1
|
Emadikhiav A, Mafigholami R, Davood A, Mahvi A, Salimi L. A review on hazards and treatment methods of released antibiotics in hospitals wastewater during the COVID-19 pandemic. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:820. [PMID: 39154115 DOI: 10.1007/s10661-024-12938-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/24/2024] [Indexed: 08/19/2024]
Abstract
Drugs and related goods are widely used in order to promote public health and the quality of life. One of the most serious environmental challenges affecting public health is the ongoing presence of antibiotics in the effluents generated by pharmaceutical industries and hospitals. Antibiotics cannot be entirely removed from wastewater using the traditional wastewater treatment methods. Unmetabolized antibiotics generated by humans can be found in urban and livestock effluent. The antibiotic present in effluent contributes to issues with resistance to antibiotics and the creation of superbugs. Over the recent 2 years, the coronavirus disease 2019 pandemic has substantially boosted hospital waste volume. In this situation, a detailed literature review was conducted to highlight the harmful effects of untreated hospital waste and outline the best approaches to manage it. Approximately 50 to 70% of the emerging contaminants prevalent in the hospital wastewater can be removed using traditional treatment strategies. This paper emphasizes the numerous treatment approaches for effectively eliminating emerging contaminants and antibiotics from hospital wastewater and provides an overview of global hospital wastewater legislation and guidelines on hospital wastewater administration. Around 90% of ECs might be eliminated by biological or physical treatment techniques when used in conjunction with modern oxidation techniques. According to this research, hybrid methods are the best approach for removing antibiotics and ECs from hospital wastewater. The document outlines the many features of effective hospital waste management and might be helpful during and after the coronavirus disease 2019 outbreak, when waste creation on all hospitals throughout the globe has considerably increased.
Collapse
Affiliation(s)
- Amirali Emadikhiav
- Department of Environmental Science and Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Roya Mafigholami
- Department of Environmental Science and Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Asghar Davood
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirhossein Mahvi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Solid Waste Research (CSWR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Lida Salimi
- Faculty of Marine Science and Technology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Mensah L, Petrie B, Scrimshaw M, Cartmell E, Fletton M, Campo P. Influence of solids and hydraulic retention times on microbial diversity and removal of estrogens and nonylphenols in a pilot-scale activated sludge plant. Heliyon 2023; 9:e19461. [PMID: 37809578 PMCID: PMC10558614 DOI: 10.1016/j.heliyon.2023.e19461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 10/10/2023] Open
Abstract
The removal of EDCs in activated sludge processes can be enhanced by increasing solid and hydraulic retention times (SRT and HRT); it has been suggested that the improvement in removal is due to changes in microbial community structure (MCS). Though the influence of SRT and HRT on chemical removal and MCS has been studied in isolation, their synergistic impact on MCS and the removal of estrogens and nonylphenols in activated sludge remains unknown. Hence, we investigated how both parameters influence MCS in activated sludge processes and their ulterior effect on EDC removal. In our study, an activated sludge pilot-plant was fed with domestic sewage fortified with 100 and 1000 ng/L nonylphenols or 2 and 15 ng/L estrogens and operated at 3, 10 and 27 d SRT (constant HRT) and at 8, 16 and 24 h HRT (constant SRT). The MCS was assessed by phospholipid fatty acids (PLFA) analysis, and the archaeal and bacterial diversities were determined by 16S rRNA analysis. From the PLFA, the microbial abundance ranked as follows: Gram-negative > fungi > Gram-positive > actinomycetes whilst 16S rRNA analysis revealed Proteobacteria > Bacteroidetes > Others. Both PLFA and 16S rRNA analysis detected changes in MCS as SRT and HRT were increased. An SRT increment from 3 to 10 d resulted in higher estrone (E1) removal from 19 to 93% and nonylphenol-4-exthoxylate (NP4EO) from 44 to 73%. These findings demonstrate that EDC-removal in activated sludge plants can be optimised where longer SRT (>10 d) and HRT (>8 h) are suitable. We have also demonstrated that PLFA can be used for routine monitoring of changes in MCS in activated sludge plants.
Collapse
Affiliation(s)
- Lawson Mensah
- Environmental Science Department, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Bruce Petrie
- Robert Gordon University, Garthdee Rd, Garthdee, Aberdeen, AB10 7AQ, UK
| | - Mark Scrimshaw
- Department of Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Elise Cartmell
- Scottish Water, Castle House, 6 Castle Drive, Carnegie Campus, Dunfermline, KY11 8GG, UK
| | | | - Pablo Campo
- Cranfield Water Science Institute, School of Water, Energy & Environment, Cranfield University, MK43 0AL, UK
| |
Collapse
|
3
|
Omagari R, Yagishita M, Shiraishi F, Nakayama SF, Terasaki M, Tanigawa T, Yamauchi I, Kubo T, Nakajima D. Identification by Liquid Chromatography-Tandem Mass Spectrometry and Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry of the Contributor to the Thyroid Hormone Receptor Agonist Activity in Effluents from Sewage Treatment Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13709-13718. [PMID: 36100216 PMCID: PMC9536310 DOI: 10.1021/acs.est.2c02648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
3,3',5-Triiodothyroacetic acid (TRIAC) was identified as a major contributor to the activity of thyroid hormone receptor (TR) agonists in environmental water. TRIAC contributed 60-148% of the TR-agonist activity in effluents from sewage treatment plants (STPs). Meanwhile, the contributions of 3,5,3'-triiodothyronine (T3), 3,3',5,5'-tetraiodothyronine (T4), and analogues were <1%. TRIAC concentrations in the range of 0.30-4.2 ng/L are likely enough to cause disruption of the thyroid system in living aquatic organisms. The origin of TRIAC in the STP effluents was investigated by analyzing both STP influents and effluents. Relatively high concentrations of T3 and T4 (2.5 and 6.3 ng/L, respectively) were found only in the influents. TRIAC was identified only in the effluents. These findings suggested that T3 and T4 in STP influents were potentially converted into TRIAC during activated sludge treatment or by other means. The evaluation of TRIAC at relevant environmental concentrations by in vivo assays and an appropriate treatment to reduce the TR activity in sewage are needed.
Collapse
Affiliation(s)
- Ryo Omagari
- Health
and Environmental Risk Division, National
Institute for Environmental Studies (NIES), Tsukuba City, Ibaraki 305-8506, Japan
| | - Mayuko Yagishita
- Department
of Life and Environmental Science, Prefectural
University of Hiroshima, Shobara
City, Hiroshima 727-0023, Japan
| | - Fujio Shiraishi
- Health
and Environmental Risk Division, National
Institute for Environmental Studies (NIES), Tsukuba City, Ibaraki 305-8506, Japan
| | - Shoji F. Nakayama
- Health
and Environmental Risk Division, National
Institute for Environmental Studies (NIES), Tsukuba City, Ibaraki 305-8506, Japan
| | - Masanori Terasaki
- Graduate
School of Arts and Sciences, Iwate University, Morioka City, Iwate 020-8550, Japan
| | - Tetsuya Tanigawa
- Graduate
School of Engineering, Kyoto University, Katsura, Nishikyo-ku,Kyoto 615-8510, Japan
| | - Ichiro Yamauchi
- Department
of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Takuya Kubo
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Daisuke Nakajima
- Health
and Environmental Risk Division, National
Institute for Environmental Studies (NIES), Tsukuba City, Ibaraki 305-8506, Japan
- Graduate
School of Pharmaceutical Sciences, Chiba
University, Chiba City, Chiba 260-8675, Japan
| |
Collapse
|
4
|
Sanchez-Huerta C, Fortunato L, Leiknes T, Hong PY. Influence of biofilm thickness on the removal of thirteen different organic micropollutants via a Membrane Aerated Biofilm Reactor (MABR). JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128698. [PMID: 35349844 DOI: 10.1016/j.jhazmat.2022.128698] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
The presence of organic micropollutants (OMPs) in natural water bodies has become an emerging concern due to their fast dissemination into natural water sources, high persistence, ubiquitous nature, and detrimental impact on the environment and human health. This study evaluated the Membrane Aerated Biofilm Reactor (MABR) efficiency in the removal of 13 OMPs commonly reported in water. Results demonstrated that OMPs removal is dependent on biofilm thickness and bacterial cell density, microbial community composition and physicochemical properties of OMPs. Effective removals of ammonium and organic carbon (COD, >50%), acetaminophen (70%) and triclosan (99%) were obtained even at early stages of biofilm development (thickness < 0.33 mm, 2.9 ×105 cell mL-1). An increase in biofilm thickness and cell density (1.02 mm, 2.2 ×106 cell mL-1) enhanced the system performance. MABR achieved over 90% removal of nonpolar, hydrophobic and hydrophilic OMPs and 22-69% removal of negatively charged and acidic OMPs. Relative abundances of Zoogloea, Aquabacterium, Leucobacter, Runella, and Paludilbaculum bacteria correlated with the removal of certain OMPs. In addition, MABR achieved up to 96% nitrification and 80% overall COD removal by the end of the experiment. The findings from this study demonstrated MABRs to be a feasible option to treat municipal wastewater polluted by OMPs.
Collapse
Affiliation(s)
- C Sanchez-Huerta
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
| | - L Fortunato
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - T Leiknes
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - P-Y Hong
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Yin Q, Sun Y, Li B, Feng Z, Wu G. The r/K selection theory and its application in biological wastewater treatment processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153836. [PMID: 35176382 DOI: 10.1016/j.scitotenv.2022.153836] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Understanding the characteristics of functional organisms is the key to managing and updating biological processes for wastewater treatment. This review, for the first time, systematically characterized two typical types of strategists in wastewater treatment ecosystems via the r/K selection theory and provided novel strategies for selectively enriching microbial community. Functional organisms involved in nitrification (e.g., Nitrosomonas and Nitrosococcus), anammox (Candidatus Brocadia), and methanogenesis (Methanosarcinaceae) are identified as r-strategists with fast growth capacities and low substrate affinities. These r-strategists can achieve high pollutant removal loading rates. On the other hand, other organisms such as Nitrosospira spp., Candidatus Kuenenia, and Methanosaetaceae, are characterized as K-strategists with slow growth rates but high substrate affinities, which can decrease the pollutant concentration to low levels. More importantly, K-strategists may play crucial roles in the biodegradation of recalcitrant organic pollutants. The food-to-microorganism ratio, mass transfer, cell size, and biomass morphology are the key factors determining the selection of r-/K-strategists. These factors can be related with operating parameters (e.g., solids and hydraulic retention time), biomass morphology (biofilm or granules), and operating modes (continuous-flow or sequencing batch), etc., to achieve the efficient acclimation of targeted r-/K-strategists. For practical applications, the concept of substrate flux was put forward to further benefit the selective enrichment of r-/K-strategists, fulfilling effective management and improvement of engineered pollution control bioprocesses. Finally, the future perspectives regarding the development of the r/K selection theory in wastewater treatment processes were discussed.
Collapse
Affiliation(s)
- Qidong Yin
- College of Science and Engineering, National University of Ireland, Galway, Galway H91 TK33, Ireland; Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Yuepeng Sun
- Department of Civil and Environmental Engineering, Virginia Tech, Ashburn, VA 20147, United States
| | - Bo Li
- Department of Civil & Environmental Engineering, University of Washington, Seattle, WA 98105, United States
| | - Zhaolu Feng
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Guangxue Wu
- College of Science and Engineering, National University of Ireland, Galway, Galway H91 TK33, Ireland.
| |
Collapse
|
6
|
Liu ZH, Dang Z, Yin H, Liu Y. Making waves: Improving removal performance of conventional wastewater treatment plants on endocrine disrupting compounds (EDCs): their conjugates matter. WATER RESEARCH 2021; 188:116469. [PMID: 33011607 DOI: 10.1016/j.watres.2020.116469] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/09/2020] [Accepted: 09/26/2020] [Indexed: 05/20/2023]
Abstract
Endocrine disrupting compounds (EDCs) are well known emerging contaminants, which have the capacity to elicit negative effects on endocrine systems of both humans and wildlife. As the conventional wastewater treatment plants cannot stably remove these EDCs, post-treatment with advanced chemical oxidation methods such as ozonation are proven effective to further remove EDCs, but this additional treatment increase the wastewater treatment cost, which is impractical for worldwide application. To find potential alternative effective method, this work presents the importance of EDCs conjugates. Specifically, two important facts are described: 1) concentrations of EDCs conjugates in raw municipal wastewater vary with temperature, and their existence results in underestimated removal performance of WWTPs; 2) Strategies to enhance the cleavage rates of EDCs conjugates are most effective to improve the observed removal performance of conventional WWTPs on EDCs. Further work should be performed to check whether effective solutions can be found to increase their cleavage rates.
