1
|
Wu Q, Munschy C, Bodin N, Vetter W. Persistent and Bioaccumulative Halogenated Natural Products in Various Tropical Reef Fish Species from the Seychelles, Western Indian Ocean. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15643-15652. [PMID: 38967173 DOI: 10.1021/acs.jafc.4c03503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Gas chromatography with electron capture negative ion mass spectrometry (GC/ECNI-MS) was used to quantify and compare halogenated natural products (HNPs) and selected anthropogenic persistent organic pollutants (POPs) in individual samples of 17 fish species from the Seychelles (Western Indian Ocean). The sum-HNP amounts (9.5-1100 ng/g lipid mass (lm)) were between 1 and 2 orders of magnitude higher than those of the sum of seven abundant polychlorinated biphenyl (PCB) congeners (0.2-15 ng/g lm) and dichlorodiphenyltrichloroethane-related compounds (DDTs) (<1.1-43 ng/g lm). Within the group of HNPs, the two tetrabrominated phenoxyanisoles (aka methoxylated diphenyl ethers, MeO-BDEs), 2'-MeO-BDE 68 ≫ 6-MeO-BDE 47, were predominant in most cases. Pearson correlation analysis showed that MeO-BDE levels were positively correlated with less abundant HNPs (2,2'-diMeO-BB 80, 2',6-diMeO-BDE 68, and Br6-DBP) (p < 0.01). Accordingly, HNPs, rather than PCBs and DDTs, were the predominant polyhalogenated contaminants in the current species.
Collapse
Affiliation(s)
- Qiong Wu
- State Key Lab of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, PR China
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstraße 28, Stuttgart 70599, Germany
| | - Catherine Munschy
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, Rue de l'Île d'Yeu, BP 21105 Cedex 3, Nantes 44311, France
| | - Nathalie Bodin
- SFA (Seychelles Fishing Authority), Fishing Port, P.O. Box 449, Victoria, Mahé, Seychelles
- IRD (French Research Institute for Sustainable Development), Fishing Port, P.O. Box 449, Victoria, Mahé, Seychelles
- SOS (Sustainable Ocean Seychelles), BeauBelle, P.O. Box 999, Mahé, Seychelles
| | - Walter Vetter
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstraße 28, Stuttgart 70599, Germany
| |
Collapse
|
2
|
Schweizer S, Halder K, Schäfer A, Hauns J, Marsili L, Mazzariol S, Fossi MC, Muñoz-Arnanz J, Jiménez B, Vetter W. High Amounts of Halogenated Natural Products in Sperm Whales ( Physeter macrocephalus) from Two Italian Regions in the Mediterranean Sea. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2024; 2:233-242. [PMID: 38660428 PMCID: PMC11036390 DOI: 10.1021/envhealth.3c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/27/2024] [Accepted: 02/04/2024] [Indexed: 04/26/2024]
Abstract
Halogenated natural products (HNPs) are considered to be emerging contaminants whose environmental distribution and fate are only incompletely known. Therefore, several persistent and bioaccumulative HNP groups, together with man-made polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), were quantified in the blubber of nine sperm whales (Physeter macrocephalus) stranded on the coast of the Mediterranean Sea in Italy. The naturally occurring polybrominated hexahydroxanthene derivatives (PBHDs; sum of TetraBHD and TriBHD) were the most prominent substance class with up to 77,000 ng/g blubber. The mean PBHD content (35,800 ng/g blubber) even exceeded the one of PCBs (28,400 ng/g blubber), although the region is known to be highly contaminated with man-made contaminants. Based on mean values, Q1 ∼ PBDEs > MeO-BDEs ∼ 2,2'-diMeO-BB 80 and several other HNPs followed with decreasing amounts. All blubber samples contained an abundant compound whose molecular formula (C16H19Br3O2) was verified using high-resolution mass spectrometry. The only plausible matching isomer was (2S,4'S,9R,9'S)-2,7-dibromo-4'-bromomethyl-1,1-dimethyl-2,3,4,4',9,9'-9,9'-hexahydro-1H-xanthen-9-ol (OH-TriBHD), a hydroxylated secondary metabolite previously detected together with TriBHD and TetraBHD in a sponge known to be a natural producer of PBHDs. The estimated mean amount of the presumed OH-TriBHD was 3000 ng/g blubber, which is unexpectedly high for hydroxylated compounds in the lipids of marine mammals.
Collapse
Affiliation(s)
- Sina Schweizer
- Institute of Food Chemistry, Department of Food Chemistry (170b), University of Hohenheim, 70599 Stuttgart, Germany
| | - Kristin Halder
- Institute of Food Chemistry, Department of Food Chemistry (170b), University of Hohenheim, 70599 Stuttgart, Germany
| | - Annika Schäfer
- Institute of Food Chemistry, Department of Food Chemistry (170b), University of Hohenheim, 70599 Stuttgart, Germany
| | - Jakob Hauns
- European Union Reference Laboratory (EURL) for Halogenated POPs in Feed and Food, 79114 Freiburg, Germany
| | - Letizia Marsili
- Department of Environmental, Earth and Physical Sciences, University of Siena, 53100 Siena, Italy
| | - Sandro Mazzariol
- Department of Public Health, Comparative Pathology and Veterinary Hygiene, University of Padova, 35020 Legnaro, Italy
| | - Maria Cristina Fossi
- Department of Environmental, Earth and Physical Sciences, University of Siena, 53100 Siena, Italy
| | - Juan Muñoz-Arnanz
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), 28006 Madrid, Spain
| | - Begoña Jiménez
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), 28006 Madrid, Spain
| | - Walter Vetter
- Institute of Food Chemistry, Department of Food Chemistry (170b), University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
3
|
Vidal LG, De Oliveira-Ferreira N, Torres JPM, Azevedo AF, Meirelles ACO, Flach L, Domit C, Fragoso ABL, Lima Silva FJ, Carvalho VL, Marcondes M, Barbosa LA, Cremer MJ, Malm O, Lailson-Brito J, Eljarrat E. Brominated flame retardants and natural organobrominated compounds in a vulnerable delphinid species along the Brazilian coast. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167704. [PMID: 37820801 DOI: 10.1016/j.scitotenv.2023.167704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Guiana dolphins, Sotalia guianensis, are vulnerable to extinction along their distribution on the Brazilian coast and assessing chemical pollution is of utmost importance for their conservation. For this study, 51 carcasses of Guiana dolphins were sampled across the Brazilian coast to investigate legacy and emerging brominated flame retardants (BFRs) as well as the naturally-produced MeO-BDEs. PBDEs and MeO-BDEs were detected in all samples analyzed, whereas emerging BFRs were detected in 16 % of the samples, all in Rio de Janeiro state. PBDE concentrations varied between 2.24 and 799 ng.g-1 lipid weight (lw), emerging BFRs between 0.12 and 1.51 ng.g-1 lw and MeO-BDEs between 3.82 and 10,247 ng.g-1 lw. Concentrations of legacy and emerging BFRs and natural compounds varied considerably according to the sampling site and reflected both the local anthropogenic impact of the region and the diversity/mass of biosynthesizers. The PBDE concentrations are lower than what was found for delphinids in the Northern Hemisphere around the same sampling period and most sampling sites presented mean concentrations lower than the limits for endocrine disruption known to date for marine mammals of 460 ng.g-1 lw, except for sampled from Santa Catarina state, in Southern Brazil. Conversely, MeO-BDE concentrations are higher than those of the Northern Hemisphere, particularly close to the Abrolhos Bans and Royal Charlotte formation, that are hotspots for biodiversity. Despite the elevated concentrations reported for this group, there is not much information regarding the effects of such elevated concentrations for these marine mammals. The distinct patterns observed along the Brazilian coast show that organobrominated compounds can be used to identify the ecological segregation of delphinids and that conservation actions should be planned considering the local threats.
Collapse
Affiliation(s)
- Lara G Vidal
- Aquatic Mammal and Bioindicator Laboratory Professora Izabel Gurgel (MAQUA), School of Oceanography, Rio de Janeiro State University (UERJ), Rua São Francisco Xavier, 524/ 4002-E, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil; Radioisotope Laboratory Eduardo Penna Franca (LREPF), Biophysics Institute Carlos Chagas Filho (IBCCF), Federal University of Rio de Janeiro (UFRJ), Brazil; Pós-graduação em Sistemas Costeiros e Oceânicos, Centro de Estudos do Mar, Universidade Federal do Paraná, Pontal do Paraná, PR, Brazil; Ecology and Conservation Laboratory, Federal University of Paraná (UFPR), Paraná, Brazil
| | - Nara De Oliveira-Ferreira
- Aquatic Mammal and Bioindicator Laboratory Professora Izabel Gurgel (MAQUA), School of Oceanography, Rio de Janeiro State University (UERJ), Rua São Francisco Xavier, 524/ 4002-E, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
| | - João Paulo M Torres
- Radioisotope Laboratory Eduardo Penna Franca (LREPF), Biophysics Institute Carlos Chagas Filho (IBCCF), Federal University of Rio de Janeiro (UFRJ), Brazil
| | - Alexandre F Azevedo
- Aquatic Mammal and Bioindicator Laboratory Professora Izabel Gurgel (MAQUA), School of Oceanography, Rio de Janeiro State University (UERJ), Rua São Francisco Xavier, 524/ 4002-E, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
| | - Ana Carolina O Meirelles
- Marine Mammal Conservation Program, Associação de Pesquisa e Preservação de Ecossistemas Aquáticos, Caucaia, Ceará, Brazil; Tropical Marine Sciences Graduate Program, Marine Sciences Institute, Ceará Federal University, Fortaleza, Ceará, Brazil
| | - Leonardo Flach
- Instituto Boto Cinza, Mangaratiba, Rio de Janeiro 23860-000, Brazil
| | - Camila Domit
- Ecology and Conservation Laboratory, Federal University of Paraná (UFPR), Paraná, Brazil
| | - Ana Bernadete L Fragoso
- Programa de Pós-Graduação em Ciências Naturais/Projeto Cetáceos da Costa Branca-Universidade do Estado do Rio Grande do Norte (UERN)/Projeto Golfinho Rotador, Mossoró, Rio Grande do Norte, Brazil
| | - Flávio J Lima Silva
- Programa de Pós-Graduação em Ciências Naturais/Projeto Cetáceos da Costa Branca-Universidade do Estado do Rio Grande do Norte (UERN)/Projeto Golfinho Rotador, Mossoró, Rio Grande do Norte, Brazil
| | - Vítor Luz Carvalho
- Associação de Pesquisa e Preservação de Ecossistemas Aquáticos (AQUASIS), Caucaia, Ceará, Brazil
| | | | - Lupércio A Barbosa
- Environmental Awareness Organization (ORCA), Rua São Paulo, 23, Praia da Costa, Vila Velha, ES 29101-315, Brazil
| | - Marta J Cremer
- Ecology and Conservation Laboratory for Marine and Coastal Tetrapods, University of Joinville Region (UNIVILLE), São Francisco do Sul, Rod. Duque de Caxias, 6365, Iperoba, São Francisco do Sul 89240-000, SC, Brazil
| | - Olaf Malm
- Radioisotope Laboratory Eduardo Penna Franca (LREPF), Biophysics Institute Carlos Chagas Filho (IBCCF), Federal University of Rio de Janeiro (UFRJ), Brazil
| | - José Lailson-Brito
- Aquatic Mammal and Bioindicator Laboratory Professora Izabel Gurgel (MAQUA), School of Oceanography, Rio de Janeiro State University (UERJ), Rua São Francisco Xavier, 524/ 4002-E, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
| | - Ethel Eljarrat
- Environmental and Water Chemistry for Human Health, Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona 08034, Spain.
| |
Collapse
|
4
|
Singh RR, Aminot Y, Héas-Moisan K, Preud'homme H, Munschy C. Cracked and shucked: GC-APCI-IMS-HRMS facilitates identification of unknown halogenated organic chemicals in French marine bivalves. ENVIRONMENT INTERNATIONAL 2023; 178:108094. [PMID: 37478678 DOI: 10.1016/j.envint.2023.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
High resolution mass spectrometry (HRMS)-based non-target analysis coupled with ion mobility spectrometry (IMS) is gaining momentum due to its ability to provide complementary information which can be useful in the identification of unknown organic chemicals in support of efforts in unraveling the complexity of the chemical exposome. The chemical exposome in the marine environment, though not as well studied as its freshwater counterparts, is not foreign to chemical diversity specially when it comes to potentially bioaccumulative and bioactive polyhalogenated organic contaminants and natural products. In this work we present in detail how we utilized IMS-HRMS coupled with gas chromatographic separation and atmospheric pressure chemical ionization (APCI) to annotate polyhalogenated organic chemicals in French bivalves collected from 25 sites along the French coasts. We describe how we used open cheminformatic tools to exploit isotopologue patterns, isotope ratios, Kendrick mass defect (Cl scale), and collisional cross section (CCS), in order to annotate 157 halogenated features (level 1: 54, level 2: 47, level 3: 50, and level 4: 6). Grouping the features into 11 compound classes was facilitated by a KMD vs CCS plot which showed co-clustering of potentially structurally-related compounds. The features were semi-quantified to gain insight into the distribution of these halogenated features along the French coast, ultimately allowing us to differentiate between sites that are more anthropologically impacted versus sites that are potentially biodiverse.
