1
|
Awada A, Lanoë PH, Philouze C, Loiseau F, Jouvenot D. Tuning the Coordination Environment of Ru(II) Complexes with a Tailored Acridine Ligand. Molecules 2024; 29:3468. [PMID: 39124873 PMCID: PMC11313782 DOI: 10.3390/molecules29153468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
A novel tridentate ligand featuring an acridine core and pyrazole rings, namely 2,7- di-tert-butyl-4,5-di(pyrazol-1-yl)acridine, L, was designed and used to create two ruthenium(II) complexes: [RuL2](PF6)2 and [Ru(tpy)L](PF6)2. Surprisingly, the ligand adopted different coordination modes in the complexes: facial coordination for the homoleptic complex and meridional coordination for the heteroleptic complex. The electronic absorption and electrochemical properties were evaluated. Although both complexes exhibited favorable electronic properties for luminescence, neither emitted light at room temperature nor at 77 K. This study highlights the complex interplay between ligand design, coordination mode, and luminescence in ruthenium(II) complexes.
Collapse
Affiliation(s)
| | | | | | - Frédérique Loiseau
- Université Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France; (A.A.); (P.-H.L.); (C.P.)
| | - Damien Jouvenot
- Université Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France; (A.A.); (P.-H.L.); (C.P.)
| |
Collapse
|
2
|
Trippmacher S, Demeshko S, Prescimone A, Meyer F, Wenger OS, Wang C. Ferromagnetically Coupled Chromium(III) Dimer Shows Luminescence and Sensitizes Photon Upconversion. Chemistry 2024; 30:e202400856. [PMID: 38523568 DOI: 10.1002/chem.202400856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 03/26/2024]
Abstract
There has been much progress on mononuclear chromium(III) complexes featuring luminescence and photoredox activity, but dinuclear chromium(III) complexes have remained underexplored in these contexts until now. We identified a tridentate chelate ligand able to accommodate both meridional and facial coordination of chromium(III), to either access a mono- or a dinuclear chromium(III) complex depending on reaction conditions. This chelate ligand causes tetragonally distorted primary coordination spheres around chromium(III) in both complexes, entailing comparatively short excited-state lifetimes in the range of 400 to 800 ns in solution at room temperature and making photoluminescence essentially oxygen insensitive. The two chromium(III) ions in the dimer experience ferromagnetic exchange interactions that result in a high spin (S=3) ground state with a coupling constant of +9.3 cm-1. Photoinduced energy transfer from the luminescent ferromagnetically coupled dimer to an anthracene derivative results in sensitized triplet-triplet annihilation upconversion. Based on these proof-of-principle studies, dinuclear chromium(III) complexes seem attractive for the development of fundamentally new types of photophysics and photochemistry enabled by magnetic exchange interactions.
Collapse
Affiliation(s)
- Simon Trippmacher
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, 37077, Göttingen, Germany
| | - Alessandro Prescimone
- Department of Chemistry, BPR 1096, University of Basel, Mattenstrasse 24a, 4058, Basel, Switzerland
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, 37077, Göttingen, Germany
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Cui Wang
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
- Department of Biology and Chemistry, Osnabrück University, Barbarastraße 7, 49076, Osnabrück, Germany
| |
Collapse
|
3
|
Ganguly T, Das S, Maity D, Baitalik S. Luminescent Ruthenium-Terpyridine Complexes Coupled with Stilbene-Appended Naphthalene, Anthracene, and Pyrene Motifs Demonstrate Fluoride Ion Sensing and Reversible Trans-Cis Photoisomerization. Inorg Chem 2024; 63:6883-6897. [PMID: 38567656 DOI: 10.1021/acs.inorgchem.4c00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A new family of luminescent heteroleptic Ru(II)-terpyridine complexes coupled with stilbene-appended naphthalene, anthracene, and pyrene motifs is reported. Each of the complexes features moderately intense emission at room temperature having a lifetime of 16.7 ns for naphthalene and 11.4 ns for anthracene, while a substantially elevated lifetime of 8.3 μs was observed for the pyrene derivative. All the three complexes display a reversible couple in the positive potential window due to Ru2+/Ru3+ oxidation but multiple reversible and/or quasi-reversible peaks in the negative potential domain because of the reduction of the terpyridine moieties. All the complexes selectively sense F- among the studied anions via the intermediary of different noncovalent interactions. The interaction event is monitored through absorption, emission, and 1H and 19F NMR spectroscopy. Additionally, upon utilizing the stilbene motif, reversible trans-cis isomerization of the complexes has been undertaken upon alternate treatment of visible and UV light so that the complexes can act as potential photomolecular switches. We also carried out the anion sensing characterization of the cis form of the complexes. Theoretical calculation employing density functional theory is also executed for a selective complex (naphthalene derivative) to elucidate different noncovalent interactions that are operative during the complex-fluoride interplay.
Collapse
Affiliation(s)
- Tanusree Ganguly
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Soumi Das
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Dinesh Maity
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
- Department of Chemistry, Katwa College, Purba Bardhaman, West Bengal 713130, India
| | - Sujoy Baitalik
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
4
|
Kitzmann WR, Hunger D, Reponen APM, Förster C, Schoch R, Bauer M, Feldmann S, van Slageren J, Heinze K. Electronic Structure and Excited-State Dynamics of the NIR-II Emissive Molybdenum(III) Analogue to the Molecular Ruby. Inorg Chem 2023; 62:15797-15808. [PMID: 37718553 DOI: 10.1021/acs.inorgchem.3c02186] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Photoactive chromium(III) complexes saw a conceptual breakthrough with the discovery of the prototypical molecular ruby mer-[Cr(ddpd)2]3+ (ddpd = N,N'-dimethyl-N,N'-dipyridin-2-ylpyridine-2,6-diamine), which shows intense long-lived near-infrared (NIR) phosphorescence from metal-centered spin-flip states. In contrast to the numerous studies on chromium(III) photophysics, only 10 luminescent molybdenum(III) complexes have been reported so far. Here, we present the synthesis and characterization of mer-MoX3(ddpd) (1, X = Cl; 2, X = Br) and cisfac-[Mo(ddpd)2]3+ (cisfac-[3]3+), an isomeric heavy homologue of the prototypical molecular ruby. For cisfac-[3]3+, we found strong zero-field splitting using magnetic susceptibility measurements and electron paramagnetic resonance spectroscopy. Electronic spectra covering the spin-forbidden transitions show that the spin-flip states in mer-1, mer-2, and cisfac-[3]3+ are much lower in energy than those in comparable chromium(III) compounds. While all three complexes show weak spin-flip phosphorescence in NIR-II, the emission of cisfac-[3]3+ peaking at 1550 nm is particularly low in energy. Femtosecond transient absorption spectroscopy reveals a short excited-state lifetime of 1.4 ns, 6 orders of magnitude shorter than that of mer-[Cr(ddpd)2]3+. Using density functional theory and ab initio multireference calculations, we break down the reasons for this disparity and derive principles for the design of future stable photoactive molybdenum(III) complexes.
Collapse
Affiliation(s)
- Winald R Kitzmann
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
- Rowland Institute, Harvard University, 100 Edwin H. Land Boulevard, Cambridge, Massachusetts 02142, United States
| | - David Hunger
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Antti-Pekka M Reponen
- Rowland Institute, Harvard University, 100 Edwin H. Land Boulevard, Cambridge, Massachusetts 02142, United States
| | - Christoph Förster
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Roland Schoch
- Faculty of Science, Chemistry Department and Centre for Sustainable Systems Design, Paderborn University, 33098 Paderborn, Germany
| | - Matthias Bauer
- Faculty of Science, Chemistry Department and Centre for Sustainable Systems Design, Paderborn University, 33098 Paderborn, Germany
| | - Sascha Feldmann
- Rowland Institute, Harvard University, 100 Edwin H. Land Boulevard, Cambridge, Massachusetts 02142, United States
| | - Joris van Slageren
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Katja Heinze
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
5
|
Johnson CE, Schwarz J, Deegbey M, Prakash O, Sharma K, Huang P, Ericsson T, Häggström L, Bendix J, Gupta AK, Jakubikova E, Wärnmark K, Lomoth R. Ferrous and ferric complexes with cyclometalating N-heterocyclic carbene ligands: a case of dual emission revisited. Chem Sci 2023; 14:10129-10139. [PMID: 37772113 PMCID: PMC10530338 DOI: 10.1039/d3sc02806b] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/27/2023] [Indexed: 09/30/2023] Open
Abstract
Iron N-heterocyclic carbene (FeNHC) complexes with long-lived charge transfer states are emerging as a promising class of photoactive materials. We have synthesized [FeII(ImP)2] (ImP = bis(2,6-bis(3-methylimidazol-2-ylidene-1-yl)phenylene)) that combines carbene ligands with cyclometalation for additionally improved ligand field strength. The 9 ps lifetime of its 3MLCT (metal-to-ligand charge transfer) state however reveals no benefit from cyclometalation compared to Fe(ii) complexes with NHC/pyridine or pure NHC ligand sets. In acetonitrile solution, the Fe(ii) complex forms a photoproduct that features emission characteristics (450 nm, 5.1 ns) that were previously attributed to a higher (2MLCT) state of its Fe(iii) analogue [FeIII(ImP)2]+, which led to a claim of dual (MLCT and LMCT) emission. Revisiting the photophysics of [FeIII(ImP)2]+, we confirmed however that higher (2MLCT) states of [FeIII(ImP)2]+ are short-lived (<10 ps) and therefore, in contrast to the previous interpretation, cannot give rise to emission on the nanosecond timescale. Accordingly, pristine [FeIII(ImP)2]+ prepared by us only shows red emission from its lower 2LMCT state (740 nm, 240 ps). The long-lived, higher energy emission previously reported for [FeIII(ImP)2]+ is instead attributed to an impurity, most probably a photoproduct of the Fe(ii) precursor. The previously reported emission quenching on the nanosecond time scale hence does not support any excited state reactivity of [FeIII(ImP)2]+ itself.