Collapse
Affiliation(s)
- Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China; Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou 510006, Guangdong, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, Guangdong, China; Guangdong Provincial Engineering and Technology Research Center for Environment Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Zhi Dang
- Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou 510006, Guangdong, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yu Liu
- Advanced Environmental Biotechnology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, CleanTech One, 637141, Singapore; School of Civil and Engineering, Nanyang Technological University, 639798, Singapore
| |
Collapse
|
7
|
Nguyen PY, Carvalho G, Reis MAM, Oehmen A. A review of the biotransformations of priority pharmaceuticals in biological wastewater treatment processes. WATER RESEARCH 2021; 188:116446. [PMID: 33038717 DOI: 10.1016/j.watres.2020.116446] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/19/2020] [Accepted: 09/22/2020] [Indexed: 05/18/2023]
Abstract
Wastewater effluent discharges have been considered as one of the main sources of synthetic chemicals entering into the aquatic environment. Even though they occur at low concentrations, pharmaceutically active compounds (PhACs) can have an impact on ecological toxicity that affects aquatic organisms. Moreover, new regulations in development toward preserving water quality reinforces the increasing need to monitor and abate some PhACs in wastewater treatment plants (WWTPs), where they are typically only partially eliminated. Unlike most previous reviews, we have focussed on how the main biological and chemical molecular factors impact the biotransformations of key PhACs in biological WWTP processes. Biotransformations have been found to be an important contributor towards the removal of PhACs from WWTP effluents. This review paper critically assesses these aspects and the recent advances that have been achieved in wastewater treatment processes for biodegradation of 7 PhACs; namely the non-steroidal anti-inflammatory drug (NSAID) diclofenac (DCF); the macrolide antibiotics azithromycin (AZM), erythromycin (ERY) and clarithromycin (CLR); the two natural estrogens estrone (E1) and 17β-estradiol (E2), and the synthetic estrogen 17α-ethinylesradiol (EE2). These represent the micropollutants of the EU Watch list in Decision 2015/495/EU that are most relevant to WWTPs due to their frequent detection. The metabolic pathways, transformation products and impact of relevant factors to biological WWTP processes is addressed in this review. The biokinetics of PhAC biodegradation in different engineered bioprocesses is also discussed. Promising technologies and operational strategies that are likely to have a high impact on controlling PhAC releases are highlighted and future research needs are also proposed.
Collapse
Affiliation(s)
- P Y Nguyen
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Gilda Carvalho
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Maria A M Reis
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Adrian Oehmen
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
8
|
Li C, Gu Z, Zhu S, Liu D. 17β-Estradiol removal routes by moving bed biofilm reactors (MBBRs) under various C/N ratios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140381. [PMID: 32599404 DOI: 10.1016/j.scitotenv.2020.140381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
This study evaluated the contribution of biotic and abiotic routes to the 17β-estradiol (E2) removal in moving bed biofilm reactors (MBBRs), and uncovered the interrelation between the E2 removal routes and biofilm characteristics, which was not researched in previous literature. Three MBBRs with different C/N ratios (0 for C/N0; 2 for C/N2; and 5 for C/N5) were operated in continuous mode. A 65-day degradation demonstrated that the MBBRs had high potential to remove E2 regardless of the C/N (E2 removal greater than 99% for all MBBRs; P > 0.05). Further batch tests showed that the E2 removal mainly resulted from heterotrophic activities for all MBBRs, accounting for approximately 85% for all MBBRs (P > 0.05), followed by nitrification (10-11%) and adsorption (4-5%). Importantly, lower adhesive force likely led to higher E2 adsorption onto biofilms. Besides, enhanced ammonia oxidizing rate (AOR) was consistent with the high contribution of nitrification to the E2 attenuation. Importantly, heterotrophic activity was positively correlated with its contribution to E2 removal (r = 0.99, P < 0.05). To sum, the results obtained in this study helped to understand the E2 removal routes in nitrifying biofilm systems.
Collapse
Affiliation(s)
- Changwei Li
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Zhefeng Gu
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Songming Zhu
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Dezhao Liu
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
9
|
Li C, Lan L, Tadda MA, Zhu S, Ye Z, Liu D. Interaction between 17β-estradiol degradation and nitrification in mariculture wastewater by Nitrosomonas europaea and MBBR. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135846. [PMID: 31818605 DOI: 10.1016/j.scitotenv.2019.135846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the relation between 17β-estradiol (E2) degradation and nitrification in synthetic mariculture wastewater by ammonia oxidizing bacterium Nitrosomonas europaea and moving bed biofilm reactor (MBBR). Batch experiments showed that E2 degradation by N. europaea in wastewater followed zero-order reaction kinetics (r2 = 0.944, 4.07 μg/ L h-1) when ammonia presented. Nitrite yield in N. europaea inoculation decreased by 77.8% exposed to 1 mg/L E2. The inhibitory impact on ammonia oxidation was enhanced with increasing E2 dosage from 50 ng/L to 1 mg/L. Notably, E2 as low as 50 ng/L still had significant interference with nitrite production, bacterial density and ammonia monooxygenase (AMO) activity of N. europaea. Still, the following continuous 68-day degradation test revealed that 84.5%-98.7% E2 could be removed by a bench-scale MBBR. Whereas, ammonia removal remarkably decreased from 94.7% ± 2.1% to 85.6% ± 2.1% (p < .05) along with the enhanced E2 removal (from 84.5% ± 2.0% to 98.7% ± 0.4%, p < .05) when inlet E2 increased from 10 μg/L to 1 mg/L, indicating the great role of heterotrophs in E2 degradation. In contrast, nitrite oxidation was not affected upon E2 exposure irrespective of E2 concentrations. In summary, nitrification was effective in removing E2, while E2 interfered with ammoxidation process, but this interference was negligible at the reactor level given the low level of E2 in practical field conditions.
Collapse
Affiliation(s)
- Changwei Li
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Lihua Lan
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Musa Abubakar Tadda
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Songming Zhu
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Zhangying Ye
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Dezhao Liu
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
10
|
Pedrazzani R, Bertanza G, Brnardić I, Cetecioglu Z, Dries J, Dvarionienė J, García-Fernández AJ, Langenhoff A, Libralato G, Lofrano G, Škrbić B, Martínez-López E, Meriç S, Pavlović DM, Papa M, Schröder P, Tsagarakis KP, Vogelsang C. Opinion paper about organic trace pollutants in wastewater: Toxicity assessment in a European perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:3202-3221. [PMID: 30463169 DOI: 10.1016/j.scitotenv.2018.10.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 09/30/2018] [Accepted: 10/02/2018] [Indexed: 06/09/2023]
Affiliation(s)
- Roberta Pedrazzani
- Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38 and University Research Center "Integrated Models for Prevention and Protection in Environmental and Occupational Health", University of Brescia, 25123 Brescia, Italy.
| | - Giorgio Bertanza
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze, 43 and University Research Center "Integrated Models for Prevention and Protection in Environmental and Occupational Health", University of Brescia, 25123, Italy.
| | - Ivan Brnardić
- Faculty of Metallurgy, University of Zagreb, Aleja narodnih heroja 3, 44103 Sisak, Croatia.
| | - Zeynep Cetecioglu
- Department of Chemical Engineering and Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.
| | - Jan Dries
- Faculty of Applied Engineering, University of Antwerp, Salesianenlaan 90, 2660 Antwerp, Belgium.
| | - Jolanta Dvarionienė
- Kaunas University of Technology, Institute of Environmental Engineering, Gedimino str. 50, 44239 Kaunas, Lithuania.
| | - Antonio J García-Fernández
- Department of Toxicology, Faculty of Veterinary Medicine, University of Murcia, 30100, Campus of Espinardo, Spain.
| | - Alette Langenhoff
- Department of Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Via Cinthia ed. 7, 80126 Naples, Italy.
| | - Giusy Lofrano
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132-84084 Fisciano, Italy.
| | - Biljana Škrbić
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Emma Martínez-López
- Department of Toxicology, Faculty of Veterinary Medicine, University of Murcia, 30100, Campus of Espinardo, Spain.
| | - Süreyya Meriç
- Çorlu Engineering Faculty, Environmental Engineering Department, Namik Kemal University, Çorlu, 59860, Tekirdağ, Turkey.
| | - Dragana Mutavdžić Pavlović
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia.
| | - Matteo Papa
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze, 43 and University Research Center "Integrated Models for Prevention and Protection in Environmental and Occupational Health", University of Brescia, 25123, Italy.
| | - Peter Schröder
- Helmholtz-Center for Environmental Health GmbH, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany.
| | - Konstantinos P Tsagarakis
- Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67100 Xanthi, Greece.
| | - Christian Vogelsang
- Norwegian Institute for Water Research, Gaustadalleen 21, 0349 Oslo, Norway.
| |
Collapse
|
11
|
Achermann S, Falås P, Joss A, Mansfeldt CB, Men Y, Vogler B, Fenner K. Trends in Micropollutant Biotransformation along a Solids Retention Time Gradient. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11601-11611. [PMID: 30208701 DOI: 10.1021/acs.est.8b02763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
For many polar organic micropollutants, biotransformation by activated sludge microorganisms is a major removal process during wastewater treatment. However, our current understanding of how wastewater treatment operations influence microbial communities and their micropollutant biotransformation potential is limited, leaving major parts of observed variability in biotransformation rates across treatment facilities unexplained. Here, we present biotransformation rate constants for 42 micropollutants belonging to different chemical classes along a gradient of solids retention time (SRT). The geometric mean of biomass-normalized first-order rate constants shows a clear increase between 3 and 15 d SRT by 160% and 87%, respectively, in two experiments. However, individual micropollutants show a variety of trends. Rate constants of oxidative biotransformation reactions mostly increased with SRT. Yet, nitrifying activity could be excluded as primary driver. For substances undergoing other than oxidative reactions, i.e., mostly substitution-type reactions, more diverse dependencies on SRT were observed. Most remarkably, characteristic trends were observed for groups of substances undergoing similar types of initial transformation reaction, suggesting that shared enzymes or enzyme systems that are conjointly regulated catalyze biotransformation reactions within such groups. These findings open up opportunities for correlating rate constants with measures of enzyme abundance such as genes or gene products, which in turn should help to identify enzymes associated with the respective biotransformation reactions.
Collapse
Affiliation(s)
- Stefan Achermann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf , Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich , 8092 Zürich , Switzerland
| | - Per Falås
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf , Switzerland
- Department of Chemical Engineering , Lund University , 221 00 Lund , Sweden
| | - Adriano Joss
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf , Switzerland
| | - Cresten B Mansfeldt
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf , Switzerland
| | - Yujie Men
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf , Switzerland
- Department of Civil and Environmental Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Bernadette Vogler
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf , Switzerland
| | - Kathrin Fenner
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf , Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich , 8092 Zürich , Switzerland
- Department of Chemistry , University of Zürich , 8057 Zürich , Switzerland
| |
Collapse
|
12
|
Chen Q, Li Z, Hua X. Fate of estrogens in a pilot-scale step-feed anoxic/oxic wastewater treatment system controlling by nitrogen and phosphorus removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:12981-12991. [PMID: 29479651 DOI: 10.1007/s11356-018-1584-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/16/2018] [Indexed: 06/08/2023]
Abstract
The control measures for estrogens in the aquatic environment are topics of growing concern. It is a meaningful issue to finding optimal process parameters for efficient removal of estrogens with the purpose of efficient total nitrogen (TN) or total phosphorus (TP) removal in sewage treatment plants. The present paper is concerned with the relationships between the estrogen removal and TN or TP removal in a pilot-scale three-stage anoxic/oxic (A/O) system treating real municipal wastewater. The total removal efficiency for estrone (E1) and 17β-estradiol (E2) and their sulfate and glucuronide conjugates were on average 87% in the pilot-scale system. The concentrations of the sulfate and glucuronide conjugates of estrogens (E1 and E2) in the system were much lower than the estrogens, which might be caused by the rapid degradation of conjugates in the pilot-scale system. The average removal efficiencies of E1 and E2 and their sulfate and glucuronide conjugates were significantly lower under high TP removal conditions than those under high TN removal conditions that suggested that the ammonia oxidation promotes estrogen degradation. When the system achieved efficient TN removal, the concentrations of both E1 and E2 were generally lower in the aerobic zones than those in the anoxic zones. Instead, when the system achieved efficient TP removal conditions, the estrogen concentrations were higher in the aerobic zones than in the anoxic zones. However, it was thought that the variation of the concentrations of the estrogen conjugates had weak influence on concentrations of the free estrogens. The increase of the free estrogens in the aerobic zones could be attributed to the release of the estrogens adsorbed on the sludge. The variation of estrogens in a three-stage A/O system can be properly estimated and measured by a binary linear regression model with the variables of TP and TON (NO2--N and NO3--N), which is probably the important information for the improvement and optimization of wastewater treatment processes to obtain higher removal efficiency for estrogens.