Collapse
Affiliation(s)
- Randolph R Singh
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000, Nantes, France.
| | - Yann Aminot
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000, Nantes, France
| | - Karine Héas-Moisan
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000, Nantes, France
| | - Hugues Preud'homme
- IPREM-UMR5254, E2S UPPA, CNRS, Technopôle Helioparc, 2 Avenue P. Angot, 64053 Pau Cedex 9, France
| | - Catherine Munschy
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000, Nantes, France
| |
Collapse
|
5
|
Escobar-Arnanz J, Pena-Abaurrea M, Santos FJ, Ramos L. Non-target analysis of organohalogenated contaminants in deep-sea fishes from the Mediterranean Sea by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162873. [PMID: 36931525 DOI: 10.1016/j.scitotenv.2023.162873] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 05/06/2023]
Abstract
The enhanced separation power and identification capabilities make comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC - ToF MS) a valuable instrumental alternative for non-target analysis (NTA). In the present study, GC × GC - ToF MS has been used for the NTA of chlorine- and bromine-containing compounds in composite livers of two scarcely investigated Mediterranean deep-sea fish species, hollowsnout grenadier (Coelorinchus caelorhincus) and roughsnout grenadier (Trachyrhinchus trachyrhinchus). Attention focused on the identification of organohalogenated compounds with structural characteristics similar to those of persistent organic pollutants (POPs). In total, 116 Cl-, Br- and mixed Cl/Br-compounds were either positively or tentatively identified in the analyzed liver samples. Up to 88 of these compounds were legacy POPs, being polychlorinated biphenyls (PCBs) and organochlorinated pesticides (OCPs) the most abundant and frequently detected families. The other 28 identified POP-like compounds were analytes not considered by current regulation and environmental monitoring programs, including, among others, degradation products of specific OCPs, naturally produced organohalogen compounds and several perchlorinated diethyldiphenylmethane-derivatives whose presence in the investigated species is reported here for the first time. The presence of other naturally occurring brominated and mixed halogenated compounds in these fish species is also described for the first time. Our results also showed differences in the accumulation profile of the identified compounds in both species. Thereby, anthropogenic POPs showed higher relative abundances in the livers of roughsnout grenadiers than those in hollowsnout grenadiers, while for naturally occurring compounds the opposite trend or similar levels were found in both species.
Collapse
Affiliation(s)
- J Escobar-Arnanz
- Department of Instrumental Analysis and Environmental Chemistry, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - M Pena-Abaurrea
- Department of Instrumental Analysis and Environmental Chemistry, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - F J Santos
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, University of Barcelona, Diagonal 645, Barcelona 08028, Spain
| | - L Ramos
- Department of Instrumental Analysis and Environmental Chemistry, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
6
|
Falahudin D, Hukom FD, Arifin Z, Dirhamsyah D, Peristiwady T, Sudaryanto A, Iwata M, Hoang AQ, Watanabe I, Takahashi S. First insight into accumulation of characteristics and tissue distribution of PCBs, PBDEs, and other BFRs in the living Indonesian coelacanth (Latimeria menadoensis). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49368-49380. [PMID: 36764992 DOI: 10.1007/s11356-023-25716-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/31/2023] [Indexed: 04/16/2023]
Abstract
Persistent organic pollutants, including polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and other brominated flame retardants, were detected in the liver, muscle, and ovary tissues of the Indonesian coelacanth (Latimeria menadoensis) incidentally caught around Gangga Island, North Sulawesi Province, Indonesia, on November 5, 2014. Concentrations of total PCBs (209 congeners, 300-2600 ng g-1 lipid weight) in all tissues showed higher than those of PBDEs (41 congeners, 3.9-6.3 ng g-1 lw) and BTBPE (1.1-3.6 ng g-1 lw). The tissue-specific PCB and PBDE profiles were likely due to differences in the lipid composition. Toxic equivalent (TEQ) values of dioxin-like PCBs in coelacanth tissues were lower than the benchmark values for early-life fish. However, compared with the data reported for deep-sea fishes in the Pacific and Indian Oceans, the relatively high concentrations of PCBs detected in this study raise concerns regarding Indonesian coelacanth conservation and habitat conditions.
Collapse
Affiliation(s)
- Dede Falahudin
- The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
- Research Center for Oceanography, National Research and Innovation Agency, Pasir Putih 1, Ancol Timur, Jakarta, 14430, Indonesia
| | - Frensly Demianus Hukom
- Research Center for Oceanography, National Research and Innovation Agency, Pasir Putih 1, Ancol Timur, Jakarta, 14430, Indonesia
| | - Zainal Arifin
- Research Center for Oceanography, National Research and Innovation Agency, Pasir Putih 1, Ancol Timur, Jakarta, 14430, Indonesia
| | - Dirham Dirhamsyah
- Research Center for Oceanography, National Research and Innovation Agency, Pasir Putih 1, Ancol Timur, Jakarta, 14430, Indonesia
| | - Teguh Peristiwady
- Research Center for Oceanography, National Research and Innovation Agency, Pasir Putih 1, Ancol Timur, Jakarta, 14430, Indonesia
| | - Agus Sudaryanto
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Building 820 KST BJ. Habibie, Serpong, 15314, Banten, Indonesia
| | - Masamitsu Iwata
- Aquamarine Fukushima, Marine Science Museum, 50 Tatsumi-Cho, Onahama, Iwaki, Fukushima, 971-8101, Japan
| | - Anh Quoc Hoang
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 11000, Vietnam
| | - Isao Watanabe
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Shin Takahashi
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan.
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-Cho, Matsuyama, 790-8577, Japan.
| |
Collapse
|
7
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
8
|
Zhang Y, Li Y, Li S, Huang H, Chen Y, Wang X. A Review of Hydroxylated and Methoxylated Brominated Diphenyl Ethers in Marine Environments. TOXICS 2022; 10:toxics10120751. [PMID: 36548584 PMCID: PMC9781326 DOI: 10.3390/toxics10120751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/12/2023]
Abstract
Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) and methoxylated polybrominated diphenyl ethers (MeO-PBDEs) are present in the marine environment worldwide. Both OH-PBDEs and MeO-PBDEs are known natural products, whereas OH-PBDEs may also be metabolites of PBDEs. There is growing concern regarding OH-PBDEs as these compounds seem to be biological active than PBDEs. In the present study, we reviewed the available data on the contamination of OH/MeO-PBDEs in the marine environment worldwide, including seawater, marine sediment, marine plants, invertebrates, fish, seabirds and mammals. Bioaccumulation and biomagnification of OH/MeO-PBDEs in the marine food web were summarized as well. This study also proposes the future research of OH/MeO-PBDEs, including the production and the synthesis pathway of OH/MeO-PBDEs, the toxicokinetics of OH/MeO-PBDEs and the toxicology and human exposure risk assessment.
Collapse
Affiliation(s)
- Ying Zhang
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, Guangzhou 510611, China
| | - Yi Li
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, Guangzhou 510611, China
| | - Sijia Li
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, Guangzhou 510611, China
| | - He Huang
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, Guangzhou 510611, China
| | - Yezi Chen
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, Guangzhou 510611, China
| | - Xutao Wang
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, Guangzhou 510611, China
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| |
Collapse
|
9
|
Munschy C, Spitz J, Bely N, Héas-Moisan K, Olivier N, Pollono C, Chouvelon T. A large diversity of organohalogen contaminants reach the meso- and bathypelagic organisms in the Bay of Biscay (northeast Atlantic). MARINE POLLUTION BULLETIN 2022; 184:114180. [PMID: 36183511 DOI: 10.1016/j.marpolbul.2022.114180] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Deep-sea ecosystems play a key role in the cycling and vertical transfer of matter and energy in oceans. Although the contamination of deep-sea demersal and benthic organisms by persistent organic pollutants has been proven, deep pelagic species have been far less studied. To fill these gaps, we studied the occurrence of a large variety of hydrophobic organic contaminants including polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), legacy and alternative brominated flame retardants (BFRs) and per- and polyfluoroalkyl substances (PFASs) in crustaceans and fish species collected in the Bay of Biscay, northeast Atlantic. The results highlighted the global predominance of PCBs in fish, followed by OCPs, PFASs and PBDEs, with highly variable concentrations among species. Most of the chlorinated or brominated contaminants showed increasing concentrations with increasing δ15N values, while most PFASs showed inverse trends. The contaminant profiles and diagnostic ratios revealed species-specific metabolic capacities and peculiar contribution of highly-brominated BFRs.
Collapse
Affiliation(s)
- C Munschy
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000 Nantes, France.
| | - J Spitz
- Centre d'Etude Biologique de Chizé (CEBC), UMR 7372, Université de La Rochelle / CNRS, 79360 Villiers-en-Bois, France; Observatoire PELAGIS, UAR 3462, Université de La Rochelle / CNRS, 17000 La Rochelle, France
| | - N Bely
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000 Nantes, France
| | - K Héas-Moisan
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000 Nantes, France
| | - N Olivier
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000 Nantes, France
| | - C Pollono
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000 Nantes, France
| | - T Chouvelon
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000 Nantes, France; Observatoire PELAGIS, UAR 3462, Université de La Rochelle / CNRS, 17000 La Rochelle, France
| |
Collapse
|
10
|
Spindola Vilela CL, Damasceno TL, Thomas T, Peixoto RS. Global qualitative and quantitative distribution of micropollutants in the deep sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119414. [PMID: 35598814 DOI: 10.1016/j.envpol.2022.119414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
Micropollutants (MPs) include a wide range of biological disruptors that can be toxic to wildlife and humans at very low concentrations (<1 μg/L). These mainly anthropogenic pollutants have been widely detected in different areas of the planet, including the deep sea, and have impacts on marine life. Because of this potential toxicity, the global distribution, quantity, incidence, and potential impacts of deep-sea MPs were investigated in a systematic review of the literature. The results showed that MPs have reached different zones of the ocean and are more frequently reported in the Northern Hemisphere, where higher concentrations are found. MPs are also concentrated in depths up to 3000 m, where they are also more frequently studied, but also extend deeper than 10,000 m. Potentially toxic metals (PTMs), polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDTs), organotins, and polycyclic aromatic hydrocarbons (PAHs) were identified as the most prevalent and widely distributed MPs at ≥200 m depth. PTMs are widely distributed in the deep sea in high concentrations; aluminum is the most prevalent up to 3000 m depth, followed by zinc and copper. PCBs, organotins, hexachlorocyclohexanes (HCHs), PAHs, and phenols were detected accumulated in both organisms and environmental samples above legislated thresholds or known toxicity levels. Our assessment indicated that the deep sea can be considered a sink for MPs.
Collapse
Affiliation(s)
- Caren Leite Spindola Vilela
- Department of General Microbiology, Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Taissa Lopes Damasceno
- Department of General Microbiology, Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Torsten Thomas
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Raquel Silva Peixoto
- Department of General Microbiology, Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
11
|
Wu Q, Munschy C, Aminot Y, Bodin N, Vetter W. High levels of halogenated natural products in large pelagic fish from the Western Indian Ocean. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55252-55264. [PMID: 34128165 PMCID: PMC8494675 DOI: 10.1007/s11356-021-14738-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 06/01/2021] [Indexed: 05/09/2023]
Abstract
Concentrations, profiles and muscle-liver distribution of halogenated natural products (HNPs) and anthropogenic persistent organic pollutants (POPs) were investigated in five large pelagic fish species and one smaller planktivore fish species from the Western Indian Ocean. Analysis of swordfish muscle from the Seychelles revealed the predominance of HNPs, with the highest concentrations found for 2'-methoxy-2,3',4,5'- tetraBDE (2'-MeO-BDE 68 or BC-2), 6-methoxy-2,2',4,4'- tetraBDE (6-MeO-BDE 47 or BC-3) and 2,3,3',4,4',5,5'-heptachloro-1'-methyl-1,2'-bipyrrole (Q1), along with varied contributions of further HNPs. The mean concentration of ∑HNPs (330 ng/g lw) was one or two orders of magnitude higher than ∑DDTs (60 ng/g lw) and ∑PCBs (6.8 ng/g lw). HNPs (BC-2, BC-3 and Q1) were also predominant in individual samples of three tropical tuna species from the Seychelles and from other regions of the Western Indian Ocean (Mozambique Channel, off Somalia and Chagos Archipelago). Non-targeted gas chromatography coupled with electron capture negative ion mass spectrometry operated in the selected ion monitoring mode (GC/ECNI-MS-SIM) analysis of one swordfish sample indicated low abundance of rarely reported HNPs (three hexachloro-1'-methyl-1,2'-bipyrrole (Cl6-MBP) isomers and pentabromo-1,1'-dimethyl-2,2'-bipyrroles (Br5-DBP)) but no further abundant unscreened polyhalogenated compounds.