Collapse
Affiliation(s)
- Catherine Ellen Johnson
- Department of Chemistry -Ångström Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden
| | - Jesper Schwarz
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden
| | - Mawuli Deegbey
- Department of Chemistry, North Carolina State University Raleigh North Carolina 27695 USA
| | - Om Prakash
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden
| | - Kumkum Sharma
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden
| | - Ping Huang
- Department of Chemistry -Ångström Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden
| | - Tore Ericsson
- Department of Physics - Ångström Laboratory, Uppsala University Box 523 SE-751 20 Uppsala Sweden
| | - Lennart Häggström
- Department of Physics - Ångström Laboratory, Uppsala University Box 523 SE-751 20 Uppsala Sweden
| | - Jesper Bendix
- Department of Chemistry, University of Copenhagen Universitetsparken 5 DK-2100 Copenhagen Denmark
| | - Arvind Kumar Gupta
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden
| | - Elena Jakubikova
- Department of Chemistry, North Carolina State University Raleigh North Carolina 27695 USA
| | - Kenneth Wärnmark
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden
| | - Reiner Lomoth
- Department of Chemistry -Ångström Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden
| |
Collapse
|
6
|
Curley R, Burke CS, Gkika KS, Noorani S, Walsh N, Keyes TE. Phototoxicity of Tridentate Ru(II) Polypyridyl Complex with Expanded Bite Angles toward Mammalian Cells and Multicellular Tumor Spheroids. Inorg Chem 2023; 62:13089-13102. [PMID: 37535942 PMCID: PMC10428208 DOI: 10.1021/acs.inorgchem.3c01982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Indexed: 08/05/2023]
Abstract
Tridentate ligand-coordinated ruthenium (II) polypyridyl complexes with large N-Ru-N bite angles have been shown to promote ligand field splitting and reduce singlet-triplet state mixing leading to dramatically extended emission quantum yields and lifetimes under ambient conditions. These effects are anticipated to enhance their photoinduced singlet oxygen production, promoting prospects for such complexes as type II phototherapeutics. In this contribution, we examined this putative effect for [Ru(bqp)(bqpCOOEt)]2+, Ru-bqp-ester, a heteroleptic complex containing bqp = [2,6-bi(quinolin-8-yl)pyridine], a well-established large bite angle tridentate ligand, as well as its peptide conjugates [Ru(bqp)(bqpCONH-ahx-FrFKFrFK(Ac)-CONH2)]5+ (Ru-bqp-MPP) and [Ru(bqp) (bqp)(CONH-ahx-RRRRRRRR-CONH2)]10+ (Ru-bqp-R8) that were prepared in an effort to promote live cell/tissue permeability and targeting of the parent. Membrane permeability of both parent and peptide conjugates were compared across 2D cell monolayers; A549, Chinese hamster ovary, human pancreatic cancer (HPAC), and 3D HPAC multicellular tumor spheroids (MCTS) using confocal microscopy. Both the parent complex and peptide conjugates showed exceptional permeability with rapid uptake in both 2D and 3D cell models but with little distinction in permeability or distribution in cells between the parent or peptide conjugates. Unexpectedly, the uptake was temperature independent and so attributed to passive permeation. Both dark and photo-toxicity of the Ru(II) complexes were assessed across cell types, and the parent showed notably low dark toxicity. In contrast, the parent and conjugates were found to be highly phototoxic, with impressive phototoxic indices (PIs) toward HPAC cell monolayers in particular, with PI values ranging from ∼580 to 760. Overall, our data indicate that the Ru(II) parent complex and its peptide conjugates show promise at both cell monolayers and 3D MCTS as photosensitizers for photodynamic therapy.
Collapse
Affiliation(s)
- Rhianne
C. Curley
- School
of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin 9 D09 NA55, Ireland
| | - Christopher S. Burke
- School
of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin 9 D09 NA55, Ireland
| | - Karmel S. Gkika
- School
of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin 9 D09 NA55, Ireland
| | - Sara Noorani
- National
Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin 9 D09 NA55, Ireland
| | - Naomi Walsh
- National
Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin 9 D09 NA55, Ireland
| | - Tia E. Keyes
- School
of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin 9 D09 NA55, Ireland
| |
Collapse
|
7
|
Jones RW, Auty AJ, Wu G, Persson P, Appleby MV, Chekulaev D, Rice CR, Weinstein JA, Elliott PIP, Scattergood PA. Direct Determination of the Rate of Intersystem Crossing in a Near-IR Luminescent Cr(III) Triazolyl Complex. J Am Chem Soc 2023. [PMID: 37224437 DOI: 10.1021/jacs.3c01543] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A detailed understanding of the dynamics of photoinduced processes occurring in the electronic excited state is essential in informing the rational design of photoactive transition-metal complexes. Here, the rate of intersystem crossing in a Cr(III)-centered spin-flip emitter is directly determined through the use of ultrafast broadband fluorescence upconversion spectroscopy (FLUPS). In this contribution, we combine 1,2,3-triazole-based ligands with a Cr(III) center and report the solution-stable complex [Cr(btmp)2]3+ (btmp = 2,6-bis(4-phenyl-1,2,3-triazol-1-yl-methyl)pyridine) (13+), which displays near-infrared (NIR) luminescence at 760 nm (τ = 13.7 μs, ϕ = 0.1%) in fluid solution. The excited-state properties of 13+ are probed in detail through a combination of ultrafast transient absorption (TA) and femtosecond-to-picosecond FLUPS. Although TA spectroscopy allows us to observe the evolution of phosphorescent excited states within the doublet manifold, more significantly and for the first time for a complex of Cr(III), we utilize FLUPS to capture the short-lived fluorescence from initially populated quartet excited states immediately prior to the intersystem crossing process. The decay of fluorescence from the low-lying 4MC state therefore allows us to assign a value of (823 fs)-1 to the rate of intersystem crossing. Importantly, the sensitivity of FLUPS to only luminescent states allows us to disentangle the rate of intersystem crossing from other closely associated excited-state events, something which has not been possible in the spectroscopic studies previously reported for luminescent Cr(III) systems.
Collapse
Affiliation(s)
- Robert W Jones
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Alexander J Auty
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
| | - Guanzhi Wu
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
| | - Petter Persson
- Division of Theoretical Chemistry, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Martin V Appleby
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
| | - Dimitri Chekulaev
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
| | - Craig R Rice
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Julia A Weinstein
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
| | - Paul I P Elliott
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Paul A Scattergood
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| |
Collapse
|
8
|
Lin YD, Lu CW, Su HC. Long-Wavelength Light-Emitting Electrochemical Cells: Materials and Device Engineering. Chemistry 2023; 29:e202202985. [PMID: 36346637 DOI: 10.1002/chem.202202985] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Long-wavelength light-emitting electrochemical cells (LECs) are potential deep-red and near infrared light sources with solution-processable simple device architecture, low-voltage operation, and compatibility with inert metal electrodes. Many scientific efforts have been made to material design and device engineering of the long-wavelength LECs over the past two decades. The materials designed the for long-wavelength LECs cover ionic transition metal complexes, small molecules, conjugated polymers, and perovskites. On the other hand, device engineering techniques, including spectral modification by adjusting microcavity effect, light outcoupling enhancement, energy down-conversion from color conversion layers, and adjusting intermolecular interactions, are also helpful in improving the device performance of long-wavelength LECs. In this review, recent advances in the long-wavelength LECs are reviewed from the viewpoints of materials and device engineering. Finally, discussions on conclusion and outlook indicate possible directions for future developments of the long-wavelength LECs. This review would like to pave the way for the researchers to design materials and device engineering techniques for the long-wavelength LECs in the applications of displays, bio-imaging, telecommunication, and night-vision displays.
Collapse
Affiliation(s)
- Yan-Ding Lin
- Department of Applied Chemistry, Providence University, Taichung, 43301, Taiwan
| | - Chin-Wei Lu
- Department of Applied Chemistry, Providence University, Taichung, 43301, Taiwan
| | - Hai-Ching Su
- Institute of Lighting and Energy Photonics, National Yang Ming Chiao Tung University, Tainan, 71150, Taiwan
| |
Collapse
|
9
|
Moll J, Naumann R, Sorge L, Förster C, Gessner N, Burkhardt L, Ugur N, Nuernberger P, Seidel W, Ramanan C, Bauer M, Heinze K. Pseudo-Octahedral Iron(II) Complexes with Near-Degenerate Charge Transfer and Ligand Field States at the Franck-Condon Geometry. Chemistry 2022; 28:e202201858. [PMID: 35862259 DOI: 10.1002/chem.202201858] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 01/07/2023]
Abstract
Increasing the metal-to-ligand charge transfer (MLCT) excited state lifetime of polypyridine iron(II) complexes can be achieved by lowering the ligand's π* orbital energy and by increasing the ligand field splitting. In the homo- and heteroleptic complexes [Fe(cpmp)2 ]2+ (12+ ) and [Fe(cpmp)(ddpd)]2+ (22+ ) with the tridentate ligands 6,2''-carboxypyridyl-2,2'-methylamine-pyridyl-pyridine (cpmp) and N,N'-dimethyl-N,N'-di-pyridin-2-ylpyridine-2,6-diamine (ddpd) two or one dipyridyl ketone moieties provide low energy π* acceptor orbitals. A good metal-ligand orbital overlap to increase the ligand field splitting is achieved by optimizing the octahedricity through CO and NMe units between the coordinating pyridines which enable the formation of six-membered chelate rings. The push-pull ligand cpmp provides intra-ligand and ligand-to-ligand charge transfer (ILCT, LL'CT) excited states in addition to MLCT excited states. Ground and excited state properties of 12+ and 22+ were accessed by X-ray diffraction analyses, resonance Raman spectroscopy, (spectro)electrochemistry, EPR spectroscopy, X-ray emission spectroscopy, static and time-resolved IR and UV/Vis/NIR absorption spectroscopy as well as quantum chemical calculations.
