1
|
Li X, Suh YP, Wilson RJ, Lein PJ, Cui JY, Lehmler HJ. Significant metabolic alterations in mouse dams exposed to an environmental mixture of polychlorinated biphenyls (PCBs) during gestation and lactation: Insights into PCB and metabolite profiles. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104567. [PMID: 39305941 PMCID: PMC11499005 DOI: 10.1016/j.etap.2024.104567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Polychlorinated biphenyls (PCBs) and their metabolites are linked to developmental neurotoxicity, but their levels in the gestational and lactational environment remain unexplored. This study investigated the effects of dietary exposure to the Fox River Mixture (FRM) on serum levels of PCBs and their metabolites in female C57BL/6 J mice. Mice were exposed to 0.1, 1.0, or 6.0 mg/kg body weight/day of FRM beginning two weeks before mating and throughout gestation and lactation. Serum samples collected from the dams at weaning were analyzed using gas chromatograph-tandem mass spectrometry and nontarget liquid chromatography-high resolution mass spectrometry. Results showed complex and dose-dependent differences in PCB and metabolite profiles. Untargeted metabolomics revealed alterations in metabolites involved in glucuronidation. Network analysis suggested disturbances in heme and amino acid metabolism associated with higher chlorinated PCBs. These findings suggested that PCBs and metabolites present in the gestational and lactation environment of mice may contribute to developmental neurotoxicity in rodents.
Collapse
Affiliation(s)
- Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Youjun P Suh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | - Rebecca J Wilson
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California at Davis, Davis, CA 95616, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California at Davis, Davis, CA 95616, USA
| | - Julia Y Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
2
|
Wilson RJ, Suh YP, Dursun I, Li X, da Costa Souza F, Grodzki AC, Cui JY, Lehmler HJ, Lein PJ. Developmental exposure to the Fox River PCB mixture modulates behavior in juvenile mice. Neurotoxicology 2024; 103:146-161. [PMID: 38885884 PMCID: PMC11489981 DOI: 10.1016/j.neuro.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/13/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Developmental exposures to PCBs are implicated in the etiology of neurodevelopmental disorders (NDDs). This observation is concerning given the continued presence of PCBs in the human environment and the increasing incidence of NDDs. Previous studies reported that developmental exposure to legacy commercial PCB mixtures (Aroclors) or single PCB congeners found in Aroclors caused NDD-relevant behavioral phenotypes in animal models. However, the PCB congener profile in contemporary human samples is dissimilar to that of the legacy Aroclors, raising the question of whether human-relevant PCB mixtures similarly interfere with normal brain development. To address this question, we assessed the developmental neurotoxicity of the Fox River Mixture (FRM), which was designed to mimic the congener profile identified in fish from the PCB-contaminated Fox River that constitute a primary protein source in the diet of surrounding communities. Adult female C57BL/6 J mouse dams (8-10 weeks old) were exposed to vehicle (peanut oil) or FRM at 0.1, 1.0, or 6.0 mg/kg/d in their diet throughout gestation and lactation, and neurodevelopmental outcomes were assessed in their pups. Ultrasonic vocalizations (USVs) and measures of general development were quantified at postnatal day (P) 7, while performance in the spontaneous alternation task and the 3-chambered social approach/social novelty task was assessed on P35. Triiodothyronine (T3) and thyroxine (T4) were quantified in serum collected from the dams when pups were weaned and from pups on P28 and P35. Developmental exposure to FRM did not alter pup weight or body temperature on P7, but USVs were significantly decreased in litters exposed to FRM at 0.1 or 6.0 mg/kg/d in the maternal diet. FRM also impaired male and female pups' performance in the social novelty task. Compared to sex-matched vehicles, significantly decreased social novelty was observed in male and female pups in the 0.1 and 6.0 mg/kg/d dose groups. FRM did not alter performance in the spontaneous alternation or social approach tasks. FRM increased serum T3 levels but decreased serum T4 levels in P28 male pups in the 1.0 and 6.0 mg/kg/d dose groups. In P35 female pups and dams, serum T3 levels decreased in the 6.0 mg/kg/d dose group while T4 levels were not altered. Collectively, these findings suggest that FRM interferes with the development of social communication and social novelty, but not memory, supporting the hypothesis that contemporary PCB exposures pose a risk to the developing brain. FRM had sex, age, and dose-dependent effects on serum thyroid hormone levels that overlapped but did not perfectly align with the FRM effects on behavioral outcomes. These observations suggest that changes in thyroid hormone levels are not likely the major factor underlying the behavioral deficits observed in FRM-exposed animals.
Collapse
Affiliation(s)
- Rebecca J Wilson
- Department of Molecular Biosciences, University of California Davis, Davis, CA, USA
| | - Youjun P Suh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Ilknur Dursun
- Department of Molecular Biosciences, University of California Davis, Davis, CA, USA; Istinye University, School of Medicine, Department of Physiology, Istanbul 34396, Turkey
| | - Xueshu Li
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, USA
| | | | - Ana Cristina Grodzki
- Department of Molecular Biosciences, University of California Davis, Davis, CA, USA
| | - Julia Y Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California Davis, Davis, CA, USA.
| |
Collapse
|
3
|
Costopoulou D, Kedikoglou K, Vafeiadi M, Roumeliotaki T, Margetaki K, Stephanou EG, Myridakis A, Leondiadis L. Systematic investigation of organochlorine pesticides and polychlorinated biphenyls blood levels in Greek children from the Rhea birth cohort suggests historical exposure to DDT and through diet to DDE. ENVIRONMENT INTERNATIONAL 2024; 187:108686. [PMID: 38669722 DOI: 10.1016/j.envint.2024.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/08/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
The blood levels of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) have been thoroughly investigated in Greek children from the Rhea birth cohort study. This investigation aimed to assess exposure levels, explore their possible relationship with children's age and sex, and indicate potential sources of exposure. Exposure patterns and common sources of PCBs and OCPs were analyzed using bivariate and multivariate statistics. A total of 947 blood samples from study participants were analyzed for OCP and PCB exposure, with 375 samples collected at 4 years old, 239 at 6.5 years old, and 333 at 11 years old. Elevated levels of DDE were observed in 6.5-year-old children compared to corresponding levels in other European countries. Higher levels of DDE were found in 4-year-old children, with the lowest concentrations in the 11-year-old group. The DDT/DDE ratio was consistently less than 1 among all the examined subjects. These results indicate exposure to DDT and DDE both in utero and through breastfeeding and dietary intake. For the entire cohort population, the highest concentration was determined for PCB 28, followed by PCBs 138, 153, and 180. The sum of the six indicator PCBs implied low exposure levels for the majority of the cohort population. Spearman correlations revealed strong associations between PCBs and OCPs, while principal component analysis identified two different groupings of exposure. DDE exhibited a correlation with a series of PCBs (153, 156, 163, 180), indicating a combined OCP-PCB source, and an anticorrelation with others (52, 28, 101), implying a separate and competing source.
Collapse
Affiliation(s)
- Danae Costopoulou
- Mass Spectrometry and Dioxin Analysis Laboratory, INRASTES, NCSR "Demokritos", Neapoleos 27, 15310 Athens, Greece.
| | - Kleopatra Kedikoglou
- Mass Spectrometry and Dioxin Analysis Laboratory, INRASTES, NCSR "Demokritos", Neapoleos 27, 15310 Athens, Greece
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Voutes University Campus, 70013 Heraklion, Greece
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Voutes University Campus, 70013 Heraklion, Greece
| | - Katerina Margetaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Voutes University Campus, 70013 Heraklion, Greece
| | - Euripides G Stephanou
- Department of Chemistry, University of Crete, Voutes University Campus, 70013 Heraklion, Greece.
| | - Antonis Myridakis
- Centre for Pollution Research & Policy, Environmental Sciences, Brunel University London, UB8 3PH, United Kingdom
| | - Leondios Leondiadis
- Mass Spectrometry and Dioxin Analysis Laboratory, INRASTES, NCSR "Demokritos", Neapoleos 27, 15310 Athens, Greece
| |
Collapse
|
4
|
Grant-Alfieri A, Devasurendra A, Batterman S, Karvonen-Gutierrez C, Park SK. Changes in Adipose Tissue and Circulating Concentrations of Persistent Organic Pollutants in Midlife Women. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2024; 2:243-252. [PMID: 38660427 PMCID: PMC11036386 DOI: 10.1021/envhealth.3c00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 04/26/2024]
Abstract
Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) are persistent organic pollutants (POPs) that bioaccumulate in adipose tissue. We investigated the relationship between change in central adiposity and changes in circulating concentrations of POPs over a 12-year period during the midlife. Serum concentrations of 34 PCBs and 19 OCPs were measured at four time points (1999/2000, 2002/03, 2005/06, 2009/11) in a cohort of midlife women, the Study of Women's Health Across the Nation. Linear mixed models were used to test the association between a change in waist circumference and a change in serum POP concentrations. Sixty-five women contributed 181 PCB observations. Fifty-nine women contributed 151 OCP observations. After adjustment for covariates (study site, race and ethnicity, age at baseline, parity), a one-inch (2.54 cm) increase in the change in waist circumference between visits was associated with a 4.9% decrease in the change in serum concentration of PCB 194 (95% CI: -8.0%, -1.6%). No associations were observed for other PCB congeners or the presence of OCPs. An increase in the difference in waist circumference over time was not associated with a change in the difference in serum concentrations of PCBs and OCPs except for PCB 194, possibly due to the high lipophilicity.
Collapse
Affiliation(s)
- Amelia Grant-Alfieri
- Department
of Environmental Health Sciences, University
of Michigan School of Public Health, Ann Arbor, Michigan 48109, United States
| | - Amila Devasurendra
- Department
of Environmental Health Sciences, University
of Michigan School of Public Health, Ann Arbor, Michigan 48109, United States
| | - Stuart Batterman
- Department
of Environmental Health Sciences, University
of Michigan School of Public Health, Ann Arbor, Michigan 48109, United States
| | - Carrie Karvonen-Gutierrez
- Department
of Epidemiology, University of Michigan
School of Public Health, Ann Arbor, Michigan 48109, United States
| | - Sung Kyun Park
- Department
of Environmental Health Sciences, University
of Michigan School of Public Health, Ann Arbor, Michigan 48109, United States
- Department
of Epidemiology, University of Michigan
School of Public Health, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
5
|
Sánchez RM, Bermeo Losada JF, Marín Martínez JA. The research landscape concerning environmental factors in neurodevelopmental disorders: Endocrine disrupters and pesticides-A review. Front Neuroendocrinol 2024; 73:101132. [PMID: 38561126 DOI: 10.1016/j.yfrne.2024.101132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/08/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
In recent years, environmental epidemiology and toxicology have seen a growing interest in the environmental factors that contribute to the increased prevalence of neurodevelopmental disorders, with the purpose of establishing appropriate prevention strategies. A literature review was performed, and 192 articles covering the topic of endocrine disruptors and neurodevelopmental disorders were found, focusing on polychlorinated biphenyls, polybrominated diphenyl ethers, bisphenol A, and pesticides. This study contributes to analyzing their effect on the molecular mechanism in maternal and infant thyroid function, essential for infant neurodevelopment, and whose alteration has been associated with various neurodevelopmental disorders. The results provide scientific evidence of the association that exists between the environmental neurotoxins and various neurodevelopmental disorders. In addition, other possible molecular mechanisms by which pesticides and endocrine disruptors may be associated with neurodevelopmental disorders are being discussed.