Collapse
Affiliation(s)
- Qiong Wu
- Institute of Food Chemistry (170b), University of Hohenheim, Garbenstraße 28, D-70599, Stuttgart, Germany
| | - Catherine Munschy
- Laboratory of Biogeochemistry of Organic Contaminants, IFREMER (French Research Institute for Exploitation of the Sea), Rue de l'île d'Yeu, BP 21105, 44311, Nantes Cedex 3, France
| | - Yann Aminot
- Laboratory of Biogeochemistry of Organic Contaminants, IFREMER (French Research Institute for Exploitation of the Sea), Rue de l'île d'Yeu, BP 21105, 44311, Nantes Cedex 3, France
| | - Nathalie Bodin
- Fishing Port, SFA (Seychelles Fishing Authority), Victoria, Mahé, Seychelles
- Fishing Port, IRD (French Research Institute for Sustainable Development), Victoria, Mahé, Seychelles
- SOS (Sustainable Ocean Seychelles), BeauBelle, Mahé, Seychelles
| | - Walter Vetter
- Institute of Food Chemistry (170b), University of Hohenheim, Garbenstraße 28, D-70599, Stuttgart, Germany.
| |
Collapse
|
12
|
Ríos JM, Mammana SB, Moreira E, Poma G, Malarvannan G, Barrera-Oro E, Covaci A, Ciocco NF, Altamirano JC. Accumulation of PBDEs and MeO-PBDEs in notothenioid fish from the South Shetland Islands, Antarctica: An interspecies comparative study. MARINE POLLUTION BULLETIN 2021; 168:112453. [PMID: 33971454 DOI: 10.1016/j.marpolbul.2021.112453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/28/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Concentrations of polybrominated diphenyl ethers (PBDEs) and methoxylated polybrominated diphenyl ethers (MeO-PBDEs); are reported in specimens of fish notothenioids Chaenocephalus aceratus (SSI), Trematomus bernacchii (ERN), and Nototheniops nudifrons (NOD) from the South Shetland Islands, Antarctica. Significant differences in the accumulation of 2'-MeO-BDE-68 and 6-MeO-BDE-47 were detected among the analysed species. MeO-BDEs were significantly higher in SSI (11.7, 8.6, and 14.1 ng g-1 lw) than in NOD (1.63, 1.63, and 3.0 ng g-1 lw) in muscle, liver, and gill, respectively. Feeding ecology traits explain the accumulation patterns of MeO-PBDEs. SSI has a higher feeding activity with a broader diet, followed by ERN, whereas NOD is a benthic/sedentary fish with a narrower diet. The accumulation of PBDEs was neither species-, nor tissue-specific. The current study expands the knowledge concerning the accumulation of PBDEs and MeO-PBDEs in Antarctic marine fish and supports the importance of species-specificity in the accumulation of MeO-PBDEs.
Collapse
Affiliation(s)
- Juan Manuel Ríos
- Laboratorio de Química Ambiental, Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA, CCT-CONICET), Mendoza 5500, Argentina; Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CCT-CONICET), Mendoza 5505, Argentina
| | - Sabrina B Mammana
- Laboratorio de Química Ambiental, Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA, CCT-CONICET), Mendoza 5500, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina; Instituto de Biología Agrícola de Mendoza (IBAM, CCT-CONICET), Mendoza 5505, Argentina
| | - Eugenia Moreira
- Instituto Antártico Argentino (IAA), Buenos Aires, Argentina; Laboratorio de Biología Funcional y Biotecnología (BIOLAB), INBIOTEC-CONICET, Facultad de Agronomía, UNCPBA, Azul 7300, Buenos Aires, Argentina
| | - Giulia Poma
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Govindan Malarvannan
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Esteban Barrera-Oro
- Instituto Antártico Argentino (IAA), Buenos Aires, Argentina; Museo Argentino de Ciencias Naturales Bernardino Rivadavia and CONICET, Buenos Aires, Argentina
| | - Adrian Covaci
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Nestor F Ciocco
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina; Instituto Argentino de Investigaciones de las Zonas Áridas (IADIZA, CCT-CONICET), Mendoza 5500, Argentina
| | - Jorgelina C Altamirano
- Laboratorio de Química Ambiental, Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA, CCT-CONICET), Mendoza 5500, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina.
| |
Collapse
|
13
|
Tamburrino S, Passaro S, Barsanti M, Schirone A, Delbono I, Conte F, Delfanti R, Bonsignore M, Del Core M, Gherardi S, Sprovieri M. Pathways of inorganic and organic contaminants from land to deep sea: The case study of the Gulf of Cagliari (W Tyrrhenian Sea). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:334-341. [PMID: 30081370 DOI: 10.1016/j.scitotenv.2018.07.467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
In continental margins, canyons appear to act as natural conduits of sediments and organic matter from the shelf to deep basins, providing an efficient physical pathway for transport and accumulation of particles with their associated land-produced contaminants. However, these mechanisms have not been yet sufficiently explored by geochemical markers. The continental slope of the south Sardinia has been used as a natural laboratory for investigating mechanisms and times of transfer dynamics of contaminants from land to sea and from shelf to deep sea through an articulated system of submarine canyons. Here, dynamics of contaminants have been investigated in a pilot area of the central Mediterranean basin (Gulf of Cagliari, S Sardinia) where important industrial plants are sited since beginning of the last century. Five sediment cores dated by 210Pb and 137Cs reveal: i) a complex dynamics of organic and inorganic contaminants from point source areas on land to the deep sea and ii) a crucial role played by canyons and bottom morphology as primary pathway conveying sediments and associated contaminants from sources to very far deep sea environments. In particular, this study provides new integrated tools to properly understand mechanisms of connection between coastal sectors and deep sea. This is challenging mostly in regions where coastal pollution could represent critical threats for larger areas of the Mediterranean Sea.
Collapse
Affiliation(s)
| | | | - Mattia Barsanti
- ENEA Centro Ricerche Ambiente Marino S. Teresa, La Spezia, Italy
| | - Antonio Schirone
- ENEA Centro Ricerche Ambiente Marino S. Teresa, La Spezia, Italy
| | - Ivana Delbono
- ENEA Centro Ricerche Ambiente Marino S. Teresa, La Spezia, Italy
| | - Fabio Conte
- ENEA Centro Ricerche Ambiente Marino S. Teresa, La Spezia, Italy
| | - Roberta Delfanti
- ENEA Centro Ricerche Ambiente Marino S. Teresa, La Spezia, Italy
| | | | | | | | - Mario Sprovieri
- IAMC-CNR, Torretta Granitola, Campobello di Mazara, TP, Italy
| |
Collapse
|
14
|
Li X, Dong S, Zhang W, Fan X, Li Y, Wang R, Su X. Global occurrence of polybrominated diphenyl ethers and their hydroxylated and methoxylated structural analogues in an important animal feed (fishmeal). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:620-629. [PMID: 29223819 DOI: 10.1016/j.envpol.2017.11.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/30/2017] [Accepted: 11/16/2017] [Indexed: 06/07/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) and their hydroxylated (OH) and methoxylated (MeO) structural analogues have been found widely distributed in aquatic ecosystems, and may exhibit potential adverse effects to humans due to their bioaccumulative behavior through food chain. Fishmeal is an important animal feed applied around the world and is generally of marine origin. However, the levels and sources of PBDEs in fishmeal have not been thoroughly evaluated and their structural analogues have not been reported to date. The present study collected ninety-two fishmeal samples from world main fishmeal producing area to determine 27 PBDEs, 10 MeO-PBDEs and 11 OH-PBDEs. The concentrations of Σ27PBDEs, Σ10MeO-PBDEs and Σ11OH-PBDEs were in the ranges of 0.1-1498 (mean: 75.8), 1.14-881 (37.4) and 1.00-47.5 (8.17) ng/g lipid, respectively. PBDEs were found primarily correlated with the historically commercial production, meaning higher production of certain commercial product in a country, higher corresponding PBDE congeners in local fishmeal. A market shift from penta- and octa-formulations toward deca-formulation was observed. BDE209 was identified as a major congener in fishmeal. Both the MeO-PBDEs and the OH-PBDEs were influenced by fishmeal producing areas (p < 0.001). High MeO-PBDEs were identified in the Southeast Asian fishmeal, which might be due to the suitable environmental conditions for the generation of bromoperoxidase-contained algae in local area. The ratio of two major MeO-PBDE congeners, 6-MeO-BDE47/2'-MeO-BDE68, were generally >1 in the northern hemisphere and <1 in the southern hemisphere in the present study, which was consistent with the results obtained from previous published papers. Both MeO-PBDEs and OH-PBDEs were in accordance with the specialties of naturally produced halogenated compounds.
Collapse
Affiliation(s)
- Xiaomin Li
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Shujun Dong
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Wei Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Xia Fan
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yang Li
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Ruiguo Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Xiaoou Su
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China.
| |
Collapse
|
15
|
Romero-Romero S, Herrero L, Fernández M, Gómara B, Acuña JL. Biomagnification of persistent organic pollutants in a deep-sea, temperate food web. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:589-597. [PMID: 28672247 DOI: 10.1016/j.scitotenv.2017.06.148] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and polychlorinated dibenzo-p-dioxins and -furans (PCDD/Fs) were measured in a temperate, deep-sea ecosystem, the Avilés submarine Canyon (AC; Cantabrian Sea, Southern Bay of Biscay). There was an increase of contaminant concentration with the trophic level of the organisms, as calculated from stable nitrogen isotope data (δ15N). Such biomagnification was only significant for the pelagic food web and its magnitude was highly dependent on the type of top predators included in the analysis. The trophic magnification factor (TMF) for PCB-153 in the pelagic food web (spanning four trophic levels) was 6.2 or 2.2, depending on whether homeotherm top predators (cetaceans and seabirds) were included or not in the analysis, respectively. Since body size is significantly correlated with δ15N, it can be used as a proxy to estimate trophic magnification, what can potentially lead to a simple and convenient method to calculate the TMF. In spite of their lower biomagnification, deep-sea fishes showed higher concentrations than their shallower counterparts, although those differences were not significant. In summary, the AC fauna exhibits contaminant levels comparable or lower than those reported in other systems.
Collapse
Affiliation(s)
- Sonia Romero-Romero
- Área de Ecología, Dpto. de Biología de Organismos y Sistemas, Universidad de Oviedo, Catedrático Rodrigo Uría s/n, 33071 Oviedo, Asturias, Spain.
| | - Laura Herrero
- Department of Instrumental Analysis and Environmental Chemistry, Institute of General Organic Chemistry, CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Mario Fernández
- Department of Instrumental Analysis and Environmental Chemistry, Institute of General Organic Chemistry, CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Belén Gómara
- Department of Instrumental Analysis and Environmental Chemistry, Institute of General Organic Chemistry, CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
| | - José Luis Acuña
- Área de Ecología, Dpto. de Biología de Organismos y Sistemas, Universidad de Oviedo, Catedrático Rodrigo Uría s/n, 33071 Oviedo, Asturias, Spain
| |
Collapse
|
16
|
Zhao Y, Wang Y, Li Y, Santschi PH, Quigg A. Response of photosynthesis and the antioxidant defense system of two microalgal species (Alexandrium minutum and Dunaliella salina) to the toxicity of BDE-47. MARINE POLLUTION BULLETIN 2017; 124:459-469. [PMID: 28781186 DOI: 10.1016/j.marpolbul.2017.07.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/16/2017] [Accepted: 07/14/2017] [Indexed: 06/07/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs), a persistent organic pollutant are ubiquitous in aquatic ecosystems, which are causing serious environmental concerns. In this study, we chose BDE-47 as a representative PBDEs, to investigate its toxic effects on two microalgal species and the response of their antioxidant system. The results indicated Alexandrium minutum (a dinoflagellate) was more sensitive to BDE-47 than Dunaliella salina (a chlorophyte), as determined by growth rates, cellular structure and photosynthetic parameters. Cellular reactive oxygen species (ROS) levels were significantly elevated under the exposure of BDE-47 in both species, corresponding to an increase of superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) activities, while glutathione peroxidase (GPX) activities decreased in D. salina and increased in A. minutum. The different enzymes responses between the two species indicated different mechanisms in their antioxidant system, and we deduced that A. minutum might have a higher efficiency for scavenging H2O2 than D. salina.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Marine Ecology, Ocean University of China, Qingdao 266003, China
| | - You Wang
- Department of Marine Ecology, Ocean University of China, Qingdao 266003, China.