Collapse
Affiliation(s)
- Johannes Moll
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Robert Naumann
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Lukas Sorge
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Christoph Förster
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Niklas Gessner
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Lukas Burkhardt
- Department of Chemistry, University of Paderborn, Warburger Str. 100, 33098, Paderborn, Germany
| | - Naz Ugur
- Max-Planck-Institute for Polymer Research, Mainz, Germany
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Wolfram Seidel
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059, Rostock, Germany
| | - Charusheela Ramanan
- Max-Planck-Institute for Polymer Research, Mainz, Germany
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Matthias Bauer
- Department of Chemistry, University of Paderborn, Warburger Str. 100, 33098, Paderborn, Germany
| | - Katja Heinze
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
10
|
Chong J, Besnard C, Cruz CM, Piguet C, Jiménez JR. Heteroleptic mer-[Cr(N ∩N ∩N)(CN) 3] complexes: synthetic challenge, structural characterization and photophysical properties. Dalton Trans 2022; 51:4297-4309. [PMID: 35195140 PMCID: PMC8922558 DOI: 10.1039/d2dt00126h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The substitution of three water molecules around trivalent chromium in CrBr3·6H2O with the tridentate 2,2′:6′,2′′-terpyridine (tpy), N,N′-dimethyl-N,N′-di(pyridine-2-yl)pyridine-2,6-diamine (ddpd) or 2,6-di(quinolin-8-yl)pyridine (dqp) ligands gives the heteroleptic mer-[Cr(L)Br3] complexes. Stepwise treatments with Ag(CF3SO3) and KCN under microwave irradiations provide mer-[Cr(L)(CN)3] in moderate yields. According to their X-ray crystal structures, the associated six-coordinate meridional [CrN3C3] chromophores increasingly deviate from a pseudo-octahedral arrangement according to L = ddpd ≈ dpq ≪ tpy; a trend in line with the replacement of six-membered with five-membered chelate rings around CrIII. Room-temperature ligand-centered UV-excitation at 18 170 cm−1 (λexc = 350 nm), followed by energy transfer and intersystem crossing eventually yield microsecond metal-centered Cr(2E → 4A2) phosphorescence in the red to near infrared domain 13 150–12 650 cm−1 (760 ≤ λem ≤ 790 nm). Decreasing the temperature to liquid nitrogen (77 K) extends the emission lifetimes to reach the millisecond regime with a record of 4.02 ms for mer-[Cr(dqp)(CN)3] in frozen acetonitrile. The heteroleptic mer-[Cr(L)(CN)3] (L = tpy, ddpd, dqp) complexes with their C2v-symmetrical [CrC3N3] luminescent chromophores represent the missing links between pseudo-octahedral [CrN6] and [CrC6] units found in their well-known homoleptic parents.![]()
Collapse
Affiliation(s)
- Julien Chong
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Céline Besnard
- Laboratory of Crystallography, University of Geneva, 24 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Carlos M Cruz
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Juan-Ramón Jiménez
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland. .,Department of Inorganic Chemistry, University of Granada and "Unidad de Excelencia en Química" (UEQ), Avda. Fuentenueva, E-18071 Granada, España.
| |
Collapse
|
11
|
Wang C, Kitzmann WR, Weigert F, Förster C, Wang X, Heinze K, Resch-Genger U. Matrix Effects on Photoluminescence and Oxygen Sensitivity of a Molecular Ruby. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202100296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Cui Wang
- BAM Federal Institute for Materials Research and Testing: Bundesanstalt fur Materialforschung und -prufung Division Biophotonics Richard-Willstaetter-Str. 11 12489 Berlin GERMANY
| | - Winald R. Kitzmann
- Johannes Gutenberg University: Johannes Gutenberg Universitat Mainz Department of Chemistry GERMANY
| | - Florian Weigert
- BAM Federal Institute for Materials Research and Testing: Bundesanstalt fur Materialforschung und -prufung Division Biophotonics GERMANY
| | - Christoph Förster
- Johannes Gutenberg University: Johannes Gutenberg Universitat Mainz Department of Chemistry GERMANY
| | - Xifan Wang
- BAM Federal Institute for Materials Research and Testing: Bundesanstalt fur Materialforschung und -prufung Division Biophotonics GERMANY
| | - Katja Heinze
- Johannes Gutenberg University: Johannes Gutenberg Universitat Mainz Department of Chemistry GERMANY
| | - Ute Resch-Genger
- Bundesanstalt für Materialforschung und -prüfung (BAM) Analytische Chemie und Referenzmaterialien Richard-Willstaetter-Str. 11 12489 Berlin GERMANY
| |
Collapse
|
12
|
Stein L, Wang C, Förster C, Resch-Genger U, Heinze K. Bulky ligands protect molecular ruby from oxygen quenching. Dalton Trans 2022; 51:17664-17670. [DOI: 10.1039/d2dt02950b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Steric protection strongly reduces phosphorescence quenching of excited molecular rubies by oxygen. The most bulky ligand enables photoluminescence quantum yields up to 5.1% and lifetimes up to 518 µs in air-saturated acetonitrile.
Collapse
Affiliation(s)
- Laura Stein
- Department of Chemistry, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Cui Wang
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Christoph Förster
- Department of Chemistry, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Ute Resch-Genger
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Katja Heinze
- Department of Chemistry, Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
13
|
Awada A, Loiseau F, Jouvenot D. Light‐Induced Ejection of a Tridentate Ligand from a Ruthenium(II) Complex. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ali Awada
- Département de Chimie Moléculaire Univ. Grenoble Alpes, CNRS, DCM 38000 Grenoble France
| | - Frédérique Loiseau
- Département de Chimie Moléculaire Univ. Grenoble Alpes, CNRS, DCM 38000 Grenoble France
| | - Damien Jouvenot
- Département de Chimie Moléculaire Univ. Grenoble Alpes, CNRS, DCM 38000 Grenoble France
| |
Collapse
|
14
|
Paul A, Das S, Bar M, Baitalik S. Tuning of photo-redox behaviours and thermodynamic and kinetic aspects of intercomponent energy transfer in trimetallic complexes of Ru(II) and Os(II) by exploiting their second coordination sphere. Dalton Trans 2021; 50:14872-14883. [PMID: 34604872 DOI: 10.1039/d1dt02544a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper deals with a thorough investigation of pH-induced tuning of the ground and excited state photophysical as well as electrochemical behaviours of two series of our recently reported homo- and heterotrimetallic complexes of the type [(bpy)2Ru(d-HIm-t)M(t-HIm-d)Ru(bpy)2]6+ and [(bpy)2Os(d-HIm-t)M(t-HIm-d)Os(bpy)2]6+ (M = RuII and OsII) derived from a heteroditopic bpy-tpy (d-HIm-t) type bridging ligand through the exploitation of their second coordination sphere. A small bathochromic shift of the absorption and emission spectral band along with substantial alteration of emission intensity and lifetime of the triads is noted upon deprotonation of the NH motifs at elevated pH values. The lowering of the half wave potential of a M3+/M2+ couple is also observed upon removal of the NH protons. Both ground and excited state pKa values of the triads are estimated from their absorption/emission versus pH spectral profiles. In addition, the variation of the free energy change (ΔG) and the rate of intercomponent energy transfer (ken) in the triads upon stepwise deprotonation of the NH motifs are also addressed in the present study.
Collapse
Affiliation(s)
- Animesh Paul
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Soumi Das
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Manoranjan Bar
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Sujoy Baitalik
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
15
|
Dorn M, Kalmbach J, Boden P, Kruse A, Dab C, Reber C, Niedner-Schatteburg G, Lochbrunner S, Gerhards M, Seitz M, Heinze K. Ultrafast and long-time excited state kinetics of an NIR-emissive vanadium(iii) complex I: synthesis, spectroscopy and static quantum chemistry. Chem Sci 2021; 12:10780-10790. [PMID: 34476059 PMCID: PMC8372323 DOI: 10.1039/d1sc02137k] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022] Open
Abstract
In spite of intense, recent research efforts, luminescent transition metal complexes with Earth-abundant metals are still very rare owing to the small ligand field splitting of 3d transition metal complexes and the resulting non-emissive low-energy metal-centered states. Low-energy excited states decay efficiently non-radiatively, so that near-infrared emissive transition metal complexes with 3d transition metals are even more challenging. We report that the heteroleptic pseudo-octahedral d2-vanadium(iii) complex VCl3(ddpd) (ddpd = N,N'-dimethyl-N,N'-dipyridine-2-yl-pyridine-2,6-diamine) shows near-infrared singlet → triplet spin-flip phosphorescence maxima at 1102, 1219 and 1256 nm with a lifetime of 0.5 μs at room temperature. Band splitting, ligand deuteration, excitation energy and temperature effects on the excited state dynamics will be discussed on slow and fast timescales using Raman, static and time-resolved photoluminescence, step-scan FTIR and fs-UV pump-vis probe spectroscopy as well as photolysis experiments in combination with static quantum chemical calculations. These results inform future design strategies for molecular materials of Earth-abundant metal ions exhibiting spin-flip luminescence and photoinduced metal-ligand bond homolysis.
Collapse
Affiliation(s)
- Matthias Dorn
- Department of Chemistry, Johannes Gutenberg University of Mainz Duesbergweg 10-14 55128 Mainz Germany
| | - Jens Kalmbach
- Institute of Inorganic Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Pit Boden
- Department of Chemistry and Research Center Optimas, Technical University Kaiserslautern Erwin-Schrödinger-Straße 67663 Kaiserslautern Germany
| | - Ayla Kruse
- Institute for Physics, Department of Life, Light and Matter, University of Rostock 18051 Rostock Germany
| | - Chahinez Dab
- Département de chimie, Université de Montréal Montréal Québec H3C 3J7 Canada
| | - Christian Reber
- Département de chimie, Université de Montréal Montréal Québec H3C 3J7 Canada
| | - Gereon Niedner-Schatteburg
- Department of Chemistry and Research Center Optimas, Technical University Kaiserslautern Erwin-Schrödinger-Straße 67663 Kaiserslautern Germany
| | - Stefan Lochbrunner
- Institute for Physics, Department of Life, Light and Matter, University of Rostock 18051 Rostock Germany
| | - Markus Gerhards
- Department of Chemistry and Research Center Optimas, Technical University Kaiserslautern Erwin-Schrödinger-Straße 67663 Kaiserslautern Germany
| | - Michael Seitz
- Institute of Inorganic Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Katja Heinze
- Department of Chemistry, Johannes Gutenberg University of Mainz Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
16
|
Reuter T, Kruse A, Schoch R, Lochbrunner S, Bauer M, Heinze K. Higher MLCT lifetime of carbene iron(II) complexes by chelate ring expansion. Chem Commun (Camb) 2021; 57:7541-7544. [PMID: 34240092 DOI: 10.1039/d1cc02173g] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Combining strong σ-donating N-heterocyclic carbene ligands and π-accepting pyridine ligands with a high octahedricity in rigid iron(ii) complexes increases the 3MLCT lifetime from 0.15 ps in the prototypical [Fe(tpy)2]2+ complex to 9.2 ps in [Fe(dpmi)2]2+12+. The tripodal CNN ligand dpmi (di(pyridine-2-yl)(3-methylimidazol-2-yl)methane) forms six-membered chelate rings with the iron(ii) centre leading to close to 90° bite angles and enhanced iron-ligand orbital overlap.