Collapse
Affiliation(s)
- Rebeca Mira Sánchez
- Universidad de Murcia, Spain; Instituto de Ciencias Medioambientales y Neurodesarrollo ICMYN, Murcia, Spain.
| | | | | |
Collapse
|
6
|
Wang H, Bullert AJ, Li X, Stevens H, Klingelhutz AJ, Ankrum JA, Adamcakova-Dodd A, Thorne PS, Lehmler HJ. Use of a polymeric implant system to assess the neurotoxicity of subacute exposure to 2,2',5,5'-tetrachlorobiphenyl-4-ol, a human metabolite of PCB 52, in male adolescent rats. Toxicology 2023; 500:153677. [PMID: 37995827 PMCID: PMC10757425 DOI: 10.1016/j.tox.2023.153677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/06/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs) that ubiquitously exist in the environment. PCB exposure has been linked to cancer and multi-system toxicity, including endocrine disruption, immune inhibition, and reproductive and neurotoxicity. 2,2',5,5'-Tetrachlorobiphenyl (PCB 52) is one of the most frequently detected congeners in the environment and human blood. The hydroxylated metabolites of PCB 52 may also be neurotoxic, especially for children whose brains are still developing. However, it is challenging to discern the contribution of these metabolites to PCB neurotoxicity because the metabolism of PCB is species-dependent. In this study, we evaluated the subacute neurotoxicity of a human-relevant metabolite, 2,2',5,5'-tetrachlorobiphenyl-4-ol (4-52), on male adolescent Sprague Dawley rats, via a novel polymeric implant drug delivery system grafted subcutaneously, at total loading concentrations ranging from 0%, 1%, 5%, and 10% of the implant (w/w) for 28 days. Y-maze, hole board test, open field test, and elevated plus maze were performed on exposure days 24-28 to assess their locomotor activity, and exploratory and anxiety-like behavior. 4-52 and other possible hydroxylated metabolites in serum and vital tissues were quantified using gas chromatography with tandem mass spectrometry (GC-MS/MS). Our results demonstrate the sustained release of 4-52 from the polymeric implants into the systemic circulation in serum and tissues. Dihydroxylated and dechlorinated metabolites were detected in serum and tissues, depending on the dose and tissue type. No statistically significant changes were observed in the neurobehavioral tasks across all exposure groups. The results demonstrate that subcutaneous polymeric implants provide a straightforward method to expose rats to phenolic PCB metabolites to study neurotoxic outcomes, e.g., in memory, anxiety, and exploratory behaviors.
Collapse
Affiliation(s)
- Hui Wang
- Department of Occupational and Environmental Health, the University of Iowa, Iowa City, IA, USA
| | - Amanda J Bullert
- Department of Occupational and Environmental Health, the University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, the University of Iowa, Iowa City, IA, USA
| | - Xueshu Li
- Department of Occupational and Environmental Health, the University of Iowa, Iowa City, IA, USA
| | - Hanna Stevens
- Interdisciplinary Graduate Program in Neuroscience, the University of Iowa, Iowa City, IA, USA; Department of Psychiatry, the University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Human Toxicology, the University of Iowa, Iowa City, IA, USA
| | | | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, the University of Iowa, Iowa City, IA, USA
| | - Andrea Adamcakova-Dodd
- Department of Occupational and Environmental Health, the University of Iowa, Iowa City, IA, USA
| | - Peter S Thorne
- Department of Occupational and Environmental Health, the University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, the University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Human Toxicology, the University of Iowa, Iowa City, IA, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, the University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, the University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Human Toxicology, the University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
7
|
Yang X, Liu Y, Liu S, Zheng P, Bai X, Ma LQ, Liu W. Prenatal exposure to 209 PCBs in mother-infant pairs from two cities in China: Levels, congener profiles, and transplacental transfer. CHEMOSPHERE 2023; 326:138483. [PMID: 36958503 DOI: 10.1016/j.chemosphere.2023.138483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Prenatal exposure to polychlorinated biphenyls (PCBs) has been well researched, but studies covering all 209 congeners are limited. Recent literature suggests a shift in the dominant congeners and increasing levels of unintentionally-produced PCBs (UP-PCBs) in environmental samples in China. To investigate the exposure levels and profiles of PCBs in pregnant women and newborns, as well as the characteristics of transplacental transfer, we measured 209 PCBs in 80 pairs of maternal serum (MS) and cord serum (CS) from Hangzhou and Mianyang, China. The levels of ∑PCBs of participants in this study were lower than those in developed countries and followed the order of (ng/g lw): Hangzhou-MS (148) > Hangzhou-CS (107) > Mianyang-MS (63.8) > Mianyang-CS (57.9). UP-PCBs (mainly PCB-11) contributed around 50% of ∑PCBs in serum, which is consistent with the environmental samples. Environmental burden and dietary intake may account for the differences in the exposure levels, while the historical production and release may have impacted the homologue profiles. Prenatal exposure to PCB-126 was associated with increased birth weight (n = 80, adjusted β = 0.270, p = 0.030). The body burden of dioxin-like PCBs of newborns in Hangzhou was 82.4 pg TEQ/kg bw, suggesting certain health risks under WHO tolerable daily intake of 1-4 pg TEQ/kg bw. Log10 KOW was negatively correlated with log10-transformed transplacental transfer efficiency (R2 = 0.36, p < 0.001), serving its importance for PCBs' transplacental transfer. This study is the first to investigate maternal and fetal exposure to PCBs in China based on their levels, congener and homologue profiles, and potential adverse effects. Our findings help to provide insights into the processes and factors influencing the transplacental transfer of PCBs.
Collapse
Affiliation(s)
- Xiaomeng Yang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, Zhejiang University, Hangzhou, 310058, China
| | - Yingxue Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, Zhejiang University, Hangzhou, 310058, China
| | - Shuren Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Ping Zheng
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoxia Bai
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Lena Q Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weiping Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
8
|
Mouat JS, Li X, Neier K, Zhu Y, Mordaunt CE, La Merrill MA, Lehmler HJ, Jones MP, Lein PJ, Schmidt RJ, LaSalle JM. Networks of placental DNA methylation correlate with maternal serum PCB concentrations and child neurodevelopment. ENVIRONMENTAL RESEARCH 2023; 220:115227. [PMID: 36608759 PMCID: PMC10518186 DOI: 10.1016/j.envres.2023.115227] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Gestational exposure to polychlorinated biphenyls (PCBs) has been associated with elevated risk for neurodevelopmental disorders. Placental epigenetics may serve as a potential mechanism of risk or marker of altered placental function. Prior studies have associated differential placental DNA methylation with maternal PCB exposure or with increased risk of autism spectrum disorder (ASD). However, sequencing-based placental methylomes have not previously been tested for simultaneous associations with maternal PCB levels and child neurodevelopmental outcomes. OBJECTIVES We aimed to identify placental DNA methylation patterns associated with maternal PCB levels and child neurodevelopmental outcomes in the high-risk ASD MARBLES cohort. METHODS We measured 209 PCB congeners in 104 maternal serum samples collected at delivery. We identified networks of DNA methylation from 147 placenta samples using the Comethyl R package, which performs weighted gene correlation network analysis for whole genome bisulfite sequencing data. We tested placental DNA methylation modules for association with maternal serum PCB levels, child neurodevelopment, and other participant traits. RESULTS PCBs 153 + 168, 170, 180 + 193, and 187 were detected in over 50% of maternal serum samples and were highly correlated with one another. Consistent with previous findings, maternal age was the strongest predictor of serum PCB levels, alongside year of sample collection, pre-pregnancy BMI, and polyunsaturated fatty acid levels. Twenty seven modules of placental DNA methylation were identified, including five which significantly correlated with one or more PCBs, and four which correlated with child neurodevelopment. Two modules associated with maternal PCB levels as well as child neurodevelopment, and mapped to CSMD1 and AUTS2, genes previously implicated in ASD and identified as differentially methylated regions in mouse brain and placenta following gestational PCB exposure. CONCLUSIONS Placental DNA co-methylation modules were associated with maternal PCBs and child neurodevelopment. Methylation of CSMD1 and AUTS2 could be markers of altered placental function and/or ASD risk following maternal PCB exposure.
Collapse
Affiliation(s)
- Julia S Mouat
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA; Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; Genome Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA
| | - Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Kari Neier
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA; Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; Genome Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA
| | - Yihui Zhu
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA; Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; Genome Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA
| | - Charles E Mordaunt
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA; Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; Genome Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA
| | - Michele A La Merrill
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Michael P Jones
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Pamela J Lein
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA; Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Rebecca J Schmidt
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA; Department of Public Health Sciences, School of Medicine, University of California, Davis, CA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA; Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; Genome Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA.
| |
Collapse
|
9
|
Sasaki N, Jones LE, Morse GS, Carpenter DO. Mixture Effects of Polychlorinated Biphenyls (PCBs) and Three Organochlorine Pesticides on Cognitive Function in Mohawk Adults at Akwesasne. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1148. [PMID: 36673903 PMCID: PMC9859591 DOI: 10.3390/ijerph20021148] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 05/22/2023]
Abstract
The Mohawks at Akwesasne have been highly exposed to polychlorinated biphenyls (PCBs), via releases from three aluminum foundries located near the reserve. They are also exposed to organochlorine pesticides, namely hexachlorobenzene (HCB), dichlorodiphenyldichloroethylene (DDE), and mirex. Previous studies have demonstrated reduced cognition in relation to total PCBs, but the effects of the mixtures of different PCB congener groups, HCB, DDE, and mirex on cognitive function have not been studied. Therefore, cognitive performance for executive function, scored via the digit symbol substitution test (DSST), in Mohawk adults aged 17-79 years (n = 301), was assessed in relation to serum concentrations of low-chlorinated PCBs, high-chlorinated PCBs, total PCBs, HCB, DDE, and mirex. We used mixture models employing the quantile-based g-computation method. The mixture effects of low-chlorinated PCBs, high-chlorinated PCBs, HCB, DDE, and mirex were significantly associated with 4.01 DSST scores decrements in the oldest age group, 47-79 years old. There were important contributions to mixture effects from low-chlorinated PCBs, high-chlorinated PCBs, and total PCBs, with smaller contributions of HCB and DDE. Our findings indicate that exposures to both low- and high-chlorinated PCBs increase the risk of cognitive decline in older adults, while DDE and HCB have less effect.
Collapse
Affiliation(s)
- Nozomi Sasaki
- Institute for Health and the Environment, University at Albany, Rensselaer, NY 12144, USA
| | - Laura E. Jones
- Institute for Health and the Environment, University at Albany, Rensselaer, NY 12144, USA
- Department of Biostatistics and Epidemiology, School of Public Health, University at Albany, Rensselaer, NY 12144, USA
| | - Gayle S. Morse
- Institute for Health and the Environment, University at Albany, Rensselaer, NY 12144, USA
- Department of Psychology, School of Health Sciences, Russell Sage College, Troy, NY 12180, USA
| | - David O. Carpenter
- Institute for Health and the Environment, University at Albany, Rensselaer, NY 12144, USA
| | | |
Collapse
|
10
|
Li X, Hefti MM, Marek RF, Hornbuckle KC, Wang K, Lehmler HJ. Assessment of Polychlorinated Biphenyls and Their Hydroxylated Metabolites in Postmortem Human Brain Samples: Age and Brain Region Differences. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9515-9526. [PMID: 35658127 PMCID: PMC9260965 DOI: 10.1021/acs.est.2c00581] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Exposure to polychlorinated biphenyls (PCBs) and their hydroxylated metabolites (OH-PCBs) has been implicated in neurodevelopmental disorders. However, the distribution of PCBs and OH-PCBs in the human brain has not been characterized. This study investigated the age-, sex-, and brain region-specific distribution of all 209 PCBs using gaschromatography-tandem mass spectrometry (GC-MS/MS) in neonatal (N = 7) and adult (N = 7) postmortem brain samples. OH-PCB analyses were performed by GC-MS/MS (as methylated derivatives) and, in a subset of samples, by nontarget liquid chromatography high-resolution mass spectrometry (Nt-LCMS). Fourteen higher chlorinated PCB congeners were observed with a detection frequency >50%. Six lower chlorinated PCBs were detected with a detection frequency >10%. Higher chlorinated PCBs were observed with higher levels in samples from adult versus younger donors. PCB congener profiles from adult donors showed more similarities across brain regions and donors than younger donors. We also assess the potential neurotoxicity of the PCB residues in the human brain with neurotoxic equivalency (NEQ) approaches. The median ΣNEQs, calculated for the PCB homologues, were 40-fold higher in older versus younger donors. Importantly, lower chlorinated PCBs made considerable contributions to the neurotoxic potential of PCB residues in some donors. OH-PCBs were identified for the first time in a small number of human brain samples by GC-MS/MS and Nt-LCMS analyses, and all contained four or fewer chlorine.