| | - Yijun Li
- College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Peter H Santschi
- Department of Marine Biology, Texas A&M University, Galveston, TX 77553, USA; Department of Oceanography, Texas A&M University, College Station, TX 77843, USA
| | - Antonietta Quigg
- Department of Oceanography, Texas A&M University, College Station, TX 77843, USA; Department of Marine Science, Texas A&M University, Galveston, TX 77553, USA
| |
Collapse
|
17
|
Ríos JM, Lana NB, Ciocco NF, Covaci A, Barrera-Oro E, Moreira E, Altamirano JC. Implications of biological factors on accumulation of persistent organic pollutants in Antarctic notothenioid fish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 145:630-639. [PMID: 28806565 DOI: 10.1016/j.ecoenv.2017.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
In the present study, the possible associations between selected persistent organic pollutants (POPs) and biological factors were assessed in different tissues of two Antarctic notothenioid fish: Notothenia rossii (NOR) and Trematomus newnesi (TRN) collected at Potter Cove, King George Island/Isla 25 de Mayo, South Shetland Islands. Specifically, association patterns between biological factors (body size, lipid content, body condition) and POP concentrations (polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT) and metabolites, polybrominated diphenyl ethers (PBDEs), and hexachlorocyclohexane (HCH), hexachlorobenzene (HCB), chlordanes (CHLs) and methoxylated polybrominated diphenyl ethers (MeO-PBDEs)), were explored by using two approaches: multivariate analyses (principal component analysis: PCA) and intraspecific correlations. Integrating results suggest that biological factors such as size, KI and tissue type seemed to be associated to selective accumulation of POPs for immature specimens of N. rossii, and KI and tissue type for mature specimens of T. newnesi. Each particular factor should be considered when choosing N. rossii or T. newnesi as sentinels for POPs pollution in Antarctic marine environments. Further, both nototheniids showed a selective accumulation pattern in their gonads of penta-chlorinated biphenyls (penta-CBs; 55.5 and 29ngg-1 lw for N. rossii and T. newnesi, respectively) and organochlorine pesticides such as DDTs (199 and 13.3ngg-1 lw, for N. rossii and T. newnesi respectively), and of polybrominated diphenyl ethers (PBDEs) in gills (97.2 and 22.1 for ngg-1 lw, for N. rossii and T. newnesi, respectively), highlighting the importance of these tissues in monitoring studies of pollution in fish. The current study expands the knowledge concerning the biological factors to be investigated when specific pollutants are monitored and supports the importance of tissue type for the selective accumulation of POPs in Antarctic fish. Additionally, a contribution to the scarce data on concentration of MeO-PBDEs in Antarctic marine organisms, particularly in the highly diverse perciform suborder Notothenioidei is provided.
Collapse
Affiliation(s)
- J M Ríos
- Laboratorio de Química Ambiental, Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA, CCT-CONICET), Mendoza 5500, Argentina.
| | - N B Lana
- Laboratorio de Química Ambiental, Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA, CCT-CONICET), Mendoza 5500, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina.
| | - N F Ciocco
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina; Instituto Argentino de Investigaciones de las Zonas Áridas (IADIZA,CCT- CONICET), Mendoza 5500, Argentina.
| | - A Covaci
- Toxicological Center, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - E Barrera-Oro
- Museo Argentino de Ciencias Naturales Bernardino Rivadavia and CONICET, Buenos Aires, Argentina; Instituto Antártico Argentino (IAA), Buenos Aires, Argentina.
| | - E Moreira
- Instituto Antártico Argentino (IAA), Buenos Aires, Argentina.
| | - J C Altamirano
- Laboratorio de Química Ambiental, Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA, CCT-CONICET), Mendoza 5500, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina.
| |
Collapse
|
18
|
Nomiyama K, Takaguchi K, Mizukawa H, Nagano Y, Oshihoi T, Nakatsu S, Kunisue T, Tanabe S. Species- and Tissue-Specific Profiles of Polybrominated Diphenyl Ethers and Their Hydroxylated and Methoxylated Derivatives in Cats and Dogs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5811-5819. [PMID: 28440655 DOI: 10.1021/acs.est.7b01262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The adverse effects of elevated polybrominated diphenyl ether (PBDE) levels, reported in the blood of domestic dogs and cats, are considered to be of great concern. However, the tissue distribution of PBDEs and their derivatives in these animals is poorly understood. This study determined the concentrations and profiles of PBDEs, hydroxylated PBDEs (OH-PBDEs), methoxylated PBDEs (MeO-PBDEs), and 2,4,6-tribromophenol (2,4,6-tri-BPh) in the blood, livers, bile, and brains of dogs and cats in Japan. Higher tissue concentrations of PBDEs were found in cats, with the dominant congener being BDE209. BDE207 was also predominant in cat tissues, indicating that BDE207 was formed via BDE209 debromination. BDE47 was the dominant congener in dog bile, implying a species-specific excretory capacity of the liver. OH-PBDE and MeO-PBDE concentrations were several orders of magnitude higher in cat tissues, with the dominant congener being 6OH-BDE47, possibly owing to their intake of naturally occurring MeO-PBDEs in food, MeO-PBDE demethylation in the liver, and lack of UDP-glucuronosyltransferase, UGT1A6. Relatively high concentrations of BDE209, BDE207, 6OH-BDE47, 2'MeO-BDE68, and 2,4,6-tri-BPh were found in cat brains, suggesting a passage through the blood-brain barrier. Thus, cats in Japan might be at a high risk from PBDEs and their derivatives, particularly BDE209 and 6OH-BDE47.
Collapse
Affiliation(s)
- Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University , Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Kohki Takaguchi
- Center for Marine Environmental Studies (CMES), Ehime University , Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Hazuki Mizukawa
- Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Yasuko Nagano
- Center for Marine Environmental Studies (CMES), Ehime University , Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Tomoko Oshihoi
- Center for Marine Environmental Studies (CMES), Ehime University , Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Susumu Nakatsu
- Nakatsu Veterinary Surgery, 2-2-5, Shorinjichonishi, Sakai-ku, Sakai, Osaka 590-0960, Japan
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University , Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University , Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
19
|
Zhou Y, Chen Q, Du X, Yin G, Qiu Y, Ye L, Zhu Z, Zhao J. Occurrence and trophic magnification of polybrominated diphenyl ethers (PBDEs) and their methoxylated derivatives in freshwater fish from Dianshan Lake, Shanghai, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 219:932-938. [PMID: 27707599 DOI: 10.1016/j.envpol.2016.09.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/11/2016] [Accepted: 09/14/2016] [Indexed: 05/21/2023]
Abstract
In this study, polybrominated diphenyl ethers (PBDEs) and methoxylated polybrominated diphenyl ethers (MeO-PBDEs) were analyzed in eleven freshwater fish species from Dianshan Lake, Shanghai, China. The highest concentrations of PBDEs and MeO-PBDEs were found in snakehead, with mean values of 38 ng g-1 lw and 4.2 ng g-1 lw, respectively. BDE-47 was the predominant congener of PBDEs, followed by BDE-154. Congener pattern variation of PBDEs was observed among different fish species, implying differences in biotransformation potential among fish. Yellow catfish showed highest concentrations of BDE-99, -153 and -183, suggesting that it is more resistant to debromination than any other fish analyzed in the present study. Trophic magnification factors were in the range of 1.35-1.81 for all the PBDE congeners, but not for 2'-MeO-BDE-68. Negative relationship was observed between PBDEs concentration and sample size (length and weight), indicating fish size dilution effect.
Collapse
Affiliation(s)
- Yihui Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Qiaofeng Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xinyu Du
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ge Yin
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment (Ministry of Education), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Lu Ye
- Jiading District Environmental Monitoring Station, Shanghai 201822, China
| | - Zhiliang Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jianfu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
20
|
Louis C, Covaci A, Crocker DE, Debier C. Lipophilicity of PCBs and fatty acids determines their mobilisation from blubber of weaned northern elephant seal pups. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:599-602. [PMID: 26439651 DOI: 10.1016/j.scitotenv.2015.09.094] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/17/2015] [Accepted: 09/17/2015] [Indexed: 06/05/2023]
Abstract
Polychlorinated biphenyls (PCBs) exhibit lipophilic properties that lead to their bioaccumulation in adipose tissue. Following PCB exposition, northern elephant seals (Mirounga angustirostris) concentrate high amounts of these pollutants in their large adipose tissue stores. During lipolytic periods such as the post-weaning fast, fatty acids (FAs), which form triglycerides, and PCBs are both mobilised from adipose tissue. Our results showed that the degree of lipophilicity of FAs and PCBs impacted their release: the more lipophilic FAs and PCBs tended to be more conserved in blubber over the fast than the less lipophilic ones. This led to an enrichment of more lipophilic compounds within adipocytes with the progression of the fast. Life history patterns that include fasting may thus influence the profile of blubber lipids and contaminants.
Collapse
Affiliation(s)
- Caroline Louis
- Institut des Sciences de la Vie, UCLouvain, Croix du Sud 2/L7.05.08, 1348 Louvain-la-Neuve, Belgium.
| | - Adrian Covaci
- Department of Pharmaceutical Sciences, Toxicological Center, Campus Drie Eiken, Universiteit Antwerpen, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Daniel E Crocker
- Department of Biology, Sonoma State University, 1801 East Cotati Ave, Rohnert Park, CA 94928, USA
| | - Cathy Debier
- Institut des Sciences de la Vie, UCLouvain, Croix du Sud 2/L7.05.08, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
21
|
Kim UJ, Jo H, Lee IS, Joo GJ, Oh JE. Investigation of bioaccumulation and biotransformation of polybrominated diphenyl ethers, hydroxylated and methoxylated derivatives in varying trophic level freshwater fishes. CHEMOSPHERE 2015; 137:108-114. [PMID: 26092317 DOI: 10.1016/j.chemosphere.2015.05.104] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/29/2015] [Accepted: 05/31/2015] [Indexed: 06/04/2023]
Abstract
The concentrations and distributions of polybrominated diphenyl ethers (PBDEs) and their hydroxylated and methoxylated derivatives (OH- and MeO-BDEs) were determined in seven representative fish species from a river in the Republic of Korea. The PBDEs and their derivatives were found to be accumulated in the internal organs of the fish to different extents. PBDEs were preferentially accumulated in the internal organs rather than muscle tissue, and especially, showed increasing accumulation tendencies with increasing bromination level in liver. The OH-BDEs and MeO-BDEs were preferentially accumulated in the liver and gastrointestinal tract, respectively. MeO-BDE concentrations were found to increase according to relative trophic level, suggesting that the PBDE derivatives can be biomagnified to a greater extent than the parent PBDEs in freshwater food webs. In a comparison with the dissolved analyte concentrations in the water that were measured by using semi-permeable membrane devices, the greater uptake of non-ortho substituted MeO-BDEs by fish was observed.
Collapse
Affiliation(s)
- Un-Jung Kim
- Department of Civil and Environmental Engineering, Pusan National University, San 30, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea; Center for Environment, Health and Welfare Research, Korea Institute Science and Technology (KIST), 39-1, Hawolgok-dong, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Hyunbin Jo
- Department of Biological Sciences, Pusan National University, San 30, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - In-Seok Lee
- National Fisheries Research & Development Institute (NFRDI), 216, Gijanghaeanro, Gijang-Eup, Gijang-Gun, Busan 619-705, Republic of Korea
| | - Gea-Jae Joo
- Department of Biological Sciences, Pusan National University, San 30, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, San 30, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea.
| |
Collapse
|
22
|
Multi-contaminant analysis of organophosphate and halogenated flame retardants in food matrices using ultrasonication and vacuum assisted extraction, multi-stage cleanup and gas chromatography–mass spectrometry. J Chromatogr A 2015; 1401:33-41. [DOI: 10.1016/j.chroma.2015.05.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/30/2015] [Accepted: 05/01/2015] [Indexed: 11/22/2022]
|
23
|
Webster L, Russell M, Walsham P, Hussy I, Lacaze JP, Phillips L, Dalgarno E, Packer G, Neat F, Moffat CF. Halogenated persistent organic pollutants in relation to trophic level in deep sea fish. MARINE POLLUTION BULLETIN 2014; 88:14-27. [PMID: 25287221 DOI: 10.1016/j.marpolbul.2014.09.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 09/08/2014] [Accepted: 09/17/2014] [Indexed: 06/03/2023]
Abstract
The bioaccumulation of persistent organic pollutants (POPs) in deep sea fish from the Rockall fishing area was investigated. Predator and prey species were analysed for stable isotopes, fatty acids, polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). δ(15)N indicated that black scabbard was at the highest trophic level and the prey the lowest. The fatty acid signatures indicated that black scabbard and black dogfish fed at a higher trophic level compared to the roundnose grenadier. PCBs and PBDEs were detected in the liver of all three predator species. PCB concentrations were significantly higher in the roundnose grenadier, possibly due to their longer life span. PCB concentrations were compared to OSPAR assessment criteria, concentrations were above background but below Environmental Assessment Criteria for all but one congener. PCB concentrations were below food safety levels in the flesh, but exceeded the limit for liver in the roundnose grenadier and black dogfish.