Collapse
Affiliation(s)
- Qingcai Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China.
| | - Zebing Li
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing, 100124, People's Republic of China
- State Key Laboratory of Breeding Base Nuclear Resources & Environment, East China Institute of Technology, Nanchang, 330013, People's Republic of China
| | - Xiaoyu Hua
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| |
Collapse
|
13
|
Amin MM, Bina B, Ebrahimi A, Yavari Z, Mohammadi F, Rahimi S. The occurrence, fate, and distribution of natural and synthetic hormones in different types of wastewater treatment plants in Iran. Chin J Chem Eng 2018. [DOI: 10.1016/j.cjche.2017.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
14
|
Salaudeen T, Okoh O, Agunbiade F, Okoh A. Phthalates removal efficiency in different wastewater treatment technology in the Eastern Cape, South Africa. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:299. [PMID: 29679156 DOI: 10.1007/s10661-018-6665-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
The removal capacity of different wastewater treatment plant (WWTP) technologies adopted in rural areas for phthalate was investigated in the Eastern Cape, South Africa. Wastewater samples collected from three selected WWTPs which use activated sludge (AS), trickling filter (TF), and oxidation pond (OP) technology were extracted using the solid-phase extraction method followed by gas chromatography-mass spectrometry (GC-MS) analysis. The six selected phthalate esters (PAEs) dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), di(2-ethyl hexyl) phthalate (DEHP), and di-n-octyl phthalate (DOP) were detected in all the samples collected from the WWTPs. DBP was the most abundant compound in the influent, effluent, and sludge samples with a maximum detection of 2497 μgL-1, 24.2 μgL-1, and 1249 μg/g dW, respectively, followed by DEHP and BBP. There was a relatively high removal capacity achieved by AS in Alice, TF in Berlin, and OP in Bedford with a removal efficiency that varied between 77 and 99%, 76 and 98%, and 61 and 98%, respectively. A high significant correlation of PAE removal with total suspended solids (TSS) and turbidity suggests that the removal performance proceeded more through adsorption on settling particles and sludge than on biodegradation. However, the concentrations of PAEs detected in the final effluent and sludge samples exceeded acceptable levels allowed internationally for a safe aquatic environment. AS may have exhibited a more stable and better performance across the different seasons; however, pollution source control still deserves a special attention to prevent the risk posed by these micropollutants.
Collapse
Affiliation(s)
- Taofeek Salaudeen
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.
- Department of Chemistry, University of Fort Hare, Private Bag X1314, Alice, 5700, South Africa.
| | - Omobola Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Department of Chemistry, University of Fort Hare, Private Bag X1314, Alice, 5700, South Africa
| | - Foluso Agunbiade
- Department of Chemistry, University of Lagos, Akoka, Lagos, Nigeria
| | - Anthony Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700, South Africa
| |
Collapse
|
15
|
Amin MM, Bina B, Ebrahim K, Yavari Z, Mohammadi F. Biodegradation of natural and synthetic estrogens in moving bed bioreactor. Chin J Chem Eng 2018. [DOI: 10.1016/j.cjche.2017.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Ben W, Zhu B, Yuan X, Zhang Y, Yang M, Qiang Z. Transformation and fate of natural estrogens and their conjugates in wastewater treatment plants: Influence of operational parameters and removal pathways. WATER RESEARCH 2017; 124:244-250. [PMID: 28763640 DOI: 10.1016/j.watres.2017.07.065] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 05/06/2023]
Abstract
Natural estrogens (NEs) discharged from wastewater treatment plants (WWTPs) have drawn great attention because of their potential risks to aquatic ecosystems. However, neglect of the conjugated natural estrogens (C-NEs) has caused large discrepancies among different studies on the removal of NEs in WWTPs. The present work investigated the transformation and fate of three NEs and six corresponding C-NEs along wastewater treatment processes. The removal efficiencies of the target estrogens (i.e., NEs and C-NEs) and their correlations with the operational parameters were determined over a twelve-month monitoring period at a typical WWTP adopting a combined bio-treatment process (i.e., anaerobic/anoxic/oxic process followed by a moving-bed biofilm reactor). The concentration variations of the target estrogens along the treatment processes were examined to differentiate the transformation and fate of NEs and C-NEs. Moreover, lab-scale experiments were conducted to clarify the removal pathways of C-NEs in the bio-treatment process. Results indicate that both NEs and C-NEs could pass through the treatment processes, thus being frequently detected in the effluent and excess sludge. The aqueous removal efficiencies of NEs and C-NEs were significantly correlated with the sludge retention time and temperature, respectively. C-NEs were more persistent than NEs, so considerably high conjugated ratios (13.5-100.0%) were detected in the effluent. Sulfate conjugates presented a lower adsorption affinity to sludge and a slower hydrolysis rate than glucuronide conjugates, which makes the former more recalcitrant to biodegradation. This study highlights the challenge on the elimination of NEs, particularly their conjugates, by wastewater treatment processes.
Collapse
Affiliation(s)
- Weiwei Ben
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China
| | - Bing Zhu
- Beijing Enterprises Water Group of China Co., Ltd., 101 Baiziwan, Beijing 100124, China
| | - Xiangjuan Yuan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China
| | - Yu Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China.
| |
Collapse
|
17
|
Nekouei F, Nekouei S, Keshtpour F, Noorizadeh H, Wang S. Cr(OH) 3-NPs-CNC hybrid nanocomposite: a sorbent for adsorptive removal of methylene blue and malachite green from solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:25291-25308. [PMID: 28929281 DOI: 10.1007/s11356-017-0111-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
In this article, Cr(OH)3 nanoparticle-modified cellulose nanocrystal (CNC) as a novel hybrid nanocomposite (Cr(OH)3-NPs-CNC) was prepared by a simple procedure and used as a sorbent for adsorptive removal of methylene blue (MB) and malachite green (MG) from aqueous solution. Different kinetic models were tested, and the pseudo-second-order kinetic model was found more suitable for the MB and MG adsorption processes. The BET and Langmuir models were more suitable for the adsorption processes of MB and MG. Thermodynamic studies suggested that the adsorption of MB and MG onto Cr(OH)3-NPs-CNC nanocomposite was a spontaneous and endothermic process. The maximum adsorption capacities for MB and MG were reached 106 and 104 mg/g, respectively, which were almost two times higher than unmodified CNC. The chemical stability and leaching tests of the Cr(OH)3-NPs-CNC hybrid nanocomposite showed that only small amounts of chromium were leached into the solution.
Collapse
Affiliation(s)
- Farzin Nekouei
- Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Shahram Nekouei
- Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farzaneh Keshtpour
- Young Researchers and Elite Club, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Noorizadeh
- Young Researchers and Elite Club, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Shaobin Wang
- Department of Chemical Engineering, Curtin University, G.P.O. Box U1987, Perth, WA, 6845, Australia
| |
Collapse
|
18
|
Ulrich BA, Vignola M, Edgehouse K, Werner D, Higgins CP. Organic Carbon Amendments for Enhanced Biological Attenuation of Trace Organic Contaminants in Biochar-Amended Stormwater Biofilters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017. [PMID: 28628297 DOI: 10.1021/acs.est.7b01164] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
This study sought to evaluate how dissolved organic carbon (DOC) affects attenuation of trace organic contaminants (TOrCs) in biochar-amended stormwater biofilters. It was hypothesized that (1) DOC-augmented runoff would demonstrate enhanced TOrC biodegradation and (2) biochar-amended sand bearing DOC-cultivated biofilms would achieve enhanced TOrC attenuation due to sorptive retention and biodegradation. Microcosm and column experiments were conducted utilizing actual runoff, DOC from straw and compost, and a suite of TOrCs. Biodegradation of TOrCs in runoff was more enhanced by compost DOC than straw DOC (particularly for atrazine, prometon, benzotriazole, and fipronil). 16S rRNA gene quantification and sequencing revealed that growth-induced microbial community changes were, among replicates, most consistent for compost-augmented microcosms and least consistent for raw runoff microcosms. Compost DOC most robustly enhanced utilization of TOrCs as carbon substrates, possibly due to higher residual nutrient levels upon TOrC exposure. Sand columns containing just 0.5 wt % biochar maintained sorptive TOrC retention in the presence of compost-DOC-cultivated biofilms, and TOrC removal was further enhanced by biological activity. Overall, these results suggest that coamendment with biochar and compost may robustly enhance TOrC attenuation in stormwater biofilters, a finding of significance for efforts to mitigate the impacts of runoff on water quality.
Collapse
Affiliation(s)
- Bridget A Ulrich
- ReNUWIt Engineering Research Center and Department of Civil and Environmental Engineering, Colorado School of Mines , Golden, CO 80401, United States
| | - Marta Vignola
- School of Civil Engineering and Geosciences, Newcastle University , Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Katelynn Edgehouse
- ReNUWIt Engineering Research Center and Department of Civil and Environmental Engineering, Colorado School of Mines , Golden, CO 80401, United States
- Department of Chemistry, Cleveland State University , Cleveland, Ohio 44115, United States
| | - David Werner
- School of Civil Engineering and Geosciences, Newcastle University , Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Christopher P Higgins
- ReNUWIt Engineering Research Center and Department of Civil and Environmental Engineering, Colorado School of Mines , Golden, CO 80401, United States
| |
Collapse
|
19
|
Lindholm-Lehto PC, Ahkola HSJ, Knuutinen JS. Procedures of determining organic trace compounds in municipal sewage sludge-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:4383-4412. [PMID: 27966086 DOI: 10.1007/s11356-016-8202-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/01/2016] [Indexed: 05/23/2023]
Abstract
Sewage sludge is the largest by-product generated during the wastewater treatment process. Since large amounts of sludge are being produced, different ways of disposal have been introduced. One tempting option is to use it as fertilizer in agricultural fields due to its high contents of inorganic nutrients. This, however, can be limited by the amount of trace contaminants in the sewage sludge, containing a variety of microbiological pollutants and pathogens but also inorganic and organic contaminants. The bioavailability and the effects of trace contaminants on the microorganisms of soil are still largely unknown as well as their mixture effects. Therefore, there is a need to analyze the sludge to test its suitability before further use. In this article, a variety of sampling, pretreatment, extraction, and analysis methods have been reviewed. Additionally, different organic trace compounds often found in the sewage sludge and their methods of analysis have been compiled. In addition to traditional Soxhlet extraction, the most common extraction methods of organic contaminants in sludge include ultrasonic extraction (USE), supercritical fluid extraction (SFE), microwave-assisted extraction (MAE), and pressurized liquid extraction (PLE) followed by instrumental analysis based on gas or liquid chromatography and mass spectrometry.
Collapse
Affiliation(s)
- Petra C Lindholm-Lehto
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland.
| | - Heidi S J Ahkola
- Finnish Environment Institute (SYKE), Survontie 9 A, FI-40500, Jyväskylä, Finland
| | - Juha S Knuutinen
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland
| |
Collapse
|
20
|
Nazari E, Suja F. Effects of 17β-estradiol (E2) on aqueous organisms and its treatment problem: a review. REVIEWS ON ENVIRONMENTAL HEALTH 2016; 31:465-491. [PMID: 27883330 DOI: 10.1515/reveh-2016-0040] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/13/2016] [Indexed: 05/18/2023]
Abstract
Natural estrogens, estrone (E1), 17β-estradiol (E2) and estriol (E3) are endocrine disrupting chemicals (EDCs) that are discharged consistently and directly into surface waters with wastewater treatment plants (WWPTs) effluents, disposal sludges and in storm-water runoff. The most common and highest potential natural estrogen that causes estrogen activity in wastewater influent is E2. This review describes and attempts to summarize the main problems involved in the removal of E2 from WWTP by traditional processes, which fundamentally rely on activated sludge and provide an insufficient treatment for E2, as well as advanced oxidation processes (AOPs) that are applied in tertiary section treatment works. Biological processes affect and play an important role in the degradation of E2. However, some investigations have reported that operations that rely on high retention times have low efficiencies. Although advanced treatment technologies are available, their cost and operational considerations do not make them sustainable solutions. Therefore, E2 is still being released into aqueous areas, as shown in this study that investigates results from different countries. E2 is present on the watch list of substances in the Water Framework Directive (WFD) of the European Union since 2013 and the minimum acceptable concentration of it is 0.4 ng/L.