Collapse
Affiliation(s)
- Xueshu Li
- Department
of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Marco M. Hefti
- Department
of Pathology, University of Iowa Hospital
and Clinics, Iowa City, Iowa 52242, United
States
| | - Rachel F. Marek
- IIHR-Hydroscience
and Engineering, University of Iowa, Iowa City, Iowa 52242, United States
- Department
of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Keri C. Hornbuckle
- IIHR-Hydroscience
and Engineering, University of Iowa, Iowa City, Iowa 52242, United States
- Department
of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Kai Wang
- Department
of Biostatistics, University of Iowa, Iowa City, Iowa 52242, United States
| | - Hans-Joachim Lehmler
- Department
of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
- IIHR-Hydroscience
and Engineering, University of Iowa, Iowa City, Iowa 52242, United States
- . Phone: (319) 335-4310. Fax: (319) 335-4290
| |
Collapse
|
11
|
Saktrakulkla P, Li X, Martinez A, Lehmler HJ, Hornbuckle KC. Hydroxylated Polychlorinated Biphenyls Are Emerging Legacy Pollutants in Contaminated Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2269-2278. [PMID: 35107261 PMCID: PMC8851693 DOI: 10.1021/acs.est.1c04780] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 05/04/2023]
Abstract
We measured the concentrations of 837 hydroxylated polychlorinated biphenyls (OH-PCBs, in 275 chromatographic peaks) and 209 polychlorinated biphenyls (PCBs, in 174 chromatographic peaks) in sediments from New Bedford Harbor in Massachusetts, Altavista wastewater lagoon in Virginia, and the Indiana Harbor and Ship Canal in Indiana, USA and in the original commercial PCB mixtures Aroclors 1016, 1242, 1248, and 1254. We used the correlation between homologues and the peak responses to quantify the full suite of OH-PCBs including those without authentic standards available. We found that OH-PCB levels are approximately 0.4% of the PCB levels in sediments and less than 0.0025% in Aroclors. The OH-PCB congener distributions of sediments are different from those of Aroclors and are different according to sites. We also identified a previously unknown compound, 4-OH-PCB52, which together with 4'-OH-PCB18 made up almost 30% of the OH-PCBs in New Bedford Harbor sediments but less than 1.2% in the Aroclors and 3.3% in any other sediments. This indicates site-specific environmental transformations of PCBs to OH-PCBs. We conclude that the majority of OH-PCBs in these sediments are generated in the environment. Our findings suggest that these toxic breakdown products of PCBs are prevalent in PCB-contaminated sediments and present an emerging concern for humans and ecosystems.
Collapse
Affiliation(s)
- Panithi Saktrakulkla
- Interdisciplinary
Graduate Program in Human Toxicology, The
University of Iowa, Iowa City, Iowa 52242, United States
- Department
of Civil and Environmental Engineering, IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Xueshu Li
- Department
of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Andres Martinez
- Department
of Civil and Environmental Engineering, IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Hans-Joachim Lehmler
- Interdisciplinary
Graduate Program in Human Toxicology, The
University of Iowa, Iowa City, Iowa 52242, United States
- Department
of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Keri C. Hornbuckle
- Interdisciplinary
Graduate Program in Human Toxicology, The
University of Iowa, Iowa City, Iowa 52242, United States
- Department
of Civil and Environmental Engineering, IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
12
|
Bannavti MK, Jahnke JC, Marek RF, Just CL, Hornbuckle KC. Room-to-Room Variability of Airborne Polychlorinated Biphenyls in Schools and the Application of Air Sampling for Targeted Source Evaluation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9460-9468. [PMID: 34033460 PMCID: PMC8427462 DOI: 10.1021/acs.est.0c08149] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Airborne polychlorinated biphenyl (PCB) concentrations are higher indoors than outdoors due to their historical use in building materials and their presence in modern paints and surface treatments. For some populations, including school children, PCB levels indoors result in inhalation exposures that may be greater than or equivalent to exposure through diet. In a school, PCB exposure may come from multiple sources. We hypothesized that there are both Aroclor and non-Aroclor sources within a single school and that PCB concentration and congener profiles differ among rooms within a single building. To evaluate this hypothesis and to identify potential localized sources, we measured airborne PCBs in nine rooms in a school. We found that schoolroom concentrations exceed outdoor air concentrations. Schoolroom concentrations and congener profiles also varied from one room to another. The concentrations were highest in the math room (35.75 ng m-3 ± 8.08) and lowest in the practice gym (1.54 ng m-3 ± 0.35). Rooms in the oldest wing of the building, originally constructed between 1920 and 1970, had the highest concentrations. The congener distribution patterns indicate historic use of Aroclor 1254 as well as modern sources of non-Aroclor congeners associated with paint pigments and surface coatings. Our findings suggest this noninvasive source identification method presents an opportunity for targeted source testing for more cost-effective prioritization of materials remediation in schools.
Collapse
Affiliation(s)
| | | | - Rachel F. Marek
- Department of Civil and Environmental Engineering, IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, Iowa USA 52242
| | - Craig L. Just
- Department of Civil and Environmental Engineering, IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, Iowa USA 52242
| | - Keri C. Hornbuckle
- Department of Civil and Environmental Engineering, IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, Iowa USA 52242
| |
Collapse
|
13
|
Holland EB, Pessah IN. Non-dioxin-like polychlorinated biphenyl neurotoxic equivalents found in environmental and human samples. Regul Toxicol Pharmacol 2021; 120:104842. [PMID: 33346014 PMCID: PMC8366267 DOI: 10.1016/j.yrtph.2020.104842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/22/2020] [Accepted: 12/14/2020] [Indexed: 11/01/2022]
Abstract
Non-dioxin like polychlorinated biphenyls (NDL PCB) are recognized neurotoxicants with implications on altered neurodevelopment and neurodegeneration in exposed organisms. NDL PCB neurotoxic relative potency schemes have been developed for a single mechanism, namely activity toward the ryanodine receptor (RyR), or combined mechanisms including, but not limited to, alterations of RyR and dopaminergic pathways. We compared the applicability of the two neurotoxic equivalency (NEQ) schemes and applied each scheme to PCB mixtures found in environmental and human serum samples. A multiple mechanistic NEQ predicts higher neurotoxic exposure concentrations as compared to a scheme based on the RyR alone. Predictions based on PCB ortho categorization, versus homologue categorization, lead to a higher prediction of neurotoxic exposure concentrations, especially for the mMOA. The application of the NEQ schemes to PCB concentration data suggests that PCBs found in fish from US lakes represent a considerable NEQ exposure to fish consuming individuals, that indoor air of schools contained high NEQ concentrations representing an exposure concern when inhaled by children, and that levels already detected in the serum of adults and children may contribute to neurotoxicity. With further validation and in vivo exposure data the NEQ scheme would help provide a more inclusive measure of risk presented by PCB mixtures.
Collapse
Affiliation(s)
- E B Holland
- Department of Biological Sciences, California State University of Long Beach, Long Beach, CA, USA.
| | - I N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
14
|
Christensen K, Carlson LM, Lehmann GM. The role of epidemiology studies in human health risk assessment of polychlorinated biphenyls. ENVIRONMENTAL RESEARCH 2021; 194:110662. [PMID: 33385388 PMCID: PMC7946752 DOI: 10.1016/j.envres.2020.110662] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/19/2020] [Indexed: 05/19/2023]
Abstract
Polychlorinated biphenyls (PCBs) are a public health concern given evidence that they persist and accumulate in the environment and can cause toxic effects in animals and humans. However, evaluating adverse effects of PCBs in epidemiologic studies is complicated by the characteristics of PCB exposure. PCBs exist as mixtures in the environment; the mixture changes over time due to degradation, and given physicochemical differences between specific PCB congeners, the mixture that an individual is exposed to (via food, air, or other sources) is likely different from that which can be measured in biological tissues. This is particularly problematic when evaluating toxicity of shorter-lived congeners that may not be measurable by the time biological samples are collected. We review these and other issues that arise when evaluating epidemiologic studies of PCBs and discuss how epidemiology data can still be used to inform both hazard identification and dose-response evaluation.
Collapse
Affiliation(s)
- Krista Christensen
- Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, USA.
| | - Laura M Carlson
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Geniece M Lehmann
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
15
|
Zhang D, Saktrakulkla P, Tuttle K, Marek RF, Lehmler HJ, Wang K, Hornbuckle KC, Duffel MW. Detection and Quantification of Polychlorinated Biphenyl Sulfates in Human Serum. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2473-2481. [PMID: 33502843 PMCID: PMC7924310 DOI: 10.1021/acs.est.0c06983] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent toxic chemicals with both legacy sources (e.g., Aroclors) and new sources (e.g., unintentional contaminants in some pigments and varnishes). PCB sulfates are derived from further metabolism of hydroxylated PCBs (OH-PCBs), which are oxidative metabolites of PCBs. While OH-PCBs and PCB sulfates are implicated in multiple toxicological effects, studies of PCB sulfates in human serum have been limited by available analytical procedures. We have now developed a method for extraction of PCB sulfates from serum followed by differential analysis with, and without, sulfatase-catalyzed hydrolysis to OH-PCBs. A sulfatase from Helix pomatia was purified by affinity chromatography, and it displayed broad specificity for PCB sulfates without contaminant glucuronidase activity. Following sulfatase-catalyzed hydrolysis of the PCB sulfates extracted from serum, the corresponding OH-PCBs were derivatized to methoxy-PCBs and quantitated by GC-MS/MS. In a pooled sample of human serum, we identified 10 PCB sulfates, with three PCB sulfate congeners exhibiting the highest concentrations from 1200 to 3970 pg/g of serum. In conclusion, we have developed a sensitive and specific method for the determination of PCB sulfates in human serum.
