particle mass analyzer, and condensation particle counter was used to periodically measure the ρeff of atmospheric particles in Shenzhen from Oct. 2021 to Jan. 2022. Results showed that the ρeff of particles with various size presented a bimodal distribution, which could be divided into main density (ρm, main peak, corresponding to relatively dense particles after aging) and sub density (ρs, sub peak, corresponding to fresh particles). The occurrence frequencies of ρs of particles with diameters of 50 and 80 nm were less than 20%, but were as high as about 40% of that with diameters from 120 to 350 nm. The ρm showed increasing trend with the size of particles, while ρs decreased as the increasing of the size of particles. The ρeff on pollution day varied significantly with chemical compositions. The increasing of the proportion of sulfate could promote the increasing of ρeff, while black carbon and organic matter caused opposite effects, which may be related to various factors, including the difference of the material density and morphology of various chemical components. The ρeff of 50, 80 and 120 nm particles decreased considerably during the new particle formation event, indicating that organic condensation was an important contributor to new particle growth.
Collapse
Affiliation(s)
- Tingting Xie
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Liming Cao
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Jinyi Zheng
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Peng Xuan
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiaofeng Huang
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
4
|
Lizonova D, Nagarkar A, Demokritou P, Kelesidis GA. Effective density of inhaled environmental and engineered nanoparticles and its impact on the lung deposition and dosimetry. Part Fibre Toxicol 2024; 21:7. [PMID: 38368385 PMCID: PMC10874077 DOI: 10.1186/s12989-024-00567-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/07/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND Airborne environmental and engineered nanoparticles (NPs) are inhaled and deposited in the respiratory system. The inhaled dose of such NPs and their deposition location in the lung determines their impact on health. When calculating NP deposition using particle inhalation models, a common approach is to use the bulk material density, ρb, rather than the effective density, ρeff. This neglects though the porous agglomerate structure of NPs and may result in a significant error of their lung-deposited dose and location. RESULTS Here, the deposition of various environmental NPs (aircraft and diesel black carbon, wood smoke) and engineered NPs (silica, zirconia) in the respiratory system of humans and mice is calculated using the Multiple-Path Particle Dosimetry model accounting for their realistic structure and effective density. This is done by measuring the NP ρeff which was found to be up to one order of magnitude smaller than ρb. Accounting for the realistic ρeff of NPs reduces their deposited mass in the pulmonary region of the respiratory system up to a factor of two in both human and mouse models. Neglecting the ρeff of NPs does not alter significantly the distribution of the deposited mass fractions in the human or mouse respiratory tract that are obtained by normalizing the mass deposited at the head, tracheobronchial and pulmonary regions by the total deposited mass. Finally, the total deposited mass fraction derived this way is in excellent agreement with those measured in human studies for diesel black carbon. CONCLUSIONS The doses of inhaled NPs are overestimated by inhalation particle deposition models when the ρb is used instead of the real-world effective density which can vary significantly due to the porous agglomerate structure of NPs. So the use of realistic ρeff, which can be measured as described here, is essential to determine the lung deposition and dosimetry of inhaled NPs and their impact on public health.
Collapse
Affiliation(s)
- Denisa Lizonova
- Nanoscience and Advanced Materials Center (NAMC), Environmental and Occupational Health Science Institute, School of Public Health, Rutgers, The State University of New Jersey, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Amogh Nagarkar
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, Institute of Process Engineering, ETH Zürich, Sonneggstrasse 3, 8092, Zurich, Switzerland
| | - Philip Demokritou
- Nanoscience and Advanced Materials Center (NAMC), Environmental and Occupational Health Science Institute, School of Public Health, Rutgers, The State University of New Jersey, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Georgios A Kelesidis
- Nanoscience and Advanced Materials Center (NAMC), Environmental and Occupational Health Science Institute, School of Public Health, Rutgers, The State University of New Jersey, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, Institute of Process Engineering, ETH Zürich, Sonneggstrasse 3, 8092, Zurich, Switzerland.