Collapse
Affiliation(s)
- Lynda Webster
- Marine Scotland, Marine Laboratory, Victoria Road, Aberdeen AB11 9DB, United Kingdom.
| | - Marie Russell
- Marine Scotland, Marine Laboratory, Victoria Road, Aberdeen AB11 9DB, United Kingdom
| | - Pam Walsham
- Marine Scotland, Marine Laboratory, Victoria Road, Aberdeen AB11 9DB, United Kingdom
| | - Ines Hussy
- Marine Scotland, Marine Laboratory, Victoria Road, Aberdeen AB11 9DB, United Kingdom
| | - Jean-Pierre Lacaze
- Marine Scotland, Marine Laboratory, Victoria Road, Aberdeen AB11 9DB, United Kingdom
| | - Lesley Phillips
- Marine Scotland, Marine Laboratory, Victoria Road, Aberdeen AB11 9DB, United Kingdom
| | - Eric Dalgarno
- Marine Scotland, Marine Laboratory, Victoria Road, Aberdeen AB11 9DB, United Kingdom
| | - Gill Packer
- Marine Scotland, Marine Laboratory, Victoria Road, Aberdeen AB11 9DB, United Kingdom
| | - Francis Neat
- Marine Scotland, Marine Laboratory, Victoria Road, Aberdeen AB11 9DB, United Kingdom
| | - Colin F Moffat
- Marine Scotland, Marine Laboratory, Victoria Road, Aberdeen AB11 9DB, United Kingdom
| |
Collapse
|
24
|
Weijs L, Shaw SD, Berger ML, Neels H, Blust R, Covaci A. Methoxylated PBDEs (MeO-PBDEs), hydroxylated PBDEs (HO-PBDEs) and hydroxylated PCBs (HO-PCBs) in the liver of harbor seals from the northwest Atlantic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 493:606-614. [PMID: 24982026 DOI: 10.1016/j.scitotenv.2014.06.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/10/2014] [Accepted: 06/10/2014] [Indexed: 06/03/2023]
Abstract
Metabolites of PCBs and PBDEs are shown to influence the thyroid hormone homeostasis and therefore, could have an influence on the growth of newborn or young animals. We have investigated the occurrence of hydroxylated PCBs (HO-PCBs), hydroxylated PBDEs (HO-PBDEs), and methoxylated PBDEs (MeO-PBDEs) in the liver (48 pups; 6 adults) and blubber (4 pups; 1 adult) of harbor seals (Phoca vitulina concolor) from the northwest Atlantic. The sum of HO-PCBs in the liver ranged from 90 to 22,450 pg/g wet weight (ww) for pups and from 410 to 5290 pg/g ww for adults. Congener 4-HO-CB 107 was predominant in almost all samples regardless of age or gender, except in one adult male. Sum HO-PCB concentrations were highly correlated with the sum of precursor PCBs in the liver of harbor seals (r(2) = 0.79; p<0.0001). Concentrations of sum HO-PBDEs in the liver ranged from 70 to 1850 pg/g ww for pups and from 90 to 230 pg/g ww for adults. HO-PBDEs were also correlated with PBDEs (r(2) = 0.58; p<0.0001). Sum MeO-PBDE concentrations in the liver ranged from 20 to 1460 pg/g ww in pups and from 10 to 270 pg/g ww in adults. HO-PCBs and HO-PBDEs were not detected in the blubber. Levels of MeO-PBDEs in the blubber ranged from 1500 to 4400 pg/g ww. In all blubber samples, 6-MeO-BDE 47 was the predominant MeO-PBDE congener, followed by 2'-MeO-BDE 68 and 5-MeO-BDE 47, respectively. The presence of HO-metabolites in pup liver suggests that young harbor seals may have some, yet limited, metabolic capacity for PCBs and PBDEs, which can lead to an excessive accumulation of these chemicals in the body. Moreover, the presence of HO-PCB and HO-PBDE metabolites may pose an additional stress for young harbor seals due to their influence on the thyroid hormone system and could have consequences for the entire population.
Collapse
Affiliation(s)
- Liesbeth Weijs
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Susan D Shaw
- Marine Environmental Research Institute, P.O. Box 1652, Blue Hill, ME 04614, USA
| | - Michelle L Berger
- Marine Environmental Research Institute, P.O. Box 1652, Blue Hill, ME 04614, USA
| | - Hugo Neels
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Ronny Blust
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| |
Collapse
|
25
|
Louis C, Dirtu AC, Stas M, Guiot Y, Malarvannan G, Das K, Costa DP, Crocker DE, Covaci A, Debier C. Mobilisation of lipophilic pollutants from blubber in northern elephant seal pups (Mirounga angustirostris) during the post-weaning fast. ENVIRONMENTAL RESEARCH 2014; 132:438-448. [PMID: 24858284 DOI: 10.1016/j.envres.2014.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/14/2014] [Accepted: 04/15/2014] [Indexed: 06/03/2023]
Abstract
Northern elephant seals (NES) (Mirounga angustirostris) from the Año Nuevo State Reserve (CA, USA) were longitudinally sampled during the post-weaning fast in order to study the mobilisation and redistribution of various classes of persistent organic pollutants (POPs), such as polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), dichlorodiphenyldichloroethylene (p,p'-DDE) and hexachlorobenzene (HCB) between blubber and blood. Inner and outer blubber layers were analysed separately. Organohalogenated compounds were detected in all blubber samples in the decreasing order of their concentrations: p,p'-DDE > PCBs ⪢ HCB > PBDEs. The concentrations of all studied compounds were homogeneously distributed in the blubber layer at early fast, since the concentrations of POPs were statistically not different in the inner and outer layers. With the progression of the fast, the concentrations of PBDEs, PCBs and p,p'-DDE increased more sharply in inner blubber than in outer blubber. As a result, their levels became significantly higher in inner blubber as compared to outer blubber at late fast. The rise of pollutant concentrations in blubber might result from a less efficient mobilisation than triglycerides and/or a reuptake by adipocytes of some of the pollutants released into the circulation. The mobilisation of pollutants from blubber was higher at late fast. An increase of pollutant concentrations was observed in serum between early and late fast. Lower halogenated congeners (i.e. tetra-CBs) were present in higher proportions in serum, whereas the higher halogenated congeners (i.e. hepta-CBs) were mainly found in the inner and outer blubber layers. The transfer ratios of both PBDEs and PCBs from inner blubber to serum decreased with the number of chlorine and bromine atoms. In addition, the distribution of both types of compounds between serum and blubber was strongly influenced by their lipophilic character (logKow values), with more lipophilic compounds being less efficiently released from blubber to serum.
Collapse
Affiliation(s)
- Caroline Louis
- Institut des Sciences de la Vie, UCLouvain, Croix du Sud 2/L7.05.08, 1348 Louvain-la-Neuve, Belgium
| | - Alin C Dirtu
- Department of Pharmaceutical Sciences, Toxicological Center, Campus Drie Eiken, Universiteit Antwerpen, Universiteitsplein 1, 2610 Wilrijk, Belgium; Department of Chemistry, "Al. I. Cuza" University of Iasi, 700506 Iasi, Romania
| | - Marie Stas
- Institut des Sciences de la Vie, UCLouvain, Croix du Sud 2/L7.05.08, 1348 Louvain-la-Neuve, Belgium
| | - Yves Guiot
- Department of Pathology, Faculty of Medicine, UCLouvain, Brussels, Belgium
| | - Govindan Malarvannan
- Department of Pharmaceutical Sciences, Toxicological Center, Campus Drie Eiken, Universiteit Antwerpen, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Krishna Das
- Laboratoire d'Océanologie, MARE Center B6c, Université de Liège, 4000 Liège, Belgium
| | - Daniel P Costa
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, 100 Shaffer Rd, Santa Cruz, CA 95060, USA
| | - Daniel E Crocker
- Department of Biology, Sonoma State University, 1801 East Cotati Ave, Rohnert Park, CA 94928, USA
| | - Adrian Covaci
- Department of Pharmaceutical Sciences, Toxicological Center, Campus Drie Eiken, Universiteit Antwerpen, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Cathy Debier
- Institut des Sciences de la Vie, UCLouvain, Croix du Sud 2/L7.05.08, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
26
|
Nomiyama K, Kanbara C, Ochiai M, Eguchi A, Mizukawa H, Isobe T, Matsuishi T, Yamada TK, Tanabe S. Halogenated phenolic contaminants in the blood of marine mammals from Japanese coastal waters. MARINE ENVIRONMENTAL RESEARCH 2014; 93:15-22. [PMID: 24060385 DOI: 10.1016/j.marenvres.2013.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 08/07/2013] [Accepted: 08/29/2013] [Indexed: 06/02/2023]
Abstract
Information on accumulation of halogenated phenolic contaminants in the blood of marine mammal is limited. The present study, we determined the residue levels and patterns of chlorinated and brominated phenolic contaminants (OH-PCBs, OH-PBDEs and bromophenols) in the blood collected from pinnipeds (northern fur seal, spotted seal, Steller sea lion and ribbon seal) and small cetaceans (harbor porpoise and Dall's porpoise) from Japanese coastal waters. Concentrations of PCBs and OH-PCBs found in pinnipeds were the same as in small cetaceans living in the same coastal area. However, significantly lower concentrations of brominated compounds (PBDEs, MeO-PBDEs, OH-PBDEs) were found in the blood of pinnipeds than the levels found in cetacean species which live same area (p < 0.05). This difference of accumulation pattern suggested pinnipeds have an enhanced capability to degrade organobromine compounds relative to cetaceans.
Collapse
Affiliation(s)
- Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama 790-8577, Japan.
| | - Chika Kanbara
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama 790-8577, Japan
| | - Mari Ochiai
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama 790-8577, Japan
| | - Akifumi Eguchi
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama 790-8577, Japan
| | - Hazuki Mizukawa
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama 790-8577, Japan
| | - Tomohiko Isobe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama 790-8577, Japan
| | - Takashi Matsuishi
- Faculty of Fisheries Sciences, Hokkaido University, 3-3-1 Minato-cho, Hakodate 041-8611, Japan
| | - Tadasu K Yamada
- Department of Zoology, National Museum of Nature and Science, 3-23-1 Hyakunin-cho, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama 790-8577, Japan
| |
Collapse
|
27
|
Barón E, Rudolph I, Chiang G, Barra R, Eljarrat E, Barceló D. Occurrence and behavior of natural and anthropogenic (emerging and historical) halogenated compounds in marine biota from the Coast of Concepcion (Chile). THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 461-462:258-264. [PMID: 23735720 DOI: 10.1016/j.scitotenv.2013.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/03/2013] [Accepted: 05/04/2013] [Indexed: 06/02/2023]
Abstract
Fifty-five biota samples from the Coast of Concepcion (Chile) were analyzed for PBDEs, emerging brominated FRs, halogenated norbornenes and naturally-occurring MeO-PBDEs. PBDEs, MeO-PBDEs and halogenated norbornenes were detected at concentration levels ranging from 11 to 170, nd to 118 and nd to 5.8 ng/g lw, respectively. However, emerging brominated FRs such as decabromodiphenylethane (DBDPE), hexabromobenzene (HBB) and pentabromoethylbenzene (PBEB) were not detected in any sample. Bioaccumulation and bioconcentration processes were evaluated for the different families of compounds. Biomagnification factors (BMFs) were calculated, and some PBDE congeners (BDE-28, BDE-183 and BDE-209) as well as MeO-PBDEs presented BMF>1, being values of the naturally occurring MeO-PBDEs higher than those obtained for PBDEs. As regards halogenated norbornenes, BMF<1 were found.
Collapse
Affiliation(s)
- Enrique Barón
- Water and Soil Quality Research Group, Dep. Of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
28
|
Verhaert V, Covaci A, Bouillon S, Abrantes K, Musibono D, Bervoets L, Verheyen E, Blust R. Baseline levels and trophic transfer of persistent organic pollutants in sediments and biota from the Congo River Basin (DR Congo). ENVIRONMENT INTERNATIONAL 2013; 59:290-302. [PMID: 23872388 DOI: 10.1016/j.envint.2013.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 05/27/2013] [Accepted: 05/28/2013] [Indexed: 06/02/2023]
Abstract
The present study aimed to evaluate the occurrence of persistent organic pollutants (POPs: (PCBs, PBDEs, DDTs, HCHs, CHLs and HCB) in sediments and biota from the middle Congo River Basin (CRB) and to investigate their trophic transfer through the aquatic food web using nitrogen stable isotope ratios. To our knowledge, no data on levels of POPs in sediment and biota from the CRB are present in the literature, and studies on trophic transfer and biomagnification profiles of POPs using δ(15)N are scarce in tropical regions. POP levels in the sediment and biota were low, with exception of total PCB levels found in fish from the Itimbiri River (1.4 to 44ng/g ww). Compared to concentrations found in fish from pristine to relatively industrial developed areas, the ∑PCB levels in fish from the Itimbiri were high, indicating the presence of a local PCB contamination source in this catchment. Based on minimum risk level criteria formulated by ATSDR, the consumption of PCB contaminated fish from the Itimbiri river poses a potential risk for humans. The POP levels in biota were not significantly related to the POP levels in sediments, and the BSAF concept (Biota-Sediment Accumulation Factor) was found to be a poor predictor of the bioavailability and bioaccumulation of environmental pollutants in the present study. With increasing trophic levels, a significant increase in PCB 95, 101, 110, 138, 146, 149, 153, 174, 180 & 187 and p,p'-DDT in Itimbiri and BDE 47 & 99 in Itimbiri, Aruwimi & Lomami river basins was observed. Trophic magnification factors were higher than 1, indicating that biomagnification occurs through the tropical food web.