Collapse
Affiliation(s)
- Duo Zhang
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA 52242
- Department of Pharmaceutical Sciences & Experimental Therapeutics, The University of Iowa, Iowa City, IA 52242
| | - Panithi Saktrakulkla
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA 52242
- Department of Civil and Environmental Engineering, The University of Iowa, Iowa City, IA 52242
| | - Kristopher Tuttle
- Department of Pharmaceutical Sciences & Experimental Therapeutics, The University of Iowa, Iowa City, IA 52242
| | - Rachel F. Marek
- Department of Civil and Environmental Engineering, The University of Iowa, Iowa City, IA 52242
- IIHR-Hydroscience & Engineering, The University of Iowa, Iowa City, IA 52242
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA 52242
| | - Kai Wang
- Department of Biostatistics, The University of Iowa, Iowa City, IA 52242
| | - Keri C. Hornbuckle
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA 52242
- Department of Civil and Environmental Engineering, The University of Iowa, Iowa City, IA 52242
- IIHR-Hydroscience & Engineering, The University of Iowa, Iowa City, IA 52242
| | - Michael W. Duffel
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA 52242
- Department of Pharmaceutical Sciences & Experimental Therapeutics, The University of Iowa, Iowa City, IA 52242
- Corresponding Author:
| |
Collapse
|
16
|
Anh HQ, Watanabe I, Minh TB, Takahashi S. Unintentionally produced polychlorinated biphenyls in pigments: An updated review on their formation, emission sources, contamination status, and toxic effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142504. [PMID: 33035974 DOI: 10.1016/j.scitotenv.2020.142504] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/31/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The formation, emission, environmental occurrence, and potential adverse effects of unintentionally produced polychlorinated biphenyls (PCBs) in pigments are reviewed, providing a comprehensive and up-to-date picture on these pollutants. PCBs are typically formed during manufacturing of organic pigments that involve chlorinated intermediates and reaction solvents, rather than those of inorganic pigments. Concentrations and profiles of PCBs vary greatly among pigment types and producers, with total PCB levels ranging from lower than detection limits to several hundred ppm; major components can be low-chlorinated (e.g., CB-11) or high-chlorinated congeners (e.g., CB-209). Pigment-derived PCBs can be released into the environment through different steps including pigment production, application, and disposal. They can contaminate atmospheric, terrestrial, and aquatic ecosystems, and then affect organisms living there. This situation garners scientific and public attention to nonlegacy emissions of PCBs and suggests the need for appropriate monitoring, management, and abatement strategies regarding these pollutants.
Collapse
Affiliation(s)
- Hoang Quoc Anh
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi 100000, Viet Nam.
| | - Isao Watanabe
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | - Tu Binh Minh
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi 100000, Viet Nam
| | - Shin Takahashi
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan.
| |
Collapse
|
17
|
Li M, Yang T, Gao L, Xu H. An inadvertent issue of human retina exposure to endocrine disrupting chemicals: A safety assessment. CHEMOSPHERE 2021; 264:128484. [PMID: 33022499 DOI: 10.1016/j.chemosphere.2020.128484] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/07/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are a group of chemical compounds that present a considerable public health problem due to their pervasiveness and associations with chronic diseases. EDCs can interrupt the endocrine system and interfere with hormone homeostasis, leading to abnormalities in human physiology. Much attention has been focused on the adverse effects EDCs have on the reproductive system, neurogenesis, neuroendocrine system, and thyroid dysfunction. The eye is usually directly exposed to the surrounding environment; however, the influences of EDCs on the eye have received comparatively little attention. Ocular diseases, such as ocular surface diseases and retinal diseases, have been implicated in hormone deficiency or excess. Epidemiologic studies have shown that EDC exposure not only causes ocular surface disorders, such as dry eye, but also associates with visual deficits and retinopathy. EDCs can pass through the human blood-retinal barrier and enter the neural retina, and can then accumulate in the retina. The retina is an embryologic extension of the central nervous system, and is extremely sensitive and vulnerable to EDCs that could be passed across the placenta during critical periods of retinal development. Subtle alterations in the retinal development process usually result in profound immediate, long-term, and delayed effects late in life. This review, based on extensive literature survey, briefly summarizes the current knowledge about the impact of representative manufactured EDCs on retinal toxicity, including retinal structure alterations and dysfunction. We also highlight the potential mechanism of action of EDCs on the retina, and the predictive retinal models of EDC exposure.
Collapse
Affiliation(s)
- Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Tian Yang
- Department of Cold Environmental Medicine, College of High Altitude Military Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lixiong Gao
- Department of Ophthalmology, Third Medical Center of PLA General Hospital, Beijing, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China.
| |
Collapse
|
18
|
Du S, Rodenburg L, Patterson N, Chu C, Riker CD, Yu CH, Fan ZT. Concentration of polychlorinated biphenyls in serum from New Jersey biomonitoring study: 2016-2018. CHEMOSPHERE 2020; 261:127730. [PMID: 32763647 DOI: 10.1016/j.chemosphere.2020.127730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
The first statewide New Jersey Biomonitoring (NJBM) of serum polychlorinated biphenyls (PCBs) was conducted from 2016 to 2018. Forty ortho-substituted PCBs were measured in serum samples collected from 920 NJ residents in compliance with the CDC method. The lipid adjusted geometric mean (GM) of ∑40PCB concentration for all the 920 measured subjects was 65.5 ng/g lipid (95% CIs: 56.9-75.4 ng/g lipid). Age stratified serum concentration showed that the lowest GM (33.3 ng/g lipid) was observed in the 20-39 years age group (n = 282), followed by a concentration of 76.05 ng/g lipid (n = 382) in the 40-59 years age group, and the highest GM (168.4 ng/g lipid) was found in the 60-74 years age group (n = 256). A survey regression model revealed that ∑40PCBs was significantly associated with age, moderately associated with geographic region, and not significantly associated with sex. The comparison of serum PCB levels in NJBM with the sequential National Health and Nutrition Examination Survey (NHANES) data suggested that the serum PCBs in NJ adults declined 52-59% at all age groups over the last decade. Positive Matrix Factorization (PMF) suggests that ongoing and recent exposure to lower molecular weight PCBs contributes about 15% to total serum PCB levels and more in younger subjects, while higher molecular weight PCBs contribute 52% of the total serum PCB levels and more in older subjects.
Collapse
Affiliation(s)
- Songyan Du
- Environmental and Chemical Laboratory Services, Public Health & Environmental Laboratories, New Jersey Department of Health, Ewing, NJ, 08628, USA
| | - Lisa Rodenburg
- Department of Environmental Science, Rutgers University, 14 College Farm Road, New Brunswick, NJ, 08901, USA
| | - Norman Patterson
- Environmental and Chemical Laboratory Services, Public Health & Environmental Laboratories, New Jersey Department of Health, Ewing, NJ, 08628, USA
| | - Christopher Chu
- Environmental and Chemical Laboratory Services, Public Health & Environmental Laboratories, New Jersey Department of Health, Ewing, NJ, 08628, USA
| | - C David Riker
- Environmental and Chemical Laboratory Services, Public Health & Environmental Laboratories, New Jersey Department of Health, Ewing, NJ, 08628, USA
| | - Chang Ho Yu
- Environmental and Chemical Laboratory Services, Public Health & Environmental Laboratories, New Jersey Department of Health, Ewing, NJ, 08628, USA
| | - Zhihua Tina Fan
- Environmental and Chemical Laboratory Services, Public Health & Environmental Laboratories, New Jersey Department of Health, Ewing, NJ, 08628, USA.
| |
Collapse
|
19
|
Jia X, Yin S, Xu J, Li N, Ren M, Qin Y, Zhou J, Wei Y, Guo Y, Gao M, Yu Y, Wang B, Li Z. An efficient method to simultaneously analyze multi-class organic pollutants in human serum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:400-406. [PMID: 31100571 DOI: 10.1016/j.envpol.2019.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
The degree of population exposure to various organic pollutants (OPs), including polycyclic aromatic hydrocarbons, organochlorinated pesticides, polychlorinated biphenyls, and polybrominated diphenyl ethers, can be determined by measuring their concentrations in human serum. However, performing large-scale measurements with such a variety of compounds in serum is challenging in terms of efficiency and cost. We describe herein the development of a high-efficiency extraction and sample cleanup protocol for simultaneous and quantitative analyses of OPs using gas chromatography-mass spectrometry. OPs, together with crude lipid impurities, were extracted from human serum with a mixture of n-hexane and methyl tert-butyl ether. A disperse sorbent composed of primary secondary amine and C18 (PSA/C18) was used to roughly remove co-extracted impurities. A combined column of neutral silica gel and neutral alumina oxide (AlO/SiG) was then used for deep cleanup. For the removal of impurities, the overall performance of our protocol for the analysis of OPs in serum was comparable to that of traditional gel permeation chromatography (GPC) and dramatically better than that of PSA/C18, which is a frequently used QuEChERS (quick, easy, cheap, effective, rugged, safe) based method. While both the proposed protocol and GPC yielded recoveries of 80%-110% for four classes of OPs, our protocol consumed about 10 times less solvent, resulting in lower experimental expenses and a lower risk of contamination from residual OPs in the solvent and other supplies. In contrast to GPC, our protocol also permits efficient batch processing of serum samples, allowing for large sample sizes such as those encountered in epidemiological studies.
Collapse
Affiliation(s)
- Xiaoqian Jia
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Shengju Yin
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Junhui Xu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Nan Li
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Mengyuan Ren
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Yanan Qin
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Jiansuo Zhou
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, PR China
| | - Yuan Wei
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, PR China
| | - Yunhe Guo
- School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Miaomiao Gao
- School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Yanxin Yu
- School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Bin Wang
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China.
| | - Zhiwen Li
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| |
Collapse
|
20
|
Sethi S, Morgan RK, Feng W, Lin Y, Li X, Luna C, Koch M, Bansal R, Duffel MW, Puschner B, Zoeller RT, Lehmler HJ, Pessah IN, Lein PJ. Comparative Analyses of the 12 Most Abundant PCB Congeners Detected in Human Maternal Serum for Activity at the Thyroid Hormone Receptor and Ryanodine Receptor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3948-3958. [PMID: 30821444 PMCID: PMC6457253 DOI: 10.1021/acs.est.9b00535] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Polychlorinated biphenyls (PCBs) pose significant risk to the developing human brain; however, mechanisms of PCB developmental neurotoxicity (DNT) remain controversial. Two widely posited mechanisms are tested here using PCBs identified in pregnant women in the MARBLES cohort who are at increased risk for having a child with a neurodevelopmental disorder (NDD). As determined by gas chromatography-triple quadruple mass spectrometry, the mean PCB level in maternal serum was 2.22 ng/mL. The 12 most abundant PCBs were tested singly and as a mixture mimicking the congener profile in maternal serum for activity at the thyroid hormone receptor (THR) and ryanodine receptor (RyR). Neither the mixture nor the individual congeners (2 fM to 2 μM) exhibited agonistic or antagonistic activity in a THR reporter cell line. However, as determined by equilibrium binding of [3H]ryanodine to RyR1-enriched microsomes, the mixture and the individual congeners (50 nM to 50 μM) increased RyR activity by 2.4-19.2-fold. 4-Hydroxy (OH) and 4-sulfate metabolites of PCBs 11 and 52 had no TH activity; but 4-OH PCB 52 had higher potency than the parent congener toward RyR. These data support evidence implicating RyRs as targets in environmentally triggered NDDs and suggest that PCB effects on the THR are not a predominant mechanism driving PCB DNT. These findings provide scientific rationale regarding a point of departure for quantitative risk assessment of PCB DNT, and identify in vitro assays for screening other environmental pollutants for DNT potential.