| |
Collapse
|
5
|
Leskinen J, Hartikainen A, Väätäinen S, Ihalainen M, Virkkula A, Mesceriakovas A, Tiitta P, Miettinen M, Lamberg H, Czech H, Yli-Pirilä P, Tissari J, Jakobi G, Zimmermann R, Sippula O. Photochemical Aging Induces Changes in the Effective Densities, Morphologies, and Optical Properties of Combustion Aerosol Particles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5137-5148. [PMID: 36944040 PMCID: PMC10077587 DOI: 10.1021/acs.est.2c04151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 02/10/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Effective density (ρeff) is an important property describing particle transportation in the atmosphere and in the human respiratory tract. In this study, the particle size dependency of ρeff was determined for fresh and photochemically aged particles from residential combustion of wood logs and brown coal, as well as from an aerosol standard (CAST) burner. ρeff increased considerably due to photochemical aging, especially for soot agglomerates larger than 100 nm in mobility diameter. The increase depends on the presence of condensable vapors and agglomerate size and can be explained by collapsing of chain-like agglomerates and filling of their voids and formation of secondary coating. The measured and modeled particle optical properties suggest that while light absorption, scattering, and the single-scattering albedo of soot particle increase during photochemical processing, their radiative forcing remains positive until the amount of nonabsorbing coating exceeds approximately 90% of the particle mass.
Collapse
Affiliation(s)
- Jani Leskinen
- Department
of Environmental and Biological Sciences, University of Eastern Finland, Kuopio FI 70211, Finland
| | - Anni Hartikainen
- Department
of Environmental and Biological Sciences, University of Eastern Finland, Kuopio FI 70211, Finland
| | - Sampsa Väätäinen
- Department
of Environmental and Biological Sciences, University of Eastern Finland, Kuopio FI 70211, Finland
| | - Mika Ihalainen
- Department
of Environmental and Biological Sciences, University of Eastern Finland, Kuopio FI 70211, Finland
| | - Aki Virkkula
- Atmospheric
Composition Research, Finnish Meteorological
Institute, Helsinki FI-00560, Finland
| | - Arunas Mesceriakovas
- Department
of Environmental and Biological Sciences, University of Eastern Finland, Kuopio FI 70211, Finland
| | - Petri Tiitta
- Department
of Environmental and Biological Sciences, University of Eastern Finland, Kuopio FI 70211, Finland
- Finnish
Meteorological Institute, Atmospheric Research
Centre of Eastern Finland, P.O. Box 1627, Kuopio 70211, Finland
| | - Mirella Miettinen
- Department
of Environmental and Biological Sciences, University of Eastern Finland, Kuopio FI 70211, Finland
| | - Heikki Lamberg
- Department
of Environmental and Biological Sciences, University of Eastern Finland, Kuopio FI 70211, Finland
| | - Hendryk Czech
- Joint
Mass Spectrometry Centre, University of Rostock, 18059 Rostock, Germany
and Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, München 81379, Germany
| | - Pasi Yli-Pirilä
- Department
of Environmental and Biological Sciences, University of Eastern Finland, Kuopio FI 70211, Finland
| | - Jarkko Tissari
- Department
of Environmental and Biological Sciences, University of Eastern Finland, Kuopio FI 70211, Finland
| | - Gert Jakobi
- Joint
Mass Spectrometry Centre, University of Rostock, 18059 Rostock, Germany
and Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, München 81379, Germany
| | - Ralf Zimmermann
- Joint
Mass Spectrometry Centre, University of Rostock, 18059 Rostock, Germany
and Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, München 81379, Germany
| | - Olli Sippula
- Department
of Environmental and Biological Sciences, University of Eastern Finland, Kuopio FI 70211, Finland
- Department
of Chemistry, University of Eastern Finland, Joensuu 80101, Finland
| |
Collapse
|
6
|