Collapse
Affiliation(s)
- Vera Verhaert
- Systemic Physiological & Ecotoxicological Research, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Bidleman TF, Stern GA, Tomy GT, Hargrave BT, Jantunen LM, Macdonald RW. Scavenging amphipods: sentinels for penetration of mercury and persistent organic chemicals into food webs of the deep Arctic Ocean. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:5553-5561. [PMID: 23627492 DOI: 10.1021/es304398j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Archived specimens of the scavenging amphipod Eurythenes gryllus, collected from 2075 to 4250 m below the surface on five expeditions to the western and central Arctic Ocean between 1983 and 1998, were analyzed for total mercury (∑Hg), methyl mercury (MeHg), polychlorinated biphenyls (PCBs) and other industrial or byproduct organochlorines (chlorobenzenes, pentachloroanisole, octachlorostyrene), organochlorine pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs). Median ∑Hg concentrations ranged from 70 to 366 ng g(-1) wet weight (ww). MeHg concentrations (3.55 to 23.5 ng g(-1) ww) accounted for 1.7 to 20.1% (median 3.7%) of ∑Hg. ∑Hg and MeHg were positively and significantly correlated with ww (∑Hg r(2) = 0.18, p = 0.0004, n = 63; MeHg r(2) = 0.42, p = 0.0004, n = 25), but not significantly with δ(13)C nor δ(15)N. Median concentrations of total persistent organic pollutants (POPs) ranged from 9750 to 156,000 ng g(-1) lipid weight, with order of abundance: ∑TOX (chlorobornanes quantified as technical toxaphene) > ∑PCBs > ∑DDTs > ∑chlordanes > ∑mirex compounds > ∑BDEs ∼ ∑chlorobenzenes ∼ octachlorostyrene > α-hexachlorocyclohexane ∼ hexachlorobenzene ∼ pentachloroanisole. Enantioselective accumulation was found for the chiral OCPs o,p'-DDT, cis- and trans-chlordane, nonachlor MC6 and oxychlordane. Lipid-normalized POPs concentrations were elevated in amphipods with lipid percentages ≤10%, suggesting that utilization of lipids resulted in concentration of POPs in the remaining lipid pool. Multidimensional Scaling (MDS) analysis using log-transformed physiological variables and lipid-normalized organochlorine concentrations distinguished amphipods from the central vs western arctic stations. This distinction was also seen for PCB homologues, whereas profiles of other compound classes were more related to specific stations rather than central-west differences.
Collapse
Affiliation(s)
- Terry F Bidleman
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden.
| | | | | | | | | | | |
Collapse
|
30
|
Jaspers VLB, Sonne C, Soler-Rodriguez F, Boertmann D, Dietz R, Eens M, Rasmussen LM, Covaci A. Persistent organic pollutants and methoxylated polybrominated diphenyl ethers in different tissues of white-tailed eagles (Haliaeetus albicilla) from West Greenland. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 175:137-146. [PMID: 23377037 DOI: 10.1016/j.envpol.2012.12.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 12/19/2012] [Accepted: 12/21/2012] [Indexed: 06/01/2023]
Abstract
We investigated polychlorinated biphenyls (PCBs), organochlorine pesticides (e.g. dichlorodiphenyltrichloroethane (DDT)), polybrominated diphenyl ethers (PBDEs) and methoxylated PBDEs (MeO-PBDEs), in six matrices (muscle, liver, kidney, adipose, blood, preen oil) of 17 white-tailed eagles from West Greenland sampled between 1997 and 2009. High inter-individual variation in contamination was found (PCBs: 0.49-1500 μg/g lipid weight (lw), DDTs: 0.23-910 μg/g lw, PBDEs: 0.01-24 μg/g lw, MeO-PBDEs: 0.001-0.59 μg/g lw), mostly due to age-related differences and not to temporal trends. One adult female (age > 5 years) displayed PCB levels up to 1500 μg/g lw in liver, which is the highest concentration ever reported in Arctic wildlife. Muscle generally contained the highest median levels, while adipose tissue displayed the lowest median levels on a lipid basis. No significant differences were found among tissues for MeO-PBDEs. Remarkably, we found distinct correlations (0.62 ≤ r ≤ 0.98; <0.0001 ≤ p ≤ 0.17) between levels of MeO-PBDEs and PBDEs, suggesting similar bioaccumulation pathways of PBDEs and MeO-PBDEs in white-tailed eagles.
Collapse
Affiliation(s)
- V L B Jaspers
- University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Antwerp), Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhang X, Tang X, Zhou B, Wang Y. Effects of decabromodiphenyl ether (BDE-209) on inter-specific competition between two species of marine bloom-forming microalgae. PLoS One 2013; 8:e56084. [PMID: 23555557 PMCID: PMC3605422 DOI: 10.1371/journal.pone.0056084] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 01/05/2013] [Indexed: 11/18/2022] Open
Abstract
Decabromodiphenyl ether (BDE-209), a new kind of persistent organic pollutants, was selected to investigate its influence on population growth and inter-specific competition between two species of marine bloom-forming microalgae, Heterosigma akashiwo and Karenia mikimotoi. (1)BDE-209 showed acute toxic effects on both microalgae and H. akashiwo was more sensitive from view of 96 h-EC50 and the ultrastructure variation. (2)The microalgal population growth patterns in mono-culture were density-dependent and the growth of both species in the normal co-culture was significantly depressed by competition (P<0.05) with different initial biomass ratios. BDE-209 exposure significantly changed the growth. (3) Lotka-Volterra competition model was used to simulate the interaction between the microalgae. BDE-209 exposure broke the competitive balance to make competition gradually shift in favor of H. akashiwo. Results suggested BDE-209 did have toxic effects on either microalgal growth or the inter-specific competition, which was quite different from previous reports. Further exploration of the mechanism is needed.
Collapse
Affiliation(s)
- Xinxin Zhang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xuexi Tang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Bin Zhou
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - You Wang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- * E-mail:
| |
Collapse
|
32
|
Sprague M, Dick JR, Medina A, Tocher DR, Bell JG, Mourente G. Lipid and fatty acid composition, and persistent organic pollutant levels in tissues of migrating Atlantic bluefin tuna (Thunnus thynnus, L.) broodstock. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 171:61-71. [PMID: 22885218 DOI: 10.1016/j.envpol.2012.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/04/2012] [Accepted: 07/07/2012] [Indexed: 06/01/2023]
Abstract
Lipid class, fatty acid and POP levels were measured in migrating Atlantic bluefin tuna (ABT) tissues caught off the Barbate coast, Spain. Tissue lipids were largely characterized by triacylglycerol, reflecting large energy reserves accumulated prior to reproductive migration. Fatty acid compositions of muscle, liver and adipose exhibited similar profiles, whereas gonads showed a higher affinity for docosahexaenoic acid. Tissue POP concentrations correlated positively with percentage triacylglycerol and negatively with polar lipids. Highest POP concentrations were in adipose and lowest in gonads, reflecting lipid content. DL-PCBs contributed most to total PCDD/F + DL-PCB levels, with mono-ortho concentrations higher in tissues, whereas non-ortho PCBs contributed greater WHO-TEQs due to differences in TEFs. PBDE47 was the most prominent BDE congener in tissues, probably through biotransformation of BDE99 and other higher brominated congeners. The perceived POP risk from ABT consumption should be balanced by the well-established beneficial effects on human health of omega-3 fatty acids.
Collapse
Affiliation(s)
- M Sprague
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| | | | | | | | | | | |
Collapse
|
33
|
Wang HS, Chen ZJ, Ho KL, Ge LC, Du J, Lam MHW, Giesy JP, Wong MH, Wong CKC. Hydroxylated and methoxylated polybrominated diphenyl ethers in blood plasma of humans in Hong Kong. ENVIRONMENT INTERNATIONAL 2012; 47:66-72. [PMID: 22771521 DOI: 10.1016/j.envint.2012.06.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 06/01/2012] [Accepted: 06/11/2012] [Indexed: 06/01/2023]
Abstract
Hydroxylated (OH-) and methoxylated (MeO-) polybrominated diphenyl ethers (PBDE) are suspected endocrine disruptors. Little is known about the accumulation or sources of these chemicals in tissues of humans, particularly those residing in Hong Kong, which is one of the most densely populated cities in the world. Seven MeO-BDEs, fifteen OH-BDEs and three bromophenols (BRPs) were analyzed in blood plasma of 116 humans that had been collected by the Hong Kong Red Cross. Total concentrations of MeO-BDEs, OH-BDEs and BRPs ranged from 3.8×10² to 52×10³ pg g⁻¹ lipid (median 4.5×10³ pg g⁻¹), 5.3 to 4.9×10² pg g⁻¹ lipid (81 pg g⁻¹) and ND to 1.1×10² pg g⁻¹ lipid (3.7 pg g⁻¹), respectively. 3-MeO-BDE-47, 6-OH-BDE-47 and 2, 4, 5-TBP were the predominant MeO-BDEs, OH-BDEs and BRPs, respectively. These results are consistent with accumulation of MeO-BDEs, OH-BDEs and BRPs in human plasma being primarily from natural products and inter-conversion of natural products. Coefficients of determination for some pairs of congeners such as 3-OH-BDE-100 and 6-OH-BDE-47, 6-OH-BDE-85 and 5'-OH-BDE-99, and 2, 4-DBP and 6-OH-BDE-85, were near 1.0, which is consistent with them having common sources. Patterns of relative concentrations of the target analytes were similar in the diet, particularly fish, as in blood plasma of humans, which suggests that the diet and particularly seafood might be a source of these compounds and PBDEs. Furthermore, biotransformation of natural chemicals such as OH-BDEs to BRPs might be the primary route of their elimination from humans.
Collapse
Affiliation(s)
- Hong-Sheng Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cincinelli A, Pieri F, Zhang Y, Seed M, Jones KC. Compound Specific Isotope Analysis (CSIA) for chlorine and bromine: a review of techniques and applications to elucidate environmental sources and processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 169:112-127. [PMID: 22710086 DOI: 10.1016/j.envpol.2012.05.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 04/30/2012] [Accepted: 05/06/2012] [Indexed: 06/01/2023]
Abstract
Chlorinated and brominated compounds belong to the class of organohalogen compounds that have received attention because of their widespread occurrence, use and applications. Understanding the sources and transformation processes of these contaminants in the environment enables assessment of their possible impact on humans and ecosystems. Recently new and innovative methods of Compound Specific Isotope Analysis have started to be applied to characterize the origin and fate of compounds, their breakdown products and degradation rates in different environmental compartments. Almost all studies have focussed on determination of isotopes of C and H, only recently new methodologies have been developed to measure isotopes of Cl and Br. This review firstly gives a brief description of chemistry properties and geochemical cycle of chlorine and bromine followed by a summary of their uses and applications. In the second section, an overview of CSIA techniques and new challenges and successful applications are also presented.