Collapse
Affiliation(s)
- Sunjay Sethi
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, 95616, USA
| | - Rhianna K. Morgan
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, 95616, USA
| | - Wei Feng
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, 95616, USA
| | - Yanping Lin
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, 95616, USA
| | - Xueshu Li
- Department of Occupational & Environmental Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Corey Luna
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, 95616, USA
| | - Madison Koch
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, 95616, USA
| | - Ruby Bansal
- Department of Biology, University of Massachusetts-Amherst, Amherst, MA, 01003, USA
| | - Michael W. Duffel
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA 52242, USA
| | - Birgit Puschner
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, 95616, USA
| | - R. Thomas Zoeller
- Department of Biology, University of Massachusetts-Amherst, Amherst, MA, 01003, USA
| | - Hans-Joachim Lehmler
- Department of Occupational & Environmental Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Isaac N. Pessah
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, 95616, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, 95616, USA
| |
Collapse
|
21
|
Granillo L, Sethi S, Keil KP, Lin Y, Ozonoff S, Iosif AM, Puschner B, Schmidt RJ. Polychlorinated biphenyls influence on autism spectrum disorder risk in the MARBLES cohort. ENVIRONMENTAL RESEARCH 2019; 171:177-184. [PMID: 30665119 PMCID: PMC6382542 DOI: 10.1016/j.envres.2018.12.061] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/22/2018] [Accepted: 12/24/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is suspected to have environmental and genetic contributions. Polychlorinated biphenyls (PCBs) are environmental risk factors of interest due to their potential as neurodevelopmental toxicants and environmental persistence despite a US production ban in the 1970s. METHODS Participants were mother-child pairs from MARBLES, a high-risk pregnancy cohort that enrolls families who have one child diagnosed with ASD and are planning to have another child. PCB concentrations were measured in maternal blood at each trimester of pregnancy using gas chromatography coupled with triple quadruple mass spectrometry. Concentrations were summed into total PCB and two categories based on function/mechanisms of action: dioxin-like (DL), and ryanodine receptor (RyR)-activating PCBs. Multinomial logistic regression assessed risk of clinical outcome classification of ASD and non-typical development (Non-TD) compared to typically developing (TD) in the children at 3 years old. RESULTS A total of 104 mother-child pairs were included. There were no significant associations for total PCB; however, there were borderline significant associations between DL-PCBs and decreased risk for Non-TD outcome classification (adjusted OR: 0.41 (95% CI 0.15-1.14)) and between RyR-activating PCBs and increased risk for ASD outcome classification (adjusted OR: 2.63 (95% CI 0.87-7.97)). CONCLUSION This study does not provide strong supporting evidence that PCBs are risk factors for ASD or Non-TD. However, these analyses suggest the need to explore more deeply into subsets of PCBs as risk factors based on their function and structure in larger cohort studies where non-monotonic dose-response patterns can be better evaluated.
Collapse
Affiliation(s)
- Lauren Granillo
- Graduate Group in Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA.
| | - Sunjay Sethi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Kimberly P Keil
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Yanping Lin
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Sally Ozonoff
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA; Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Ana-Maria Iosif
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Birgit Puschner
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Rebecca J Schmidt
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA; Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA, USA
| |
Collapse
|
22
|
Colter BT, Garber HF, Fleming SM, Fowler JP, Harding GD, Hooven MK, Howes AA, Infante SK, Lang AL, MacDougall MC, Stegman M, Taylor KR, Curran CP. Ahr and Cyp1a2 genotypes both affect susceptibility to motor deficits following gestational and lactational exposure to polychlorinated biphenyls. Neurotoxicology 2019; 65:125-134. [PMID: 29409959 DOI: 10.1016/j.neuro.2018.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/16/2018] [Accepted: 01/21/2018] [Indexed: 02/04/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants known to cause adverse health effects and linked to neurological deficits in both human and animal studies. Children born to exposed mothers are at highest risk of learning and memory and motor deficits. We developed a mouse model that mimics human variation in the aryl hydrocarbon receptor and cytochrome P450 1A2 (CYP1A2) to determine if genetic variation increases susceptibility to developmental PCB exposure. In our previous studies, we found that high-affinity AhrbCyp1a2(-/-) and poor-affinity AhrdCyp1a2(-/-) knockout mice were most susceptible to learning and memory deficits following developmental PCB exposure compared with AhrbCyp1a2(+/+) wild type mice (C57BL/6J strain). Our follow-up studies focused on motor deficits, because human studies have identified PCBs as a potential risk factor for Parkinson's disease. Dams were treated with an environmentally relevant PCB mixture at gestational day 10 and postnatal day 5. We used a motor battery that included tests of nigrostriatal function as well as cerebellar function, because PCBs deplete thyroid hormone, which is essential to normal cerebellar development. There was a significant effect of PCB treatment in the rotarod test with impaired performance in all three genotypes, but decreased motor learning as well in the two Cyp1a2(-/-) knockout lines. Interestingly, we found a main effect of genotype with corn oil-treated control Cyp1a2(-/-) mice performing significantly worse than Cyp1a2(+/+) wild type mice. In contrast, we found that PCB-treated high-affinity Ahrb mice were most susceptible to disruption of nigrostriatal function with the greatest deficits in AhrbCyp1a2(-/-) mice. We conclude that differences in AHR affinity combined with the absence of CYP1A2 protein affect susceptibility to motor deficits following developmental PCB exposure.
Collapse
Affiliation(s)
- Breann T Colter
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Helen Frances Garber
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Sheila M Fleming
- Department of Psychology and Neurology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Jocelyn Phillips Fowler
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Gregory D Harding
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Molly Kromme Hooven
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Amy Ashworth Howes
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Smitha Krishnan Infante
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Anna L Lang
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | | | - Melinda Stegman
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Kelsey Rae Taylor
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Christine Perdan Curran
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA.
| |
Collapse
|
23
|
Alam S, Carter GS, Krager KJ, Li X, Lehmler HJ, Aykin-Burns N. PCB11 Metabolite, 3,3'-Dichlorobiphenyl-4-ol, Exposure Alters the Expression of Genes Governing Fatty Acid Metabolism in the Absence of Functional Sirtuin 3: Examining the Contribution of MnSOD. Antioxidants (Basel) 2018; 7:antiox7090121. [PMID: 30223548 PMCID: PMC6162768 DOI: 10.3390/antiox7090121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/10/2018] [Accepted: 09/13/2018] [Indexed: 01/12/2023] Open
Abstract
Although the production of polychlorinated biphenyls (PCBs) is prohibited, the inadvertent production of certain lower-chlorinated PCB congeners still threatens human health. We and others have identified 3,3’-dichlorobiphenyl (PCB11) and its metabolite, 3,3’-dichlorobiphenyl-4-ol (4OH-PCB11), in human blood, and there is a correlation between exposure to this metabolite and mitochondrial oxidative stress in mammalian cells. Here, we evaluated the downstream effects of 4OH-PCB11 on mitochondrial metabolism and function in the presence and absence of functional Sirtuin 3 (SIRT3), a mitochondrial fidelity protein that protects redox homeostasis. A 24 h exposure to 3 μM 4OH-PCB11 significantly decreased the cellular growth and mitochondrial membrane potential of SIRT3-knockout mouse embryonic fibroblasts (MEFs). Only wild-type cells demonstrated an increase in Manganese superoxide dismutase (MnSOD) activity in response to 4OH-PCB11–induced oxidative injury. This suggests the presence of a SIRT3-mediated post-translational modification to MnSOD, which was impaired in SIRT3-knockout MEFs, which counters the PCB insult. We found that 4OH-PCB11 increased mitochondrial respiration and endogenous fatty-acid oxidation-associated oxygen consumption in SIRT3-knockout MEFs; this appeared to occur because the cells exhausted their reserve respiratory capacity. To determine whether these changes in mitochondrial respiration were accompanied by similar changes in the regulation of fatty acid metabolism, we performed quantitative real-time polymerase chain reaction (qRT-PCR) after a 24 h treatment with 4OH-PCB11. In SIRT3-knockout MEFs, 4OH-PCB11 significantly increased the expression of ten genes controlling fatty acid biosynthesis, metabolism, and transport. When we overexpressed MnSOD in these cells, the expression of six of these genes returned to the baseline level, suggesting that the protective role of SIRT3 against 4OH-PCB11 is partially governed by MnSOD activity.
Collapse
Affiliation(s)
- Sinthia Alam
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Gwendolyn S Carter
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Kimberly J Krager
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, IA 52242, USA.
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, IA 52242, USA.
| | - Nukhet Aykin-Burns
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
24
|
Rodriguez EA, Vanle BC, Doorn JA, Lehmler HJ, Robertson LW, Duffel MW. Hydroxylated and sulfated metabolites of commonly observed airborne polychlorinated biphenyls display selective uptake and toxicity in N27, SH-SY5Y, and HepG2 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 62:69-78. [PMID: 29986280 PMCID: PMC6092199 DOI: 10.1016/j.etap.2018.06.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 05/20/2023]
Abstract
Although neurotoxicity and hepatotoxicity have long been associated with exposure to polychlorinated biphenyls (PCBs), less is known about the selective toxicity of those hydroxylated PCBs (OH-PCBs) and PCB sulfates that are metabolites derived from exposure to PCBs found in indoor air. We have examined the toxicity of OH-PCBs and PCB sulfates derived from PCBs 3, 8, 11, and 52 in two neural cell lines (N27 and SH-SY5Y) and an hepatic cell line (HepG2). With the exception of a similar toxicity seen for N27 cells exposed to either OH-PCB 52 or PCB 52 sulfate, these OH-PCBs were more toxic to all three cell-types than their corresponding PCB or PCB sulfate congeners. Differences in the distribution of individual OH-PCB and PCB sulfate congeners between the cells and media, and the ability of cells to interconvert PCB sulfates and OH-PCBs, were important components of cellular sensitivity to these toxicants.
Collapse
Affiliation(s)
- Eric A Rodriguez
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA, 52242, United States
| | - Brigitte C Vanle
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA, 52242, United States
| | - Jonathan A Doorn
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA, 52242, United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, IA, 52242, United States
| | - Larry W Robertson
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, IA, 52242, United States
| | - Michael W Duffel
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA, 52242, United States.
| |
Collapse
|
25
|
Dhakal K, Gadupudi GS, Lehmler HJ, Ludewig G, Duffel MW, Robertson LW. Sources and toxicities of phenolic polychlorinated biphenyls (OH-PCBs). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:16277-16290. [PMID: 28744683 PMCID: PMC5785587 DOI: 10.1007/s11356-017-9694-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 06/30/2017] [Indexed: 04/16/2023]
Abstract
Polychlorinated biphenyls (PCBs), a group of 209 congeners that differ in the number and position of chlorines on the biphenyl ring, are anthropogenic chemicals that belong to the persistent organic pollutants (POPs). For many years, PCBs have been a topic of interest because of their biomagnification in the food chain and their environmental persistence. PCBs with fewer chlorine atoms, however, are less persistent and more susceptible to metabolic attack, giving rise to chemicals characterized by the addition of one or more hydroxyl groups to the chlorinated biphenyl skeleton, collectively known as hydroxylated PCBs (OH-PCBs). In animals and plants, this biotransformation of PCBs to OH-PCBs is primarily carried out by cytochrome P-450-dependent monooxygenases. One of the reasons for infrequent detection of lower chlorinated PCBs in serum and other biological matrices is their shorter half-lives, and their metabolic transformation, resulting in OH-PCBs or their conjugates, such as sulfates and glucuronides, or macromolecule adducts. Recent biomonitoring studies have reported the presence of OH-PCBs in human serum. The occurrence of OH-PCBs, the size of this group (there are 837 mono-hydroxyl PCBs alone), and their wide spectra of physical characteristics (pKa's and log P's ranging over 5 to 6 orders of magnitude) give rise to a multiplicity of biological effects. Among those are bioactivation to electrophilic metabolites that can form covalent adducts with DNA and other macromolecules, interference with hormonal signaling, inhibition of enzymes that regulate cellular concentrations of active hormones, and interference with the transport of hormones. This new information creates an urgent need for a new perspective on these often overlooked metabolites.