Wagner DN, Odhiambo SR, Ayikukwei RM, Boor BE. High time-resolution measurements of ultrafine and fine woodsmoke aerosol number and surface area concentrations in biomass burning kitchens: A case study in Western Kenya. INDOOR AIR 2022; 32:e13132. [PMID: 36305061 PMCID: PMC9828051 DOI: 10.1111/ina.13132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/05/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Indoor air pollution associated with biomass combustion for cooking remains a significant environmental health challenge in rural regions of sub-Saharan Africa; however, routine monitoring of woodsmoke aerosol concentrations continues to remain sparse. There is a paucity of field data on concentrations of combustion-generated ultrafine particles, which efficiently deposit in the human respiratory system, in such environments. Field measurements of ultrafine and fine woodsmoke aerosol (diameter range: 10-2500 nm) with field-portable diffusion chargers were conducted across nine wood-burning kitchens in Nandi County, Kenya. High time-resolution measurements (1 Hz) revealed that indoor particle number (PN) and particle surface area (PSA) concentrations of ultrafine and fine woodsmoke aerosol are strongly temporally variant, reach exceedingly high levels (PN > 106 /cm3 ; PSA > 104 μm2 /cm3 ) that are seldom observed in non-biomass burning environments, are influenced by kitchen architectural features, and are moderately to poorly correlated with carbon monoxide concentrations. In five kitchens, PN concentrations remained above 105 /cm3 for more than half of the day due to frequent cooking episodes. Indoor/outdoor ratios of PN and PSA concentrations were greater than 10 in most kitchens and exceeded 100 in several kitchens. Notably, the use of metal chimneys significantly reduced indoor PN and PSA concentrations.
Collapse
Affiliation(s)
- Danielle N. Wagner
- Lyles School of Civil Engineering, Purdue UniversityWest LafayetteIndianaUSA
- Ray W. Herrick Laboratories, Center for High Performance BuildingsPurdue UniversityWest LafayetteIndianaUSA
| | | | | | - Brandon E. Boor
- Lyles School of Civil Engineering, Purdue UniversityWest LafayetteIndianaUSA
- Ray W. Herrick Laboratories, Center for High Performance BuildingsPurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
7
|
Zhang Y, Kong S, Yan Q, Zhu K, Jiang X, Liu L, Xu L, Wang Y, Pang Y, Teng X, Zhu J, Li W. An overlooked source of nanosized lead particles in the atmosphere: Residential honeycomb briquette combustion. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129289. [PMID: 35739795 DOI: 10.1016/j.jhazmat.2022.129289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Atmospheric lead (Pb) pollution has attracted long-term and widespread concerns due to its high toxicity. The definite source identification of atmospheric Pb is the key step to mitigate this pollution. Here, we first report an overlooked source of atmospheric nanosized Pb particles using transmission electron microscopy and bulk sample analyses, finding that residential honeycomb briquette combustion emits large numbers of nanosized Pb-rich particles. We found that 33.7 ± 19.9 % of primary particles by number from residential honeycomb briquette combustion contains the crystalline Pb particles. These Pb-rich particles range in size from 14 to 956 nm with a mean diameter of 117 nm. Compared with raw coal chunks, honeycomb briquette combustion could emit less carbonaceous particles, but largely increase nanosized Pb particle emissions. This result is attributed to two key factors: (1) higher Pb content in honeycomb briquette (63.6 μg g-1) than that in coal chunk (8.5 μg g-1), and (2) higher Pb release rate for honeycomb briquette (62.3 %) caused by honeycomb structure than that for coal chunk (20.1 %). This study highlights that atmospheric and health implications of high emissions of toxic nanosized Pb from honeycomb briquette should be paid more attention in future research on ambient and indoor airs.