Collapse
|
21
|
Belhaj D, Athmouni K, Jerbi B, Kallel M, Ayadi H, Zhou JL. Estrogenic compounds in Tunisian urban sewage treatment plant: occurrence, removal and ecotoxicological impact of sewage discharge and sludge disposal. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:1849-1857. [PMID: 27660067 DOI: 10.1007/s10646-016-1733-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
Abstract
The occurrence, fate and ecotoxicological assessment of selected estrogenic compounds were investigated at Tunisian urban sewage treatment plant. The influents, effluents, as well as primary, secondary and dehydrated sludge, were sampled and analyzed for the target estrogens to evaluate their fate. All target compounds were detected in both sewage and sludge with mean concentrations from 0.062 to 0.993 μg L-1 and from 11.8 to 792.9 μg kg-1dry weight, respectively. A wide range of removal efficiencies during the treatment processes were observed, from 6.3 % for estrone to 76.8 % for estriol. Ecotoxicological risk assessment revealed that the highest ecotoxicological risk in sewage effluent and dehydrated sludge was due to 17β-estradiol with a risk quotient (RQ) of 4.6 and 181.9, respectively, and 17α-ethinylestradiol with RQ of 9.8 and 14.85, respectively. Ecotoxicological risk after sewage discharge and sludge disposal was limited to the presence of 17β-estradiol in dehydrated-sludge amended soil with RQ of 1.38. Further control of estrogenic hormones in sewage effluent and sludge is essential before their discharge and application in order to prevent their introduction into the natural environment.
Collapse
Affiliation(s)
- Dalel Belhaj
- Department of Life Sciences, Laboratory of Biodiversity and Aquatic Ecosystems, Ecology and Planktonology, University of Sfax-Tunisia, FSS, Street Soukra Km 3.5, BP 1171, Sfax, CP 3000, Tunisia.
| | - Khaled Athmouni
- Department of Life Sciences, Laboratory of Biodiversity and Aquatic Ecosystems, Ecology and Planktonology, University of Sfax-Tunisia, FSS, Street Soukra Km 3.5, BP 1171, Sfax, CP 3000, Tunisia
| | - Bouthaina Jerbi
- ENIS. Engineering laboratory of Environment and Ecotechnology. LR16ES19, University of Sfax-Tunisia, Street Soukra Km 3.5. BP 1173, Sfax, CP 3038, Tunisia
| | - Monem Kallel
- ENIS. Engineering laboratory of Environment and Ecotechnology. LR16ES19, University of Sfax-Tunisia, Street Soukra Km 3.5. BP 1173, Sfax, CP 3038, Tunisia
| | - Habib Ayadi
- Department of Life Sciences, Laboratory of Biodiversity and Aquatic Ecosystems, Ecology and Planktonology, University of Sfax-Tunisia, FSS, Street Soukra Km 3.5, BP 1171, Sfax, CP 3000, Tunisia
| | - John L Zhou
- School of Civil and Environmental Engineering, Centre for Technology in Water and Wastewater, University of Technology Sydney, Broadway, NSW, 2007, Australia
| |
Collapse
|
22
|
Dai YN, A D, Yang Y, Tam NFY, Tai YP, Tang XY. Factors Affecting Behavior of Phenolic Endocrine Disruptors, Estrone and Estradiol, in Constructed Wetlands for Domestic Sewage Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11844-11852. [PMID: 27723316 DOI: 10.1021/acs.est.6b02026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This study investigated the efficiency of 12 pilot-scale constructed wetlands (CWs) with different configurations on the removal of estrone and estradiol from raw domestic sewage. An orthogonal design was employed to evaluate the impact of four principal design parameters of CWs, including four wetland types, three substrates, three plant conditions, and three hydraulic loading rates, in summer and winter. A bench-scale anoxic simulation test was performed in the laboratory to clarify the photolysis, sorption, and degradation of estrogens. Estrogens were more effectively removed by the 12 CWs during summer. The experiment showed that target estrogens were efficiently removed by wetland substrate under anoxic conditions through exothermic sorption and degradation even in winter. This suggests that the inefficient removal in CWs in winter likely resulted from subsequent cleavage of a considerable amount of estrogen conjugates in influent due to insufficient decomposition at low temperatures. The transformation from estradiol to estrone could be driven by residual microbial activities not inhibited by azide, and the reversible process was then driven by active microorganisms but not solely abiotic redox reactions. Among the four design parameters, wetland-type was the most important and downward-vertical flow CWs performed best.
Collapse
Affiliation(s)
- Yu-Nv Dai
- Research Center of Hydrobiology, Jinan University , Guangzhou 510632, China
| | - Dan A
- Research Center of Hydrobiology, Jinan University , Guangzhou 510632, China
| | - Yang Yang
- Research Center of Hydrobiology, Jinan University , Guangzhou 510632, China
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China
| | - Nora Fung-Yee Tam
- Department of Biology and Chemistry, City University of Hong Kong , Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Yi-Ping Tai
- Research Center of Hydrobiology, Jinan University , Guangzhou 510632, China
| | - Xiao-Yan Tang
- Research Center of Hydrobiology, Jinan University , Guangzhou 510632, China
| |
Collapse
|
23
|
Gani KM, Kazmi AA. Comparative assessment of phthalate removal and risk in biological wastewater treatment systems of developing countries and small communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:661-671. [PMID: 27380392 DOI: 10.1016/j.scitotenv.2016.06.182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
Phthalates are widely used in plastic and personnel care products. Being non-steroid endocrine disrupting compounds, their exposure have toxic effects on aquatic life and human health. The aim of this study was a comparative assessment of their fate and risk in full scale wastewater treatment along with influence of seasonal variations. Four priority phthalates, Diethylphthalate (DEP), Dibutylphthalate (DBP), Benzylbutyl phthalate (BBP) and Diethylhexyl phthalate (DEHP) were chosen for this study and wastewater treatment plants investigated were designed as nutrient removal based sequencing batch reactor (SBR), conventional activated sludge process (ASP) and up flow anaerobic sludge blanket (UASB) with polishing pond. Results showed that the main removal mechanism of phthalates was biotransformation with removal contribution of 74% in SBR, 65% in conventional ASP and 37% in UASB. Overall removal of phthalates was maximum in the treatment combination of UASB and pond (83%) followed by SBR (80%) and conventional ASP (74%). Seasonal influences on occurrence, removal and risk of these phthalates were also studied. The concentration of DEP, DBP and DEHP in untreated wastewater increased by 2, 7 and 2μg/L, respectively in summer. However in sludge, only large molecular weight phthalates BBP and DEHP increased in winter by 3mg/kg and 12mg/kg, respectively. Seasonal variations in removal of phthalates were discrepant in each process with better removal during summer. Risk assessment of phthalates to aquatic life showed that there is no potential risk of DEP, DBP and BBP from effluents of treatment plants however risk quotient of DEHP was in the range of 27-73 in both seasons which indicate probable risk to aquatic organisms. Phthalate risk to human beings estimated by daily intake of phthalates was in the range of 0.3±0.1 to 20±0.7ng/kg/d and far below their respective reference dosages, demonstrating the potential of these treatment plants to reduce the risk of phthalates.
Collapse
Affiliation(s)
- Khalid Muzamil Gani
- Environmental Engineering Group, Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttrakhand, 247667, India.
| | - Absar Ahmad Kazmi
- Environmental Engineering Group, Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttrakhand, 247667, India.
| |
Collapse
|
24
|
Polesel F, Andersen HR, Trapp S, Plósz BG. Removal of Antibiotics in Biological Wastewater Treatment Systems-A Critical Assessment Using the Activated Sludge Modeling Framework for Xenobiotics (ASM-X). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:10316-10334. [PMID: 27479075 DOI: 10.1021/acs.est.6b01899] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Many scientific studies present removal efficiencies for pharmaceuticals in laboratory-, pilot-, and full-scale wastewater treatment plants, based on observations that may be impacted by theoretical and methodological approaches used. In this Critical Review, we evaluated factors influencing observed removal efficiencies of three antibiotics (sulfamethoxazole, ciprofloxacin, tetracycline) in pilot- and full-scale biological treatment systems. Factors assessed include (i) retransformation to parent pharmaceuticals from e.g., conjugated metabolites and analogues, (ii) solid retention time (SRT), (iii) fractions sorbed onto solids, and (iv) dynamics in influent and effluent loading. A recently developed methodology was used, relying on the comparison of removal efficiency predictions (obtained with the Activated Sludge Model for Xenobiotics (ASM-X)) with representative measured data from literature. By applying this methodology, we demonstrated that (a) the elimination of sulfamethoxazole may be significantly underestimated when not considering retransformation from conjugated metabolites, depending on the type (urban or hospital) and size of upstream catchments; (b) operation at extended SRT may enhance antibiotic removal, as shown for sulfamethoxazole; (c) not accounting for fractions sorbed in influent and effluent solids may cause slight underestimation of ciprofloxacin removal efficiency. Using tetracycline as example substance, we ultimately evaluated implications of effluent dynamics and retransformation on environmental exposure and risk prediction.
Collapse
Affiliation(s)
- Fabio Polesel
- Department of Environmental Engineering, Technical University of Denmark (DTU) , Bygningstorvet 115, 2800 Kongens Lyngby, Denmark
| | - Henrik R Andersen
- Department of Environmental Engineering, Technical University of Denmark (DTU) , Bygningstorvet 115, 2800 Kongens Lyngby, Denmark
| | - Stefan Trapp
- Department of Environmental Engineering, Technical University of Denmark (DTU) , Bygningstorvet 115, 2800 Kongens Lyngby, Denmark
| | - Benedek Gy Plósz
- Department of Environmental Engineering, Technical University of Denmark (DTU) , Bygningstorvet 115, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
25
|
Dong H, Yuan X, Wang W, Qiang Z. Occurrence and removal of antibiotics in ecological and conventional wastewater treatment processes: A field study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 178:11-19. [PMID: 27127893 DOI: 10.1016/j.jenvman.2016.04.037] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/15/2016] [Accepted: 04/17/2016] [Indexed: 05/05/2023]
Abstract
The occurrence and removal of 19 antibiotics (including four macrolides, eight sulfonamides, three fluoroquinolones, three tetracyclines, and trimethoprim) were investigated in two ecological (constructed wetland (CW) and stabilization pond (SP)) and two conventional wastewater treatment processes (activated sludge (AS) and micro-power biofilm (MP)) in a county of eastern China. All target antibiotics were detected in the influent and effluent samples with detection frequencies of >90%. Clarithromycin, ofloxacin, roxithromycin and erythromycin-H2O were the dominant antibiotics with maximum concentrations reaching up to 6524, 5411, 964 and 957 ng/L, respectively; while the concentrations of tiamulin, sulfamerazine, sulfathiazole, sulfamethazine, sulfamethizole and sulfisoxazole were below 10 ng/L. Although the mean effluent concentrations of target antibiotics were obviously lower than the influent ones (except ciprofloxacin), their removals were usually incomplete. Principal component analysis showed that the AS and CW outperformed the MP and SP processes and the AS performed better than the CW process in terms of antibiotics removal. Both the AS and CW processes exhibited higher removal efficiencies in summer than in winter, indicating biological degradation could play an important role in antibiotics removal. Because of the incomplete removal, the total concentration of detected antibiotics increased in the mixing and downstream sections of a local river receiving the effluent from a typical wastewater treatment facility practicing AS process. Nowadays, ecological wastewater treatment processes are being rapidly planned and constructed in rural areas of China; however, the discharge of residual antibiotics to the aquatic environment may highlight a necessity for optimizing or upgrading their design and operation.
Collapse
Affiliation(s)
- Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiangjuan Yuan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Weidong Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
26
|
Gani KM, Rajpal A, Kazmi AA. Contamination level of four priority phthalates in North Indian wastewater treatment plants and their fate in sequencing batch reactor systems. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:406-416. [PMID: 26923228 DOI: 10.1039/c5em00583c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The contamination level of four phthalates in untreated and treated wastewater of fifteen wastewater treatment plants (WWTPs) and their fate in a full scale sequencing batch reactor (SBR) based WWTP was evaluated in this study. The four phthalates were diethyl phthalate (DEP), dibutyl phthalate (DBP), benzylbutyl phthalate (BBP) and diethylhexyl phthalate (DEHP). All compounds were present in untreated wastewater with DEHP being present in the highest mean concentration of 28.4 ± 5.3 μg L(-1). The concentration was in the range of 7.3 μg L(-1) (BBP) to 28.4 μg L(-1) (DEHP) in untreated wastewater and 1.3 μg L(-1) (DBP) to 2.6 μg L(-1) (DEHP) in treated wastewater. The nutrient removal process and advance tertiary treatment based WWTPs showed the highest phthalate removal efficiencies of 87% and 93%, respectively. The correlation between phthalate removal and conventional performance of WWTPs was positive. Fate analysis of these phthalates in a SBR based WWTP showed that total removal of the sum of phthalates in a primary settling tank and SBR was 84% out of which 55% is removed by biodegradation and 29% was removed by sorption to primary and secondary sludge. The percentage removal of four phthalates in primary settling tanks was 18%. Comparison of the diluted effluent DEHP concentration with its environmental quality standards showed that the dilution in an effluent receiving water body can reduce the DEHP emissions to acceptable values.