Collapse
Affiliation(s)
- Kiran Dhakal
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, The University of Iowa, Iowa City, IA, USA
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, 100 Oakdale Campus #219 IREH, Iowa City, IA, 52242-5000, USA
| | - Gopi S Gadupudi
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, The University of Iowa, Iowa City, IA, USA
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, 100 Oakdale Campus #219 IREH, Iowa City, IA, 52242-5000, USA
| | - Hans-Joachim Lehmler
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, The University of Iowa, Iowa City, IA, USA
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, 100 Oakdale Campus #219 IREH, Iowa City, IA, 52242-5000, USA
| | - Gabriele Ludewig
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, The University of Iowa, Iowa City, IA, USA
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, 100 Oakdale Campus #219 IREH, Iowa City, IA, 52242-5000, USA
| | - Michael W Duffel
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, The University of Iowa, Iowa City, IA, USA
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA, USA
| | - Larry W Robertson
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, The University of Iowa, Iowa City, IA, USA.
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, 100 Oakdale Campus #219 IREH, Iowa City, IA, 52242-5000, USA.
| |
Collapse
|
26
|
Sun J, Pan L, Zhu L. Formation of hydroxylated and methoxylated polychlorinated biphenyls by Bacillus subtilis: New insights into microbial metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 613-614:54-61. [PMID: 28898812 DOI: 10.1016/j.scitotenv.2017.09.063] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
The detoxification and degradation of polychlorinated biphenyls (PCBs) have been studied. However, little information is available about the biological mechanisms involved in the metabolism of hydroxylated polychlorinated biphenyls (OH-PCBs) and methoxylated polychlorinated biphenyls (MeO-PCBs) by specific microorganism. In this study, the simultaneous formation of OH-PCB (major metabolite) and MeO-PCB (minor metabolite) was found in Bacillus subtilis after exposure to PCB. Interconversion between MeO-PCB and OH-PCB was also observed and the demethylation ratio of MeO-PCB was higher than the methylation ratio of OH-PCB. The high-throughput RNA-sequencing (RNA-Seq) was conducted to analyze the genes involved in the metabolism processes. The potential metabolism pathways of PCB by Bacillus subtilis were proposed. PCB can be transformed to OH-PCB by Cytochrome P450 encoded by the genes bioI and cypA. The genes ycgJ and ycgI that are related with methyltransferase are potentially involved in the subsequent biotransformation from OH-PCB to MeO-PCB. MeO-PCB was prone to be transformed to OH-PCB by a group of hydrolases. This is the first study considering the mechanism involved in the interconversion between OH-PCBs and MeO-PCBs by microorganism. These findings broaden our insights into the biotransformation mechanism of PCBs in the environment.
Collapse
Affiliation(s)
- Jianteng Sun
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Lili Pan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
27
|
Klinefelter K, Hooven MK, Bates C, Colter BT, Dailey A, Infante SK, Kania-Korwel I, Lehmler HJ, López-Juárez A, Ludwig CP, Curran CP. Genetic differences in the aryl hydrocarbon receptor and CYP1A2 affect sensitivity to developmental polychlorinated biphenyl exposure in mice: relevance to studies of human neurological disorders. Mamm Genome 2017; 29:112-127. [PMID: 29197979 DOI: 10.1007/s00335-017-9728-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/28/2017] [Indexed: 01/28/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants that remain a human health concern with newly discovered sources of contamination and ongoing bioaccumulation and biomagnification. Children exposed during early brain development are at highest risk of neurological deficits, but highly exposed adults reportedly have an increased risk of Parkinson's disease. Our previous studies found allelic differences in the aryl hydrocarbon receptor and cytochrome P450 1A2 (CYP1A2) affect sensitivity to developmental PCB exposure, resulting in cognitive deficits and motor dysfunction. High-affinity Ahr b Cyp1a2(-/-) mice were most sensitive compared with poor-affinity Ahr d Cyp1a2(-/-) and wild-type Ahr b Cyp1a2(+/+) mice. Our follow-up studies assessed biochemical, histological, and gene expression changes to identify the brain regions and pathways affected. We also measured PCB and metabolite levels in tissues to determine if genotype altered toxicokinetics. We found evidence of AHR-mediated toxicity with reduced thymus and spleen weights and significantly reduced thyroxine at P14 in PCB-exposed pups. In the brain, the greatest changes were seen in the cerebellum where a foliation defect was over-represented in Cyp1a2(-/-) mice. In contrast, we found no difference in tyrosine hydroxylase immunostaining in the striatum. Gene expression patterns varied across the three genotypes, but there was clear evidence of AHR activation. Distribution of parent PCB congeners also varied by genotype with strikingly high levels of PCB 77 in poor-affinity Ahr d Cyp1a2(-/-) while Ahr b Cyp1a2(+/+) mice effectively sequestered coplanar PCBs in the liver. Together, our data suggest that the AHR pathway plays a role in developmental PCB neurotoxicity, but we found little evidence that developmental exposure is a risk factor for Parkinson's disease.
Collapse
Affiliation(s)
- Kelsey Klinefelter
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Molly Kromme Hooven
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Chloe Bates
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA
| | - Breann T Colter
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA
| | - Alexandra Dailey
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA
| | - Smitha Krishnan Infante
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA
| | - Izabela Kania-Korwel
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Alejandro López-Juárez
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Clare Pickering Ludwig
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA
| | - Christine Perdan Curran
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA.
| |
Collapse
|
28
|
Fang S, Cui Q, Matherne B, Hou A. Polychlorinated biphenyl concentrations, accumulation rates in soil from atmospheric deposition and analysis of their affecting landscape variables along an urban-rural gradient in Shanghai, China. CHEMOSPHERE 2017; 186:884-892. [PMID: 28826136 DOI: 10.1016/j.chemosphere.2017.08.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/11/2017] [Accepted: 08/12/2017] [Indexed: 06/07/2023]
Abstract
This study initiated an in-situ soil experimental system to quantify the annual dynamics of polychlorinated biphenyl (PCB) congener's concentrations and accumulation rates in soil from atmosphere deposition in a rural-urban fringe, and correlated them by landscape physical and demographic variables in the area. The results showed that the concentrations of all PCB congeners significantly increased with the sampling time (p < 0.05); nearly all the PCB congener concentrations decreased while moving outwards from the urban center. The moderate average concentrations along the gradient for PCB 8, 18, and 28 were 31.003, 18.825, and 19.505 ng g-1, respectively. Tetra-CBs including PCB 44, 52, 66, and 77 were 10.243, 31.214, 8.330 and 9.530 ng g-1, respectively. Penta-CBs including PCB 101, 105, 118, and 126 were 9.465, 7.896, 17.703, and 6.363 ng g-1, respectively. Hexa-CBs including PCB 128, 138, 153, 170, 180, and 187 were 6.798, 11.522, 4.969, 6.722, 6.317, and 8.243 ng g-1 respectively. PCB 195, 206, and 209 were 8.259, 9.506, and 14.169 ng g-1, respectively. Most of the PCB congeners had a higher accumulation rate approximately 28 km from the urban center. The computed variables were found to affect the soil PCB concentrations with a threshold effect (p < 0.05). Regression analysis showed that the thresholds were 10-20 km, 1 km/km2, 30%, and 20% for distance, road density, population change index, and built-up area percentage, respectively. It was concluded that factors related to industrial development, traffic, and urban sprawling (i.e. built-up areas expanding) were the sources of PCBs.
Collapse
Affiliation(s)
- Shubo Fang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China; Department of Environmental Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Qu Cui
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China
| | - Brian Matherne
- Department of Environmental Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Aixin Hou
- Department of Environmental Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
29
|
Zullo FM, Liu M, Zou S, Yestrebsky CL. Mechanistic and computational studies of PCB 151 dechlorination by zero valent magnesium for field remediation optimization. JOURNAL OF HAZARDOUS MATERIALS 2017; 337:55-61. [PMID: 28501644 DOI: 10.1016/j.jhazmat.2017.04.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 04/12/2017] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
Polychlorinated biphenyls (PCBs) are banned in the U.S. but are persistent in the environment; current regulations provide an urgent need to remediate PCBs in a cost-effective way. In prior work, a novel method of degradation of PCBs via hydrodehalogenation with ball milled zero-valent magnesium and activated carbon showed promising results even with water present in the system. In this research, a detailed study of the byproducts formed in the dechlorination process for PCB 151 (used as an example of hexa-chlorinated PCB) and a study of the mechanism involved in this reaction via density functional theory (DFT) computations are presented. It was demonstrated that these reactions are exothermic and involved two transition states, the formation of the ionic transition state being the rate limiting step of the reaction. The torsion angle of the PCB congeners was also shown to be an extremely important factor to be able to use activated carbon as part of the remediation process.
Collapse
Affiliation(s)
- Fiona M Zullo
- Environmental Chemistry Laboratory, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816, United States
| | - Muqiong Liu
- Department of Chemistry, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816, United States
| | - Shengli Zou
- Department of Chemistry, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816, United States
| | - Cherie L Yestrebsky
- Environmental Chemistry Laboratory, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816, United States.
| |
Collapse
|
30
|
Sethi S, Keil KP, Chen H, Hayakawa K, Li X, Lin Y, Lehmler HJ, Puschner B, Lein PJ. Detection of 3,3'-Dichlorobiphenyl in Human Maternal Plasma and Its Effects on Axonal and Dendritic Growth in Primary Rat Neurons. Toxicol Sci 2017; 158:401-411. [PMID: 28510766 PMCID: PMC5837364 DOI: 10.1093/toxsci/kfx100] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
3,3'-Dichlorobiphenyl (PCB 11), a byproduct of pigment production, is increasingly detected in environmental samples. While more highly chlorinated PCB congeners are known developmental neurotoxicants, nothing is known about the potential developmental neurotoxicity of PCB 11. To address this critical data gap, we measured PCB 11 levels in human maternal plasma and quantified the effects of PCB 11 and its major metabolites on morphometric parameters of neuronal connectivity in cultured primary neurons. Mass spectrometry analyses of plasma from 241 pregnant women enrolled in the MARBLES study (University of California, Davis) detected PCB 11 in all samples at concentrations ranging from 0.005 to 1.717 ng/ml. Morphometric analyses of primary neuron-glia co-cultures dissociated from the neocortices or hippocampi of neonatal Sprague Dawley rats exposed to vehicle or concentrations ranging from 1 attamolar (aM) to 1 micromolar (µM) of PCB 11, OH-PCB 11, or PCB 11 sulfate indicated that PCB 11 and both metabolites significantly increased axonal and dendritic growth in cortical and hippocampal pyramidal neurons. PCB 11 significantly altered neuronal morphogenesis at concentrations as low as 1 femtomolar (fM), which is ∼0.22 ng/ml. These data suggest the potential for the developing human brain to be exposed to PCB 11, and demonstrate that environmentally relevant levels of PCB 11 alter axonal and dendritic growth in neuronal cell types critically involved in cognitive and higher-order behaviors. These findings identify PCB 11 as a potential environmental risk factor for adverse neurodevelopmental outcomes in humans.