Collapse
Affiliation(s)
- Yinxiao Zhang
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Shaofei Kong
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Qin Yan
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Kongyang Zhu
- School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Xiaotong Jiang
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Lei Liu
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Liang Xu
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Yuanyuan Wang
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Yuner Pang
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Xiaomi Teng
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Jihao Zhu
- Key Laboratory of Submarine Geosciences, State Oceanic Administration, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Weijun Li
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
8
|
Martinsson J, Pédehontaa-Hiaa G, Madsen D, Rääf C. Influence of variable oxygen concentration on the combustion derived release of radiocesium from boreal soil and peat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152725. [PMID: 34974011 DOI: 10.1016/j.scitotenv.2021.152725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/30/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Radiocesium, 137Cs, is one of the most common and dispersed human-made radionuclides. Substantial stocks of 137Cs are stored in organic layers, like soils and peat, as a consequence of nuclear weapons fallout and accidental releases. As climate warming progresses these organic layers are subject to enhanced risks of wildfires, especially in the vast boreal biome of the northern hemisphere. Reemission of 137Cs to the atmosphere is therefore presumed to increase. Here, we experimentally investigated the emissions and redistribution of 137Cs in smoldering fires of boreal soil and peat by varying the oxygen concentration during combustion. For both soil and peat, significantly more 137Cs was released through flaming combustion in 21% O2 (50% and 31%, respectively) compared to smoldering in reduced O2 environments (14% and 8%, respectively). The residual ashes were heavily enriched (>100%) in 137Cs. Hence, after a wildfire induced volatilization of 137Cs, there exists further pathways of 137Cs enriched ash to proliferate in the environment. These results serve as a link between wildfire combustion conditions and the mobility of the 137Cs inventory found in ground fuels of the boreal environment and can be valuable for radiological risk assessments in a warmer and a more nuclear energy reliant world.
Collapse
Affiliation(s)
- Johan Martinsson
- Division of Medical Radiation Physics, Translational Medicine, Faculty of Medicine, Lund University, Lund, Box 118, 221 00, Sweden.
| | - Guillaume Pédehontaa-Hiaa
- Division of Medical Radiation Physics, Translational Medicine, Faculty of Medicine, Lund University, Lund, Box 118, 221 00, Sweden
| | - Dan Madsen
- Division of Fire Safety Engineering, Faculty of Engineering, Lund University, Lund, Box 118, 221 00, Sweden
| | - Christopher Rääf
- Division of Medical Radiation Physics, Translational Medicine, Faculty of Medicine, Lund University, Lund, Box 118, 221 00, Sweden
| |
Collapse
|
9
|
Theoretical Foundation of the Relationship between Three Definitions of Effective Density and Particle Size. ATMOSPHERE 2022. [DOI: 10.3390/atmos13040564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Effective density (ρe) is universally used in atmospheric science as an alternative measure of the density (ρ) of aerosol particles, and its definitions can be expressed in terms of the particle mass (mp), ρ, mobility diameter (Dm), vacuum aerodynamic diameter (Dva), and dynamic shape factor (χ), as ρeI = 6mp/(π∙Dm3), ρeII = ρ/χ, and ρeIII = Dva/Dm. However, the theoretical foundation of these three definitions of ρe is still poorly understood before their application. Here, we explore the relationship between ρe and aerosol size through theoretical calculation. This study finds, for the first time, that ρeI and ρeIII inherently decrease with increasing size for aspherical particles with a fixed ρ and χ. We further elucidate that these inherent decreasing tendencies are governed by χ, and the ratio of the Cunningham Slip Correction Factor of the volume-equivalent diameter to that of the mobility diameter (Cc(Dve)/Cc(Dm)), but not by ρ. Taking the variable χ into consideration, the relationships of ρeI and ρeIII to particle size become more complicated, which suggests that the values of ρeI and ρeIII have little indication of the size-resolved physicochemical properties of particles. On the contrary, ρeII is independent on size for fixed χ and ρ, which indicates that the change in ρeII with size can better indicate the change in morphology and the transformation of the chemical compositions of particles. Our new insights into the essence of three ρes provide an accurate and crucial theoretical foundation for their application.