Collapse
|
35
|
Vanden Berghe M, Weijs L, Habran S, Das K, Bugli C, Rees JF, Pomeroy P, Covaci A, Debier C. Selective transfer of persistent organic pollutants and their metabolites in grey seals during lactation. ENVIRONMENT INTERNATIONAL 2012; 46:6-15. [PMID: 22659007 DOI: 10.1016/j.envint.2012.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 04/24/2012] [Accepted: 04/26/2012] [Indexed: 05/21/2023]
Abstract
Twenty grey seal (Halichoerus grypus) mother-pup pairs from the colony of the Isle of May (Scotland) were sampled at early and late lactation in order to study the transfer of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and their metabolites (HO-PCBs and HO-PBDEs) as well as organochlorine pesticides (OCPs), such as DDT and metabolites (DDXs) and hexachlorobenzene (HCB). The transfer of the naturally produced MeO-PBDEs was also investigated. Generally, concentrations (on a lipid weight basis) of the sum of PCBs, PBDEs and DDXs tended to be higher in all tissues at late lactation (for maternal outer blubber ΣPCBs=3860±2091 ng/g, ΣPBDEs=120±74 ng/g and ΣDDXs=559±207 ng/g; for maternal inner blubber ΣPCBs=4229±3274 ng/g, ΣPBDEs=148±118 ng/g and ΣDDXs=704±353 ng/g; for maternal serum ΣPCBs=1271±796 ng/g, ΣPBDEs=27±16 ng/g and ΣDDXs=242±125 ng/g; for milk ΣPCBs=1190±747 ng/g, ΣPBDEs=55±36 ng/g and ΣDDXs=357±160 ng/g; for pup serum ΣPCBs=1451±901 ng/g, ΣPBDEs=48±31 ng/g and ΣDDXs=395±201 ng/g). In all tissues, ΣMeO-PBDEs were found at very low levels or even undetected and their concentrations appeared to increase at late lactation only in maternal inner blubber (2.7±1.3 to 5.3±2.9 ng/g for early and late lactation, respectively) and milk (0.6±0.3 to 1.1±0.5 ng/g for early and late lactation, respectively). The transfer from inner blubber to maternal serum was selective and strongly depended on the log K(ow) value of the compounds, with less lipophilic compounds being more efficiently released. Only a limited amount of HO-PCBs was transferred during lactation as 4-HO-CB-107 was the only metabolite detected in milk (29 to 40 pg/g lw). On the contrary, most of HO-PCB metabolites found in maternal serum were also detected in pup serum. These findings suggest not only a transplacental transfer of HO-PCBs from mothers to pups but also the possibility of endogenous biotransformation in suckling pups or accumulation of undetectable low amounts from milk.
Collapse
Affiliation(s)
- Marie Vanden Berghe
- Institut des sciences de la vie, Université catholique de Louvain, Croix du Sud 2/L7.05.08, 1343 Louvain-la-Neuve, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Liu F, Wiseman S, Wan Y, Doering JA, Hecker M, Lam MHW, Giesy JP. Multi-species comparison of the mechanism of biotransformation of MeO-BDEs to OH-BDEs in fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 114-115:182-188. [PMID: 22446830 DOI: 10.1016/j.aquatox.2012.02.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 02/21/2012] [Accepted: 02/21/2012] [Indexed: 05/31/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) and their methoxylated- (MeO-) and hydroxylated- (OH-) analogs are ubiquitously distributed in the environment worldwide. The OH-BDEs have greater potency than PBDEs and can be produced from the transformation of MeO-BDEs. The objectives of the current study were to (1) identify the enzyme(s) that catalyze biotransformation of 6-MeO-BDE-47 to 6-OH-BDE-47 in livers from rainbow trout, and (2) compare biotransformation of 6-MeO-BDE-47 to 6-OH-BDE-47 among rainbow trout, white sturgeon and goldfish. Cytochrome P450 1A (CYP1A) enzymes did not catalyze the biotransformation reaction. However, biotransformation was significantly inhibited by the CYP inhibitors clotrimazole and 1-benzylimidazole but not gestodene. Therefore, the reaction is likely catalyzed by CYP2 enzymes. When biotransformation was compared among species, concentrations of 6-OH-BDE-47 were significantly 3.4- and 9.1-fold greater in microsomes from rainbow trout compared to goldfish or white sturgeon, respectively. Concentrations of 6-OH-BDE-47 in microsomes from goldfish were non-significantly 2.7-fold greater than in sturgeon. The initial rate of biotransformation in microsomes from livers of rainbow trout was significantly 2.0- and 6.2-fold greater than the initial rate of biotransformation in microsomes from livers of goldfish or sturgeon, respectively, while the initial rate in goldfish was significantly 3.1-fold greater than in sturgeon. It is hypothesized that differences in CYP-mediated biotransformation of MeO-BDEs to OH-BDEs could influence concentrations of OH-BDEs in different species of fish.
Collapse
Affiliation(s)
- Fengyan Liu
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N5B3, Canada
| | | | | | | | | | | | | |
Collapse
|
37
|
Kato Y, Okada S, Atobe K, Endo T, Haraguchi K. Selective determination of mono- and dihydroxylated analogs of polybrominated diphenyl ethers in marine sponges by liquid-chromatography tandem mass spectrometry. Anal Bioanal Chem 2012; 404:197-206. [DOI: 10.1007/s00216-012-6132-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 05/17/2012] [Accepted: 05/20/2012] [Indexed: 11/30/2022]
|
38
|
Nomiyama K, Eguchi A, Mizukawa H, Ochiai M, Murata S, Someya M, Isobe T, Yamada TK, Tanabe S. Anthropogenic and naturally occurring polybrominated phenolic compounds in the blood of cetaceans stranded along Japanese coastal waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:3364-73. [PMID: 21903310 DOI: 10.1016/j.envpol.2011.08.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 08/13/2011] [Accepted: 08/20/2011] [Indexed: 05/15/2023]
Abstract
We determined the residue levels and patterns of hydroxylated polybrominated diphenyl ethers (OH-PBDEs), and related compounds, such as PBDEs, methoxylated PBDEs (MeO-PBDEs), and bromophenols (BPhs) in the blood of eleven cetacean species stranded along the Japanese coasts. The dominant OH- and MeO-PBDE isomers found in all cetaceans were 6OH-BDE47 and 6MeO-BDE47. Additionally, 2,4,6-triBPh was dominant isomer in all cetaceans. In contrast, specific differences in the distribution of para- and meta- OH-PBDE isomers and some BPhs (potential PBDEs metabolites) were found among the cetaceans. Residue levels of ΣMeO-PBDEs and 6OH-BDE47 + 2'OH-BDE68, and 2,4,6-triBPh and 6OH-BDE47 + 2'OH-BDE68 showed a significant positive correlation. These results may suggest that the large percentages of OH-PBDEs, MeO-PBDEs and 2,4,6-triBPh might share common source (i.e. biosynthesis by marine organisms), or metabolic pathway in cetacean species. Significant correlations were found between the concentrations of BDE99 and 2,4,5-triBPh. This result suggested that 2,4,5-triBPh in cetaceans could be a metabolite of BDE99.
Collapse
Affiliation(s)
- Kei Nomiyama
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Nomiyama K, Uchiyama Y, Horiuchi S, Eguchi A, Mizukawa H, Hirata SH, Shinohara R, Tanabe S. Organohalogen compounds and their metabolites in the blood of Japanese amberjack (Seriola quinqueradiata) and scalloped hammerhead shark (Sphyrna lewini) from Japanese coastal waters. CHEMOSPHERE 2011; 85:315-321. [PMID: 21782210 DOI: 10.1016/j.chemosphere.2011.06.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 06/16/2011] [Accepted: 06/23/2011] [Indexed: 05/31/2023]
Abstract
Information on accumulation of polychlorinated biphenyl metabolites (OH-PCBs) and hydroxylated polybrominated diphenyl ethers (OH-PBDEs) in the blood of marine fish is limited. The present study, we determined the residue levels and patterns of PCBs, OH-PCBs, PBDEs, OH-PBDEs and methoxylated PBDEs (MeO-PBDEs) in the blood collected from scalloped hammerhead shark (Sphyrna lewini) and Japanese amberjack (Seriola quinqueradiata), species of predatory fish at Japanese coastal waters. The predominant homologues found in Japanese amberjacks were mono- and di-chlorinated OH-PCBs, and scalloped hammerhead sharks were octa-chlorinated OH-PCBs. The predominant OH-PCB isomers were lower-chlorinated OH-PCBs such as 6OH-CB2 and 2'OH-CB9 in Japanese amberjacks. This result suggests that exposure of Japanese amberjacks to lower-chlorinated OH-PCBs might be from the ambient aquatic environment. In scalloped hammerhead sharks, 4,4'diOH-CB202, 4OH-CB201 and 4OH-CB146 were the predominant isomers accounting for approximately 60% of the total OH-PCBs. The predominant MeO-PBDE isomers were 6MeO-BDE47 followed by 2'MeO-BDE68 in both species. As for OH-PBDE isomers, 6OH-BDE47 was predominant followed by 2'OH-BDE68 in Japanese amberjacks and scalloped hammerhead sharks. Residue levels of ΣMeO-PBDEs and ΣOH-PBDEs showed a significant positive correlation (p=0.029). This result suggests that MeO-PBDEs and OH-PBDEs share a common source or a metabolic pathway in fishes. Characteristic differences found in the profiles of OH-PCBs and OH-PBDEs in Japanese amberjack and scalloped hammerhead shark show the need for further studies on the differences in exposure profiles, metabolic capacities and toxic effects in fish.
Collapse
Affiliation(s)
- Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Pena-Abaurrea M, Covaci A, Ramos L. Comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry for the identification of organobrominated compounds in bluefin tuna. J Chromatogr A 2011; 1218:6995-7002. [DOI: 10.1016/j.chroma.2011.08.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 08/05/2011] [Accepted: 08/08/2011] [Indexed: 10/17/2022]
|
41
|
Wang HS, Du J, Ho KL, Leung HM, Lam MHW, Giesy JP, Wong CKC, Wong MH. Exposure of Hong Kong residents to PBDEs and their structural analogues through market fish consumption. JOURNAL OF HAZARDOUS MATERIALS 2011; 192:374-380. [PMID: 21658843 DOI: 10.1016/j.jhazmat.2011.05.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 05/30/2023]
Abstract
High concentrations of polybrominated diphenyl ethers (PBDEs) and their structural analogues (such as methoxylated (MeO) and hydroxylated (OH) PBDEs) had been observed in environmental samples and human tissues. This study evaluated the occurrence, potential source and human exposure of these organobrominated compounds via market fish consumption in Hong Kong. The contamination of 22 PBDEs, 7 MeO-BDEs, 15 OH-BDEs and 3 bromophenols (BRPs) were analyzed in 20 fish species (279 samples). The estimated daily intakes of PBDEs, MeO-BDEs, OH-BDEs and BRPs via fish consumption ranged from 4.4 to 14, 0.50 to 4.3, 0.02 to 0.43 and 0 to 0.21 ng/kg day for Hong Kong residents, respectively, based on 50(th) and 95(th) centile concentrations. BDE-47 and 99 were found to be the major PBDE congeners while 2'-MeO-BDE-68, 6-MeO-BDE-47 and 3-MeO-BDE-47 were the dominant MeO-BDEs. Concentrations of OH-BDEs and BRPs were 10-100-fold less than those of PBDEs, with small frequencies of detection (max 36.7%). Dietary intake of PBDEs via fish consumption by Hong Kong residents was greater than many developed countries, such as the USA, UK, Japan and Spain. To our knowledge, this is the first report to estimate the dietary intake of MeO/OH-BDEs and BRPs via fish consumption. Our results indicated that the toxicity potential of these compounds should not be neglected.
Collapse
Affiliation(s)
- Hong-Sheng Wang
- Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, PR China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Vetter W, Kirres J, Bendig P. Bromination of 2-methoxydiphenyl ether to an average of tetrabrominated 2-methoxydiphenyl ethers. CHEMOSPHERE 2011; 84:1117-24. [PMID: 21546057 DOI: 10.1016/j.chemosphere.2011.04.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/08/2011] [Accepted: 04/09/2011] [Indexed: 05/22/2023]
Abstract
Brominated 2-phenoxyanisoles (2-methoxydiphenyl ethers, 2-MeO-BDEs) are a class of halogenated natural products, produced by algae and sponges. Especially two tetrabrominated isomers, i.e. 2'-MeO-BDE 68 (BC-2) and 6-MeO-BDE 47 (BC-3), have also been frequently determined in environmental and food samples. In addition, 2-MeO-BDEs are under discussion as metabolites of polybrominated diphenyl ethers (PBDEs). In this study, we synthesized the backbone 2-methoxydiphenyl ether and brominated it to an average degree of four bromine substituents. The reaction mixture only contained one major product (∼90%) along with three further MeO-BDEs and ∼5% hydroxylated BDEs. In all likelihood, the HO-BDEs were formed in a side reaction by cleavage of the methoxy group. The major MeO-BDE was identified as 6'-methoxy-2,3',4,4'-tetrabromodiphenyl ether (6'-MeO-BDE-66). The HO-BDEs were separated by KOH/n-hexane partitioning, and the resulting 2-MeO-BDEs were fractionated by means of high-speed counter-current chromatography (HSCCC). Due to the excellent enrichment facilities of HSCCC, some 15 MeO-BDEs, mainly present at traces only, could be detected in 26 fractions, and eight of them could be characterized by nuclear magnetic resonance spectroscopy (NMR). Only two of the compounds--2'-MeO-BDE 68 and 6-MeO-BDE 123--had been characterized as natural products while the prominent halogenated natural product 6-MeO-BDE 47 was not detected at all in the reaction product. The "non-natural" 2-MeO-BDEs may be useful internal standards in trace analysis.