Collapse
Affiliation(s)
- Sunjay Sethi
- Department of Molecular Biosciences, University of California, Davis, California 95616
| | - Kimberly P. Keil
- Department of Molecular Biosciences, University of California, Davis, California 95616
| | - Hao Chen
- Department of Molecular Biosciences, University of California, Davis, California 95616
| | - Keri Hayakawa
- Department of Molecular Biosciences, University of California, Davis, California 95616
| | - Xueshu Li
- Department of Occupational & Environmental Health, University of Iowa, Iowa City, Iowa 52242
| | - Yanping Lin
- Department of Molecular Biosciences, University of California, Davis, California 95616
| | - Hans-Joachim Lehmler
- Department of Occupational & Environmental Health, University of Iowa, Iowa City, Iowa 52242
| | - Birgit Puschner
- Department of Molecular Biosciences, University of California, Davis, California 95616
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis, California 95616
| |
Collapse
|
31
|
Marek RF, Thorne PS, Herkert NJ, Awad AM, Hornbuckle KC. Airborne PCBs and OH-PCBs Inside and Outside Urban and Rural U.S. Schools. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7853-7860. [PMID: 28656752 PMCID: PMC5777175 DOI: 10.1021/acs.est.7b01910] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
PCBs appear in school air because many school buildings were built when PCBs were still intentionally added to building materials and because PCBs are also present through inadvertent production in modern pigment. This is of concern because children are especially vulnerable to the toxic effects of PCBs. Here we report indoor and outdoor air concentrations of PCBs and OH-PCBs from two rural schools and four urban schools, the latter near a PCB-contaminated waterway of Lake Michigan in the United States. Samples (n = 108) were collected as in/out pairs using polyurethane foam passive air samplers (PUF-PAS) from January 2012 to November 2015. Samples were analyzed using GC/MS-MS for all 209 PCBs and 72 OH-PCBs. Concentrations inside schools were 1-2 orders of magnitude higher than outdoors and ranged from 0.5 to 194 ng/m3 (PCBs) and from 4 to 665 pg/m3 (OH-PCBs). Congener profiles were similar within each sampling location across season but different between schools and indicated the sources as Aroclors from building materials and individual PCBs associated with modern pigment. This study is the first cohort-specific analysis to show that some children's PCB inhalation exposure may be equal to or higher than their exposure through diet.
Collapse
Affiliation(s)
- Rachel F. Marek
- IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City IA (USA) 52242
- Corresponding authors’ contact information: Rachel F. Marek: 103 S. Capitol St., 4105 SC, Iowa City, IA 52242, , (319) 335-5585, FAX (319) 335-5660; Keri C. Hornbuckle: 103 S. Capitol St., 4105 SC, Iowa City, IA 52242, ; (319) 384-0789, FAX: (319) 335-5660; Peter S. Thorne: 105 River St., S341A CPHB, Iowa City, IA 52242, , (319) 335-4216, FAX: (319) 384-4138
| | - Peter S. Thorne
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City IA (USA) 52242
- Corresponding authors’ contact information: Rachel F. Marek: 103 S. Capitol St., 4105 SC, Iowa City, IA 52242, , (319) 335-5585, FAX (319) 335-5660; Keri C. Hornbuckle: 103 S. Capitol St., 4105 SC, Iowa City, IA 52242, ; (319) 384-0789, FAX: (319) 335-5660; Peter S. Thorne: 105 River St., S341A CPHB, Iowa City, IA 52242, , (319) 335-4216, FAX: (319) 384-4138
| | - Nicholas J. Herkert
- IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City IA (USA) 52242
- Department of Civil & Environmental Engineering, The University of Iowa, Iowa City IA (USA) 52242
| | - Andrew M. Awad
- IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City IA (USA) 52242
| | - Keri C. Hornbuckle
- IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City IA (USA) 52242
- Department of Civil & Environmental Engineering, The University of Iowa, Iowa City IA (USA) 52242
- Corresponding authors’ contact information: Rachel F. Marek: 103 S. Capitol St., 4105 SC, Iowa City, IA 52242, , (319) 335-5585, FAX (319) 335-5660; Keri C. Hornbuckle: 103 S. Capitol St., 4105 SC, Iowa City, IA 52242, ; (319) 384-0789, FAX: (319) 335-5660; Peter S. Thorne: 105 River St., S341A CPHB, Iowa City, IA 52242, , (319) 335-4216, FAX: (319) 384-4138
| |
Collapse
|
32
|
Quinete N, Esser A, Kraus T, Schettgen T. PCB 28 metabolites elimination kinetics in human plasma on a real case scenario: Study of hydroxylated polychlorinated biphenyl (OH-PCB) metabolites of PCB 28 in a highly exposed German Cohort. Toxicol Lett 2017; 276:100-107. [DOI: 10.1016/j.toxlet.2017.05.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/17/2017] [Accepted: 05/23/2017] [Indexed: 02/02/2023]
|
33
|
Quantification of all 209 PCB congeners in blood—Can indicators be used to calculate the total PCB blood load? Int J Hyg Environ Health 2017; 220:201-208. [DOI: 10.1016/j.ijheh.2016.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/31/2016] [Accepted: 09/09/2016] [Indexed: 11/22/2022]
|
34
|
Grimm FA, Lehmler HJ, Koh WX, DeWall J, Teesch LM, Hornbuckle KC, Thorne PS, Robertson LW, Duffel MW. Identification of a sulfate metabolite of PCB 11 in human serum. ENVIRONMENT INTERNATIONAL 2017; 98:120-128. [PMID: 27816204 PMCID: PMC5127762 DOI: 10.1016/j.envint.2016.10.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/21/2016] [Accepted: 10/25/2016] [Indexed: 05/18/2023]
Abstract
Despite increasing evidence for a major role for sulfation in the metabolism of lower-chlorinated polychlorinated biphenyls in vitro and in vivo, and initial evidence for potential bioactivities of the resulting sulfate ester metabolites, the formation of PCB sulfates in PCB exposed human populations had not been explored. The primary goal of this study was to determine if PCB sulfates, and potentially other conjugated PCB derivatives, are relevant classes of PCB metabolites in the serum of humans with known exposures to PCBs. In order to detect and quantify dichlorinated PCB sulfates in serum samples of 46 PCB-exposed individuals from either rural or urban communities, we developed a high-resolution mass spectrometry-based protocol using 4-PCB 11 sulfate as a model compound. The method also allowed the preliminary analysis of these 46 human serum extracts for the presence of other metabolites, such as glucuronic acid conjugates and hydroxylated PCBs. Sulfate ester metabolites derived from dichlorinated PCBs were detectable and quantifiable in more than 20% of analyzed serum samples. Moreover, we were able to utilize this method to detect PCB glucuronides and hydroxylated PCBs, albeit at lower frequencies than PCB sulfates. Altogether, our results provide initial evidence for the presence of PCB sulfates in human serum. Considering the inability of previously employed analytical protocols for PCBs to extract these sulfate ester metabolites and the concentrations of these metabolites observed in our current study, our data support the hypothesis that total serum levels of PCB metabolites in exposed individuals may have been underestimated in the past.
Collapse
Affiliation(s)
- Fabian A Grimm
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA, USA; Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA, USA
| | - Hans-Joachim Lehmler
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA, USA; Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, IA, USA
| | - Wen Xin Koh
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA, USA; Department of Civil and Environmental Engineering, College of Engineering, The University of Iowa, Iowa City, USA
| | - Jeanne DeWall
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, IA, USA
| | - Lynn M Teesch
- High Resolution Mass Spectrometry Facility, The University of Iowa, Iowa City, USA
| | - Keri C Hornbuckle
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA, USA; Department of Civil and Environmental Engineering, College of Engineering, The University of Iowa, Iowa City, USA
| | - Peter S Thorne
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA, USA; Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, IA, USA
| | - Larry W Robertson
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA, USA; Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, IA, USA
| | - Michael W Duffel
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA, USA; Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
35
|
Quinete N, Esser A, Kraus T, Schettgen T. Determination of hydroxylated polychlorinated biphenyls (OH-PCBs) in human urine in a highly occupationally exposed German cohort: New prospects for urinary biomarkers of PCB exposure. ENVIRONMENT INTERNATIONAL 2016; 97:171-179. [PMID: 27622755 DOI: 10.1016/j.envint.2016.08.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 05/18/2023]
Abstract
The present study evaluates for the first time the determination of 20 hydroxylated polychlorinated biphenyl (OH-PCB) congeners and their glucuronide and sulfate conjugates in urine as a biomarker of exposure to PCBs in humans. Thereby, a fast, sensitive and selective online solid phase extraction (SPE) method coupled to LC-MS/MS was validated for the determination of OH-PCBs in human urine, being previously successfully developed and applied for the separation and quantitation of OH-PCBs in human plasma. The lowest limit of quantification (LLOQ) ranged from 0.01 to 0.19ngmL-1 and average extraction recoveries from 79 to 125% for all hydroxylated congeners. Within-run precision and between-run precision were between 2 and 17%. Extraction recovery tests were also performed in urine with different creatinine contents (0.52-3.92gL-1) for an estimation of matrix influences and ranged between 69 and 125%. In order to evaluate the applicability of the method, the study was conducted in three different groups, which were distinctly separated as non-exposed to known sources of PCBs (N=21), low-to-moderate PCB-exposed individuals (N=25) and highly occupationally PCB-exposed individuals (N=25), which included workers of a transformer recycling plant, their relatives and workers of surrounding companies from a German cohort. As part of the biomonitoring program HELPcB (Health Effects in High-Level Exposure to polychlorinated biphenyls), urine and blood samples were collected annually from 2010 to 2014. In this way, OH-PCB elimination profile in urine over time, correlations between OH-PCB levels in human plasma and urine, and associations with their parent compounds in plasma of the studied PCB cohort could be also assessed. Tri-chlorinated OH-PCBs were the predominant congeners in urine with concentrations up to 174ngmL-1. High chlorinated OH-PCBs (penta- through hepta-chlorinated OH-PCBs) were also frequently detected in urine samples from non-exposed and occupationally exposed individuals, although levels were in general very low or lower than LLOQ.
Collapse
Affiliation(s)
- Natalia Quinete
- Institute for Occupational and Social Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany..
| | - André Esser
- Institute for Occupational and Social Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Thomas Kraus
- Institute for Occupational and Social Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Thomas Schettgen
- Institute for Occupational and Social Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| |
Collapse
|
36
|
Dang VD, Walters DM, Lee CM. Assessing atmospheric concentration of polychlorinated biphenyls by evergreen Rhododendron maximum next to a contaminated stream. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2192-2198. [PMID: 26889751 DOI: 10.1002/etc.3404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/28/2015] [Accepted: 02/13/2016] [Indexed: 06/05/2023]
Abstract
Conifers are often used as an air passive sampler, but few studies have focused on the implication of broadleaf evergreens to monitor atmospheric semivolatile organic compounds such as polychlorinated biphenyls (PCBs). In the present study, the authors used Rhododendron maximum (rhododendron) growing next to a contaminated stream to assess atmospheric PCB concentrations. The present study area was located in a rural setting and approximately 2 km downstream of a former capacitor plant. Leaves from the same mature shrubs were collected in late fall 2010 and winter and spring 2011. Polychlorinated biphenyls were detected in the collected leaves, suggesting that rhododendron can be used as air passive samplers in rural areas where active sampling is impractical. Estimated ΣPCB (47 congeners) concentrations in the atmosphere decreased from fall 2010 to spring 2011 with concentration means at 3990 pg m(-3) , 2850 pg m(-3) , and 931 pg m(-3) in fall 2010, winter 2011, and spring 2011, respectively. These results indicate that the atmospheric concentrations at this location continue to be high despite termination of active discharge from the former industrial source. Leaves had a consistent pattern of high concentrations of tetra-CBs and penta-CBs similar to the congener distribution in polyethylene passive samplers deployed in the water column, suggesting that volatilized PCBs from the stream were the primary source of contaminants in rhododendron leaves. Environ Toxicol Chem 2016;35:2192-2198. © 2016 SETAC.