Collapse
Affiliation(s)
- Khalid Muzamil Gani
- Environmental Engineering Group, Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttrakhand 247667, India.
| | - Ankur Rajpal
- Environmental Engineering Group, Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttrakhand 247667, India.
| | - Absar Ahmad Kazmi
- Environmental Engineering Group, Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttrakhand 247667, India.
| |
Collapse
|
27
|
Prasse C, Stalter D, Schulte-Oehlmann U, Oehlmann J, Ternes TA. Spoilt for choice: A critical review on the chemical and biological assessment of current wastewater treatment technologies. WATER RESEARCH 2015; 87:237-70. [PMID: 26431616 DOI: 10.1016/j.watres.2015.09.023] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/02/2015] [Accepted: 09/11/2015] [Indexed: 05/28/2023]
Abstract
The knowledge we have gained in recent years on the presence and effects of compounds discharged by wastewater treatment plants (WWTPs) brings us to a point where we must question the appropriateness of current water quality evaluation methodologies. An increasing number of anthropogenic chemicals is detected in treated wastewater and there is increasing evidence of adverse environmental effects related to WWTP discharges. It has thus become clear that new strategies are needed to assess overall quality of conventional and advanced treated wastewaters. There is an urgent need for multidisciplinary approaches combining expertise from engineering, analytical and environmental chemistry, (eco)toxicology, and microbiology. This review summarizes the current approaches used to assess treated wastewater quality from the chemical and ecotoxicological perspective. Discussed chemical approaches include target, non-target and suspect analysis, sum parameters, identification and monitoring of transformation products, computational modeling as well as effect directed analysis and toxicity identification evaluation. The discussed ecotoxicological methodologies encompass in vitro testing (cytotoxicity, genotoxicity, mutagenicity, endocrine disruption, adaptive stress response activation, toxicogenomics) and in vivo tests (single and multi species, biomonitoring). We critically discuss the benefits and limitations of the different methodologies reviewed. Additionally, we provide an overview of the current state of research regarding the chemical and ecotoxicological evaluation of conventional as well as the most widely used advanced wastewater treatment technologies, i.e., ozonation, advanced oxidation processes, chlorination, activated carbon, and membrane filtration. In particular, possible directions for future research activities in this area are provided.
Collapse
Affiliation(s)
- Carsten Prasse
- Federal Institute of Hydrology (BfG), Department of Aquatic Chemistry, Koblenz, Germany; Department of Civil & Environmental Engineering, University of California at Berkeley, Berkeley, United States.
| | - Daniel Stalter
- National Research Centre for Environmental Toxicology, The University of Queensland, Queensland, Australia; Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland
| | | | - Jörg Oehlmann
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Frankfurt, Germany
| | - Thomas A Ternes
- Federal Institute of Hydrology (BfG), Department of Aquatic Chemistry, Koblenz, Germany
| |
Collapse
|
28
|
Chen X, Vollertsen J, Nielsen JL, Dall AG, Bester K. Degradation of PPCPs in activated sludge from different WWTPs in Denmark. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:2073-2080. [PMID: 26407712 DOI: 10.1007/s10646-015-1548-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/16/2015] [Indexed: 06/05/2023]
Abstract
Pharmaceuticals and Personal care products (PPCPs) are often found in effluents from wastewater treatment plants (WWTPs) due to insufficient removal during wastewater treatment processes. To understand the factors affecting the removal of PPCPs in classical activated sludge WWTPs, the present study was performed to assess the removal of frequently occurring pharmaceuticals (Naproxen, Fenoprofen, Ketoprofen, Dichlofenac, Carbamazepine) and the biocide Triclosan in activated sludge from four different Danish WWTPs. The respective degradation constants were compared to operational parameters previous shown to be of importance for degradation of micropollutants such as biomass concentration, and sludge retention time (SRT). The most rapid degradation, was observed for NSAID pharmaceuticals (55-90% for Fenoprofen, 77-94% for Ketoprofen and 46-90% for Naproxen), followed by Triclosan (61-91%), while Dichlofenac and Carbamazepine were found to be persistent in the systems. Degradation rate constants were calculated as 0.0026-0.0407 for NSAID pharmaceuticals and 0.0022-0.0065 for triclosan. No relationships were observed between degradation rates and biomass concentrations in the diverse sludges. However, for the investigated PPCPs, the optimal SRT was within 14-20 days (for these values degradation of these PPCPs was the most efficient). Though all of these parameters influence the degradation rate, none of them seems to be overall decisive. These observations indicate that the biological composition of the sludge is more important than the design parameters of the respective treatment plant.
Collapse
Affiliation(s)
- Xijuan Chen
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Wenhua Road 72, Shenyang, 110016, China
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, 4000, Roskilde, Denmark
| | - Jes Vollertsen
- Department of Civil Engineering, Aalborg University, Sohngaardsholmsvej 57, 9000, Aalborg, Denmark
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | | | - Kai Bester
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, 4000, Roskilde, Denmark.
| |
Collapse
|
29
|
Ito A, Mensah L, Cartmell E, Lester JN. Removal of steroid estrogens from municipal wastewater in a pilot scale expanded granular sludge blanket reactor and anaerobic membrane bioreactor. ENVIRONMENTAL TECHNOLOGY 2015; 37:415-21. [PMID: 26212345 PMCID: PMC5062038 DOI: 10.1080/09593330.2015.1070922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 06/23/2015] [Indexed: 05/26/2023]
Abstract
Anaerobic treatment of municipal wastewater offers the prospect of a new paradigm by reducing aeration costs and minimizing sludge production. It has been successfully applied in warm climates, but does not always achieve the desired outcomes in temperate climates at the biochemical oxygen demand (BOD) values of municipal crude wastewater. Recently the concept of 'fortification' has been proposed to increase organic strength and has been demonstrated at the laboratory and pilot scale treating municipal wastewater at temperatures of 10-17°C. The process treats a proportion of the flow anaerobically by combining it with primary sludge from the residual flow and then polishing it to a high effluent standard aerobically. Energy consumption is reduced as is sludge production. However, no new treatment process is viable if it only addresses the problems of traditional pollutants (suspended solids - SS, BOD, nitrogen - N and phosphorus - P); it must also treat hazardous substances. This study compared three potential municipal anaerobic treatment regimes, crude wastewater in an expanded granular sludge blanket (EGSB) reactor, fortified crude wastewater in an EGSB and crude wastewater in an anaerobic membrane bioreactor. The benefits of fortification were demonstrated for the removal of SS, BOD, N and P. These three systems were further challenged with the removal of steroid estrogens at environmental concentrations from natural indigenous sources. All three systems removed these compounds to a significant degree, confirming that estrogen removal is not restricted to highly aerobic autotrophs, or aerobic heterotrophs, but is also a faculty of anaerobic bacteria.
Collapse
Affiliation(s)
- Ayumi Ito
- Cranfield Water Science Institute, School of Energy, Environmental Technology and Agrifood, Cranfield University, BedfordshireMK43 0AL, UK
- Department of Civil and Environmental Engineering, Faculty of Engineering, Iwate University, MoriokaIwate 020–8550, Japan
| | - Lawson Mensah
- Cranfield Water Science Institute, School of Energy, Environmental Technology and Agrifood, Cranfield University, BedfordshireMK43 0AL, UK
| | - Elise Cartmell
- Cranfield Water Science Institute, School of Energy, Environmental Technology and Agrifood, Cranfield University, BedfordshireMK43 0AL, UK
| | - John N. Lester
- Cranfield Water Science Institute, School of Energy, Environmental Technology and Agrifood, Cranfield University, BedfordshireMK43 0AL, UK
| |
Collapse
|
30
|
Ogunlaja OO, Parker WJ. Assessment of the removal of estrogenicity in biological nutrient removal wastewater treatment processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 514:202-210. [PMID: 25666280 DOI: 10.1016/j.scitotenv.2015.01.100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 01/15/2015] [Accepted: 01/28/2015] [Indexed: 06/04/2023]
Abstract
The removal of estrogenicity in a University of Cape Town-biological nutrient removal (UCT-BNR) wastewater treatment process was investigated using pilot and bench scale systems, batch experiments and mathematical modeling. In the pilot BNR process, 96 ± 5% of the estrogenicity exerted by the influent wastewater was removed by the treatment process. The degradation efficiencies in the anaerobic, anoxic and aerobic zones of the pilot BNR bioreactor were 11 ± 9%, 18 ± 2% and 93 ± 10%, respectively. In order to further understand the performance of the BNR process in the removal of estrogenicity from wastewater, a bench scale BNR process was operated with synthetic wastewater dosed with E1 and E2. The removal of estrogenicity in the bench scale system (95 ± 5%) was comparable to the pilot BNR process and the degradation efficiencies were estimated to be 8 ± 0.8%, 38 ± 4% and 85 ± 22% in the anaerobic, anoxic and aerobic zones, respectively. A biotransformation model developed to predict the fate of E1 and E2 in batch tests using the sludge from the BNR process was calibrated using the data from the experiments. The biotransformation rate constants for the transformation of E2 to E1 were estimated as 71 ± 1.5, 31 ± 3.3 and 1 ± 0.9 Lg COD(-1)d(-1) for the aerobic, anoxic and anaerobic batch tests, respectively, while the corresponding biotransformation rate constants for the transformation of E1 were estimated to be 7.3 ± 1.0, 3 ± 2.0, and 0.85 ± 0.6 L·g COD(-1)d(-1). A steady state mass balance model formulated to describe the interactions between E2 and E1 in BNR activated sludge reasonably described the fate of E1 and E2 in the BNR process.
Collapse
Affiliation(s)
- O O Ogunlaja
- Department of Civil and Environmental Engineering, University of Waterloo, 200 University Ave. West Waterloo, Ontario N2L 3G1, Canada.
| | - W J Parker
- Department of Civil and Environmental Engineering, University of Waterloo, 200 University Ave. West Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
31
|
Petrie B, Barden R, Kasprzyk-Hordern B. A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. WATER RESEARCH 2015; 72:3-27. [PMID: 25267363 DOI: 10.1016/j.watres.2014.08.053] [Citation(s) in RCA: 1195] [Impact Index Per Article: 119.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/26/2014] [Accepted: 08/28/2014] [Indexed: 05/17/2023]
Abstract
This review identifies understudied areas of emerging contaminant (EC) research in wastewaters and the environment, and recommends direction for future monitoring. Non-regulated trace organic ECs including pharmaceuticals, illicit drugs and personal care products are focused on due to ongoing policy initiatives and the expectant broadening of environmental legislation. These ECs are ubiquitous in the aquatic environment, mainly derived from the discharge of municipal wastewater effluents. Their presence is of concern due to the possible ecological impact (e.g., endocrine disruption) to biota within the environment. To better understand their fate in wastewaters and in the environment, a standardised approach to sampling is needed. This ensures representative data is attained and facilitates a better understanding of spatial and temporal trends of EC occurrence. During wastewater treatment, there is a lack of suspended particulate matter analysis due to further preparation requirements and a lack of good analytical approaches. This results in the under-reporting of several ECs entering wastewater treatment works (WwTWs) and the aquatic environment. Also, sludge can act as a concentrating medium for some chemicals during wastewater treatment. The majority of treated sludge is applied directly to agricultural land without analysis for ECs. As a result there is a paucity of information on the fate of ECs in soils and consequently, there has been no driver to investigate the toxicity to exposed terrestrial organisms. Therefore a more holistic approach to environmental monitoring is required, such that the fate and impact of ECs in all exposed environmental compartments are studied. The traditional analytical approach of applying targeted screening with low resolution mass spectrometry (e.g., triple quadrupoles) results in numerous chemicals such as transformation products going undetected. These can exhibit similar toxicity to the parent EC, demonstrating the necessity of using an integrated analytical approach which compliments targeted and non-targeted screening with biological assays to measure ecological impact. With respect to current toxicity testing protocols, failure to consider the enantiomeric distribution of chiral compounds found in the environment, and the possible toxicological differences between enantiomers is concerning. Such information is essential for the development of more accurate environmental risk assessment.