Collapse
Affiliation(s)
- Thomas Reuter
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, Mainz 55128, Germany.
| | - Ayla Kruse
- Institute for Physics and Department of Life, Light and Matter, University of Rostock, Rostock 18051, Germany
| | - Roland Schoch
- Faculty of Science, Chemistry Department and Centre for Sustainable Systems Design, Paderborn University, Paderborn 33098, Germany
| | - Stefan Lochbrunner
- Institute for Physics and Department of Life, Light and Matter, University of Rostock, Rostock 18051, Germany
| | - Matthias Bauer
- Faculty of Science, Chemistry Department and Centre for Sustainable Systems Design, Paderborn University, Paderborn 33098, Germany
| | - Katja Heinze
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, Mainz 55128, Germany.
| |
Collapse
|
17
|
Reichenauer F, Wang C, Förster C, Boden P, Ugur N, Báez-Cruz R, Kalmbach J, Carrella LM, Rentschler E, Ramanan C, Niedner-Schatteburg G, Gerhards M, Seitz M, Resch-Genger U, Heinze K. Strongly Red-Emissive Molecular Ruby [Cr(bpmp) 2] 3+ Surpasses [Ru(bpy) 3] 2. J Am Chem Soc 2021; 143:11843-11855. [PMID: 34296865 DOI: 10.1021/jacs.1c05971] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gaining chemical control over the thermodynamics and kinetics of photoexcited states is paramount to an efficient and sustainable utilization of photoactive transition metal complexes in a plethora of technologies. In contrast to energies of charge transfer states described by spatially separated orbitals, the energies of spin-flip states cannot straightforwardly be predicted as Pauli repulsion and the nephelauxetic effect play key roles. Guided by multireference quantum chemical calculations, we report a novel highly luminescent spin-flip emitter with a quantum chemically predicted blue-shifted luminescence. The spin-flip emission band of the chromium complex [Cr(bpmp)2]3+ (bpmp = 2,6-bis(2-pyridylmethyl)pyridine) shifted to higher energy from ca. 780 nm observed for known highly emissive chromium(III) complexes to 709 nm. The photoluminescence quantum yields climb to 20%, and very long excited state lifetimes in the millisecond range are achieved at room temperature in acidic D2O solution. Partial ligand deuteration increases the quantum yield to 25%. The high excited state energy of [Cr(bpmp)2]3+ and its facile reduction to [Cr(bpmp)2]2+ result in a high excited state redox potential. The ligand's methylene bridge acts as a Brønsted acid quenching the luminescence at high pH. Combined with a pH-insensitive chromium(III) emitter, ratiometric optical pH sensing is achieved with single wavelength excitation. The photophysical and ground state properties (quantum yield, lifetime, redox potential, and acid/base) of this spin-flip complex incorporating an earth-abundant metal surpass those of the classical precious metal [Ru(α-diimine)3]2+ charge transfer complexes, which are commonly employed in optical sensing and photo(redox) catalysis, underlining the bright future of these molecular ruby analogues.
Collapse
Affiliation(s)
- Florian Reichenauer
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Cui Wang
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Christoph Förster
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Pit Boden
- Department of Chemistry and Research Center Optimas, University Kaiserslautern, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany
| | - Naz Ugur
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Ricardo Báez-Cruz
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Jens Kalmbach
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Luca M Carrella
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Eva Rentschler
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Charusheela Ramanan
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Gereon Niedner-Schatteburg
- Department of Chemistry and Research Center Optimas, University Kaiserslautern, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany
| | - Markus Gerhards
- Department of Chemistry and Research Center Optimas, University Kaiserslautern, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany
| | - Michael Seitz
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Ute Resch-Genger
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Katja Heinze
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
18
|
Deb S, Sahoo A, Pal P, Baitalik S. Exploitation of the Second Coordination Sphere to Promote Significant Increase of Room-Temperature Luminescence Lifetime and Anion Sensing in Ruthenium-Terpyridine Complexes. Inorg Chem 2021; 60:6836-6851. [PMID: 33885303 DOI: 10.1021/acs.inorgchem.1c00821] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This paper deals with the synthesis, characterization, and photophysical behaviors of three Ru(II)-terpyridine complexes derived from a terpyridyl-imidazole ligand (tpy-HImzPh3Me2), wherein a terpyridine moiety has been coupled with a dimethylbenzil unit through a phenylimidazole spacer. The three complexes display strong emission at RT having excited-state lifetimes in the range of 2.3-43.7 ns, depending upon the co-ligand present and the solvents used. Temperature-dependent emission spectral measurements have demonstrated that the energy separation between emitting metal-to-ligand charge transfer state and non-emitting metal-centered state is increased relative to that of [Ru(tpy)2]2+. In contrast to our previously studied Ru(II) complexes containing similar terpyridyl-imidazole motif but differing by peripheral methyl groups, significant enhancement of RT emission intensity and quantum yield and remarkable increase of emission lifetime occur for the present complexes upon protonation of the imidazole nitrogen(s) with perchloric acid. Additionally, by exploiting imidazole NH motif(s), we have examined their anion recognition behaviors in organic and aqueous media. Interestingly, the complexes are capable of visually recognizing cyanide ions in aqueous medium up to the concentration limit of 10-8 M. Computational studies involving density functional theory (DFT) and time-dependent DFT methods have been carried out to obtain insights into their electronic structures and to help with the assignment of absorption and emission bands.
Collapse
Affiliation(s)
- Sourav Deb
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Anik Sahoo
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Poulami Pal
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Sujoy Baitalik
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| |
Collapse
|
19
|
Pal P, Ganguly T, Das S, Baitalik S. pH-Responsive colorimetric, emission and redox switches based on Ru(ii)-terpyridine complexes. Dalton Trans 2021; 50:186-196. [PMID: 33290452 DOI: 10.1039/d0dt03537h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have undertaken a thorough investigation on pH-responsive optical and redox switching behaviors of our recently reported trans form of bis-tridentate Ru(ii) luminophores, [(H2pbbzim)Ru(tpy-pvp-X)]2+ where X = H, Me, Cl, NO2, and Ph. The complexes possess two benzimidazole protons in their second coordination sphere, which became acidic upon coordinating influence of Ru2+ and could be successively deprotonated with the increase of pH. The effect of pH on photophysical and electrochemical behaviours of the complexes was thoroughly studied. Substantial quenching of emission together with the red-shift of both absorption (color change) and emission bands is noticed for all complexes upon dissociation of NH protons. Absorption vs. pH data were employed for determination of ground-state pKa values, while excited-state pKa (pKa*) values were estimated by employing the Förster cycle based equation. The electronic nature of X induces a small but finite effect on the pKa values and a linear correlation is found by plotting pKavs. Hammett σp parameters of X. Proton-coupled electrochemical behaviours were investigated within the pH range of 1-10. From the E1/2vs. pH plot, acid dissociation constants in different protonation states of the complexes were estimated in both Ru2+ and Ru3+ states. Compared with their protonated forms which exhibit reversible oxidation within 0.91-0.95 V, the oxidation potential of the doubly deprotonated forms shifted remarkably to the cathodic region (0.61-0.66 V). In essence, the present complexes act as potential pH-responsive colorimetric, emission and redox switches.
Collapse
Affiliation(s)
- Poulami Pal
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | | | | | | |
Collapse
|
20
|
Thuéry P, Harrowfield J. Uranyl ion complexes with 2,2′:6′,2′′-terpyridine-4′-carboxylate. Interpenetration of networks involving “expanded ligands”. CrystEngComm 2021. [DOI: 10.1039/d1ce01215k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
2,2′:6′,2′′-Terpyridine-4′-carboxylate (tpyc−) forms both homo- and heterometallic uranyl ion complexes including a chiral, twofold interpenetrated polymer involving the “expanded ligand” Ni(tpyc)2.
Collapse
Affiliation(s)
- Pierre Thuéry
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| | - Jack Harrowfield
- Université de Strasbourg, ISIS, 8 allée Gaspard Monge, 67083 Strasbourg, France
| |
Collapse
|
21
|
Moll J, Wang C, Päpcke A, Förster C, Resch‐Genger U, Lochbrunner S, Heinze K. Green-Light Activation of Push-Pull Ruthenium(II) Complexes. Chemistry 2020; 26:6820-6832. [PMID: 32162414 PMCID: PMC7318647 DOI: 10.1002/chem.202000871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/09/2020] [Indexed: 11/07/2022]
Abstract
Synthesis, characterization, electrochemistry, and photophysics of homo- and heteroleptic ruthenium(II) complexes [Ru(cpmp)2 ]2+ (22+ ) and [Ru(cpmp)(ddpd)]2+ (32+ ) bearing the tridentate ligands 6,2''-carboxypyridyl-2,2'-methylamine-pyridyl-pyridine (cpmp) and N,N'-dimethyl-N,N'-dipyridin-2-ylpyridine-2,6-diamine (ddpd) are reported. The complexes possess one (32+ ) or two (22+ ) electron-deficient dipyridyl ketone fragments as electron-accepting sites enabling intraligand charge transfer (ILCT), ligand-to-ligand charge transfer (LL'CT) and low-energy metal-to-ligand charge transfer (MLCT) absorptions. The latter peak around 544 nm (green light). Complex 22+ shows 3 MLCT phosphorescence in the red to near-infrared spectral region at room temperature in deaerated acetonitrile solution with an emission quantum yield of 1.3 % and a 3 MLCT lifetime of 477 ns, whereas 32+ is much less luminescent. This different behavior is ascribed to the energy gap law and the shape of the parasitic excited 3 MC state potential energy surface. This study highlights the importance of the excited-state energies and geometries for the actual excited-state dynamics. Aromatic and aliphatic amines reductively quench the excited state of 22+ paving the way to photocatalytic applications using low-energy green light as exemplified with the green-light-sensitized thiol-ene click reaction.