Collapse
Affiliation(s)
- Viet D Dang
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, South Carolina, USA
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
| | - David M Walters
- US Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, USA
| | - Cindy M Lee
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, South Carolina, USA
| |
Collapse
|
37
|
Koh WX, Hornbuckle KC, Wang K, Thorne PS. Serum polychlorinated biphenyls and their hydroxylated metabolites are associated with demographic and behavioral factors in children and mothers. ENVIRONMENT INTERNATIONAL 2016; 94:538-545. [PMID: 27352881 PMCID: PMC4980156 DOI: 10.1016/j.envint.2016.06.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/09/2016] [Accepted: 06/12/2016] [Indexed: 05/18/2023]
Abstract
Factors contributing to the inter-individual variation in body burden of polychlorinated biphenyls (PCBs) and their hydroxylated metabolites (OH-PCBs) have not been fully elucidated. We examined associations between total serum concentrations of 209 PCBs, 64 OH-PCBs, and frequently detected individual congeners with demographic characteristics (age, gender, ethnicity and community of residence), body mass index (BMI or BMI percentile), and breastfeeding history in children and their mothers from 83 U.S. households. There was a significant positive association between age and concentrations of total PCBs and OH-PCBs in mothers. Non-Hispanics had significantly higher concentrations of total PCBs in mothers and OH-PCBs in children than Hispanics. Concentrations of total PCBs were significantly lower in mothers who had longer breastfeeding duration. Living in the Columbus Junction, Iowa community as compared to East Chicago, Indiana was associated with higher total PCBs in children, probably attributable to higher exposures at school. Lower concentrations of OH-PCBs were significantly associated with a higher BMI percentile in children. Congener-specific associations were observed for 30 PCB and 12 OH-PCB congeners and followed comparable trends. To our knowledge, this is the first study to examine factors contributing to variations in serum concentrations of total 209 PCBs and total OH-PCBs in children, as well as to examine ethnic differences in OH-PCB levels. Results from this study revealed that demographic characteristics, body mass index and breastfeeding history are factors that should be considered for human exposure and risk assessment of PCBs and OH-PCBs.
Collapse
Affiliation(s)
- Wen Xin Koh
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Keri C Hornbuckle
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa 52242, United States; Department of Civil and Environmental Engineering, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Kai Wang
- Department of Biostatistics, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Peter S Thorne
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa 52242, United States; Department of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States.
| |
Collapse
|
38
|
Rodriguez EA, Li X, Lehmler HJ, Robertson LW, Duffel MW. Sulfation of Lower Chlorinated Polychlorinated Biphenyls Increases Their Affinity for the Major Drug-Binding Sites of Human Serum Albumin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:5320-7. [PMID: 27116425 PMCID: PMC4883002 DOI: 10.1021/acs.est.6b00484] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The disposition of toxicants is often affected by their binding to serum proteins, of which the most abundant in humans is serum albumin (HSA). There is increasing interest in the toxicities of environmentally persistent polychlorinated biphenyls (PCBs) with lower numbers of chlorine atoms (LC-PCBs) due to their presence in both indoor and outdoor air. PCB sulfates derived from metabolic hydroxylation and sulfation of LC-PCBs have been implicated in endocrine disruption due to high affinity-binding to the thyroxine-carrying protein, transthyretin. Interactions of these sulfated metabolites of LC-PCBs with HSA, however, have not been previously explored. We have now determined the relative HSA-binding affinities for a group of LC-PCBs and their hydroxylated and sulfated derivatives by selective displacement of the fluorescent probes 5-dimethylamino-1-naphthalenesulfonamide and dansyl-l-proline from the two major drug-binding sites on HSA (previously designated as Site I and Site II). Values for half-maximal displacement of the probes indicated that the relative binding affinities were generally PCB sulfate ≥ OH-PCB > PCB, although this affinity was site- and congener-selective. Moreover, specificity for Site II increased as the numbers of chlorine atoms increased. Thus, hydroxylation and sulfation of LC-PCBs result in selective interactions with HSA which may affect their overall retention and toxicity.
Collapse
Affiliation(s)
- Eric A. Rodriguez
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa, USA
| | - Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, Iowa, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, Iowa, USA
| | - Larry W. Robertson
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, Iowa, USA
| | - Michael W. Duffel
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa, USA
- Address correspondence to Michael W. Duffel, Ph.D., Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, 115 South Grand Ave, S325, Iowa City, IA, 52246. Telephone: 319-335-8840. Fax: 319-335-8766.
| |
Collapse
|
39
|
Koh WX, Hornbuckle KC, Marek RF, Wang K, Thorne PS. Hydroxylated polychlorinated biphenyls in human sera from adolescents and their mothers living in two U.S. Midwestern communities. CHEMOSPHERE 2016; 147:389-95. [PMID: 26774304 PMCID: PMC4747419 DOI: 10.1016/j.chemosphere.2015.12.113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 12/12/2015] [Accepted: 12/25/2015] [Indexed: 05/18/2023]
Abstract
Hydroxylated polychlorinated biphenyls (OH-PCBs) have been detected in human specimens and some are suspected as being more toxic than their parent compounds. We compared 58 OH-PCB congeners (in 51 chromatographic peaks) in serum samples from participants in the AESOP Study, a longitudinal cohort study of adolescents and their mothers living in urban and rural areas in the United States. We hypothesized that adolescents would have lower levels of OH-PCBs than their mothers and that serum concentration of OH-PCBs would be stable over a 3-year period. We found statistically significant differences in total OH-PCBs between age groups in both East Chicago (p = 0.001) and Columbus Junction (p < 0.001), with adolescents having lower concentrations than their mothers. We observed that lower-chlorinated OH-PCBs were rarely detected, suggesting that they are not retained in serum and/or rapidly biotransformed into other forms. Twelve OH-PCBs, including several that are rarely reported (4,4'-diOH-PCB 202, 4'-OH-PCB 208, and 4-OH-PCB 163) were detected in over 60% of participants. Lastly, from repeated measures within subject serum for three OH-PCBs, concentrations of 4-OH-PCB 107 and 4-OH-PCB 187 changed significantly over three years of the study.
Collapse
Affiliation(s)
- Wen Xin Koh
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA 52242, United States
| | - Keri C Hornbuckle
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA 52242, United States; Department of Civil and Environmental Engineering, The University of Iowa, Iowa City, IA 52242, United States.
| | - Rachel F Marek
- Department of Civil and Environmental Engineering, The University of Iowa, Iowa City, IA 52242, United States
| | - Kai Wang
- Department of Biostatistics, The University of Iowa, Iowa City, IA 52242, United States
| | - Peter S Thorne
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA 52242, United States; Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
40
|
Shen H, Robertson LW, Ludewig G. Regulatory effects of dioxin-like and non-dioxin-like PCBs and other AhR ligands on the antioxidant enzymes paraoxonase 1/2/3. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:2108-2118. [PMID: 26006071 PMCID: PMC4662644 DOI: 10.1007/s11356-015-4722-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 05/13/2015] [Indexed: 05/31/2023]
Abstract
Paraoxonase 1 (PON1), an antioxidant enzyme, is believed to play a critical role in many diseases, including cancer. PCBs are widespread environmental contaminants known to induce oxidative stress and cancer and to produce changes in gene expression of various pro-oxidant and antioxidant enzymes. Thus, it appeared of interest to explore whether PCBs may modulate the activity and/or gene expression of PON1 as well. In this study, we compared the effects of dioxin-like and non-dioxin-like PCBs and of various aryl hydrocarbon receptor (AhR) ligands on PON1 regulation and activity in male and female Sprague-Dawley rats. Our results demonstrate that (i) the non-dioxin-like PCB154, PCB155, and PCB184 significantly reduced liver and serum PON1 activities, but only in male rats; (ii) the non-dioxin-like PCB153, the most abundant PCB in many matrices, did not affect PON1 messenger RNA (mRNA) level in the liver but significantly decreased serum PON1 activity in male rats; (iii) PCB126, an AhR ligand and dioxin-like PCB, increased both PON1 activities and gene expression; and (iv) even though three tested AhR ligands induced CYP1A in several tissues to a similar extent, they displayed differential effects on the three PONs and AhR, i.e., PCB126 was an efficacious inducer of PON1, PON2, PON3, and AhR in the liver, while 3-methylcholantrene induced liver AhR and lung PON3, and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most potent AhR agonist, increased only PON3 in the lung, at the doses and exposure times used in these studies. These results show that PCBs may have an effect on the antioxidant protection by paraoxonases in exposed populations and that regulation of gene expression through AhR is highly diverse.
Collapse
Affiliation(s)
- Hua Shen
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, The University of Iowa, Iowa City, IA, USA
| | - Larry W Robertson
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, The University of Iowa, Iowa City, IA, USA
- Department of Occupational & Environmental Health, College of Public Health, The University of Iowa, 100 Oakdale Campus, 214 IREH, Iowa City, IA, 52242-5000, USA
| | - Gabriele Ludewig
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, The University of Iowa, Iowa City, IA, USA.
- Department of Occupational & Environmental Health, College of Public Health, The University of Iowa, 100 Oakdale Campus, 214 IREH, Iowa City, IA, 52242-5000, USA.
| |
Collapse
|
41
|
Koh WX, Hornbuckle KC, Thorne PS. Human Serum from Urban and Rural Adolescents and Their Mothers Shows Exposure to Polychlorinated Biphenyls Not Found in Commercial Mixtures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:8105-12. [PMID: 26053216 PMCID: PMC4774248 DOI: 10.1021/acs.est.5b01854] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Although polychlorinated biphenyls are no longer sold as commercial mixtures, they are still being produced through modern manufacturing processes. We have previously shown that non-Aroclor PCB 11 is prevalent in indoor and outdoor air and sediment and detected in human serum. Here we report the prevalence of non-Aroclor PCB congeners (≤0.20 wt % in Aroclor) in human serum collected from urban and rural adolescents and their mothers. We hypothesized that additional non-Aroclor congeners are present in serum. Sera were extracted and detected for 209 PCBs using gas chromatography-tandem mass spectrometry. A list of 70 non-Aroclor PCB congeners was determined by measurement of original Aroclors. PCB 11, 14, 35, and 209 are the major dominating and most frequently detected congeners. PCB 14 and 35 have not been previously reported for environmental matrices. Adolescents have significantly lower total non-Aroclor PCB concentrations than mothers in East Chicago (p < 0.001) and Columbus Junction (p = 0.008). There are significant differences in non-Aroclor PCBs between East Chicago community and Columbus Junction community (p < 0.001). Non-Aroclor PCBs represent an average of 10% (and up to 50%) of total PCBs measured in serum. An average of 50% (and up to 100%) of these concentrations may be attributed to aryl azo and phthalocyanine paint pigments.
Collapse
Affiliation(s)
- Wen Xin Koh
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Keri C. Hornbuckle
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa 52242, United States
- Department of Civil and Environmental Engineering, The University of Iowa, Iowa City, Iowa 52242, United States
- Corresponding Author: Phone: (319) 335-4216 (P.S.T.); 319-384-0789 (K.C.H.). Fax: (319) 384-4138 (P.S.T.); (319) 335-5660 (K.C.H.). (P.S.T.); (K.C.H.)
| | - Peter S. Thorne
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa 52242, United States
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
- Corresponding Author: Phone: (319) 335-4216 (P.S.T.); 319-384-0789 (K.C.H.). Fax: (319) 384-4138 (P.S.T.); (319) 335-5660 (K.C.H.). (P.S.T.); (K.C.H.)
| |
Collapse
|