Collapse
Affiliation(s)
- Bruce Petrie
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | | | | |
Collapse
|
32
|
Belhaj D, Baccar R, Jaabiri I, Bouzid J, Kallel M, Ayadi H, Zhou JL. Fate of selected estrogenic hormones in an urban sewage treatment plant in Tunisia (North Africa). THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 505:154-160. [PMID: 25317971 DOI: 10.1016/j.scitotenv.2014.10.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/30/2014] [Accepted: 10/05/2014] [Indexed: 06/04/2023]
Abstract
Estrogenic compounds have been monitored for one year at an urban sewage treatment plant (STP) located in Tunisia, to evaluate their fate and seasonal variations. The concentrations of these compounds were determined in both wastewater and sludge phases by gas chromatography coupled with mass spectrometry (GC-MS). Results showed that the highest removal of all estrogens (≥80%) was observed in summer. Mass balance analysis revealed that biodegradation was the predominant removal mechanism. Moreover, the results showed that the removal efficiency of the studied emerging micropollutants and their concentrations in the solid phase of return sludge were much higher in winter and spring than in summer and autumn. These findings were closely related to microbial activity and the concentration of mixed liquor suspended solids (MLSSs). Finally, the findings can be used to help with the modifications that could be implemented in that STP for the improved removal of estrogenic contaminants.
Collapse
Affiliation(s)
- Dalel Belhaj
- University of Sfax-Tunisia, Faculty of Sciences, Department of Life Sciences, Laboratory of Biodiversity and Aquatic Ecosystems, Ecology and Planktonology, BP 117-3000, Sfax, Tunisia
| | - Rim Baccar
- University of Sfax-Tunisia, ENIS, Laboratory of Water-Energy-Environment, BP 1173-3038, Sfax, Tunisia.
| | - Ikram Jaabiri
- University of Sfax-Tunisia, ENIS, Laboratory of Water-Energy-Environment, BP 1173-3038, Sfax, Tunisia
| | - Jalel Bouzid
- University of Sfax-Tunisia, ENIS, Laboratory of Water-Energy-Environment, BP 1173-3038, Sfax, Tunisia
| | - Moneem Kallel
- University of Sfax-Tunisia, ENIS, Laboratory of Water-Energy-Environment, BP 1173-3038, Sfax, Tunisia
| | - Habib Ayadi
- University of Sfax-Tunisia, Faculty of Sciences, Department of Life Sciences, Laboratory of Biodiversity and Aquatic Ecosystems, Ecology and Planktonology, BP 117-3000, Sfax, Tunisia
| | - John L Zhou
- University of Technology Sydney, School of Civil and Environmental Engineering, Centre for Technology in Water and Wastewater, Broadway, NSW 2007, Australia
| |
Collapse
|
33
|
Lu Z, Reif R, Gan J. Isomer-specific biodegradation of nonylphenol in an activated sludge bioreactor and structure-biodegradability relationship. WATER RESEARCH 2015; 68:282-290. [PMID: 25462736 DOI: 10.1016/j.watres.2014.09.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 06/04/2023]
Abstract
Nonylphenol (NP), one of the priority hazardous substances, is in fact a mixture of numerous isomers. It is inconclusive whether or not biodegradation during wastewater treatment process is isomer-specific, leading to the environmental release of NP in different isomer profiles. In this study, we evaluated the isomer selectivity of 19 NP isomers in a laboratory-scale continuous flow conventional activated sludge bioreactor under various operational conditions. The removal efficiency of NP isomers ranged from 90 to 99%, depending on the operational conditions and isomer structures. Isomer selective biodegradation resulted in the increase of composition of recalcitrant isomers, such as, NP₁₉₃a/b, NP₁₁₀a and NP₁₉₄ in the effluent. Moreover, biodegradability was related to the bulkiness of α-substituents and followed α-dimethyl > α-ethyl-α-methyl > α-methyl-α-n-propyl > α-iso-propyl-α-methyl. Steric effect index, a quantitative descriptor of steric hindrance, was linearly correlated with residues of NP isomers in the effluent (R² = 0.76). Decrease of temperature to 10 °C decreased the overall biodegradability and also enhanced the relative enrichment of recalcitrant isomers. These findings suggest that isomer compositions of NP entering the environment may be different from those in technical mixtures and that isomeric selectivity should be taken into account to better understand the occurrence, fate, and ecological risks of NP.
Collapse
Affiliation(s)
- Zhijiang Lu
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States.
| | | | | |
Collapse
|
34
|
Zhang Z, Feng Y, Su H, Xiang L, Zou Q, Gao P, Zhan P. Influence of operating parameters on the fate and removal of three estrogens in a laboratory-scale AAO system. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2015; 71:1701-1708. [PMID: 26038936 DOI: 10.2166/wst.2015.155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A laboratory-scale anaerobic-anoxic-oxic (AAO) process was constructed to investigate the influence of hydraulic residence time (HRT) and sludge retention time (SRT) on the removal and fate of estrone (E1), 17β-estradiol (E2) and 17α-ethinylestradiol (EE2), and their removal mechanisms in a biological treatment system. In an HRT range of 5-15 h, the highest removal efficiencies for E1, E2 and EE2 were obtained at an HRT of 8 h, with values of 91.2, 94.6 and 81.5%, respectively. When the SRT was increased from 10 to 20 d, all three estrogen removal efficiencies stayed above 80%, while the optimal SRT for each estrogen was different. The contribution of each tank for removal of the three estrogens was in the order of aerobic tank>anoxic tank>anaerobic tank. The optimal HRT and SRT for the removal of both the three estrogens and nutrients were 8 h and 15d, respectively. At this condition, respectively, about 50.7, 70.1 and 11.3% of E1, E2 and EE2 were biodegraded, 28.8, 17.2 and 50% were accumulated in the system, 8.3, 5.4 and 17.3% were discharged in the effluent, and 12.2, 7.3 and 20.34% were transported into excess sludge. It indicated that biodegradation by sludge microorganisms was the main removal mechanism of E1 and E2, while adsorption onto sludge was the main mechanism for EE2 removal.
Collapse
Affiliation(s)
- Zhaohan Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, China E-mail: ; Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 43, Songfa Street, Daoli District, Harbin 150001, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, China E-mail:
| | - Hui Su
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, China E-mail:
| | - Lijun Xiang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, China E-mail:
| | - Qiuyan Zou
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, China E-mail:
| | - Peng Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, China E-mail:
| | - Peirong Zhan
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 43, Songfa Street, Daoli District, Harbin 150001, China
| |
Collapse
|
35
|
Ogunlaja OO, Parker WJ. Impact of activated sludge process configuration on removal of micropollutants and estrogenicity. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2015; 72:277-283. [PMID: 26177411 DOI: 10.2166/wst.2015.213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The efficacy of three different wastewater treatment configurations, conventional activated sludge (CAS), nitrifying activated sludge (NAS) and biological nutrient removal (BNR) for removal of selected micropollutants from authentic wastewater was investigated. The processes were also characterized based on their proficiency to reduce the estrogenic activity of the influent wastewater using the in vitro recombinant yeast assay. The removal efficiency of trimethoprim improved with the complexity of the three treatment process configurations. Ibuprofen, androstendione, sulfamethoxazole, nonyl-phenol, estrone and bisphenol-A had moderate to high removals (>65%) while carbamazepine and meprobamate remained recalcitrant in the three treatment process configurations. The removal of gemfibrozil was better in the NAS than in BNR and CAS treatment configurations. The yeast estrogen screen (YES) assay analyses showed an improvement in estrogenicity removal in the BNR and NAS treatment configurations as compared to the CAS treatment configuration. Comparing the estrogenic responses from the three treatment configurations, the removal efficiencies followed the order of BNR=NAS>CAS and all were greater than 81%.
Collapse
Affiliation(s)
- O O Ogunlaja
- Department of Civil and Environmental Engineering, University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada E-mail:
| | - W J Parker
- Department of Civil and Environmental Engineering, University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada E-mail:
| |
Collapse
|
36
|
Huang B, Li X, Sun W, Ren D, Li X, Li X, Liu Y, Li Q, Pan X. Occurrence, removal, and fate of progestogens, androgens, estrogens, and phenols in six sewage treatment plants around Dianchi Lake in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:12898-12908. [PMID: 24974791 DOI: 10.1007/s11356-014-3236-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/18/2014] [Indexed: 06/03/2023]
Abstract
The occurrence and behavior of endocrine disrupting chemicals (EDCs) in sewage treatment plants (STPs), especially estrogens and phenols, have been closely concerned in previous studies. However, the systematical researches about progestogens and androgens were scarce in STPs adopting different treatment technologies. This work investigated the occurrence, removal, and fate of one progestogen, three androgens, four estrogens, and six phenols in six STPs around Dianchi Lake in China, where the influents, effluents of primary treatment, secondary treatment, and advanced treatment, as well as excess sludge samples, were analyzed. All of the above EDCs were detected out in influents of the six STPs. Bisphenol A, nonylphenol-mono-ethoxylate, and nonylphenol-diethoxylate were the dominant EDCs detected in those influent samples with the concentrations that varied from 637.6 to 1,684.0 ng/L, 633.8 to 1,540.0 ng/L, and 648.7 to 2,246.0 ng/L, respectively; E1 and dihydrotestosterone were the major steroids with the mean concentration of 126.8 and 277.4 ng/L. For effluents and sludges, phenols showed higher concentration (366.8-1,233.0 ng/L and 1,478.1-6,948.9 ng/g dry weight (dw)) and detection rate (100 %). The total removal rates were more than 80 % for most compounds in wastewater treatment processes, and high removal efficiency (86-100 %) was found for androgens and progestogens compared with estrogens (75-92 %) and phenols (62-85 %). The secondary treatment processes play significant roles on degrading EDCs, whereas the primary sedimentation has little effects. The treatment capacity of anoxic-anaerobic-anoxic membrane bioreactor and anaerobic/anoxic/oxic technologies was superior to the conventional oxidation ditch in the degradation of EDCs. The advanced treatment process, two units of filter (D-type or V-type), and ultraviolet disinfection were adopted and presented effective to remove these compounds. According to fate analysis, it was obvious that biological degradation was the main pathway on the removal of EDCs in STPs compared with adsorption. Risk quotients were calculated to assess ecological risks of those EDCs. Risk quotients of 54 and 61 % were more than 1 in effluents and sludges, respectively, showing potential hazard of effluents and sludges to the environment.
Collapse
Affiliation(s)
- Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Petrie B, McAdam EJ, Hassard F, Stephenson T, Lester JN, Cartmell E. Diagnostic investigation of steroid estrogen removal by activated sludge at varying solids retention time. CHEMOSPHERE 2014; 113:101-108. [PMID: 25065796 DOI: 10.1016/j.chemosphere.2014.04.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 06/03/2023]
Abstract
The impact of solids retention time (SRT) on estrone (E1), 17β-estradiol (E2), estriol (E3) and 17α-ethinylestradiol (EE2) removal in an activated sludge plant (ASP) was examined using a pilot plant to closely control operation. Exsitu analytical methods were simultaneously used to enable discrimination of the dominant mechanisms governing estrogen removal following transitions in SRT from short (3d) to medium (10d) and long (27d) SRTs which broadly represent those encountered at full-scale. Total estrogen (∑EST, i.e., sum of E1, E2, E3 and EE2) removals which account for aqueous and particulate concentrations were 70±8, 95±1 and 93±2% at 3, 10 and 27d SRTs respectively. The improved removal observed following an SRT increase from 3 to 10d was attributable to the augmented biodegradation of the natural estrogens E1 and E2. Interestingly, estrogen biodegradation per bacterial cell increased with SRT. These were 499, 1361 and 1750ng 10(12) viable cells(-1)d(-1). This indicated an improved efficiency of the same group or the development of a more responsive group of bacteria. In this study no improvement in absolute ∑EST removal was observed in the ASP when SRT increased from 10 to 27d. However, batch studies identified an augmented biomass sorption capacity for the more hydrophobic estrogens E2 and EE2 at 27d, equivalent to an order of magnitude. The lack of influence on estrogen removal during pilot plant operation can be ascribed to their distribution within activated sludge being under equilibrium. Consequently, lower wastage of excess sludge inherent of long SRT operation counteracts any improvement in sorption.