Collapse
|
10
|
Shen H, Luo Z, Xiong R, Liu X, Zhang L, Li Y, Du W, Chen Y, Cheng H, Shen G, Tao S. A critical review of pollutant emission factors from fuel combustion in home stoves. ENVIRONMENT INTERNATIONAL 2021; 157:106841. [PMID: 34438232 DOI: 10.1016/j.envint.2021.106841] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
A large population does not have access to modern household energy and relies on solid fuels such as coal and biomass fuels. Burning of these solid fuels in low-efficiency home stoves produces high amounts of multiple air pollutants, causing severe air pollution and adverse health outcomes. In evaluating impacts on human health and climate, it is critical to understand the formation and emission processes of air pollutants from these combustion sources. Air pollutant emission factors (EFs) from indoor solid fuel combustion usually highly vary among different testing protocols, fuel-stove systems, sampling and analysis instruments, and environmental conditions. In this critical review, we focus on the latest developments in pollutant emission factor studies, with emphases on the difference between lab and field studies, fugitive emission quantification, and factors that contribute to variabilities in EFs. Field studies are expected to provide more realistic EFs for emission inventories since lab studies typically do not simulate real-world burning conditions well. However, the latter has considerable advantages in evaluating formation mechanisms and variational influencing factors in observed pollutant EFs. One main challenge in field emission measurement is the suitable emission sampling system. Reasons for the field and lab differences have yet to be fully elucidated, and operator behavior can have a significant impact on such differences. Fuel properties and stove designs affect emissions, and the variations are complexly affected by several factors. Stove classification is a challenge in the comparison of EF results from different studies. Lab- and field-based methods for quantifying fugitive emissions, as an important contributor to indoor air pollution, have been developed, and priority work is to develop a database covering different fuel-stove combinations. Studies on the dynamics of the combustion process and evolution of air pollutant formation and emissions are scarce, and these factors should be an important aspect of future work.
Collapse
Affiliation(s)
- Huizhong Shen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhihan Luo
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Rui Xiong
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xinlei Liu
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Lu Zhang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yaojie Li
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Wei Du
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Yuanchen Chen
- College of Environment, Research Centre of Environmental Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Hefa Cheng
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Guofeng Shen
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| | - Shu Tao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Peng L, Li Z, Zhang G, Bi X, Hu W, Tang M, Wang X, Peng P, Sheng G. A review of measurement techniques for aerosol effective density. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146248. [PMID: 33725611 DOI: 10.1016/j.scitotenv.2021.146248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Density (ρ) is one of the most important physical properties of aerosol particles. Owing to the complex nature of aerosols and the challenges of measuring them, effective density (ρe) is generally used as an alternative measure. Various methods have been developed to quantify the ρe of aerosols, which provide powerful technical support and understanding of their physical properties. Here, we present a comprehensive review of the characterisation techniques of ρe currently used in the literature. Overall, six categories of measurement are identified, and the typical configuration, measurement principles, errors and field applications of each are demonstrated. Their respective advantages and disadvantages are also discussed to improve their application. Finally, we outline future directions for further technical improvement in, and instrumental development for, ρe measurement.
Collapse
Affiliation(s)
- Long Peng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongrui Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Guohua Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Xinhui Bi
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Weiwei Hu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Mingjin Tang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guoying Sheng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
12
|
Kwon HB, Song WY, Lee TH, Lee SS, Kim YJ. Monitoring the Effective Density of Airborne Nanoparticles in Real Time Using a Microfluidic Nanoparticle Analysis Chip. ACS Sens 2021; 6:137-147. [PMID: 33404228 DOI: 10.1021/acssensors.0c01986] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Determining the effective density of airborne nanoparticles (NPs; particles smaller than 100 nm in diameter) at a point of interest is essential for toxicology and environmental studies, but it currently requires complex analysis systems comprising several high-precision instruments as well as a specially trained operator. To address these limitations, a field-portable and cost-efficient microfluidic NP analysis device is presented, which provides quantitative information on the effective density and size distribution of NPs in real time. Unlike conventional analysis systems, the device can operate in a standalone mode because of the chip operating principle based on the electrostatic/inertial classification and electrical detection methods. Moreover, the device is both compact (16.0 × 10.9 × 8.6 cm3) and light (950 g) owing to the hardware strip down enabled by integrating the essential functions for effective density analysis on a single chip. Quantitative experiments performed to simulate real-life applications utilizing effective density (i.e., effective density-based morphology analysis on engineered NPs and multi-parametric NP monitoring in ambient air) demonstrate that the developed device can be used as an analysis tool in toxicological studies as an on-site sensor for the monitoring of individual NP exposure and environments, for quality monitoring of engineered NPs via aerosol synthesis, and other applications.