Collapse
Affiliation(s)
- Johannnes Moll
- Department of ChemistryJohannes Gutenberg University of MainzDuesbergweg 10–1455128MainzGermany
| | - Cui Wang
- Division 1.2 BiophotonicsFederal Institute for Materials Research and Testing (BAM)Richard Willstätter-Straße 1112489BerlinGermany
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Ayla Päpcke
- Institute for Physics and Department of Life, Light and MatterUniversity of Rostock18051RostockGermany
| | - Christoph Förster
- Department of ChemistryJohannes Gutenberg University of MainzDuesbergweg 10–1455128MainzGermany
| | - Ute Resch‐Genger
- Division 1.2 BiophotonicsFederal Institute for Materials Research and Testing (BAM)Richard Willstätter-Straße 1112489BerlinGermany
| | - Stefan Lochbrunner
- Institute for Physics and Department of Life, Light and MatterUniversity of Rostock18051RostockGermany
| | - Katja Heinze
- Department of ChemistryJohannes Gutenberg University of MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
22
|
Experimental and theoretical exploration of photophysics and trans-cis photoisomerization of styrylbenzene conjugated terpyridine complexes of Ru(II): Strong effect of deprotonation from second coordination sphere. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Brown CM, Arsenault NE, Cross TNK, Hean D, Xu Z, Wolf MO. Structural, electrochemical and photophysical behavior of Ru( ii) complexes with large bite angle sulfur-bridged terpyridyl ligands. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01009b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sulfur-bridged terpyridyl ligands expand the bite angles in Ru(ii) species leading to geometries very close to that of a “perfect” octahedron. Altering the donor strength of substituents results in systematic tuning of the redox properties.
Collapse
Affiliation(s)
| | | | | | - Duane Hean
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Zhen Xu
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Michael O. Wolf
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
24
|
Treiling S, Wang C, Förster C, Reichenauer F, Kalmbach J, Boden P, Harris JP, Carrella LM, Rentschler E, Resch‐Genger U, Reber C, Seitz M, Gerhards M, Heinze K. Luminescence and Light-Driven Energy and Electron Transfer from an Exceptionally Long-Lived Excited State of a Non-Innocent Chromium(III) Complex. Angew Chem Int Ed Engl 2019; 58:18075-18085. [PMID: 31600421 PMCID: PMC6916301 DOI: 10.1002/anie.201909325] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/01/2019] [Indexed: 01/10/2023]
Abstract
Photoactive metal complexes employing Earth-abundant metal ions are a key to sustainable photophysical and photochemical applications. We exploit the effects of an inversion center and ligand non-innocence to tune the luminescence and photochemistry of the excited state of the [CrN6 ] chromophore [Cr(tpe)2 ]3+ with close to octahedral symmetry (tpe=1,1,1-tris(pyrid-2-yl)ethane). [Cr(tpe)2 ]3+ exhibits the longest luminescence lifetime (τ=4500 μs) reported up to date for a molecular polypyridyl chromium(III) complex together with a very high luminescence quantum yield of Φ=8.2 % at room temperature in fluid solution. Furthermore, the tpe ligands in [Cr(tpe)2 ]3+ are redox non-innocent, leading to reversible reductive chemistry. The excited state redox potential and lifetime of [Cr(tpe)2 ]3+ surpass those of the classical photosensitizer [Ru(bpy)3 ]2+ (bpy=2,2'-bipyridine) enabling energy transfer (to oxygen) and photoredox processes (with azulene and tri(n-butyl)amine).
Collapse
Affiliation(s)
- Steffen Treiling
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg University of MainzDuesbergweg 10–1455128MainzGermany
| | - Cui Wang
- Division BiophotonicsFederal Institute for Materials Research and Testing (BAM)Richard-Willstätter-Straße 1112489BerlinGermany
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustraße 314195BerlinGermany
| | - Christoph Förster
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg University of MainzDuesbergweg 10–1455128MainzGermany
| | - Florian Reichenauer
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg University of MainzDuesbergweg 10–1455128MainzGermany
| | - Jens Kalmbach
- Institute of Inorganic ChemistryUniversity of TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Pit Boden
- Department of Chemistry and Research Center OptimasTU KaiserslauternErwin-Schrödinger-Straße67663KaiserslauternGermany
| | - Joe P. Harris
- Département de chimieUniversité de MontréalMontréalQuébecH3C 3J7Canada
| | - Luca M. Carrella
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg University of MainzDuesbergweg 10–1455128MainzGermany
| | - Eva Rentschler
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg University of MainzDuesbergweg 10–1455128MainzGermany
| | - Ute Resch‐Genger
- Division BiophotonicsFederal Institute for Materials Research and Testing (BAM)Richard-Willstätter-Straße 1112489BerlinGermany
| | - Christian Reber
- Département de chimieUniversité de MontréalMontréalQuébecH3C 3J7Canada
| | - Michael Seitz
- Institute of Inorganic ChemistryUniversity of TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Markus Gerhards
- Department of Chemistry and Research Center OptimasTU KaiserslauternErwin-Schrödinger-Straße67663KaiserslauternGermany
| | - Katja Heinze
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg University of MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
25
|
Ligand-controlled phosphine-free Co(II)-catalysed cross-coupling of secondary and primary alcohols. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130640] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
26
|
Treiling S, Wang C, Förster C, Reichenauer F, Kalmbach J, Boden P, Harris JP, Carrella LM, Rentschler E, Resch‐Genger U, Reber C, Seitz M, Gerhards M, Heinze K. Luminescence and Light‐Driven Energy and Electron Transfer from an Exceptionally Long‐Lived Excited State of a Non‐Innocent Chromium(III) Complex. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909325] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Steffen Treiling
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Cui Wang
- Division BiophotonicsFederal Institute for Materials Research and Testing (BAM) Richard-Willstätter-Straße 11 12489 Berlin Germany
- Institute of Chemistry and BiochemistryFreie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Christoph Förster
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Florian Reichenauer
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Jens Kalmbach
- Institute of Inorganic ChemistryUniversity of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Pit Boden
- Department of Chemistry and Research Center OptimasTU Kaiserslautern Erwin-Schrödinger-Straße 67663 Kaiserslautern Germany
| | - Joe P. Harris
- Département de chimieUniversité de Montréal Montréal Québec H3C 3J7 Canada
| | - Luca M. Carrella
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Eva Rentschler
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Ute Resch‐Genger
- Division BiophotonicsFederal Institute for Materials Research and Testing (BAM) Richard-Willstätter-Straße 11 12489 Berlin Germany
| | - Christian Reber
- Département de chimieUniversité de Montréal Montréal Québec H3C 3J7 Canada
| | - Michael Seitz
- Institute of Inorganic ChemistryUniversity of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Markus Gerhards
- Department of Chemistry and Research Center OptimasTU Kaiserslautern Erwin-Schrödinger-Straße 67663 Kaiserslautern Germany
| | - Katja Heinze
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
27
|
Wang S, Bruneau C, Renaud JL, Gaillard S, Fischmeister C. 2,2'-Dipyridylamines: more than just sister members of the bipyridine family. Applications and achievements in homogeneous catalysis and photoluminescent materials. Dalton Trans 2019; 48:11599-11622. [PMID: 31271393 DOI: 10.1039/c9dt02165e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2,2'-Dipyridylamines (dpa) and related compounds belong to the family of polydentate nitrogen ligands. More than a century has passed since their first report but new complexes and applications have been emerging in recent years owing to the versatility of dpa-based architectures. This review aims to present and highlight the main achievements attained with dpa-containing metal complexes in the domains of homogeneous catalysis and luminescent materials.
Collapse
Affiliation(s)
- S Wang
- Univ Rennes. UMR CNRS 6226, Institut des Sciences Chimiques de Rennes, Université de Rennes 1. 263, avenue du général Leclerc, 35000 Rennes, France.
| | - C Bruneau
- Univ Rennes. UMR CNRS 6226, Institut des Sciences Chimiques de Rennes, Université de Rennes 1. 263, avenue du général Leclerc, 35000 Rennes, France.
| | - J-L Renaud
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000 Caen, France.
| | - S Gaillard
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000 Caen, France.
| | - C Fischmeister
- Univ Rennes. UMR CNRS 6226, Institut des Sciences Chimiques de Rennes, Université de Rennes 1. 263, avenue du général Leclerc, 35000 Rennes, France.
| |
Collapse
|
28
|
Awada A, Moreno-Betancourt A, Philouze C, Moreau Y, Jouvenot D, Loiseau F. New Acridine-Based Tridentate Ligand for Ruthenium(II): Coordination with a Twist. Inorg Chem 2018; 57:15430-15437. [PMID: 30475599 DOI: 10.1021/acs.inorgchem.8b02735] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new tridentate ligand based on acridine has been synthetized. The central acridine heterocycle bears two pyridine coordinating units at positions 4 and 5. The terdentate 2,7-di- tert-butyl-4,5-di(pyridin-2-yl)acridine (dtdpa) was then coordinated to a ruthenium(II) cation. The corresponding homoleptic complex could only be obtained where both ligands coordinate to the ruthenium in a fac fashion. Thus, a heteroleptic compound (2) was constructed in combination with a terpyridine ligand in order to constrain the ligand to adopt a mer geometry. Such a coordination imposes a dramatic twist on the acridine heterocycle, resulting in an unexpected photophysical behavior. The electrochemical and photophysical properties of both complexes were studied, and the molecular structure of 2 was determined by X-ray diffraction. The two compounds absorb at low energy wavelengths, and a very weak luminescence is detected only for complex 2 in the near-infrared region.