Collapse
Affiliation(s)
- Bruce Petrie
- Cranfield Water Science Institute, Cranfield University, Bedfordshire MK43 0AL, UK
| | - Ewan J McAdam
- Cranfield Water Science Institute, Cranfield University, Bedfordshire MK43 0AL, UK
| | - Francis Hassard
- Cranfield Water Science Institute, Cranfield University, Bedfordshire MK43 0AL, UK
| | - Tom Stephenson
- Cranfield Water Science Institute, Cranfield University, Bedfordshire MK43 0AL, UK
| | - John N Lester
- Cranfield Water Science Institute, Cranfield University, Bedfordshire MK43 0AL, UK
| | - Elise Cartmell
- Cranfield Water Science Institute, Cranfield University, Bedfordshire MK43 0AL, UK.
| |
Collapse
|
38
|
Petrie B, McAdam EJ, Lester JN, Cartmell E. Assessing potential modifications to the activated sludge process to improve simultaneous removal of a diverse range of micropollutants. WATER RESEARCH 2014; 62:180-192. [PMID: 24956600 DOI: 10.1016/j.watres.2014.05.036] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/15/2014] [Accepted: 05/20/2014] [Indexed: 06/03/2023]
Abstract
It is proposed that wastewater treatment facilities meet legislated discharge limits for a range of micropollutants. However, the heterogeneity of these micropollutants in wastewaters make removal difficult to predict since their chemistry is so diverse. In this study, a range of organic and inorganic micropollutants known to be preferentially removed via different mechanisms were selected to challenge the activated sludge process (ASP) and determine its potential to achieve simultaneous micropollutant removal. At a fixed hydraulic retention time (HRT) of 8 h, the influence of an increase in solids retention time (SRT) on removal was evaluated. Maximum achievable micropollutant removal was recorded for all chemicals (estrogens, nonylphenolics and metals) at the highest SRT studied (27 days). Also, optimisation of HRT by extension to 24 h further augmented organic biodegradation. Most notable was the enhancement in removal of the considerably recalcitrant synthetic estrogen 17α-ethinylestradiol which increased to 65 ± 19%. Regression analysis indicates that this enhanced micropollutant behaviour is ostensibly related to the concomitant reduction in food: microorganism ratio. Interestingly, extended HRT also initiated nonylphenol biodegradation which has not been consistently observed previously in real wastewaters. However, extending HRT increased the solubilisation of particulate bound metals, increasing effluent aqueous metals concentrations (i.e., 0.45 μm filtered) by >100%. This is significant as only the aqueous metal phase is to be considered for environmental compliance. Consequently, identification of an optimum process condition for generic micropollutant removal is expected to favour a more integrated approach where upstream process unit optimisation (i.e., primary sedimentation) is demanded to reduce loading of the particle bound metal phase onto the ASP, thereby enabling longer HRT in the ASP to be considered for optimum removal of organic micropollutants.
Collapse
Affiliation(s)
- Bruce Petrie
- Cranfield Water Science Institute, Cranfield University, Bedfordshire MK43 0AL, UK
| | - Ewan J McAdam
- Cranfield Water Science Institute, Cranfield University, Bedfordshire MK43 0AL, UK
| | - John N Lester
- Cranfield Water Science Institute, Cranfield University, Bedfordshire MK43 0AL, UK
| | - Elise Cartmell
- Cranfield Water Science Institute, Cranfield University, Bedfordshire MK43 0AL, UK.
| |
Collapse
|
39
|
Parker WJ, Pileggi V, Seto P, Chen X, Ogunlaja M, Van Der Kraak G, Parrott J. Impact of activated sludge configuration and operating conditions on in vitro and in vivo responses and trace organic compound removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 490:360-369. [PMID: 24867701 DOI: 10.1016/j.scitotenv.2014.05.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/05/2014] [Accepted: 05/05/2014] [Indexed: 06/03/2023]
Abstract
This study tested municipal sewage effluents generated at the pilot scale using conventional activated sludge (CAS), nitrifying activated sludge (CAS-N) and biological nutrient removal (BNR) in terms of the removal of trace organic compounds (TrOCs) and final effluent quality as indicated by yeast estrogenicity screening (YES), short term zebrafish reproduction and fathead minnow life-cycle tests. Under cold weather conditions (extended SRTs), the BNR configuration reduced the concentrations of the largest number of TrOCs while under warm weather conditions (reduced SRTs) the CAS-N was most effective. By comparison, YES test results indicated statistically lower responses in the BNR effluent in the warm weather tests and no difference between the effluents of CAS-N and BNR in the cold weather tests. Short term tests with adult zebrafish revealed no impact of the BNR and CAS-N effluents on egg production. By contrast egg production and gene expression in the CAS-exposed zebrafish were substantially less than that of control exposures and were similar to that of exposures to ammonia at similar concentrations as the CAS exposures. In fathead minnow life-cycle tests, exposures to CAS effluent (70-50% v/v) resulted in considerable mortality, reduced growth and reduced egg production that was likely due to the elevated ammonia concentrations. The CAS-N effluent (100% v/v) also resulted in some mortality and reduced growth and egg production in the fathead minnows. By contrast, the BNR effluent (100% v/v) had no effect on mortality, growth or egg production. The results suggest that enhancements to wastewater treatment plants that are associated with improved nitrogen removal can result in enhanced removal of TrOCs and can reduce the harmful effects of the effluents on aquatic biota.
Collapse
Affiliation(s)
- W J Parker
- Department of Civil and Environmental Engineering, University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L 3G1, Canada.
| | - V Pileggi
- Standards Development Branch, Ontario Ministry of the Environment, 40 St. Clair Ave West, Toronto, Ontario M4V 1M2, Canada.
| | - P Seto
- Water Science and Technology Directorate, Environment Canada, 867 Lakeshore Road, Burlington, Ontario L7R 4A6, Canada.
| | - X Chen
- Department of Civil and Environmental Engineering, University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L 3G1, Canada.
| | - M Ogunlaja
- Department of Civil and Environmental Engineering, University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L 3G1, Canada.
| | - G Van Der Kraak
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada.
| | - J Parrott
- National Water Research Institute, Water Science and Technology Directorate, Canada Center for Inland Waters, Environment Canada, 867 Lakeshore Road, Burlington, Ontario L7R 4A6, Canada.
| |
Collapse
|
40
|
Ziels RM, Lust MJ, Gough HL, Strand SE, Stensel HD. Influence of bioselector processes on 17α-ethinylestradiol biodegradation in activated sludge wastewater treatment systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:6160-6167. [PMID: 24810975 DOI: 10.1021/es405351b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The removal of the potent endocrine-disrupting estrogen hormone, 17α-ethinylestradiol (EE2), in municipal wastewater treatment plant (WWTP) activated sludge (AS) processes can occur through biodegradation by heterotrophic bacteria growing on other organic wastewater substrates. Different kinetic and metabolic substrate utilization conditions created with AS bioselector processes can affect the heterotrophic population composition in AS. The primary goal of this research was to determine if these changes also affect specific EE2 biodegradation kinetics. A series of experiments were conducted with parallel bench-scale AS reactors treating municipal wastewater with estrogens at 100-300 ng/L concentrations to evaluate the effect of bioselector designs on pseudo first-order EE2 biodegradation kinetics normalized to mixed liquor volatile suspended solids (VSS). Kinetic rate coefficient (kb) values for EE2 biodegradation ranged from 5.0 to 18.9 L/g VSS/d at temperatures of 18 °C to 24 °C. EE2 kb values for aerobic biomass growth at low initial food to mass ratio feeding conditions (F/Mf) were 1.4 to 2.2 times greater than that from growth at high initial F/Mf. Anoxic/aerobic and anaerobic/aerobic metabolic bioselector reactors achieving biological nutrient removal had similar EE2 kb values, which were lower than that in aerobic AS reactors with biomass growth at low initial F/Mf. These results provide evidence that population selection with growth at low organic substrate concentrations can lead to improved EE2 biodegradation kinetics in AS treatment.
Collapse
Affiliation(s)
- Ryan M Ziels
- Department of Civil and Environmental Engineering, University of Washington , Seattle, Washington 98195-2700, United States
| | | | | | | | | |
Collapse
|
41
|
Nie Y, Qiang Z, Ben W, Liu J. Removal of endocrine-disrupting chemicals and conventional pollutants in a continuous-operating activated sludge process integrated with ozonation for excess sludge reduction. CHEMOSPHERE 2014; 105:133-138. [PMID: 24485815 DOI: 10.1016/j.chemosphere.2014.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 01/02/2014] [Accepted: 01/03/2014] [Indexed: 06/03/2023]
Abstract
Sludge ozonation is considered as a promising technology to achieve a complete reduction of excess sludge, but as yet its effects on the removal of endocrine-disrupting chemicals (EDCs) and conventional pollutants (i.e., COD, N and P) in the activated sludge process are still unclear. In this study, two lab-scale continuous-operating activated sludge treatment systems were established: one was operated in conjunction with ozonation for excess sludge reduction, and the other was operated under normal conditions as control. The results indicate that an ozone dose of 100 mg O₃ g(-1)SS led to a zero yield of excess sludge in the sludge-reduction system during a continuous-operating period of 45d. Although ozonation gave a relatively lower specific oxygen uptake rate of activated sludge, it had little effect on the system's removal performance of COD and nitrogen substances. As a plus, sludge ozonation contributed a little more removal of target EDCs (estrone, 17β-estrodiol, estriol, 17α-ethinylestradiol, bisphenol A, and 4-nonylphenol). However, the total phosphorus removal declined notably due to its accumulation in the sludge-reduction system, which necessitates phosphorus recovery for the activated sludge process.
Collapse
Affiliation(s)
- Yafeng Nie
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; Institute of Chemical Defense, Chang-ping District, Beijing 102205, China
| | - Zhimin Qiang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China.
| | - Weiwei Ben
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China
| | - Junxin Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China
| |
Collapse
|
42
|
Marti EJ, Batista JR. Impact of secondary treatment types and sludge handling processes on estrogen concentration in wastewater sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 470-471:1056-1067. [PMID: 24239827 DOI: 10.1016/j.scitotenv.2013.10.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/22/2013] [Accepted: 10/22/2013] [Indexed: 06/02/2023]
Abstract
Endocrine-disrupting compounds (EDCs), such as estrogen, are known to be present in the aquatic environment at concentrations that negatively affect fish and other wildlife. Wastewater treatment plants (WWTPs) are major contributors of EDCs into the environment. EDCs are released via effluent discharge and land application of biosolids. Estrogen removal in WWTPs has been studied in the aqueous phase; however, few researchers have determined estrogen concentration in sludge. This study focuses on estrogen concentration in wastewater sludge as a result of secondary treatment types and sludge handling processes. Grab samples were collected before and after multiple treatment steps at two WWTPs receiving wastewater from the same city. The samples were centrifuged into aqueous and solid phases and then processed using solid phase extraction. Combined natural estrogens (estrone, estradiol and estriol) were measured using an enzyme-linked immunosorbent assay (ELISA) purchased from a manufacturer. Results confirmed that activated sludge treatments demonstrate greater estrogen removal compared to trickling filters and mass concentration of estrogen was measured for the first time on trickling filter solids. Physical and mechanical sludge treatment processes, such as gravity thickeners and centrifuges, did not significantly affect estrogen removal based on mass balance calculations. Dissolved air flotation thickening demonstrated a slight decrease in estrogen concentration, while anaerobic digestion resulted in increased mass concentration of estrogen on the sludge and a high estrogen concentration in the supernatant. Although there are no state or federally mandated discharge effluent standards or sludge application standards for estrogen, implications from this study are that trickling filters would need to be exchanged for activated sludge treatment or followed by an aeration basin in order to improve estrogen removal. Also, anaerobic digestion may need to be replaced with aerobic digestion for sludge that is intended for land application.
Collapse
Affiliation(s)
- Erica J Marti
- Department of Civil and Environmental Engineering and Construction, University of Nevada Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, NV 89154-4015, USA.
| | - Jacimaria R Batista
- Department of Civil and Environmental Engineering and Construction, University of Nevada Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, NV 89154-4015, USA
| |
Collapse
|
43
|
Manickum T, John W. Occurrence, fate and environmental risk assessment of endocrine disrupting compounds at the wastewater treatment works in Pietermaritzburg (South Africa). THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 468-469:584-97. [PMID: 24056449 DOI: 10.1016/j.scitotenv.2013.08.041] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 08/16/2013] [Accepted: 08/16/2013] [Indexed: 05/12/2023]
Abstract
Steroid hormone Endocrine Disrupting Compounds (EDCs) (natural estrogens (17-β-estradiol (E2), estrone (E1), estriol (E3), synthetic estrogen (17-α-ethinylestradiol (EE2)), natural androgen (testosterone) (tes) and natural progestogen (progesterone) (pro)) at an activated sludge wastewater works (WWW), were quantitated using Enzyme-linked immunosorbent assay (ELISA). The steroid hormone profile in the adjacent surface water was also determined. Pro was the most abundant (41%, 408 ng/L) in the influent, followed by tes (35%, 343 ng/L) and E2 (12%, 119 ng/L). E1 was the most abundant (35%, 23 ng/L) in effluent, followed by E2 (30%, 20 ng/L) and tes (17%, 11 ng/L). Chemical removal efficiencies of the steroid hormones by the WWW averaged 92%. High removal efficiency was observed for pro (98% ± 2) and tes (96% ± 1), compared to natural (72-100%) and synthetic estrogen (90% ± 3), with biodegradation being the major removal route for pro and tes. The lowest removal for E2 is in spring (65%), and maximum removal is in winter (95%). Natural (E2, E1) and synthetic estrogen (EE2) were major contributors to influent (E2 = 69%) and effluent (E2 = 73%) estrogenic potency. The estrogenic potency removal averaged 85% (range: 73-100). Risk assessment of the steroid hormones present in wastewater effluent, and surface water, indicated that EE2 and E2 pose the highest risk to human health and fish. EE2 was found to be much more resistant to biodegradation, compared to E2, in surface water. Estrone, as the breakdown product of E2 and EE2 in wastewater, appears to be suitable as an indicator of EDCs. The study suggests that a battery of tests: quantitative chemical assay, bioassay for estrogenic activity and risk assessment methods, collectively, are preferred in order to make meaningful, accurate conclusions regarding potential adverse effects of EDCs present in treated wastewater effluent or surface water, to the aquatic environment, human health, and wildlife systems.