Collapse
Affiliation(s)
- Hong-Beom Kwon
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Woo-Young Song
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Tae-Hoon Lee
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seung-Soo Lee
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Yong-Jun Kim
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
13
|
Ihantola T, Di Bucchianico S, Happo M, Ihalainen M, Uski O, Bauer S, Kuuspalo K, Sippula O, Tissari J, Oeder S, Hartikainen A, Rönkkö TJ, Martikainen MV, Huttunen K, Vartiainen P, Suhonen H, Kortelainen M, Lamberg H, Leskinen A, Sklorz M, Michalke B, Dilger M, Weiss C, Dittmar G, Beckers J, Irmler M, Buters J, Candeias J, Czech H, Yli-Pirilä P, Abbaszade G, Jakobi G, Orasche J, Schnelle-Kreis J, Kanashova T, Karg E, Streibel T, Passig J, Hakkarainen H, Jokiniemi J, Zimmermann R, Hirvonen MR, Jalava PI. Influence of wood species on toxicity of log-wood stove combustion aerosols: a parallel animal and air-liquid interface cell exposure study on spruce and pine smoke. Part Fibre Toxicol 2020; 17:27. [PMID: 32539833 PMCID: PMC7296712 DOI: 10.1186/s12989-020-00355-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Background Wood combustion emissions have been studied previously either by in vitro or in vivo models using collected particles, yet most studies have neglected gaseous compounds. Furthermore, a more accurate and holistic view of the toxicity of aerosols can be gained with parallel in vitro and in vivo studies using direct exposure methods. Moreover, modern exposure techniques such as air-liquid interface (ALI) exposures enable better assessment of the toxicity of the applied aerosols than, for example, the previous state-of-the-art submerged cell exposure techniques. Methods We used three different ALI exposure systems in parallel to study the toxicological effects of spruce and pine combustion emissions in human alveolar epithelial (A549) and murine macrophage (RAW264.7) cell lines. A whole-body mouse inhalation system was also used to expose C57BL/6 J mice to aerosol emissions. Moreover, gaseous and particulate fractions were studied separately in one of the cell exposure systems. After exposure, the cells and animals were measured for various parameters of cytotoxicity, inflammation, genotoxicity, transcriptome and proteome. Results We found that diluted (1:15) exposure pine combustion emissions (PM1 mass 7.7 ± 6.5 mg m− 3, 41 mg MJ− 1) contained, on average, more PM and polycyclic aromatic hydrocarbons (PAHs) than spruce (PM1 mass 4.3 ± 5.1 mg m− 3, 26 mg MJ− 1) emissions, which instead showed a higher concentration of inorganic metals in the emission aerosol. Both A549 cells and mice exposed to these emissions showed low levels of inflammation but significantly increased genotoxicity. Gaseous emission compounds produced similar genotoxicity and a higher inflammatory response than the corresponding complete combustion emission in A549 cells. Systems biology approaches supported the findings, but we detected differing responses between in vivo and in vitro experiments. Conclusions Comprehensive in vitro and in vivo exposure studies with emission characterization and systems biology approaches revealed further information on the effects of combustion aerosol toxicity than could be achieved with either method alone. Interestingly, in vitro and in vivo exposures showed the opposite order of the highest DNA damage. In vitro measurements also indicated that the gaseous fraction of emission aerosols may be more important in causing adverse toxicological effects. Combustion aerosols of different wood species result in mild but aerosol specific in vitro and in vivo effects.