Collapse
Affiliation(s)
- Ali Awada
- Univ. Grenoble Alpes, CNRS, DCM , F-38000 Grenoble , France
| | | | | | - Yohann Moreau
- Univ. Grenoble Alpes, CEA, CNRS, BIG-LCBM, UMR 5249 , F-38000 Grenoble , France
| | | | | |
Collapse
|
29
|
Basu U, Otto S, Heinze K, Gasser G. Biological Evaluation of the NIR-Emissive Ruby Analogue [Cr(ddpd)2
][BF4
]3
as a Photodynamic Therapy Photosensitizer. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201801023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Uttara Basu
- Laboratory for Inorganic Chemical Biology; Chimie ParisTech PSL University; 75005 Paris France
| | - Sven Otto
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg University of Mainz; Duesberweg 10-14 55128 Mainz Germany
- Graduate School Materials Science in Mainz; Staudingerweg 9 55128 Mainz Germany
| | - Katja Heinze
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg University of Mainz; Duesberweg 10-14 55128 Mainz Germany
| | - Gilles Gasser
- Laboratory for Inorganic Chemical Biology; Chimie ParisTech PSL University; 75005 Paris France
| |
Collapse
|
30
|
Pal P, Mukherjee S, Maity D, Baitalik S. Synthesis, Photophysics, and Switchable Luminescence Properties of a New Class of Ruthenium(II)-Terpyridine Complexes Containing Photoisomerizable Styrylbenzene Units. ACS OMEGA 2018; 3:14526-14537. [PMID: 31458137 PMCID: PMC6645016 DOI: 10.1021/acsomega.8b01927] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/19/2018] [Indexed: 06/10/2023]
Abstract
We report here the synthesis and structural characterization of a new class of homoleptic terpyridine complexes of Ru(II) containing styrylbenzene moieties to improve room-temperature luminescence properties. Solid-state structure determination of 2 was done through single-crystal X-ray diffraction. Tuning of photophysical properties was done by incorporating both electron-donating and electron-withdrawing substituents in the ligand. The complexes exhibit strong emission having lifetimes in the range of 10.0-158.5 ns, dependent on the substituent and the solvent. Good correlations were also observed between Hammett σp parameters with the lifetimes of the complexes. Styrylbenzene moieties in the complexes induce trans-trans to trans-cis isomerization accompanied by huge alteration of their spectral profiles upon treating with UV light. Reversal of trans-cis to trans-trans forms was also achieved on interacting with visible light. Change from trans-trans to the corresponding trans-cis form leads to emission quenching, whereas trans-cis to the corresponding trans-trans form leads to restoration of emission. In essence, "on-off" and "off-on" photoswitching of luminescence was observed. Calculations involving density functional theory (DFT) and time-dependent-DFT methods were performed to understand the electronic structures as well as for appropriate assignment of the absorption and emission bands.
Collapse
Affiliation(s)
- Poulami Pal
- Department
of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Shruti Mukherjee
- Department
of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Dinesh Maity
- Department
of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
- Department
of Chemistry, Katwa College, Purba Bardhaman, West Bengal 713130, India
| | - Sujoy Baitalik
- Department
of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
31
|
Bar M, Deb S, Paul A, Baitalik S. Stimuli-Responsive Luminescent Bis-Tridentate Ru(II) Complexes toward the Design of Functional Materials. Inorg Chem 2018; 57:12010-12024. [PMID: 30238750 DOI: 10.1021/acs.inorgchem.8b01562] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report here the synthesis, characterization, and photophysics of two bis-tridentate Ru(II) complexes based on a heteroditopic ligand and thoroughly studied their stimuli-responsive behaviors toward the design of functional materials. Both complexes display emission at room temperature having lifetimes in the range of 0.5-70.0 ns, depending on coligand and solvent. Substantial modulations of absorption and emission spectral behaviors of the complexes were done upon interaction with anions, and anion-induced changes in the properties lead to recognition of selected anions in both organic and aqueous media. Photophysical properties of the complexes were also tuned by changing the pH of the medium, and p Ka values in both ground and excited states were determined. The presence of free pyridine-imidazole motifs in the complexes leads to substantial modulation of the optical properties and switching of the emission properties upon interaction with selected cations as well as with protons. Fe2+, Co2+, Ni2+, and Cu2+ trigger emission quenching, while Zn2+ induces finite enhancement of the emission intensity in the complexes. In essence, modulation of the optical properties and switching of luminescence properties of the complexes were accomplished by a variety of the external stimuli such as anions, cations, protons, and pH, as well as solvent polarity. Importantly, the optical outputs in response to an appropriate set of stimuli were utilized to mimic the functions of two-input IMPLICATION, NOR, and XNOR logic gates.
Collapse
Affiliation(s)
- Manoranjan Bar
- Department of Chemistry, Inorganic Chemistry Section , Jadavpur University , Kolkata 700032 , India
| | - Sourav Deb
- Department of Chemistry, Inorganic Chemistry Section , Jadavpur University , Kolkata 700032 , India
| | - Animesh Paul
- Department of Chemistry, Inorganic Chemistry Section , Jadavpur University , Kolkata 700032 , India
| | - Sujoy Baitalik
- Department of Chemistry, Inorganic Chemistry Section , Jadavpur University , Kolkata 700032 , India
| |
Collapse
|
32
|
Otto S, Förster C, Wang C, Resch-Genger U, Heinze K. A Strongly Luminescent Chromium(III) Complex Acid. Chemistry 2018; 24:12555-12563. [DOI: 10.1002/chem.201802797] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/02/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Sven Otto
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg University of Mainz; Duesbergweg 10-14 55128 Mainz Germany
- Graduate School Materials Science in Mainz; Staudingerweg 9 55128 Mainz Germany
| | - Christoph Förster
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg University of Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Cui Wang
- Division 1.2 Biophotonics; Federal Institute for Materials Research and Testing (BAM); Richard Willstätter-Straße 11 12489 Berlin Germany
- Institut für Chemie und Biochemie; Freie Universität Berlin; 14195 Berlin Germany
| | - Ute Resch-Genger
- Division 1.2 Biophotonics; Federal Institute for Materials Research and Testing (BAM); Richard Willstätter-Straße 11 12489 Berlin Germany
| | - Katja Heinze
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg University of Mainz; Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
33
|
|
34
|
Otto S, Harris JP, Heinze K, Reber C. Molecular Ruby under Pressure. Angew Chem Int Ed Engl 2018; 57:11069-11073. [PMID: 29964315 DOI: 10.1002/anie.201806755] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Indexed: 02/06/2023]
Abstract
The intensely luminescent chromium(III) complexes [Cr(ddpd)2 ]3+ and [Cr(H2 tpda)2 ]3+ show surprising pressure-induced red shifts of up to -15 cm-1 kbar-1 for their sharp spin-flip emission bands (ddpd=N,N'-dimethyl-N,N'-dipyridine-2-yl-pyridine-2,6-diamine; H2 tpda=2,6-bis(2-pyridylamino)pyridine). These shifts surpass that of the established standard, ruby Al2 O3 :Cr3+ , by a factor of 20. Beyond the common application in the crystalline state, the very high quantum yield of [Cr(ddpd)2 ]3+ enables optical pressure sensing in aqueous and methanolic solution. These unique features of the molecular rubies [Cr(ddpd)2 ]3+ and [Cr(H2 tpda)2 ]3+ pave the way for highly sensitive optical pressure determination and unprecedented molecule-based pressure sensing with a single type of emitter.
Collapse
Affiliation(s)
- Sven Otto
- Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany.,Graduate School Materials Science in Mainz, Staudingerweg 9, 55128, Mainz, Germany
| | - Joe P Harris
- Département de chimie, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | - Katja Heinze
- Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Christian Reber
- Département de chimie, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| |
Collapse
|
35
|
Dorn M, Mack K, Carrella LM, Rentschler E, Förster C, Heinze K. Structure and Electronic Properties of an Expanded Terpyridine Complex of Nickel(II) [Ni(ddpd)2](BF4)2. Z Anorg Allg Chem 2018. [DOI: 10.1002/zaac.201800101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Matthias Dorn
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg University of Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Katharina Mack
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg University of Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Luca M. Carrella
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg University of Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Eva Rentschler
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg University of Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Christoph Förster
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg University of Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Katja Heinze
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg University of Mainz; Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
36
|
Pal P, Mukherjee S, Maity D, Baitalik S. Synthesis, Structural Characterization, and Luminescence Switching of Diarylethene-Conjugated Ru(II)-Terpyridine Complexes by trans-cis Photoisomerization: Experimental and DFT/TD-DFT Investigation. Inorg Chem 2018; 57:5743-5753. [PMID: 29701476 DOI: 10.1021/acs.inorgchem.7b03096] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We synthesized and thoroughly characterized a new family of diarylethene-conjugated mononuclear Ru(II)-terpyridine complexes and investigated in detail their photophysical, electrochemical, and spectroelectrochemical behaviors. Interestingly, the compounds show moderately strong room-temperature luminescence predominantly from their 3MLCT state with luminescence lifetime varying between 8.43 and 22.82 ns. Because of the presence of diarylethene unit, all the monometallic complexes underwent trans-to-cis photoisomerization upon interaction with UV light with substantial changes in their absorption and luminescence spectra. Reverting back from the cis to the trans form is also made possible upon treatment with visible light or by heat. Trans-to-cis isomerization leads to almost complete quenching of luminescence, while backward cis-to-trans isomerization gives rise to restoration of the original luminescence for all the complexes. Thus, "on-off" and "off-on" emission switching was made possible upon successive interaction of the complexes with UV and visible light. Computational investigation involving density functional theory (DFT) and time-dependent DFT methods was done for proper assignment of the experimental absorption and emission spectral bands in the complexes. Finally, experimentally observed trend on the absorption and emission spectral behaviors of the complexes upon photoisomerization was also compared with the calculated results.