Collapse
Affiliation(s)
- T Manickum
- Scientific Services Laboratories: Chemical Sciences, Engineering & Scientific Services Division, Umgeni Water, P O Box 9, Pietermaritzburg 3200, KwaZulu-Natal, South Africa.
| | | |
Collapse
|
44
|
Gao D, Li Z, Wen Z, Ren N. Occurrence and fate of phthalate esters in full-scale domestic wastewater treatment plants and their impact on receiving waters along the Songhua River in China. CHEMOSPHERE 2014; 95:24-32. [PMID: 24001662 DOI: 10.1016/j.chemosphere.2013.08.009] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/01/2013] [Accepted: 08/05/2013] [Indexed: 06/02/2023]
Abstract
The occurrence and fate of six phthalates: dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), butyl benzyl phthalate (BBP), bis (2-ethylhexyl) phthalate (DEHP) and di-n-octyl phthalate (DOP) were investigated as phthalates passed through three full-scale wastewater treatment plants (WWTPs) with different treatment processes, and ultimately into the recipient Songhua River water in Harbin (China). The six phthalates were detected in the majority of aqueous and solid samples, with DEHP being the most abundant compound. The overall removal efficiency of ΣPAEs in the Cyclic Activated Sludge Technology (CAST) process was over 72%, while both the A/O and A/A/O processes achieved approximately 30% removal. The better performance of the CAST process relative to the Anoxic/Oxic (A/O) and Anaerobic/Anoxic/Oxic (A/A/O) processes was attributed to the indoor-conditions of the CAST plants, which effectively maintained the temperature of the treatment system. The fate of PAEs within two different types of WWTPs (CAST and A/A/O) were assessed qualitatively using mass balances. The results suggested that PAEs removal resulted from both biotransformation and adsorption, of which the former was particularly significant in the CAST process, while the latter was more significant in the A/A/O process. Substantial levels of several PAEs were detected in the Songhua River, especially downstream of the WWTPs, which means that the discharge from WWTPs has a strong impact on the water quality of the Songhua River during cold winter conditions.
Collapse
Affiliation(s)
- Dawen Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | | | | | | |
Collapse
|
45
|
Tan DT, Arnold WA, Novak PJ. Impact of organic carbon on the biodegradation of estrone in mixed culture systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:12359-12365. [PMID: 24117277 DOI: 10.1021/es4027908] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The effects of organic carbon concentrations and loading on the degradation of estrone (E1) were examined under various conditions in batch reactors and membrane-coupled bioreactors (MBRs). Experiments examined effects on individual microorganisms (substrate competition and growth) and on the whole community (selection). Substrate competition with organic carbon (competitive inhibition and catabolic repression) was not a factor in E1 degradation (P = 0.19 and 0.29 for two different analyses). Conversely, addition of organic carbon increased E1 degradation rates, attributable to biomass growth in feast-famine reactors over a five-day period (P = 0.016). Subsequently, however, community dynamics controlled E1 degradation rates, with other organisms outcompeting E1 degraders. More moderate but sustained increases in E1 degradation rates were observed under starvation conditions. Low influent organic carbon strength was detrimental to E1 degradation in MBRs, where organic carbon concentration and loading were decoupled (P = 0.018). These results point to the importance of multiple substrate utilizers in E1 degradation. They also suggest that while initial growth of biomass depends on the presence of sufficient organic carbon, further enrichment under starvation conditions may improve E1 degradation capability via the growth and/or stimulation of multiple substrate utilizers rather than heterotrophs characterized by an r-strategist growth regime.
Collapse
Affiliation(s)
- David T Tan
- Department of Civil Engineering, University of Minnesota , 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455, United States
| | | | | |
Collapse
|
46
|
Qiang Z, Dong H, Zhu B, Qu J, Nie Y. A comparison of various rural wastewater treatment processes for the removal of endocrine-disrupting chemicals (EDCs). CHEMOSPHERE 2013; 92:986-992. [PMID: 23601121 DOI: 10.1016/j.chemosphere.2013.03.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 02/28/2013] [Accepted: 03/09/2013] [Indexed: 06/02/2023]
Abstract
The removal of six endocrine-disrupting chemicals (EDCs), including estrone (E1), 17β-estradiol (E2), estriol (E3), 17α-ethinyl estradiol (EE2), bisphenol A (BPA) and 4-nonylphenol (NP), was investigated in 20 rural wastewater treatment facilities (WWTFs) located in a county of Zhejiang Province, China. These WWTFs adopted one of the four treatment processes: activated sludge (AS), constructed wetland (CW), stabilization pond (SP), and micro-power biofilm reactor (MP). Results indicate that all the six EDCs were detected in wastewater samples with NP showing a maximum detection frequency (97%) and a maximum influent concentration (5002 ng L(-1)). After biological treatment, the concentrations of E2, E3 and NP decreased remarkably, while E1, EE2 and BPA exhibited varying removal efficiencies that depended on the specific treatment process and sampling season. In general, the centralized AS process outperformed those decentralized processes (i.e., CW, SP and MP) and a higher removal of E1, EE2, NP and BPA in the AS process was observed in summer (>70%) than in winter. Among the three decentralized processes, the removal of EDCs in the SP process was limited, especially for E1, EE2 and BPA (18-46%) in winter. Due to an incomplete removal, the total concentration of target EDCs increased obviously in the mixing and downstream sections of a local river receiving the effluent from a typical WWTF (practicing AS). This study reveals that the design and operation of rural WWTFs should be optimized if an effective removal of EDCs is to be achieved.
Collapse
Affiliation(s)
- Zhimin Qiang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China.
| | | | | | | | | |
Collapse
|
47
|
Luo Q, Adams P, Lu J, Cabrera M, Huang Q. Influence of poultry litter land application on the concentrations of estrogens in water and sediment within a watershed. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:1383-1390. [PMID: 23695171 DOI: 10.1039/c3em30927d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This research studied the occurrence of estrogens in the Upper Satilla watershed, Georgia, USA, which was impacted by poultry litter land application and discharge from a sewage treatment plant (STP) receiving poultry wastes. Over 14 months, four estrogens in stream water, sediment, suspended particles, and STP samples were quantified by LC/MS. Estrogens were consistently found in the STP influent with high concentrations while they were below the detection limits in the majority of stream water, suspended particles, and sediment. Estrone, 17β-estradiol, and estriol were found in 18% of stream water samples with concentrations up to 46.4, 67.2, and 125 ng L(-1), respectively. However, 17α-ethinylestradiol was only detected in STP samples. Estrogens were found in 14% of suspended particle samples with the median concentration being 27.5 ng g(-1) for estrone, 104.5 ng g(-1) for 17β-estradiol, and 93.9 ng g(-1) for estriol. The estrogen concentrations in sediment were <4.95 ng g(-1), indicating that sediment is not a major sink for estrogens in this watershed. The quantitative analysis of the temporal and spatial distribution of the estrogens suggests the occasional elevation of estrogens in the watershed above the predicted-no-effect-concentrations to fish likely to be associated with litter disposal and rainfall events.
Collapse
Affiliation(s)
- Qi Luo
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223, USA
| | | | | | | | | |
Collapse
|
48
|
Stalter D, Magdeburg A, Quednow K, Botzat A, Oehlmann J. Do contaminants originating from state-of-the-art treated wastewater impact the ecological quality of surface waters? PLoS One 2013; 8:e60616. [PMID: 23593263 PMCID: PMC3620539 DOI: 10.1371/journal.pone.0060616] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 02/28/2013] [Indexed: 11/17/2022] Open
Abstract
Since the 1980s, advances in wastewater treatment technology have led to considerably improved surface water quality in the urban areas of many high income countries. However, trace concentrations of organic wastewater-associated contaminants may still pose a key environmental hazard impairing the ecological quality of surface waters. To identify key impact factors, we analyzed the effects of a wide range of anthropogenic and environmental variables on the aquatic macroinvertebrate community. We assessed ecological water quality at 26 sampling sites in four urban German lowland river systems with a 0–100% load of state-of-the-art biological activated sludge treated wastewater. The chemical analysis suite comprised 12 organic contaminants (five phosphor organic flame retardants, two musk fragrances, bisphenol A, nonylphenol, octylphenol, diethyltoluamide, terbutryn), 16 polycyclic aromatic hydrocarbons, and 12 heavy metals. Non-metric multidimensional scaling identified organic contaminants that are mainly wastewater-associated (i.e., phosphor organic flame retardants, musk fragrances, and diethyltoluamide) as a major impact variable on macroinvertebrate species composition. The structural degradation of streams was also identified as a significant factor. Multiple linear regression models revealed a significant impact of organic contaminants on invertebrate populations, in particular on Ephemeroptera, Plecoptera, and Trichoptera species. Spearman rank correlation analyses confirmed wastewater-associated organic contaminants as the most significant variable negatively impacting the biodiversity of sensitive macroinvertebrate species. In addition to increased aquatic pollution with organic contaminants, a greater wastewater fraction was accompanied by a slight decrease in oxygen concentration and an increase in salinity. This study highlights the importance of reducing the wastewater-associated impact on surface waters. For aquatic ecosystems in urban areas this would lead to: (i) improvement of the ecological integrity, (ii) reduction of biodiversity loss, and (iii) faster achievement of objectives of legislative requirements, e.g., the European Water Framework Directive.
Collapse
Affiliation(s)
- Daniel Stalter
- Department Aquatic Ecotoxicology, Biological Sciences Division, Goethe University Frankfurt am Main, Frankfurt am Main, Germany.
| | | | | | | | | |
Collapse
|
49
|
Zeng Q, Li Y, Yang S. Sludge Retention Time as a Suitable Operational Parameter to Remove Both Estrogen and Nutrients in an Anaerobic-Anoxic-Aerobic Activated Sludge System. ENVIRONMENTAL ENGINEERING SCIENCE 2013; 30:161-169. [PMID: 23633892 PMCID: PMC3636585 DOI: 10.1089/ees.2011.0400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 12/17/2012] [Indexed: 05/27/2023]
Abstract
Estrogen in wastewater are responsible for a significant part of the endocrine-disrupting effects observed in the aquatic environment. The effect of sludge retention time (SRT) on the removal and fate of 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) in an anaerobic-anoxic-oxic activated sludge system designed for nutrient removal was investigated by laboratory-scale experiments using synthetic wastewater. With a hydraulic retention time of 8 h, when SRT ranged 10-25 days, E2 was almost completely removed from water, and EE2 removal efficiency was 65%-81%. Both estrogens were easily sorbed onto activated sludge. Distribution coefficients (Kd) of estrogens on anaerobic sludge were greater than those on anoxic and aerobic sludges. Mass balance calculation indicated that 99% of influent E2 was degraded by the activated sludge process, and 1% remained in excess sludge; of influent EE2, 62.0%-80.1% was biodegraded; 18.9%-34.7% was released in effluent; and 0.88%-3.31% remained in excess sludge. Optimal SRT was 20 days for both estrogen and nutrient removal. E2 was almost completely degraded, and EE2 was only partly degraded in the activated sludge process. Residual estrogen on excess sludge must be considered in the sludge treatment and disposal processes. The originality of the work is that removal of nutrients and estrogens were linked, and optimal SRT for both estrogen and nutrient removal in an enhanced biological phosphorus removal system was determined. This has an important implication for the design and operation of full-scale wastewater treatment plants.
Collapse
Affiliation(s)
- Qingling Zeng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- College of Civil Engineering, Huaqiao University, Xiamen, Fujian, China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Shijia Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| |
Collapse
|
50
|
The determination of nonylphenol and its precursors in a trickling filter wastewater treatment process. Anal Bioanal Chem 2013; 405:3243-53. [DOI: 10.1007/s00216-013-6765-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/11/2013] [Accepted: 01/17/2013] [Indexed: 10/27/2022]
|