Collapse
Affiliation(s)
- Tuukka Ihantola
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland.
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Mikko Happo
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland.,Ramboll Finland, P.O.Box 25 Itsehallintokuja 3, FI-02601, Espoo, Finland
| | - Mika Ihalainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Oskari Uski
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Stefanie Bauer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Kari Kuuspalo
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland.,Present address: Savonia University of applied sciences, Microkatu 1, FI-70210, Kuopio, Finland
| | - Olli Sippula
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Jarkko Tissari
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Sebastian Oeder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Anni Hartikainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Teemu J Rönkkö
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Maria-Viola Martikainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Kati Huttunen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Petra Vartiainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Heikki Suhonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Miika Kortelainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Heikki Lamberg
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Ari Leskinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland.,Finnish Meteorological Institute, Yliopistonranta 1 F, FI-70210, Kuopio, Finland
| | - Martin Sklorz
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany.,Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr. Lorenzweg 2, D-18051, Rostock, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Marco Dilger
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus North, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Carsten Weiss
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus North, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Gunnar Dittmar
- Luxembourg institute of health, 1A-B rue Thomas Edison, 1445, Strassen, Luxembourg
| | - Johannes Beckers
- Institute of Experimental Genetics (IEG), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany.,Technical University of Munich, Chair of Experimental Genetics, D-85350, Freising-Weihenstephan, Germany.,German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany
| | - Martin Irmler
- Institute of Experimental Genetics (IEG), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Jeroen Buters
- ZAUM - Center of Allergy & Environment, Technical University Munich/Helmholtz Center Munich, Biedersteiner Str. 29, D-80802, Munich, Germany
| | - Joana Candeias
- ZAUM - Center of Allergy & Environment, Technical University Munich/Helmholtz Center Munich, Biedersteiner Str. 29, D-80802, Munich, Germany
| | - Hendryk Czech
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland.,Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Pasi Yli-Pirilä
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Gülcin Abbaszade
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Gert Jakobi
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Jürgen Orasche
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Jürgen Schnelle-Kreis
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Tamara Kanashova
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr. Lorenzweg 2, D-18051, Rostock, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Robert-Rössle-Str. 10, D-13125, Berlin, Germany
| | - Erwin Karg
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Thorsten Streibel
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany.,Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr. Lorenzweg 2, D-18051, Rostock, Germany
| | - Johannes Passig
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr. Lorenzweg 2, D-18051, Rostock, Germany
| | - Henri Hakkarainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Jorma Jokiniemi
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany.,Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr. Lorenzweg 2, D-18051, Rostock, Germany
| | - Maija-Riitta Hirvonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Pasi I Jalava
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| |
Collapse
|
14
|
Kaur K, Mohammadpour R, Jaramillo IC, Ghandehari H, Reilly C, Paine R, Kelly KE. Application of a Quartz Crystal Microbalance to Measure the Mass Concentration of Combustion Particle Suspensions. JOURNAL OF AEROSOL SCIENCE 2019; 137:105445. [PMID: 32863423 PMCID: PMC7448758 DOI: 10.1016/j.jaerosci.2019.105445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Researchers studying the biological effects of combustion particles typically rely on suspending particles in de-ionized (DI) water, buffer, and/or media prior to in vitro or in vivo experiments. However, the hydrophobic nature of combustion particles makes it difficult to obtain well-suspended, evenly dispersed mixtures, which also makes it difficult to obtain equivalent dosing and endpoint comparisons. This study explored the use of a quartz crystal microbalance (QCM) to measure the mass concentration of combustion particle suspensions. It compared the QCM mass concentration to that estimated by placing a known mass of combustion particles in DI water. It also evaluated the effect of drop volume and combustion particle type on QCM measurements. The results showed that QCM is a promising direct method for measuring suspended combustion particle mass concentrations, and it is particularly effective for quantifying concentrations of difficult-to-suspend particles and for combustion particles placed in polystyrene containers, which can lead to substantial particle losses.