Collapse
Affiliation(s)
- Poulami Pal
- Department of Chemistry, Inorganic Chemistry Section , Jadavpur University , Kolkata 700032 , India
| | - Shruti Mukherjee
- Department of Chemistry, Inorganic Chemistry Section , Jadavpur University , Kolkata 700032 , India
| | - Dinesh Maity
- Department of Chemistry, Inorganic Chemistry Section , Jadavpur University , Kolkata 700032 , India
| | - Sujoy Baitalik
- Department of Chemistry, Inorganic Chemistry Section , Jadavpur University , Kolkata 700032 , India
| |
Collapse
|
37
|
|
38
|
Cerfontaine S, Marcélis L, Laramee-Milette B, Hanan GS, Loiseau F, De Winter J, Gerbaux P, Elias B. Converging Energy Transfer in Polynuclear Ru(II) Multiterpyridine Complexes: Significant Enhancement of Luminescent Properties. Inorg Chem 2018; 57:2639-2653. [DOI: 10.1021/acs.inorgchem.7b03040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Simon Cerfontaine
- Institut de la Matière Condensée et des Nanosciences (IMCN) − Molécules, Solides et Réactivité (MOST), Université catholique de Louvain, Place Louis Pasteur 1, bte L4.01.02, B-1348 Louvain-la-Neuve, Belgium
| | - Lionel Marcélis
- Institut de la Matière Condensée et des Nanosciences (IMCN) − Molécules, Solides et Réactivité (MOST), Université catholique de Louvain, Place Louis Pasteur 1, bte L4.01.02, B-1348 Louvain-la-Neuve, Belgium
| | - Baptiste Laramee-Milette
- Département de Chimie, Université de Montréal 2900 Edouard-Montpetit, Montréal, Québec H3T-1J4, Canada
| | - Garry S. Hanan
- Département de Chimie, Université de Montréal 2900 Edouard-Montpetit, Montréal, Québec H3T-1J4, Canada
| | - Frédérique Loiseau
- Département de Chimie Moléculaire, Université Grenoble-Alpes, CNRS UMR 5250, BP53 38041 Grenoble, France
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Laboratory, University of Mons − UMons, 23 Place du Parc, B-7000 Mons, Belgium
| | - Pascal Gerbaux
- Organic Synthesis and Mass Spectrometry Laboratory, University of Mons − UMons, 23 Place du Parc, B-7000 Mons, Belgium
| | - Benjamin Elias
- Institut de la Matière Condensée et des Nanosciences (IMCN) − Molécules, Solides et Réactivité (MOST), Université catholique de Louvain, Place Louis Pasteur 1, bte L4.01.02, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
39
|
Bar M, Maity D, Deb S, Das S, Baitalik S. Ru-Os dyads based on a mixed bipyridine-terpyridine bridging ligand: modulation of the rate of energy transfer and pH-induced luminescence switching in the infrared domain. Dalton Trans 2018; 46:12950-12963. [PMID: 28929158 DOI: 10.1039/c7dt02192e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of heterobimetallic complexes of compositions [(bpy/phen)2Ru(dipy-Hbzim-tpy)Os (tpy-PhCH3/H2pbbzim)]4+ (bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, tpy-PhCH3 = 4'-(4-methylphenyl)-2,2':6',2''-terpyridine and H2pbbzim = 2,6-bis(benzimidazole-2-yl)pyridine)), derived from a heteroditopic bpy-tpy bridging ligand, were synthesized and thoroughly characterized in this work. The heterometallic complexes exhibit two successive one-electron reversible metal-centered oxidations corresponding to OsII/OsIII at lower potential and RuII/RuIII at higher potential. All the four dyads exhibit very intense, ligand centered absorption bands in the UV region and moderately intense MLCT bands in the visible region. The dyads also show intense infrared emission with the emission maximum spanning between 734 nm and 775 nm with reasonably long room temperature lifetimes varying between 30 ns and 104 ns. Both steady state and time resolved luminescence spectroscopic investigations indicate that efficient and fast intramolecular energy transfer from the 3MLCT state of the Ru(ii) center to the Os-center takes place in all the four dyads. In addition, the rate of energy transfer was found to depend on the terminal ligand on the Os-site. Due to the presence of a number of imidazole NH protons in the dyads, significant modulation of both the ground and excited state properties of the complexes was made possible by varying the pH of the solution. By varying the terminal ligand, pH-induced "on-off", "off-off-on" and "on-off-on" emission switching of the complexes was nicely demonstrated in the infrared region.
Collapse
Affiliation(s)
- Manoranjan Bar
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India.
| | | | | | | | | |
Collapse
|
40
|
Wang C, Otto S, Dorn M, Kreidt E, Lebon J, Sršan L, Di Martino-Fumo P, Gerhards M, Resch-Genger U, Seitz M, Heinze K. Deuterierter molekularer Rubin mit Rekord-Lumineszenzquantenausbeute. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711350] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Cui Wang
- Fachbereich Biophotonik; Bundesanstalt für Materialforschung und -prüfung (BAM); Richard-Willstätter-Str. 11 12489 Berlin Deutschland
- Institut für Chemie und Biochemie; Freie Universität Berlin; 14195 Berlin Deutschland
| | - Sven Otto
- Institut für Anorganische Chemie und Analytische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
- Graduiertenschule Materials Science in Mainz - MAINZ; Staudingerweg 9 55128 Mainz Deutschland
| | - Matthias Dorn
- Institut für Anorganische Chemie und Analytische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| | - Elisabeth Kreidt
- Institut für Anorganische Chemie, Universität Tübingen; Auf der Morgenstelle 18 72076 Tübingen Deutschland
| | - Jakob Lebon
- Institut für Anorganische Chemie, Universität Tübingen; Auf der Morgenstelle 18 72076 Tübingen Deutschland
| | - Laura Sršan
- Institut für Anorganische Chemie, Universität Tübingen; Auf der Morgenstelle 18 72076 Tübingen Deutschland
| | - Patrick Di Martino-Fumo
- Department of Chemistry and Research Center Optimas; Universität Kaiserslautern; Erwin-Schrödinger-Str. 67663 Kaiserslautern Deutschland
| | - Markus Gerhards
- Department of Chemistry and Research Center Optimas; Universität Kaiserslautern; Erwin-Schrödinger-Str. 67663 Kaiserslautern Deutschland
| | - Ute Resch-Genger
- Fachbereich Biophotonik; Bundesanstalt für Materialforschung und -prüfung (BAM); Richard-Willstätter-Str. 11 12489 Berlin Deutschland
| | - Michael Seitz
- Institut für Anorganische Chemie, Universität Tübingen; Auf der Morgenstelle 18 72076 Tübingen Deutschland
| | - Katja Heinze
- Institut für Anorganische Chemie und Analytische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| |
Collapse
|
41
|
Wang C, Otto S, Dorn M, Kreidt E, Lebon J, Sršan L, Di Martino-Fumo P, Gerhards M, Resch-Genger U, Seitz M, Heinze K. Deuterated Molecular Ruby with Record Luminescence Quantum Yield. Angew Chem Int Ed Engl 2018; 57:1112-1116. [DOI: 10.1002/anie.201711350] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Indexed: 01/29/2023]
Affiliation(s)
- Cui Wang
- Division Biophotonics; Federal Institute for Materials Research and Testing (BAM); Richard-Willstätter-Strasse 11 12489 Berlin Germany
- Institut für Chemie und Biochemie; Freie Universität Berlin; 14195 Berlin Germany
| | - Sven Otto
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg University of Mainz; Duesbergweg 10-14 55128 Mainz Germany
- Graduate School Materials Science in Mainz; Staudingerweg 9 55128 Mainz Germany
| | - Matthias Dorn
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg University of Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Elisabeth Kreidt
- Institute of Inorganic Chemistry; University of Tübingen; Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Jakob Lebon
- Institute of Inorganic Chemistry; University of Tübingen; Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Laura Sršan
- Institute of Inorganic Chemistry; University of Tübingen; Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Patrick Di Martino-Fumo
- Department of Chemistry and Research Center Optimas; University Kaiserslautern; Erwin-Schrödinger-Strasse 67663 Kaiserslautern Germany
| | - Markus Gerhards
- Department of Chemistry and Research Center Optimas; University Kaiserslautern; Erwin-Schrödinger-Strasse 67663 Kaiserslautern Germany
| | - Ute Resch-Genger
- Division Biophotonics; Federal Institute for Materials Research and Testing (BAM); Richard-Willstätter-Strasse 11 12489 Berlin Germany
| | - Michael Seitz
- Institute of Inorganic Chemistry; University of Tübingen; Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Katja Heinze
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg University of Mainz; Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
42
|
Wu SH, Shao JY, Gong ZL, Chen N, Zhong YW. Tuning the dual emissions of a monoruthenium complex with a dangling coordination site by solvents, O2, and metal ions. Dalton Trans 2018; 47:292-297. [DOI: 10.1039/c7dt04198e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A monoruthenium complex with a dangling coordination site shows solvent-, O2-, and metal ion-modulated dual fluorescence and phosphorescence emissions.