Collapse
Affiliation(s)
- Walter Vetter
- Institute of Food Chemistry (170b), University of Hohenheim, Garbenstr. 28, D-70599 Stuttgart, Germany.
| | | | | |
Collapse
|
43
|
Webster L, Walsham P, Russell M, Hussy I, Neat F, Dalgarno E, Packer G, Scurfield JA, Moffat CF. Halogenated persistent organic pollutants in deep water fish from waters to the west of Scotland. CHEMOSPHERE 2011; 83:839-850. [PMID: 21421255 DOI: 10.1016/j.chemosphere.2011.02.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/26/2011] [Accepted: 02/27/2011] [Indexed: 05/30/2023]
Abstract
Halogenated persistent organic pollutants [polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs)] along with total lipid, were measured in the liver and muscle of three species of deep water fish (black scabbard, black dogfish (liver only) and roundnose grenadier) collected from the Rockall fishing area, to the west of Scotland, between 2006 and 2008. Both contaminant groups were detected in the muscle and liver, with concentrations of PCBs being higher than PBDEs. There were no significant differences in the PCB or PBDE concentrations between the three species, or different sampling locations in the Rockall fishing area. PCB concentrations (ΣICES (International Council for the Exploration of the Sea)7 PCBs) greater than 500 μg kg(-1) lipid weight were found in 26 of the 106 liver samples. PCB concentrations were compared to OSPAR assessment criteria, concentrations were above background but below Environmental Assessment Criteria. Estimated Toxic Equivalent (TEQ) concentrations, calculated using published models, in the fish muscle and liver indicated that consumption of deep water fish is unlikely to represent a risk to human health. The high squalene content in some of the black dogfish liver necessitated an additional clean-up step, involving gel permeation chromatography, when analyzing for PBDEs. Concentrations of PBDEs were low with many congeners being below detection limits, particularly in the muscle. There are currently no assessment criteria available for PBDEs. Furthermore, there is only very limited data on PBDEs in deep water fish. However, the concentrations observed in this study were similar to the concentrations recently reported in Mediterranean deep water fish.
Collapse
Affiliation(s)
- Lynda Webster
- Marine Scotland, Marine Laboratory, Victoria Road, Aberdeen AB11 9DB, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wong F, Jantunen LM, Pućko M, Papakyriakou T, Staebler RM, Stern GA, Bidleman TF. Air-water exchange of anthropogenic and natural organohalogens on International Polar Year (IPY) expeditions in the Canadian Arctic. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:876-881. [PMID: 21194218 DOI: 10.1021/es1018509] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Shipboard measurements of organohalogen compounds in air and surface seawater were conducted in the Canadian Arctic in 2007-2008. Study areas included the Labrador Sea, Hudson Bay, and the southern Beaufort Sea. High volume air samples were collected at deck level (6 m), while low volume samples were taken at 1 and 15 m above the water or ice surface. Water samples were taken within 7 m. Water concentration ranges (pg L(-1)) were as follows: α-hexachlorocyclohexane (α-HCH) 465-1013, γ-HCH 150-254, hexachlorobenzene (HCB) 4.0-6.4, 2,4-dibromoanisole (DBA) 8.5-38, and 2,4,6-tribromoanisole (TBA) 4.7-163. Air concentration ranges (pg m(-3)) were as follows: α-HCH 7.5-48, γ-HCH 2.1-7.7, HCB 48-71, DBA 4.8-25, and TBA 6.4 - 39. Fugacity gradients predicted net deposition of HCB in all areas, while exchange directions varied for the other chemicals by season and locations. Net evasion of α-HCH from Hudson Bay and the Beaufort Sea during open water conditions was shown by air concentrations that averaged 14% higher at 1 m than 15 m. No significant difference between the two heights was found over ice cover. The α-HCH in air over the Beaufort Sea was racemic in winter (mean enantiomer fraction, EF = 0.504 ± 0.008) and nonracemic in late spring-early summer (mean EF = 0.476 ± 0.010). This decrease in EF was accompanied by a rise in air concentrations due to volatilization of nonracemic α-HCH from surface water (EF = 0.457 ± 0.019). Fluxes of chemicals during the southern Beaufort Sea open water season (i.e., Leg 9) were estimated using the Whitman two-film model, where volatilization fluxes are positive and deposition fluxes are negative. The means ± SD (and ranges) of net fluxes (ng m(-2) d(-1)) were as follows: α-HCH 6.8 ± 3.2 (2.7-13), γ-HCH 0.76 ± 0.40 (0.26-1.4), HCB -9.6 ± 2.7 (-6.1 to -15), DBA 1.2 ± 0.69 (0.04-2.0), and TBA 0.46 ± 1.1 ng m(-2) d(-1) (-1.6 to 2.0).
Collapse
Affiliation(s)
- Fiona Wong
- Centre for Atmospheric Research Experiments, Environment Canada, 6248 Eighth Line, Egbert, ON, L0L 1N0, Canada
| | | | | | | | | | | | | |
Collapse
|
45
|
Webster L, Russell M, Walsham P, Phillips LA, Hussy I, Packer G, Dalgarno EJ, Moffat CF. An assessment of persistent organic pollutants in Scottish coastal and offshore marine environments. ACTA ACUST UNITED AC 2011; 13:1288-307. [DOI: 10.1039/c1em10100e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Munschy C, Héas-Moisan K, Tixier C, Pacepavicius G, Alaee M. Dietary exposure of juvenile common sole (Solea solea L.) to polybrominated diphenyl ethers (PBDEs): Part 2. Formation, bioaccumulation and elimination of hydroxylated metabolites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:3527-3533. [PMID: 20864231 DOI: 10.1016/j.envpol.2010.08.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 08/05/2010] [Accepted: 08/19/2010] [Indexed: 05/29/2023]
Abstract
The uptake, elimination and transformation of six PBDE congeners (BDE-28, -47, -99, -100, -153, -209) were studied in juvenile common sole (Solea solea L.) exposed to spiked contaminated food over a three-month period, and then depurated over a five-month period. Methoxylated (MeO-) and hydroxylated (OH-) PBDEs were determined in fish plasma exposed to PBDEs and compared to those obtained in control fish. While all MeO- and some OH- congeners identified in fish plasma were found to originate from non-metabolic sources, several OH- congeners, i.e., OH-tetraBDEs and OH-pentaBDEs, were found to originate from fish metabolism. Among these, 4'-OH-BDE-49 was identified as a BDE-47 metabolite. Congener 4'-OH-BDE-101, identified here for the first time, may be the result of BDE-99 metabolic transformation. Our results unequivocally showed that PBDEs are metabolised in juvenile sole via the formation of OH- metabolites. However, this was not a major biotransformation route compared to biotransformation through debromination.
Collapse
Affiliation(s)
- C Munschy
- Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Laboratory of Biogeochemistry of Organic Contaminants, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes, Cedex 3, France.
| | | | | | | | | |
Collapse
|
47
|
Strid A, Athanassiadis I, Athanasiadou M, Svavarsson J, Päpke O, Bergman A. Neutral and phenolic brominated organic compounds of natural and anthropogenic origin in northeast Atlantic Greenland shark (Somniosus microcephalus). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2010; 29:2653-9. [PMID: 20891018 DOI: 10.1002/etc.330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/31/2010] [Accepted: 07/18/2010] [Indexed: 05/22/2023]
Abstract
In the present study, muscle and liver tissue from 10 female Greenland sharks (Somniosus microcephalus) collected in Icelandic waters were analyzed for neutral and phenolic brominated organic compounds, including polybrominated diphenyl ethers (PBDEs) and the structurally related methoxylated (MeO) and hydroxylated (OH) PBDEs. Hydroxylated PBDEs exist both as natural products and as metabolites of the anthropogenic PBDEs, whereas MeO-PBDEs appear to exclusively be of natural origin. Other compounds examined were 2',6-dimethoxy-2,3',4,5'-tetrabromodiphenyl ether (2',6-diMeO-BDE68), 2,2'-dimethoxy-3,3',5,5'-tetrabromobiphenyl (2,2'-diMeO-BB80), 2,4,6-tribromoanisol (2,4,6-TBA) and 2,4,6-tribromophenol, all of natural origin, although 2,4,6-TBA and its phenolic counterpart may also be of anthropogenic origin. The major brominated organic compound was 6-MeO-BDE47, and ΣMeO-PBDE ranged from 49 to 210 ng/g fat in muscle and from 55 to 200 ng/g fat in liver tissue. Total concentrations of PBDEs were lower than ΣMeO-PBDE, in all but one sample, ranging between 7.3 to 190 and 9.9 to 200 ng/g fat in muscle and liver, respectively, and major congeners were BDE-47, BDE-99, and BDE-100. Polybrominated diphenyl ethers were analyzed using both high- and low-resolution mass spectrometry (MS) as a quality assurance, and the results from this comparison were acceptable. In accordance with previous work on Greenland sharks, no size/age-related accumulation was observed. Differences seen in concentrations were instead assumed to be a reflection of different feeding habits among the individuals. Phenolic compounds were only formed/retained in trace amounts in the Greenland shark. Among the phenolic compounds studied were 6-OH-BDE47, 2'-OH-BDE68, and 2,4,6-tribromophenol, all detected in liver and the latter two in muscle.
Collapse
Affiliation(s)
- Anna Strid
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
48
|
Weijs L, van Elk C, Das K, Blust R, Covaci A. Persistent organic pollutants and methoxylated PBDEs in harbour porpoises from the North Sea from 1990 until 2008: Young wildlife at risk? THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 409:228-237. [PMID: 20937522 DOI: 10.1016/j.scitotenv.2010.09.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/17/2010] [Accepted: 09/20/2010] [Indexed: 05/30/2023]
Abstract
In the European North Sea, harbour porpoises are top predators with relatively long life spans and a limited capacity for metabolic biotransformation of contaminants compared to some other marine mammal species. As such, they are exposed to a mixture of persistent pollutants, such as polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), DDT and metabolites (DDXs), hexachlorobenzene (HCB) and chlordanes (CHLs) that bioaccumulate in their tissues. We report here on the levels of persistent organic pollutants and of the naturally-produced methoxylated PBDEs (MeO-PBDEs) in blubber, liver and kidney of harbour porpoise neonates (n=3), calves (n=15), juveniles (n=6) and adults (n=4) of the southern North Sea. Concentrations of almost all contaminant classes decrease slightly in all age groups over the period 1990-2008. For some classes (e.g. PCBs and DDXs) however, levels seem to increase little in harbour porpoise calves. In all animals, blubber had the highest concentrations, followed by liver and kidney, whereas liver and kidney were the preferred tissues for several compounds, such as octa- and deca-PCBs. Our data suggest that harbour porpoises calves are exposed to higher or comparable concentrations of POPs and of MeO-PBDEs and somewhat different patterns of selected POPs than adults, potentially placing them, and the entire population, at a disproportionate risk for exposure-related health effects.
Collapse
Affiliation(s)
- Liesbeth Weijs
- Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | | | | | | | | |
Collapse
|
49
|
Losada S, Parera J, Abalos M, Abad E, Santos F, Galceran M. Suitability of selective pressurized liquid extraction combined with gas chromatography–ion-trap tandem mass spectrometry for the analysis of polybrominated diphenyl ethers. Anal Chim Acta 2010; 678:73-81. [DOI: 10.1016/j.aca.2010.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 08/11/2010] [Accepted: 08/12/2010] [Indexed: 10/19/2022]
|
50
|
Wan Y, Jones PD, Wiseman S, Chang H, Chorney D, Kannan K, Zhang K, Hu JY, Khim JS, Tanabe S, Lam MHW, Giesy JP. Contribution of synthetic and naturally occurring organobromine compounds to bromine mass in marine organisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:6068-6073. [PMID: 20704201 DOI: 10.1021/es100914r] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
An extraction, separation, and purification method was developed for the identification and quantification of total bromine (TBr), extractable organobromine (EOBr), and five classes of identified EOBrs. Instrumental neutron activation analysis (INAA) was utilized to quantify EOBr and TBr. The method was then applied to liver samples of tuna, albatross, and polar bear collected from remote marine locations. Polybrominated biphenyls (PBBs), polybrominated diphenyl ethers (PBDEs), bromophenols (BRPs), hydroxylated (OH-) and methoxylated (MeO-) PBDEs were analyzed as identified EOBr. The majority of the bromine in these marine organisms was nonextractable or inorganic, with EOBr accounting for 10-28% of the TBr. Of the identified EOBr, in tuna and albatross, naturally occurring compounds, including MeO-PBDEs, OH-PBDEs, and BPRs, were prevalent. However, the identifiable EOBr in polar bears consisted primarily of synthetic compounds, including PBDEs and PBBs. Overall, 0.08-0.11% and 0.008-0.012% of EOBr and TBr, respectively, were identified. The proportion of EOBr that was identified in marine organisms was relatively small compared to the proportions for organofluorine and organochlorine compounds. This could be related to the great diversity of naturally occurring organobromine compounds in the environment. Naturally occurring brominated fatty acids were estimated to be the predominant compounds in the EOBr fraction.
Collapse
Affiliation(s)
- Yi Wan
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|