Collapse
Affiliation(s)
| | | | | | - Hamidreza Ghandehari
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah
- Department of Bioengineering, University of Utah
| | - Christopher Reilly
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah
- Department of Pharmacology and Toxicology, University of Utah
| | - Robert Paine
- Department of Pulmonary Medicine, University of Utah
| | - Kerry E. Kelly
- Department of Chemical Engineering, University of Utah
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah
| |
Collapse
|
15
|
Han C, Li SM, Liu P, Lee P. Size Dependence of the Physical Characteristics of Particles Containing Refractory Black Carbon in Diesel Vehicle Exhaust. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:137-145. [PMID: 30516049 DOI: 10.1021/acs.est.8b04603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The number and mass size distributions of refractory black carbon (rBC) cores in particles emitted from a diesel vehicle were investigated as a function of particle mobility diameter ( dmob) using a single particle soot photometer (SP2) and a differential mobility analyzer (DMA). The thickness and mass of coatings on the rBC cores were characterized. On the basis of the SP2 and DMA results, the physical properties of particles containing rBC, including effective density (ρeff), mass-mobility scaling exponent ( Dm), dynamic shape factor (χ), and mass absorption cross section (MAC), were derived as a function of dmob. At each dmob, the count median diameter (CMD) of the rBC cores was essentially the same as their mass median diameter (MMD), which increased linearly with dmob. The mass of the rBC cores was proportional to the cubic of their dmob. However, coating thickness on rBC cores remained unchanged with dmob, with an average thickness of 28.72 ± 4.81 nm. For particles containing rBC, ρeff decreased and χ increased with dmob. The Dm of particles containing rBC was calculated to be 2.09. At 355 and 532 nm wavelengths, the MAC of the diesel particles containing rBC was inversely dependent on dmob.
Collapse
Affiliation(s)
- Chong Han
- Air Quality Research Division , Environment and Climate Change Canada , 4905 Dufferin Street , Toronto , Ontario M3H 5T4 , Canada
| | - Shao-Meng Li
- Air Quality Research Division , Environment and Climate Change Canada , 4905 Dufferin Street , Toronto , Ontario M3H 5T4 , Canada
| | - Peter Liu
- Air Quality Research Division , Environment and Climate Change Canada , 4905 Dufferin Street , Toronto , Ontario M3H 5T4 , Canada
| | - Patrick Lee
- Air Quality Research Division , Environment and Climate Change Canada , 4905 Dufferin Street , Toronto , Ontario M3H 5T4 , Canada
| |
Collapse
|
16
|
Morphology, composition, and mixing state of primary particles from combustion sources - crop residue, wood, and solid waste. Sci Rep 2017; 7:5047. [PMID: 28698671 PMCID: PMC5505958 DOI: 10.1038/s41598-017-05357-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/26/2017] [Indexed: 11/08/2022] Open
Abstract
Morphology, composition, and mixing state of individual particles emitted from crop residue, wood, and solid waste combustion in a residential stove were analyzed using transmission electron microscopy (TEM). Our study showed that particles from crop residue and apple wood combustion were mainly organic matter (OM) in smoldering phase, whereas soot-OM internally mixed with K in flaming phase. Wild grass combustion in flaming phase released some Cl-rich-OM/soot particles and cardboard combustion released OM and S-rich particles. Interestingly, particles from hardwood (pear wood and bamboo) and softwood (cypress and pine wood) combustion were mainly soot and OM in the flaming phase, respectively. The combustion of foam boxes, rubber tires, and plastic bottles/bags in the flaming phase released large amounts of soot internally mixed with a small amount of OM, whereas the combustion of printed circuit boards and copper-core cables emitted large amounts of OM with Br-rich inclusions. In addition, the printed circuit board combustion released toxic metals containing Pb, Zn, Sn, and Sb. The results are important to document properties of primary particles from combustion sources, which can be used to trace the sources of ambient particles and to know their potential impacts in human health and radiative forcing in the air.
Collapse
|