Collapse
Affiliation(s)
- Si-Hai Wu
- School of Biomedical Sciences
- Huaqiao University
- Quanzhou
- China
| | - Jiang-Yang Shao
- CAS Key Laboratory of Photochemistry
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Zhong-Liang Gong
- CAS Key Laboratory of Photochemistry
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Na Chen
- School of Biomedical Sciences
- Huaqiao University
- Quanzhou
- China
| | - Yu-Wu Zhong
- CAS Key Laboratory of Photochemistry
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
43
|
Otto S, Moll J, Förster C, Geißler D, Wang C, Resch-Genger U, Heinze K. Three-in-One Crystal: The Coordination Diversity of Zinc Polypyridine Complexes. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700948] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sven Otto
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg University of Mainz; Duesbergweg 10-14 55128 Mainz Germany
- Graduate School Materials Science in Mainz; 55128 Mainz Germany
| | - Johannes Moll
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg University of Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Christoph Förster
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg University of Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Daniel Geißler
- Division 1.10 Biophotonics; Federal Institute for Materials Research and Testing (BAM); Richard-Willstätter-Strasse 11 12489 Berlin Germany
| | - Cui Wang
- Division 1.10 Biophotonics; Federal Institute for Materials Research and Testing (BAM); Richard-Willstätter-Strasse 11 12489 Berlin Germany
- Freie Universität Berlin; 14195 Berlin Germany
| | - Ute Resch-Genger
- Division 1.10 Biophotonics; Federal Institute for Materials Research and Testing (BAM); Richard-Willstätter-Strasse 11 12489 Berlin Germany
| | - Katja Heinze
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg University of Mainz; Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
44
|
Rana PJS, Singh P, Kar P. Ruthenium Bis(terpyridine) Complexes Based on D-P-A Functionalization: Experimental and Theoretical Evidences. ChemistrySelect 2017. [DOI: 10.1002/slct.201700927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Prem Jyoti Singh Rana
- Department of Chemistry; Indian Institution of Technology; Roorkee 247667, Uttrakhand India
| | - Pallavi Singh
- Department of Chemistry; Indian Institution of Technology; Roorkee 247667, Uttrakhand India
| | - Prasenjit Kar
- Department of Chemistry; Indian Institution of Technology; Roorkee 247667, Uttrakhand India
| |
Collapse
|
45
|
Wu SH, Shao JY, Dai X, Cui X, Su H, Zhong YW. Synthesis and Characterization of Tris(bidentate) Ruthenium Complexes of Di(pyrid-2-yl)(methyl)amine. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700291] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Si-Hai Wu
- School of Biomedical Sciences; Huaqiao University; 362021 Quanzhou Fujian China
| | - Jiang-Yang Shao
- Beijing National Laboratory for Molecular Sciences; CAS Research/Education Center for Excellence in Molecular Sciences; Chinese Academy of Sciences; 100190 Beijing China
| | - Xiaojuan Dai
- Beijing National Laboratory for Molecular Sciences; CAS Research/Education Center for Excellence in Molecular Sciences; Chinese Academy of Sciences; 100190 Beijing China
- University of Chinese Academy of Sciences; 100049 Beijing China
| | - Xiuling Cui
- School of Biomedical Sciences; Huaqiao University; 362021 Quanzhou Fujian China
| | - Hongmei Su
- Beijing National Laboratory for Molecular Sciences; CAS Research/Education Center for Excellence in Molecular Sciences; Chinese Academy of Sciences; 100190 Beijing China
- University of Chinese Academy of Sciences; 100049 Beijing China
- College of Chemistry; Beijing Normal University; 100875 Beijing China
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences; CAS Research/Education Center for Excellence in Molecular Sciences; Chinese Academy of Sciences; 100190 Beijing China
- University of Chinese Academy of Sciences; 100049 Beijing China
| |
Collapse
|
46
|
Mondal D, Biswas S, Paul A, Baitalik S. Luminescent Dinuclear Ruthenium Terpyridine Complexes with a Bis-Phenylbenzimidazole Spacer. Inorg Chem 2017; 56:7624-7641. [PMID: 28654273 DOI: 10.1021/acs.inorgchem.6b02937] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A conjugated bis-terpyridine bridging ligand, 2-(4-(2,6-di(pyridin-2-yl)pyridin-4-yl)phenyl)-6-(2-(4-(2,6-di(pyridin-2-yl)pyridin-4-yl)phenyl)-1H-benzo[d]imidazol-6-yl)-1H-benzo[d] imidazole (tpy-BPhBzimH2-tpy), was designed in this work by covalent coupling of 3,3'-diaminobenzidine and two 4'-(p-formylphenyl)-2,2':6',2″-terpyridine units to synthesize a new series of bimetallic Ru(II)-terpyridine light-harvesting complexes. Photophysical and electrochemical properties were modulated by the variation of the terminal ligands in the complexes. The new compounds were thoroughly characterized by 1H NMR spectroscopy, high-resolution mass spectrometry, and elemental analysis. Absorption spectra of the complexes consist of very strong ligand-centered π-π* and n-π* transitions in the UV, metal-to-ligand, and intraligand charge transfer bands in the visible regions. Steady-state and time-resolved emission spectral measurements indicate that the complexes exhibit moderately intense luminescence at room temperature within the spectral domain of 653-687 nm having luminescence lifetimes in the range between 6.3 and 55.2 ns, depending upon terminal tridentate ligand and solvent. Variable-temperature luminescence measurements suggest substantial increase of the energy gap between luminescent 3metal-to-ligand charge transfer state and nonluminescent 3metal centered in the complexes compared to the parent [Ru(tpy)2]2+. Each of the three bimetallic complexes exhibits only one reversible couple in the positive potential window with almost no detectable splitting corresponding to simultaneous oxidation of the two remote Ru centers. All the complexes possess a number of imidazole NH protons, which became sufficiently acidic upon metal ion coordination. By utilizing these NH protons, we thoroughly studied anion recognition properties of the complexes in pure organic as well as predominantly aqueous media through multiple optical channels and spectroscopic methods. Finally computation investigations employing density functional theory (DFT) and time-dependent DFT were done to examine the electronic structures of the complexes and accurate assignment of experimentally observed optical spectral bands.
Collapse
Affiliation(s)
- Debiprasad Mondal
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University , Kolkata 700032, India
| | - Sourav Biswas
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University , Kolkata 700032, India
| | - Animesh Paul
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University , Kolkata 700032, India
| | - Sujoy Baitalik
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University , Kolkata 700032, India
| |
Collapse
|
47
|
Otto S, Nauth AM, Ermilov E, Scholz N, Friedrich A, Resch-Genger U, Lochbrunner S, Opatz T, Heinze K. Photo-Chromium: Sensitizer for Visible-Light-Induced Oxidative C−H Bond Functionalization-Electron or Energy Transfer? CHEMPHOTOCHEM 2017. [DOI: 10.1002/cptc.201700077] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sven Otto
- Institute of Inorganic and Analytical Chemistry; Johannes Gutenberg University of Mainz; Duesbergweg 10-14 55128 Mainz Germany
- Graduate School Materials Science in Mainz; Staudingerweg 9 55128 Mainz Germany
| | - Alexander M. Nauth
- Institute of Organic Chemistry; Johannes Gutenberg University of Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Eugenyi Ermilov
- Division 1.10; Federal Institute for Materials Research and Testing (BAM); Richard-Willstätter-Str. 11 12489 Berlin Germany
| | - Norman Scholz
- Division 1.10; Federal Institute for Materials Research and Testing (BAM); Richard-Willstätter-Str. 11 12489 Berlin Germany
| | - Aleksej Friedrich
- Institute of Physics, University of Rostock; Albert-Einstein-Str. 23 18059 Rostock Germany
| | - Ute Resch-Genger
- Division 1.10; Federal Institute for Materials Research and Testing (BAM); Richard-Willstätter-Str. 11 12489 Berlin Germany
| | - Stefan Lochbrunner
- Institute of Physics, University of Rostock; Albert-Einstein-Str. 23 18059 Rostock Germany
| | - Till Opatz
- Institute of Organic Chemistry; Johannes Gutenberg University of Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Katja Heinze
- Institute of Inorganic and Analytical Chemistry; Johannes Gutenberg University of Mainz; Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
48
|
Mengel AKC, Bissinger C, Dorn M, Back O, Förster C, Heinze K. Boosting Vis/NIR Charge-Transfer Absorptions of Iron(II) Complexes by N-Alkylation and N-Deprotonation in the Ligand Backbone. Chemistry 2017; 23:7920-7931. [PMID: 28383155 DOI: 10.1002/chem.201700959] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Indexed: 11/08/2022]
Abstract
Reversing the metal-to-ligand charge transfer (3 MLCT)/metal-centered (3 MC) excited state order in iron(II) complexes is a challenging objective, yet would finally result in long-sought luminescent transition-metal complexes with an earth-abundant central ion. One approach to achieve this goal is based on low-energy charge-transfer absorptions in combination with a strong ligand field. Coordinating electron-rich and electron-poor tridentate oligopyridine ligands with large bite angles at iron(II) enables both low-energy MLCT absorption bands around 590 nm and a strong ligand field. Variations of the electron-rich ligand by introducing longer alkyl substituents destabilizes the iron(II) complex towards ligand substitution reactions while hardly affecting the optical properties. On the other hand, N-deprotonation of the ligand backbone is feasible and reversible, yielding deep-green complexes with charge-transfer bands extending into the near-IR region. Time-dependent density functional theory calculations assign these absorption bands to transitions with dipole-allowed ligand-to-ligand charge transfer character. This unique geometric and electronic situation establishes a further regulating screw to increase the energy gap between potentially emitting charge-transfer states and the non-radiative ligand field states of iron(II) dyes.
Collapse
Affiliation(s)
- Andreas K C Mengel
- Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Christian Bissinger
- Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Matthias Dorn
- Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Oliver Back
- Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Christoph Förster
- Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Katja Heinze
- Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
49
|
Otto S, Scholz N, Behnke T, Resch-Genger U, Heinze K. Thermo-Chromium: A Contactless Optical Molecular Thermometer. Chemistry 2017; 23:12131-12135. [DOI: 10.1002/chem.201701726] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Sven Otto
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg-University of Mainz; Duesbergweg 10-14 55128 Mainz Germany
- Graduate School Materials Science in Mainz; Staudingerweg 9 55128 Mainz Germany
| | - Norman Scholz
- Division 1.10; Federal Institute for Materials Research and Testing (BAM); Richard-Willstätter-Strasse 11 12489 Berlin Germany
| | - Thomas Behnke
- Division 1.10; Federal Institute for Materials Research and Testing (BAM); Richard-Willstätter-Strasse 11 12489 Berlin Germany
| | - Ute Resch-Genger
- Division 1.10; Federal Institute for Materials Research and Testing (BAM); Richard-Willstätter-Strasse 11 12489 Berlin Germany
| | - Katja Heinze
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg-University of Mainz; Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
50
|
Mondal D, Bar M, Mukherjee S, Baitalik S. Design of Ru(II) Complexes Based on Anthraimidazoledione-Functionalized Terpyridine Ligand for Improvement of Room-Temperature Luminescence Characteristics and Recognition of Selective Anions: Experimental and DFT/TD-DFT Study. Inorg Chem 2016; 55:9707-9724. [PMID: 27617341 DOI: 10.1021/acs.inorgchem.6b01483] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this work we report synthesis and characterization of three rigid and linear rodlike monometallic Ru(II) complexes based on a terpyridine ligand tightly connected to 9,10-anthraquinone electron-acceptor unit through phenyl-imidazole spacer. The motivation of designing these complexes is to enhance their excited-state lifetimes at room temperature. Interestingly it is found that all three complexes exhibit luminescence at room temperature with excited-state lifetimes in the range of 1.6-52.8 ns, depending upon the coligand as well as the solvent. Temperature-dependent luminescence investigations indicate that the energy gap between the emitting 3MLCT state and nonemitting metal-centered state 3MC in the complexes increased enormously compared with parent [Ru(tpy)2]2+. In addition, by taking advantage of the imidazole NH proton(s), which became appreciably acidic upon combined effect of electron accepting anthraquinone moiety as well as metal ion coordination, we also examined anion recognition and sensing behaviors of the complexes in organic, mixed aqueous-organic as well as in solid medium through different optical channels such as absorption, steady-state and time-resolved emission, and 1H NMR spectroscopic techniques. In conjunction with the experiment, computational investigation was also employed to examine the electronic structures of the complexes and accurate assignment of experimentally observed spectral and redox behaviors.
Collapse
Affiliation(s)
- Debiprasad Mondal
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University , Kolkata 700032, India
| | - Manoranjan Bar
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University , Kolkata 700032, India
| | - Shruti Mukherjee
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University , Kolkata 700032, India
| | - Sujoy Baitalik
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University , Kolkata 700032, India
| |
Collapse
|